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Abstract A popular finite element approach for the numerical solution of convec-
tion–diffusion equations is the streamline upwind/Petrov–Galerkin (SUPG) method.
Unfortunately, in the convection–dominated regime, the SUPG solution often con-
tains spurious oscillations along sharp layers. A possible remedy is to introduce
an additional artificial diffusion term in the SUPG discretization. We call such ap-
proaches spurious oscillations at layers diminishing (SOLD) methods. The proper-
ties of the SOLD methods are significantly influenced by the choice of the respective
stabilization parameter which determines the amount of the artificial diffusion. The
aim of this paper is to discuss various definitions of these stabilization parameters.

1 Introduction

This paper is devoted to the numerical solution of the steady scalar convection–
diffusion equation

−ε Δu + b ·∇u = f in Ω , u = ub on ∂Ω . (1)

We assume that Ω is a bounded domain in R2 with a polygonal boundary ∂Ω ,
ε > 0 is the constant diffusivity, b = (b1,b2), f and ub are given functions and u is
an unknown scalar quantity, e.g., temperature or concentration.

It is well known that the standard Galerkin finite element discretization of (1)
loses its stability if convection strongly dominates diffusion. Therefore, various
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stabilized finite element methods have been developed for the numerical solution
of (1). A widely used approach is the streamline upwind/Petrov–Galerkin (SUPG)
method proposed in [1]. Denoting by Wh a finite element space approximating the
Sobolev space H1(Ω), by ubh ∈Wh a function whose trace approximates ub and
setting Vh = Wh∩H1

0 (Ω), the SUPG method reads:
Find uh ∈Wh such that uh−ubh ∈Vh and

ε (∇uh,∇vh)+ (b ·∇uh,vh)+ (Rh(uh),τ b ·∇vh) = ( f ,vh) ∀ vh ∈Vh . (2)

Here (·, ·) is the inner product in L2(Ω) or L2(Ω)2, Rh(u) = −ε Δ u + b ·∇u− f is
the residual (defined elementwise) and τ is a nonnegative stabilization parameter,
see Section 2.

Unfortunately, the SUPG method is not monotone and hence a discrete solution
satisfying (2) usually contains spurious oscillations along sharp layers. A possible
remedy is to add a suitable artificial diffusion term to the left–hand side of the SUPG
discretization (2). We call such approaches spurious oscillations at layers diminish-
ing (SOLD) methods, see the review paper [8]. There are three basic types of SOLD
terms and they add either isotropic artificial diffusion or crosswind artificial diffu-
sion to the SUPG method (2) or they are based on so–called edge stabilizations.
These three types of SOLD terms are respectively defined by

(ε̃ ∇uh,∇vh) , (3)

(ε̃ b⊥ ·∇uh,b
⊥ ·∇vh) with b⊥ =

(−b2,b1)
|b| , (4)

∑
K∈Th

∫
∂K

ε̃ |K sign

(
∂uh

∂ t∂K

)
∂vh

∂ t∂K
dσ , (5)

where Th = {K} is a triangulation of Ω satisfying the usual compatibility assump-
tions and t∂K is a tangent vector to the boundary ∂K of K. The parameter ε̃ , which
determines the amount of the artificial diffusion added to the SUPG method, is non-
negative and usually depends on uh. Thus, the resulting methods are nonlinear al-
though the original problem (1) is linear.

Comparative numerical studies of a large number of SOLD methods can be found
in, e.g., [6, 7, 8, 9]. It was observed that there are large differences between the
SOLD methods. In some cases, many SOLD methods were able to significantly im-
prove the SUPG solution and to provide a discrete solution with negligible spurious
oscillations and without an excessive smearing of layers. However, it was not pos-
sible to identify a method which could be preferred in all the test cases. The aim of
the present paper is to discuss the definitions of the parameters ε̃ for those SOLD
methods which achieved high rankings in the mentioned numerical studies.

