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Abstract. The paper compares coupled multigrid methods
and pressure Schur complement schemes (operator splitting
schemes) for the solution of the steady state and time depen-
dent incompressible Navier–Stokes equations. We consider
pressure Schur complement schemes with multigrid as well
as single grid methods for the solution of the Schur comple-
ment problem for the pressure. The numerical tests have been
carried out on benchmark problems using a MIMD parallel
computer. They show the superiority of the coupled multigrid
methods for the considered class of problems.

1 Introduction

The fast and accurate solution of the steady state and time
dependent incompressible Navier–Stokes equations is of in-
terest not only as an autonomous problem. The numerical
simulation of complex models coming from engineering and
industry, such as crystal growth, the study of ferro fluids,
and contamination transport in groundwater and estuaries,
requires the repeated solution of Navier–Stokes equations.
Besides a suitable discretization, a fast and robust solver for
these equations is the core of these numerical simulations.

A number of solvers for the Navier–Stokes equations has
been developed during the last decades. We consider solution
schemes where the nonlinear system of equations is solved by
successive solutions of linear systems. The solvers for these
linear systems, coming from the linearization and discretiza-
tion of the Navier–Stokes equations, can be divided in two
major groups. The solvers of the first group try to attack the
coupled linear system of equations. This group can be sub-
divided further in multilevel type methods and single grid
methods. The second group of solvers splits the operator by
eliminating the velocity in the coupled linear system and es-
sentially solves an equation for the pressure. We call these
solvers pressure Schur complement schemes. Well known
representatives are the SIMPLE–algorithm by Patankar and

Spalding [10] and the Uzawa-algorithm. A numerical study of
pressure Schur complement schemes can be found in a paper
by Turek [16].

In the DFG-high-priority program “Flow simulation with
high performance computers”, a comprehensive study and
comparison of discretizations and solvers for the Navier–
Stokes equations have been carried out, see Schäfer and
Turek [12]. Solvers which use multigrid methods in their
essential parts have been proven superior to single grid
methods. This will be demonstrated also in the numerical
results of this paper. The main goal of this paper is a com-
parison of (strongly) coupled multigrid methods and pres-
sure Schur complement schemes where multigrid methods
are used for solving the systems concerning the degrees
of freedom of the velocity as well as of the pressure. In
this sense, we can call the latter “weakly coupled multigrid
methods”.

The huge amount of data, the large size of the arising dis-
crete systems, and the fine resolution of relatively long time
intervals require the use of powerful parallel computers. Un-
fortunately, methods which have a good numerical perform-
ance, e.g. multigrid methods in many applications, often show
an unsatisfactory parallel efficiency. In Sect. 5, we describe
some simple but efficient ways to balance the numerical and
parallel performance which result in a considerable increase
of the total efficiency, i.e. savings of computing time. We
present results computed on a MIMD parallel computer with
a moderate number of processors. We think that in the fol-
lowing years this type of computer will be quite common in
industry and science.

The paper is organized as follows: in Sect. 2, we give
details on the spatial and temporal discretization of the equa-
tions. Sects. 3 and 4 are devoted to the description of the
coupled multigrid methods and the pressure Schur comple-
ment schemes. Parallel aspects of multigrid methods are dis-
cussed in Sect. 5. The main part of the paper is Sect. 6, where
the numerical studies on a benchmark problem describing the
flow through a channel around a cylinder are presented. The
results of these studies are summarized in Sect. 7.
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2 The problems and their discretization

We consider the steady state incompressible Navier–Stokes
equations

−ν∆u+ (u ·∇)u+∇ p= f in Ω
∇ ·u= 0 inΩ

u= g on∂Ω (1)

and the time dependent incompressible Navier–Stokes equa-
tions

∂u
∂t
− ν∆u+ (u ·∇)u+∇ p= f in Ω× (0, T]

∇ ·u= 0 inΩ× (0, T]
u= g on∂Ω× (0, T]
u= u0 for t = 0. (2)

In (1) and (2),Ω is a bounded domain inIR2, u the velocity,p
the pressure,ν the kinematic viscosity of the fluid,u0 an ini-
tial velocity, g a Dirichlet boundary condition satisfying the
compatibility condition∫
∂Ω

g ·ndγ = 0,

T the end of a time interval, andf represents exterior forces.
The first equation in (1) and (2) describes the conservation of
momentum and the second equation the conservation of mass.

