
Chapter 6

Interpolation

Remark 6.1 Motivation. Variational forms of partial differential equations use
functions in Sobolev spaces. The solution of these equations shall be approximated
with the Ritz method in finite dimensional spaces, the finite element spaces. The
best possible approximation of an arbitrary function from the Sobolev space by a
finite element function is a factor in the upper bound for the finite element error,
e.g., see the Lemma of Cea, estimate (4.19).

This section studies the approximation quality of finite element spaces. Esti-
mates are proved for interpolants of functions. Interpolation estimates are of course
upper bounds for the best approximation error and they can serve as factors in
finite element error estimates. 2

6.1 Interpolation in Sobolev Spaces by Polynomi-

als

Lemma 6.2 Unique determination of a polynomial with integral condi-

tions. Let Ω be a bounded domain in R
d with Lipschitz boundary. Let m ∈ N∪{0}

be given and let for all derivatives with multi-index α, |α| ≤ m, a value aα ∈ R be

given. Then, there is a uniquely determined polynomial p ∈ Pm(Ω) such that

∫

Ω

∂αp(x) dx = aα, |α| ≤ m. (6.1)

Proof: Let p ∈ Pm(Ω) be an arbitrary polynomial. It has the form

p(x) =
∑

|β|≤m

bβx
β.

Inserting this representation into (6.1) leads to a linear system of equations Mb = a with

M = (Mαβ), Mαβ =

∫

Ω

∂αx
β dx, b = (bβ), a = (aα),

for |α| , |β| ≤ m. Since M is a squared matrix, the linear system of equations possesses a
unique solution if and only if M is non-singular.

The proof is performed by contradiction. Assume that M is singular. Then there
exists a non-trivial solution of the homogeneous system. That means, there is a polynomial
q ∈ Pm(Ω) \ {0} with

∫

Ω

∂αq(x) dx = 0 for all |α| ≤ m.

The polynomial q(x) has the representation q(x) =
∑

|β|≤m cβx
β. Now, one can choose a

cβ 6= 0 with maximal value |β|. Then, it is ∂βq(x) = Ccβ = const 6= 0, where C > 0 comes
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from the differentiation rule for polynomials, which is a contradiction to the vanishing of

the integral for ∂βq(x).

Remark 6.3 To Lemma 6.2. Lemma 6.2 states that a polynomial is uniquely
determined if a condition on the integral on Ω is prescribed for each derivative. 2

Lemma 6.4 Poincaré-type inequality. Denote by Dkv(x), k ∈ N ∪ {0}, the

total derivative of order k of a function v(x), e.g., for k = 1 the gradient of v(x).
Let Ω be convex and be included into a ball of radius R. Let k, l ∈ N ∪ {0} with

k ≤ l and let p ∈ R with p ∈ [1,∞]. Assume that v ∈ W l,p(Ω) satisfies
∫

Ω

∂αv(x) dx = 0 for all |α| ≤ l − 1,

then it holds the estimate
∥

∥Dkv
∥

∥

Lp(Ω)
≤ CRl−k

∥

∥Dlv
∥

∥

Lp(Ω)
,

where the constant C does not depend on Ω and on v(x).

Proof: There is nothing to prove if k = l. In addition, it suffices to prove the lemma
for k = 0 and l = 1, since the general case follows by applying the result to ∂αv(x). Only
the case p < ∞ will be discussed here in detail.

Since Ω is assumed to be convex, the integral mean value theorem can be written in
the form

v(x)− v(y) =

∫ 1

0

∇v(tx+ (1− t)y) · (x− y) dt, x,y ∈ Ω.

Integration with respect to y yields

v(x)

∫

Ω

dy −

∫

Ω

v(y) dy =

∫

Ω

∫ 1

0

∇v(tx+ (1− t)y) · (x− y) dt dy.

It follows from the assumption that the second integral on the left hand side vanishes.
Hence, one gets

v(x) =
1

|Ω|

∫

Ω

∫ 1

0

∇v(tx+ (1− t)y) · (x− y) dt dy.