The paper is organized in the following way. In the next section, we present the
definitions of the parameter ε̃ for several promising SOLD methods. The main part
of the paper is Section 3 where we discuss the optimality of these definitions of ε̃ for
three academic tests problems. We finish the paper by our conclusions in Section 4.
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2 Definitions of the Stabilization Parameters

In this section, we present various choices of the parameters in the stabilization
terms in (2)–(5). Generally, the parameters should depend on the approximation
properties of the finite element space Wh. For simplicity, throughout this paper, we
restrict ourselves to spaces

Wh = {v ∈ H1(Ω) ; v|K ∈ R(K) ∀ K ∈Th} ,

where R(K) = P1(K) if K is a triangle and R(K) = Q1(K) if K is a rectangle. We
assume that the triangulation Th consists either of triangles or of rectangles.

The choice of the SUPG parameter τ in (2) may dramatically influence the ac-
curacy of the discrete solution and therefore it has been a subject of an extensive
research over the last three decades, see, e.g., the review in [8]. Unfortunately, a
general optimal definition of τ is still not known. In our computations, we define τ ,
on any element K ∈Th, by the formula

τ|K =
hK

2 |b|
(

cothPeK− 1
PeK

)
with PeK =

|b|hK

2ε
, (6)

where hK is the element diameter in the direction of the convection vector b, |b|
is the Euclidean norm of b and PeK is the local Péclet number. We refer to [8] for
various justifications of this formula. Note that, generally, the parameters hK , PeK

and τ|K are functions of the points x ∈ K.
According to the criteria and tests in [6, 7, 8], one of the best choices of ε̃ in (3)

is to set

ε̃ = max

{
0,
τ |b| |Rh(uh)|
|∇uh| − τ

|Rh(uh)|2
|∇uh|2

}
, (7)

as proposed in [4]. Here and in the following, we always assume that ε̃ = 0 if the
denominator of a formula defining ε̃ vanishes. In case (4), we suggested in [8] to
set, on any K ∈Th,

ε̃|K = max

{
0,η

diam(K) |Rh(uh)|
2 |∇uh| − ε

}
, (8)

where diam(K) is the diameter of K and η is a suitable constant, for which the
value η ≈ 0.7 was recommended in [5]. The relation (8) is a slight modification of
a formula proposed in [5]. Another promising variant of (4) tested in [6, 7, 8, 9] is
defined by

ε̃ =
τ |b| |Rh(uh)|
|∇uh|

|b| |∇uh|
|b| |∇uh|+ |Rh(uh)| . (9)

This choice of ε̃ was proposed in [8] as a simplification of a formula from [2]. For
the edge stabilization term (5), acceptable results were computed with

ε̃|K = C |K| |(Rh(uh)|K)| ∀ K ∈Th , (10)
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where |K| is the area of K and C is a nonnegative constant. Let us mention that, to
achieve convergence of the nonlinear iterative process, the sign operator in (5) is
regularized by replacing it by the hyperbolic tangent as recommended in [3].

If convection strongly dominates diffusion in Ω and hence the local Péclet num-
bers PeK are very large, the parameter τ defined in (6) satisfies τ|K = hK/(2 |b|) for
any K ∈Th. Then we have in (7) and (9)

τ |b| |Rh(uh)|
|∇uh| ≈ hK |Rh(uh)|

2 |∇uh| .

Hence, in the definitions of ε̃ in (7)–(9), an important role is played by a term of the
type h |Rh(uh)|/|∇uh|. Moreover, in view of (10), the edge stabilization term (5) can
be written in the form

∑
K∈Th

|K|
∫
∂K

C

∣∣∣Rh(uh)|K
∣∣∣∣∣∣ ∂uh

∂ t∂K

∣∣∣ ∂uh

∂ t∂K

∂vh

∂ t∂K
dσ ,

which is an expression of a similar structure as the SOLD terms (3) and (4) with ε̃
defined by (7)–(9). Thus, we observe the interesting fact that all three types of SOLD
terms with the above described definitions of the parameter ε̃ are similar although
the formulas for ε̃ were derived using completely different arguments.

