Fachbereich Mathematik und Informatik/ Institut für Mathematik
Prof. Dr. Volker John, john@wias-berlin.de
Balázs Kossovics, b.kossovics@fu-berlin.de

Berlin, 22.04.2024

Numerik I English translation of Übungsserie 02

Attention: Only solutions which provide a comprehensible reasoning will be graded. Every statement has to be argued. You can use results from the lecture. Statments without reasoning won't get any points.

1. Different best approximations of a polynomial. Let $V=C([-1,1]), f(x)=x^{4}$ and $U=P_{3}$ the space of polynomials of degree less or equal to 3 on $[-1,1]$. Compute the Chebyshev approximation as well as the best approximation in $L^{2}(-1,1)$ of f onto U. Determine the error of each approximation in both, the L^{2}-Norm and the maximum norm.

4 points
2. Properties of spaces and bases. Solve the following problems.
i) Let V be an inner product space with finite dimensional subspace $U \subseteq V$ and let $\left\{\varphi_{i}\right\}_{i=1}^{n}$ be a basis of U. Furthermore let $f \in V$ and $u \in U$. Prove that

$$
(f-u, v)=0 \quad \forall v \in U
$$

is satisfied if and only if it is for every basis function of U.
ii) Let $\left\{\varphi_{i}\right\}_{i=1}^{n}$ a Basis of U. Prove positivity and symmetry of the Gram matrix introduced in the lectures and given by

$$
A=\left(a_{i j}\right)_{i, j=1}^{n}, \quad a_{i j}=\left(\varphi_{i}, \varphi_{j}\right)
$$

iii) Prove the following statement by counter example. $V=C([a, b])$ equipped with $\|\cdot\|_{V}=\|\cdot\|_{\infty}$ is not strictly normed.

4 points
3. submission until 06.05.2024

Approximation of functions by polygonal chains, programming exercise. Take the function $f(x)=\sin (x)$ on the interval $[0,2 \pi]$. Subdivide the interval into n equidistant sub intervals of step size $h=2 \pi / n$ and use
$S_{n}=\left\{u_{n} \in C([0,2 \pi]):\left.u_{n}\right|_{[k h,(k+1) h]} \in P_{1}([k h,(k+1) h]), k=0, \ldots, n-1\right\}$ as space for approximation.
i) Determine the error

$$
\max _{k=0, \ldots, n}\left|f(k h)-u_{n}(k h)\right| \approx\left\|f-u_{n}\right\|_{\infty}
$$

for $n=2^{l}, n=0,1, \ldots 128$.
ii) Which functional dependence can you observe between the error and the step size?

The exercises should be solved in groups of two students. They have to be submitted until Sie Monday, 29.04.2024, 10:00, either in the box of the tutor or electronically via whiteboard.