Now, taking the absolute value on both sides, using that the absolute value of an integral is
estimated from above by the integral of the absolute value, applying the Cauchy–Schwarz
inequality for vectors and the estimate ‖x− y‖2 ≤ 2R yields

|v(x)| =
1

|Ω|

∣
∣
∣
∣

∫

Ω

∫ 1

0

∇v(tx+ (1− t)y) · (x− y) dt dy

∣
∣
∣
∣

≤
1

|Ω|

∫

Ω

∫ 1

0

|∇v(tx+ (1− t)y) · (x− y)| dt dy

≤
2R

|Ω|

∫

Ω

∫ 1

0

‖∇v(tx+ (1− t)y)‖2 dt dy. (6.2)

Then (6.2) is raised to the power p and then integrated with respect to x. One obtains
with Hölder’s inequality (3.4), with p−1 + q−1 = 1 =⇒ p/q − p = p(1/q − 1) = −1, that

∫

Ω

|v(x)|p dx ≤
CRp

|Ω|p

∫

Ω

(∫

Ω

∫ 1

0

‖∇v(tx+ (1− t)y)‖2 dt dy

)p

dx

≤
CRp

|Ω|p

∫

Ω

[(∫

Ω

∫ 1

0

1q dt dy

)p/q

︸ ︷︷ ︸

|Ω|p/q

×

(∫

Ω

∫ 1

0

‖∇v(tx+ (1− t)y)‖p2 dt dy

)]

dx

=
CRp

|Ω|

∫

Ω

(∫

Ω

∫ 1

0

‖∇v(tx+ (1− t)y)‖p2 dt dy

)

dx.
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Applying the theorem of Fubini allows the commutation of the integration

∫

Ω

|v(x)|p dx ≤
CRp

|Ω|

∫ 1

0

∫

Ω

(∫

Ω

‖∇v(tx+ (1− t)y)‖p2 dy

)

dx dt.

Using the integral mean value theorem in one dimension gives that there is a t0 ∈ [0, 1],
such that

∫

Ω

|v(x)|p dx ≤
CRp

|Ω|

∫

Ω

(∫

Ω

‖∇v(t0x+ (1− t0)y)‖
p
2 dy

)

dx.

The function ‖∇v(x)‖p2 will be extended to R
d by zero and the extension will be also

denoted by ‖∇v(x)‖p2. Then, it is

∫

Ω

|v(x)|p dx ≤
CRp

|Ω|

∫

Ω

(∫

Rd

‖∇v(t0x+ (1− t0)y)‖
p
2 dy

)

dx. (6.3)

Let t0 ∈ [0, 1/2]. Since the domain of integration is R
d, a substitution of variables

t0x+ (1− t0)y = z can be applied and leads to
∫

Rd

‖∇v(t0x+ (1− t0)y)‖
p
2 dy =

1

1− t0

∫

Rd

‖∇v(z)‖p2 dz ≤ 2 ‖∇v‖pLp(Ω) ,

since 1/(1− t0) ≤ 2. Inserting this expression into (6.3) gives
∫

Ω

|v(x)|p dx ≤ 2CRp ‖∇v‖pLp(Ω) .

If t0 > 1/2 then one changes the roles of x and y, applies the theorem of Fubini to
change the sequence of integration, and uses the same arguments.

The estimate for the case p = ∞ is also based on (6.2).

Remark 6.5 On Lemma 6.4. The Lemma 6.4 proves an inequality of Poincaré-
type. It says that it is possible to estimate the Lp(Ω) norm of a lower derivative of
a function v(x) by the same norm of a higher derivative if the integral mean values
of some lower derivatives vanish.

An important application of Lemma 6.4 is in the proof of the Bramble–Hilbert
lemma. The Bramble–Hilbert lemma considers a continuous linear functional which
is defined on a Sobolev space and which vanishes for all polynomials of degree less
or equal than m. It states that the value of the functional can be estimated by the
Lebesgue norm of the (m+ 1)th total derivative of the functions from this Sobolev
space. 2

Theorem 6.6 Bramble–Hilbert lemma. Let m ∈ N ∪ {0}, m ≥ 0, p ∈ [1,∞],
and F : Wm+1,p(Ω) → R be a continuous linear functional, and let the conditions

of Lemma 6.2 and 6.4 be satisfied. Let

F (p) = 0 ∀ p ∈ Pm(Ω),

then there is a constant C(Ω), which is independent of v(x) and F , such that

|F (v)| ≤ C(Ω)
∥

∥Dm+1v
∥

∥

Lp(Ω)
∀ v ∈ Wm+1,p(Ω).

Proof: Let v ∈ Wm+1,p(Ω). It follows from Lemma 6.2 that there is a polynomial
from Pm(Ω) with

∫

Ω

∂α(v + p)(x) dx = 0 for |α| ≤ m.