3 Optimal Choice of Stabilization Parameters for Model Problems

In this section, we shall discuss the optimality of the parameters ε̃ introduced in the
previous section for three model problems whose solutions possess characteristic
features of solutions of (1). We shall confine ourselves to the two types of triangula-
tions depicted in Fig. 1. To characterize these triangulations, we shall use the notion
‘N1×N2 mesh’ where N1 and N2 are the numbers of vertices in the horizontal and
vertical directions, respectively. The corresponding mesh widths will be denoted by
h1 and h2, i.e., h1 = 1/(N1−1) and h2 = 1/(N2−1).

︸ ︷︷ ︸

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭h

1

2

h

h

1

2

h

N1 points

N2 points

Fig. 1 Triangulations used in Section 3.
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Fig. 2 Example 1, P1 finite element: SUPG solution on a 21×21 mesh (left) and SOLD solution
defined using (4) and (9) on a 41×21 mesh (right).

The analysis below will include the consideration of moderately anisotropic
grids. Using such grids might not be reasonable for the considered examples since
these grids are not adapted to the layers of the solution. However, convection–
diffusion equations are often just a part of a coupled system of equations. For such
problems, an adaptation of the grid is performed rather with respect to other equa-
tions in the system, for instance with respect to the Navier–Stokes equations in fluid
flow applications. Nevertheless, the SOLD methods still should provide satisfactory
results.

Example 1 (Solution with parabolic and exponential boundary layers). We con-
sider the convection–diffusion equation (1) with Ω = (0,1)2, ε = 10−8, b = (1,0)T ,
f = 1, and ub = 0. The solution u(x,y) of this problem possesses an exponential
boundary layer at x = 1 and parabolic (characteristic) boundary layers at y = 0 and
y = 1. Outside the layers, the solution u(x,y) is very close to x.

For this special example, the stabilization parameter τ given in (6) leads to a
nodally exact SUPG solution outside the parabolic layers. However, there are strong
oscillations at the parabolic layers, see Fig. 2.

Let us consider a SOLD discretization of (1) with the isotropic SOLD term (3)
or the crosswind SOLD term (4) and with ε̃ defined by (8). In the triangular case, it
is easy to show that η equal to

ηopt =
2h2

3
√

h2
1 + h2

2

(11)

is optimal for ε → 0 with respect to the parabolic layers. Indeed, for η = ηopt the
discrete solution is nodally exact outside the exponential boundary layer whereas,
for η > ηopt , the parabolic boundary layers are smeared and, for η < ηopt , spurious
oscillations along the parabolic boundary layers appear. Moreover, for the nodally
exact solution with ε → 0, the SUPG term (Rh(uh),τ b ·∇vh) vanishes outside the
exponential boundary layer which shows that the optimal value of η does not depend
on the definition of the SUPG stabilization parameter τ . In the quadrilateral case, it
is not possible to derive a simple formula for ηopt but numerical results suggest that
the optimal values of η do not differ much from (11).
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Fig. 3 Example 2, Q1 finite element: SUPG solution on a 21×21 mesh (left) and SOLD solution
defined using (4) and (8) with η = 0.7 on a 21×41 mesh (right).

Since ηopt < 2/3, spurious oscillations should not appear for the value η ≈ 0.7
recommended in [5]. On the other hand, if we consider ε̃ defined by (7) or (9), a
comparison of these relations with the formula (8) reveals that spurious oscillations
in the discrete solution should be expected for hK = h1 < ηopt diam(K), i.e., for
h1/h2 < 2/3, as it is demonstrated in Fig. 2.

For the edge stabilization term (5) and both the P1 and Q1 finite elements, it is
easy to derive that the optimal value of C in (10) is 1/6. However, in practice, the
discrete solution slightly differs from the nodally exact solution at the parabolic
boundary layers due to the regularization of the sign operator. Moreover, in contrast
with the above SOLD methods, the discrete solution is significantly smeared along
the exponential boundary layer. A sharp approximation of this layer requires to set
C = 0 in this region.

The above considerations show that satisfactory numerical results can be ob-
tained generally only using the isotropic or crosswind SOLD term with ε̃ defined by
(8) or using the edge stabilization (5) with ε̃ defined by (10).