Lemma 6.4 gives, with l = m+ 1 and considering each term in ‖·‖Wm+1,p(Ω) individually,
the estimate

‖v + p‖Wm+1,p(Ω) ≤ C(Ω)
∥
∥Dm+1(v + p)

∥
∥
Lp(Ω)

= C(Ω)
∥
∥Dm+1v

∥
∥
Lp(Ω)

.

78



From the vanishing of F for p ∈ Pm(Ω) and the continuity of F it follows that

|F (v)| = |F (v + p)| ≤ c ‖v + p‖Wm+1,p(Ω) ≤ C(Ω)
∥
∥Dm+1v

∥
∥
Lp(Ω)

.

Remark 6.7 Strategy for estimating the interpolation error. The Bramble–Hilbert
lemma will be used for estimating the interpolation error for an affine family of
finite elements. The strategy is as follows:

• Show first the estimate on the reference mesh cell K̂.
• Transform the estimate on an arbitrary mesh cellK to the reference mesh cell K̂.
• Apply the estimate on K̂.
• Transform back to K.

One has to study what happens if the transforms are applied to the estimate. 2

Remark 6.8 Assumptions, definition of the interpolant. Let K̂ ⊂ R
d, d ∈ {2, 3},

be a reference mesh cell (compact polyhedron), P̂ (K̂) a polynomial space of dimen-
sion N , and Φ̂1, . . . , Φ̂N : Cs(K̂) → R continuous linear functionals. It will be
assumed that the space P̂ (K̂) is unisolvent with respect to these functionals. Then,

there is a local basis φ̂1, . . . , φ̂N ∈ P̂ (K̂).
Consider v̂ ∈ Cs(K̂), then the interpolant IK̂ v̂ ∈ P̂ (K̂) is defined by

IK̂ v̂(x̂) =
N
∑

i=1

Φ̂i(v̂)φ̂i(x̂).

The operator IK̂ is a continuous and linear operator from Cs(K̂) to P̂ (K̂). From

the linearity it follows that IK̂ is the identity on P̂ (K̂)

IK̂ p̂ = p̂ ∀ p̂ ∈ P̂ (K̂).

2

Example 6.9 Interpolation operators.

• Let K̂ ⊂ R
d be an arbitrary reference cell, P̂ (K̂) = P0(K̂), and

Φ̂(v̂) =
1

∣

∣

∣K̂
∣

∣

∣

∫

K̂

v̂(x̂) dx̂.

The functional Φ̂ is continuous on C0(K̂) since

∣

∣

∣
Φ̂(v̂)

∣

∣

∣
≤

1
∣

∣

∣
K̂
∣

∣

∣

∫

K̂

|v̂(x̂)| dx̂ ≤

∣

∣

∣K̂
∣

∣

∣

∣

∣

∣
K̂
∣

∣

∣

max
x̂∈K̂

|v̂(x̂)| = ‖v̂‖C0(K̂) .

For the constant function 1 ∈ P0(K̂) it is Φ̂(1) = 1 6= 0. Hence, {φ̂} = {1} is
the local basis and the space is unisolvent with respect to Φ̂. The operator

IK̂ v̂(x̂) = Φ̂(v̂)φ̂(x̂) =
1

∣

∣

∣K̂
∣

∣

∣

∫

K̂

v̂(x̂) dx̂

is an integral mean value operator, i.e., each continuous function on K̂ will be
approximated by a constant function whose value equals the integral mean value,
see Figure 6.1
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Figure 6.1: Interpolation of x2 in [−1, 1] by a P0 function with the integral mean
value and with the value of the function at x0 = 0.

• It is possible to define Φ̂(v̂) = v̂(x̂0) for an arbitrary point x̂0 ∈ K̂. This
functional is also linear and continuous in C0(K̂). The interpolation operator IK̂
defined in this way interpolates each continuous function by a constant function
whose value is equal to the value of the function at x̂0, see also Figure 6.1.
Interpolation operators which are defined by using values of functions, are called
Lagrangian interpolation operators.

This example demonstrates that the interpolation operator IK̂ depends on P̂ (K̂)

and on the functionals Φ̂i. 2

Theorem 6.10 Interpolation error estimate on a reference mesh cell. Let

Pm(K̂) ⊂ P̂ (K̂) and p ∈ [1,∞] with (m+ 1− s)p > d. Then there is a constant C

that is independent of v̂(x̂) such that

∥

∥v̂ − IK̂ v̂
∥

∥

Wm+1,p(K̂)
≤ C

∥

∥Dm+1v̂
∥

∥

Lp(K̂)
∀ v̂ ∈ Wm+1,p(K̂). (6.4)