Example 2 (Solution with interior layer and exponential boundary layers). We
consider the convection–diffusion equation (1) with Ω = (0,1)2, ε = 10−8, b =
(cos(−π/3),sin(−π/3))T , f = 0, and

ub(x,y) =
{

0 for x = 1 or y≤ 0.7,
1 else.

The solution possesses an interior (characteristic) layer in the direction of the con-
vection starting at (0,0.7). On the boundary x = 1 and on the right part of the bound-
ary y = 0, exponential layers are developed.

We shall assume that h1b2 + h2b1 < 0. Then, for both the P1 and Q1 finite ele-
ments, the SUPG solution of Example 2 contains oscillations along the interior layer
and along the boundary layer at x = 1. However, there are no oscillations along the
boundary layer at y = 0 and this layer is not smeared, see Fig. 3.

For a SOLD discretization of (1) with the isotropic SOLD term (3) or the cross-
wind SOLD term (4) and with ε̃ defined by (8), it is easy to derive optimal values of
η such that, for ε → 0, the discrete solution is nodally exact away from the interior
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Fig. 4 Example 3, P1 finite element, 33× 33 mesh: SUPG solution (left) and SOLD solution de-
fined using (3) and (7) (right).

layer. First, it is clear that, along the boundary layer at y = 0, the optimal choice
of η is η = 0. For the boundary layer at x = 1, the optimal values are

η isotropic
opt =

h1b2 + h2b1√
h2

1 + h2
2 b2

, ηcrosswind
opt =

(h1b2 + h2b1)|b|2√
h2

1 + h2
2 b3

2

.

These formulas hold for both the P1 and the Q1 finite elements. One can see that
the optimal choice of η depends not only on the aspect ratio of the elements of the
triangulation but also on the direction of the convection vector b. For b of Example 2
and for h1 = 2h2, we obtain ηcrosswind

opt ≈ 0.85 and hence we have to expect spurious
oscillations for the recommended value η ≈ 0.7. This is really the case as Fig. 3
shows. For ε̃ defined by (7) and (9) the oscillations at x = 1 are even much larger
and, moreover, there are nonnegligible oscillations at the beginning of the interior
layer. For the edge stabilization term (5) and both the P1 and Q1 finite elements, the
optimal value of C in (10) is Copt = (h1b2 + h2b1)/(4h1b2) along x = 1.

The above discussion supports our conclusion to Example 1 and shows that it is
in general not sufficient to consider constant values of η and C.

Example 3 (Solution with two interior layers). We consider the convection–diffusion
equation (1) with Ω = (0,1)2, ε = 10−8, b = (1,0)T , ub = 0, and

f (x,y) =
{

16(1− 2x) for (x,y) ∈ [0.25,0.75]2,
0 else.

The solution u(x,y) possesses two interior (characteristic) layers at (0.25,0.75)×
{0.25} and (0.25,0.75)×{0.75}. In (0.25,0.75)2, it is very close to the quadratic
function (4x−1)(3− 4x).

As expected, the SUPG solution of Example 3 possesses spurious oscillations
along the interior layers, see Fig. 4. Applying any of the SOLD methods discussed
above, the spurious oscillations present in the SUPG solution are significantly sup-
pressed, however, the solution is wrong in the region (0.75,1)× (0,1), see Fig. 4.
This behaviour is the same for both the P1 and Q1 finite elements. Thus, Example 3
represents a problem for which all the SOLD methods described in Section 2 fail.
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4 Conclusions

This paper was devoted to the numerical solution of convection–diffusion equa-
tions using SOLD methods. It was demonstrated that SOLD methods without user–
chosen parameters are in general not able to remove the spurious oscillations of the
solution obtained with the SUPG discretization. For the two studied methods involv-
ing a parameter, values of the parameter could be given in two examples such that
the spurious oscillations were almost removed. The parameter has to be generally
non–constant and depends on the mesh and the data of the problem. Therefore, for
more complicated problems, it is not clear how suitable parameters can be found.
Moreover, an example was presented for which none of the investigated methods
provided a qualitatively correct discrete solution. Consequently, we have to con-
clude that it is in general completely open how to obtain oscillation–free solutions
using the considered classes of methods.
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