Proof: Because of the Sobolev imbedding, Theorem 3.53, (λ = 0, j = s,m (of Sobolev
imbedding) = m+ 1− s) it holds that

Wm+1,p(K̂) → Cs(K̂)

if (m+1− s)p > d. That means, the interpolation operator is well defined in Wm+1,p(K̂).
From the identity of the interpolation operator in Pm(K̂), the triangle inequality, the
boundedness of the interpolation operator (it is a linear and continuous operator mapping
Cs(K̂) → P̂ (K̂) ⊂ Wm+1,p(K̂)), and the Sobolev imbedding, one obtains for q̂ ∈ Pm(K̂)

‖v̂ − IK̂ v̂‖
Wm+1,p(K̂)

= ‖v̂ + q̂ − IK̂(v̂ + q̂)‖
Wm+1,p(K̂)

≤ ‖v̂ + q̂‖Wm+1,p(K̂) + ‖IK̂(v̂ + q̂)‖
Wm+1,p(K̂)

≤ ‖v̂ + q̂‖Wm+1,p(K̂) + c ‖v̂ + q̂‖Cs(K̂)

≤ c ‖v̂ + q̂‖Wm+1,p(K̂) .

Choosing q̂(x̂) in Lemma 6.2 such that

∫

K̂

∂α(v̂ + q̂) dx̂ = 0 ∀ |α| ≤ m,

the assumptions of Lemma 6.4 are satisfied. It follows that

‖v̂ + q̂‖Wm+1,p(K̂) ≤ c
∥
∥Dm+1(v̂ + q̂)

∥
∥
Lp(K̂)

= c
∥
∥Dm+1v̂

∥
∥
Lp(K̂)

.

Remark 6.11 On Theorem 6.10.
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• One can construct examples which show that the Sobolev imbedding is not valid
if (m+ 1− s)p > d is not satisfied. In the case (m+ 1− s)p ≤ d, the statement
of Theorem 6.10 is not true.
Consider the interpolation of continuous functions (s = 0) with piecewise linear
elements (m = 1) in Sobolev spaces that are also Hilbert spaces (p = 2). Then
(m+1−s)p = 4 and it follows that the theorem can be applied only for d ∈ {2, 3}.
For piecewise constant finite elements, the statement of the theorem is true only
for d = 1.

• The theorem requires only that Pm(K̂) ⊂ P̂ (K̂). This requirement does not
exclude that P̂ (K̂) contains polynomials of higher degree, too. However, this
property is not utilized and also not needed if the other assumptions of the
theorem are satisfied.

2

Remark 6.12 Assumptions on the triangulation. For deriving the interpolation
error estimate for arbitrary mesh cells K, and finally for the finite element space,
one has to study the properties of the affine mapping from K to K̂ and of the back
mapping.

Consider an affine family of finite elements whose mesh cells are generated by
affine mappings

FK x̂ = Bx̂+ b,

where B is a non-singular d× d matrix and b is a d vector.
Let hK be the diameter of K = FK(K̂), i.e., the largest distance of two points

that are contained in K. The images {K = FK(K̂)} are assumed to satisfy the
following conditions:

• K ⊂ R
d is contained in a ball of radius CRhK ,

• K contains a ball of radius C−1
R hK ,

where the constant CR is independent of K. Hence, it follows for all K that

radius of circumcircle

radius of inscribed circle
≤ C2

R.

A triangulation with this property is called a quasi-uniform triangulation. 2

Lemma 6.13 Estimates of matrix norms. For each matrix norm ‖·‖ one has

the estimates

‖B‖ ≤ chK ,
∥

∥B−1
∥

∥ ≤ ch−1
K ,

where the constants depend on the matrix norm and on CR.

Proof: Since K̂ is a Lipschitz domain with polyhedral boundary, it contains a ball
B(x̂0, r) with x̂0 ∈ K̂ and some r > 0. Hence, x̂0 + ŷ ∈ K̂ for all ‖ŷ‖2 = r. It follows that
the images

x0 = Bx̂0 + b, x = B(x̂0 + ŷ) + b = x0 +Bŷ

are contained in K. Since the triangulation is assumed to be quasi-uniform, one obtains
for all ŷ

‖Bŷ‖2 = ‖x− x0‖2 ≤ CRhK .

Now, it holds for the spectral norm that

‖B‖2 = sup
ẑ 6=0

‖Bẑ‖2
‖ẑ‖2

=
1

r
sup

‖ẑ‖2=r

‖Bẑ‖2 ≤
CR

r
hK .

An estimate of this form, with a possible different constant, holds also for all other matrix
norms since all matrix norms are equivalent.

The estimate for
∥
∥B−1

∥
∥ proceeds in the same way with interchanging the roles of K

and K̂.
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Theorem 6.14 Local interpolation estimate. Let an affine family of finite

elements be given by its reference cell K̂, the functionals {Φ̂i}, and a space of

polynomials P̂ (K̂). Let all assumptions of Theorem 6.10 be satisfied. Then, for all

v ∈ Wm+1,p(K) there is a constant C, which is independent of v(x) such that

∥

∥Dk(v − IKv)
∥

∥

Lp(K)
≤ Chm+1−k

K

∥

∥Dm+1v
∥

∥

Lp(K)
, k ≤ m+ 1. (6.5)

Proof: The idea of the proof consists in transforming left hand side of (6.5) to the
reference cell, using the interpolation estimate on the reference cell and transforming back.

i). Denote the elements of the matrices B and B−1 by bij and b
(−1)
ij , respectively.

Since ‖B‖∞ = maxi,j |bij | is also a matrix norm, it holds that

|bij | ≤ ChK ,
∣
∣
∣b

(−1)
ij

∣
∣
∣ ≤ Ch−1

K . (6.6)

Using element-wise estimates for the matrix B (Leibniz formula for determinants), one
obtains

|detB| ≤ Chd
K ,

∣
∣detB−1

∣
∣ ≤ Ch−d

K . (6.7)

ii). The next step consists in proving that the transformed interpolation operator is
equal to the natural interpolation operator on K. The latter one is given by

IKv =
N∑

i=1

ΦK,i(v)φK,i, (6.8)

where {φK,i} is the basis of the space

P (K) = {p : K → R : p = p̂ ◦ F−1
K , p̂ ∈ P̂ (K̂)},

which satisfies ΦK,i(φK,j) = δij . The functionals are defined by

ΦK,i(v) = Φ̂i(v ◦ FK)

Hence, it follows with v = φ̂j ◦ F
−1
K from the condition on the local basis on K̂ that

ΦK,i(φ̂j ◦ F
−1
K ) = Φ̂i(φ̂j) = δij ,

i.e., the local basis on K is given by φK,j = φ̂j ◦ F
−1
K . Using (6.8), one gets

IK̂ v̂ =

N∑

i=1

Φ̂i(v̂)φ̂i =

N∑

i=1

ΦK,i(v̂ ◦ F−1
K

︸ ︷︷ ︸

=v

) φK,i ◦ FK =

(
N∑

i=1

ΦK,i(v)φK,i

)

◦ FK

= IKv ◦ FK .

Hence, IK̂ v̂ is transformed correctly.
iii). One obtains with the chain rule

∂v(x)

∂xi
=

d∑

j=1

∂v̂(x̂)

∂x̂j
b
(−1)
ji ,

∂v̂(x̂)

∂x̂i
=

d∑

j=1

∂v(x)

∂xj
bji.

It follows with (6.6) that (with each derivative one obtains an additional factor of B or
B−1, respectively)

∥
∥
∥D

k
xv(x)

∥
∥
∥
2
≤ Ch−k

K

∥
∥
∥D

k
x̂v̂(x̂)

∥
∥
∥
2
,
∥
∥
∥D

k
x̂v̂(x̂)

∥
∥
∥
2
≤ Chk

K

∥
∥
∥D

k
xv(x)

∥
∥
∥
2
.

One gets with (6.7)
∫

K

∥
∥
∥D

k
xv(x)

∥
∥
∥

p

2
dx ≤ Ch−kp

K |detB|

∫

K̂

∥
∥
∥D

k
x̂v̂(x̂)

∥
∥
∥

p

2
dx̂ ≤ Ch−kp+d

K

∫

K̂

∥
∥
∥D

k
x̂v̂(x̂)

∥
∥
∥

p

2
dx̂

and
∫

K̂

∥
∥
∥D

k
x̂v̂(x̂)

∥
∥
∥

p

2
dx̂ ≤ Chkp

K

∣
∣detB−1

∣
∣

∫

K

∥
∥
∥D

k
xv(x)

∥
∥
∥

p

2
dx ≤ Chkp−d

K

∫

K

∥
∥
∥D

k
xv(x)

∥
∥
∥

p

2
dx.
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Using now the interpolation estimate on the reference cell (6.4) yields

∥
∥
∥D

k
x̂(v̂ − IK̂ v̂)

∥
∥
∥

p

Lp(K̂)
≤ C

∥
∥Dm+1

x̂
v̂
∥
∥
p

Lp(K̂)
, 0 ≤ k ≤ m+ 1.

It follows that
∥
∥
∥D

k
x(v − IKv)

∥
∥
∥

p

Lp(K)
≤ Ch−kp+d

K

∥
∥
∥D

k
x̂(v̂ − IK̂ v̂)

∥
∥
∥

p

Lp(K̂)

≤ Ch−kp+d
K

∥
∥Dm+1

x̂
v̂
∥
∥
p

Lp(K̂)

≤ Ch
(m+1−k)p
K

∥
∥Dm+1

x v
∥
∥
p

Lp(K)
.

Taking the p-th root proves the statement of the theorem.

Remark 6.15 On estimate (6.5).

• Note that the power of hK does not depend on p and d.
• Consider a quasi-uniform triangulation and define

h = max
K∈T h

{hK}.

Then, one obtains by summing over all mesh cells an interpolation estimate for
the global finite element space

∥

∥Dk(v − Ihv)
∥

∥

Lp(Ω)
=





∑

K∈T h

∥

∥Dk(v − IKv)
∥

∥

p

Lp(K)





1/p

≤





∑

K∈T h

ch
(m+1−k)p
K

∥

∥Dm+1v
∥

∥

p

Lp(K)





1/p

≤ ch(m+1−k)
∥

∥Dm+1v
∥

∥

Lp(Ω)
. (6.9)

For linear finite elements P1 (m = 1) it is, in particular,

‖v − Ihv‖Lp(Ω) ≤ ch2
∥

∥D2v
∥

∥

Lp(Ω)
, ‖∇(v − Ihv)‖Lp(Ω) ≤ ch

∥

∥D2v
∥

∥

Lp(Ω)
,

if v ∈ W 2,p(Ω).

2

Corollary 6.16 Finite element error estimate. Let u(x) be the solution of the

model problem (4.9) with u ∈ Hm+1(Ω) and let uh(x) be the solution of the corre-

sponding finite element problem. Consider a family of quasi-uniform triangulations

and let the finite element spaces V h contain polynomials of degree m. Then, the

following finite element error estimate holds

∥

∥∇(u− uh)
∥

∥

L2(Ω)
≤ chm

∥

∥Dm+1u
∥

∥

L2(Ω)
= chm |u|Hm+1(Ω) . (6.10)

Proof: The statement follows by combining Lemma 4.13 (for V = H1
0 (Ω)) and (6.9)

∥
∥
∥∇(u− uh)

∥
∥
∥
L2(Ω)

≤ inf
vh∈V h

∥
∥
∥∇(u− vh)

∥
∥
∥
L2(Ω)

≤ ‖∇(u− Ihu)‖L2(Ω) ≤ chm |u|Hm+1(Ω) .

Remark 6.17 To (6.10). Note that Lemma 4.13 provides only information about
the error in the norm on the left-hand side of (6.10), but not in other norms. 2
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6.2 Inverse Estimate

Remark 6.18 On inverse estimates. The approach for proving interpolation error
estimates can be uses also to prove so-called inverse estimates. In contrast to
interpolation error estimates, a norm of a higher order derivative of a finite element
function will be estimated by a norm of a lower order derivative of this function.
One obtains as penalty a factor with negative powers of the diameter of the mesh
cell. 2

Theorem 6.19 Inverse estimate. Let 0 ≤ k ≤ l be natural numbers and let

p, q ∈ [1,∞]. Then there is a constant Cinv, which depends only on k, l, p, q, K̂, P̂ (K̂)
such that

∥

∥Dlvh
∥

∥

Lq(K)
≤ Cinvh

(k−l)−d(p−1
−q−1)

K

∥

∥Dkvh
∥

∥

Lp(K)
∀ vh ∈ P (K). (6.11)

Proof: In the first step, (6.11) is shown for hK̂ = 1 and k = 0 on the reference mesh
cell. Since all norms are equivalent in finite dimensional spaces, one obtains

∥
∥
∥D

lv̂h
∥
∥
∥
Lq(K̂)

≤
∥
∥
∥v̂

h
∥
∥
∥
W l,q(K̂)

≤ C
∥
∥
∥v̂

h
∥
∥
∥
Lp(K̂)

∀ v̂h ∈ P̂ (K̂).

If k > 0, then one sets

P̃ (K̂) =
{

∂αv̂
h : v̂h ∈ P̂ (K̂), |α| = k

}

,

which is also a space consisting of polynomials. The application of the first estimate of
the proof to P̃ (K̂) gives

∥
∥
∥D

lv̂h
∥
∥
∥
Lq(K̂)

=
∑

|α|=k

∥
∥
∥D

l−k
(

∂αv̂
h
)∥
∥
∥
Lq(K̂)

≤ C
∑

|α|=k

∥
∥
∥∂αv̂

h
∥
∥
∥
Lp(K̂)

= C
∥
∥
∥D

kv̂h
∥
∥
∥
Lp(K̂)

.

This estimate is transformed to an arbitrary mesh cell K analogously as for the interpo-
lation error estimates. From the estimates for the transformations, one obtains

∥
∥
∥D

lvh
∥
∥
∥
Lq(K)

≤ Ch
−l+d/q
K

∥
∥
∥D

lv̂h
∥
∥
∥
Lq(K̂)

≤ Ch
−l+d/q
K

∥
∥
∥D

kv̂h
∥
∥
∥
Lp(K̂)

≤ Cinvh
k−l+d/q−d/p
K

∥
∥
∥D

kvh
∥
∥
∥
Lp(K)

.

Remark 6.20 On the proof. The crucial point in the proof was the equivalence of
all norms in finite dimensional spaces. Such a property does not exist in infinite
dimensional spaces. 2

Corollary 6.21 Global inverse estimate. Let p = q and let T h be a regular

triangulation of Ω, then
∥

∥Dlvh
∥

∥

Lp,h(Ω)
≤ Cinvh

k−l
∥

∥Dkvh
∥

∥

Lp,h(Ω)
,

where

‖·‖Lp,h(Ω) =





∑

K∈T h

‖·‖
p
Lp(K)





1/p

.

Remark 6.22 On ‖·‖Lp,h(Ω). The cell wise definition of the norm is important
for l ≥ 2 since in this case finite element functions generally do not possess the
regularity for the global norm to be well defined. It is also important for l ≥ 1 and
non-conforming finite element functions. 2
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6.3 Interpolation of Non-Smooth Functions

Remark 6.23 Motivation. The interpolation theory of Section 6.1 requires that
the interpolation operator is continuous on the Sobolev space to which the function
belongs that should be interpolated. But if one, e.g., wants to interpolate discon-
tinuous functions with continuous, piecewise linear elements, then Section 6.1 does
not provide estimates.

A simple remedy seems to be first to apply some smoothing operator to the
function to be interpolated and then to interpolate the smoothed function. However,
this approach leads to difficulties at the boundary of Ω and it will not be considered
further.

There are two often used interpolation operators for non-smooth functions. The
interpolation operator of Clément (1975) is defined for functions from L1(Ω) and it
can be generalized to more or less all finite elements. The interpolation operator
of Scott and Zhang (1990) is more special. It has the advantage that it preserves
homogeneous Dirichlet boundary conditions. Here, only the interpolation operator
of Clément, for linear finite elements, will be considered.

Let T h be a regular triangulation of the polyhedral domain Ω ⊂ R
d, d ∈ {2, 3},

with simplicies K. Denote by P1 the space of continuous, piecewise linear finite
elements on T h. 2

Remark 6.24 Construction of the interpolation Operator of Clément. For each
vertex Vi of the triangulation, the union of all grid cells which possess Vi as vertex
will be denoted by ωi, see Figure 5.1.

The interpolation operator of Clément is defined with the help of local L2(ωi)
projections. Let v ∈ L1(Ω) and let P1(ωi) be the space of continuous piecewise
linear finite elements on ωi. Then, the local L2(ωi) projection of v ∈ L1(ωi) is the
solution pi ∈ P1(ωi) of

∫

ωi

(v − pi)(x)q(x) dx = 0 ∀ q ∈ P1(ωi) (6.12)

or equivalently of
(v − pi, q)L2(ωi)

= 0 ∀ q ∈ P1(ωi).

Then, the Clément interpolation operator is defined by

Ph
Clev(x) =

N
∑

i=1

pi(Vi)φ
h
i (x), (6.13)

where {φh
i }

N
i=1 is the standard basis of the global finite element space P1. Since

Ph
Clev(x) is a linear combination of basis functions of P1, it defines a map Ph

Cle :
L1(Ω) → P1. 2

Theorem 6.25 Interpolation estimate. Let k, l ∈ N ∪ {0} and q ∈ R with

k ≤ l ≤ 2, 1 ≤ q ≤ ∞ and let ωK be the union of all subdomains ωi that contain

the mesh cell K, see Figure 6.2. Then it holds for all v ∈ W l,q(ωK) the estimate

∥

∥Dk(v − Ph
Clev)

∥

∥

Lq(K)
≤ Chl−k

∥

∥Dlv
∥

∥

Lq(ωK)
, (6.14)

with h = diam(ωK), where the constant C is independent of v(x) and h.

Proof: The statement of the lemma is obvious in the case k = l = 2 since it is
D2Ph

Clev(x)|K = 0.
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Figure 6.2: A subdomain ωK .

Let k ∈ {0, 1}. Because the L2(Ω) projection gives an element with best approximation,
one gets with (6.12)

Ph
Clep = p in K ∀ p ∈ P1(ωK). (6.15)

One says that Ph
Cle is a consistent operator.

The next step consists in proving the stability of Ph
Cle. One obtains with the inverse

inequality (6.11)

‖p‖L∞(ωi)
≤ ch−d/2 ‖p‖L2(ωi)

for all p ∈ P1(ωi).

The inverse inequality and definition (6.12) of the local L2 projection with the test function
q = pi gives

‖pi‖
2
L∞(ωi)

≤ ch−d ‖pi‖
2
L2(ωi)

≤ ch−d ‖v‖L1(ωi)
‖pi‖L∞(ωi)

.

Dividing by ‖pi‖L∞(ωi)
and applying Hölder’s inequality, one obtains for p−1 = 1 − q−1

(exercise)

|pi(Vi)| ≤ ch−d/q ‖v‖Lq(ωi)
(6.16)

for all Vi ∈ K. From the regularity of the triangulation, it follows for the basis functions
that (inverse estimate)

∥
∥
∥D

kφi

∥
∥
∥
L∞(K)

≤ ch−k, k = 0, 1. (6.17)

Using the triangle inequality, combining (6.16) and (6.17) yields the stability of Ph
Cle

∥
∥
∥D

kPh
Clev

∥
∥
∥
Lq(K)

≤
∑

Vi∈K

|pi(Vi)|
∥
∥
∥D

kφi

∥
∥
∥
Lq(K)

≤ c
∑

Vi∈K

h−d/q ‖v‖Lq(ωi)

∥
∥
∥D

kφi

∥
∥
∥
L∞(K)

‖1‖Lq(K)

≤ c
∑

Vi∈K

h−d/q ‖v‖Lq(ωi)
h−khd/q

= ch−k ‖v‖Lq(ωK) . (6.18)

The remainder of the proof follows the proof of the interpolation error estimate for the
polynomial interpolation, Theorem 6.10, apart from the fact that a reference cell is not
used for the Clément interpolation operator. Using Lemma 6.2 and 6.4, one can find a
polynomial p ∈ P1(ωK) with

∥
∥
∥D

j(v − p)
∥
∥
∥
Lq(ωK)

≤ chl−j
∥
∥
∥D

lv
∥
∥
∥
Lq(ωK)

, 0 ≤ j ≤ l ≤ 2. (6.19)
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With (6.15), the triangle inequality, ‖·‖Lq(K) ≤ ‖·‖Lq(ωK), (6.18), and (6.19), one obtains

∥
∥
∥D

k
(

v − Ph
Clev

)∥
∥
∥
Lq(K)

=
∥
∥
∥D

k
(

v − p+ Ph
Clep− Ph

Clev
)∥
∥
∥
Lq(K)

≤
∥
∥
∥D

k(v − p)
∥
∥
∥
Lq(K)

+
∥
∥
∥D

kPh
Cle(v − p)

∥
∥
∥
Lq(K)

≤
∥
∥
∥D

k(v − p)
∥
∥
∥
Lq(ωK)

+ ch−k ‖v − p‖Lq(ωK)

≤ chl−k
∥
∥
∥D

lv
∥
∥
∥
Lq(ωK)

+ ch−khl
∥
∥
∥D

lv
∥
∥
∥
Lq(ωK)

= chl−k
∥
∥
∥D

lv
∥
∥
∥
Lq(ωK)

.

Remark 6.26 Uniform meshes.

• If all mesh cells in ωK are of the same size, then one can replace h by hK in the
interpolation error estimate (6.14). This property is given in many cases.

• If one assumes that the number of mesh cells in ωK is bounded uniformly for all
considered triangulations, the global interpolation estimate

∥

∥Dk(v − Ph
Clev)

∥

∥

Lq(Ω)
≤ Chl−k

∥

∥Dlv
∥

∥

Lq(Ω)
, 0 ≤ k ≤ l ≤ 2,

follows directly from (6.14).

2
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