Equation (1) is linearized using a fixed point iteration.
Given a current iterate(un, pn), in each nonlinear iteration
step an Oseen problem of the form

−ν∆un+1+ (un ·∇)un+1+∇ pn+1= f in Ω

∇ ·un+1= 0 inΩ

un+1 = g on∂Ω

is solved which is discretized using the nonconforming
P1/P0-finite element from Crouzeix and Raviart [4]. LetTh
be an admissible triangulation ofΩ into triangles. Then the
discrete velocity is computed in the spaceVh with

Vh :=
{

space of 2d linear functions on the triangles
which are continuous in the midpoints of the
edges of the triangles

}

and the discrete pressure is computed in the spaceQh with

Qh :=
{

space of constant functions on the triangles
which belong toL2

0(Ω)

}
.

This pair of finite element spaces guarantees the inf-sup
stability condition uniformly with respect to the mesh size
and the shape regularity constant of the mesh. Besides this
favourable analytical property, there are also advantages from
the point of view of an implementation on a parallel com-
puter. It can be seen in Fig. 1 that the degrees of freedom of
the velocity can be connected to the edges of the triangles.
Thus, the degrees of freedom on the interfaces (boundary of
a subdomain ofΩ which is stored on a processor) have to be

0

0

0

0

1
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Fig. 1. Scalar component of a basis function ofVh

stored on two processors only. That’s why, only one commu-
nication is sufficient to interchange information between the
same degrees of freedom on different processors. This is not
true for degrees of freedom which are connected to corners of
triangles. In this case, there exist some unknowns which are
stored on more than two processors, so-calledcrosspoints.

In the case of dominant convection, a stabilization of the
discrete problems is necessary. We use Samarskij upwinding
which has been analyzed by Schieweck and Tobiska [15]. An-
other technique that may improve the accuracy of the discrete
solution is the so-calledpressure separationwhich has been
introduced by Schieweck [14] and Dorok [5]. Instead of (1),
we solve

−ν∆u+ (u ·∇)u+∇(p− p̃)= f −∇ p̃ in Ω
∇ ·u= 0 inΩ

u= g on∂Ω, (3)
wherep̃∈ H1(Ω) is chosen such that theH1-norm‖p− p̃‖1
is less than‖p‖1. This technique leads to a better a priori error
estimate for the solution of the discrete system obtained with
(3) in comparison to that coming from (1). There are several
possibilities to choosẽp, for a discussion see [6]. In the nu-
merical studies of this paper, we have applied the projection
operator proposed by Oswald [9] to map the solutionph ∈ Qh
of the discrete problem without pressure separation to a piece-
wise linear conforming functioñp. This function is used as
separated pressure.

The time derivative in (2) is discretized using the Crank–
Nicolson scheme with a modification, which is employed e.g.
by Turek [16]. The velocity and the external forces of the pre-
vious time step but not the pressure are used to compute the
right hand side in this scheme. In the timetk+1, this leads to
a system of the form

u−u(tk)
τ

+ 1

2
(−ν∆u+ (u ·∇)u)+∇ p

= 1

2
f (tk+1)+ 1

2
f 1(tk) in Ω

∇ ·u= 0 inΩ
u= g(tk+1) on∂Ω

with u = u(tk+1), p = p(tk+1), τ = tk+1− tk, f 1(tk) =
ν∆u(tk)− (u(tk) ·∇)u(tk)+ f (tk). The linearization and dis-
cretization in space is carried out analogously to the steady
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state problem including the usage of Samarskij upwind-
ing and pressure separation. The modified Crank–Nicolson
scheme has produced more accurate results than the BDF(2)
scheme in a comparative study, see [6].

Thus, the linearization and discretization of the incom-
pressible Navier–Stokes equations leads to large saddle point
problems of the form

A

(
u
p

)
=
(

A B
BT 0

)(
u
p

)
=
(

r
s

)
. (4)

3 Coupled multigrid methods

Coupled multigrid methods compute the solution for both
types of unknowns (velocity and pressure) of (4) simultan-
eously. Here, we want to give some details on the components
of the multigrid methods we have used, which are the grid
transfer operations, the smoothers, the coarsest grid solver,
and a step length control.

The grid transfer operations. There are no canonical
grid transfer operations since the discrete spaces belong-
ing to the different levels of the multigrid are not nested
in the nonconforming finite element discretization. We use
L2-projections for the restriction and prolongation.

The smoothers.The smoother influences the efficiency
of multigrid methods considerably. Because of the zero block
of A, standard smoothers, like point-wise Gauss–Seidel, can-
not be applied to (4) without modification. We use theVanka
smoother, see e.g. Vanka [17] or Schieweck [13], which is
a block-wise Gauss–Seidel method. A block consists of the
degrees of freedom which are connected to a triangleT. That
are three two-dimensional vectors of the discrete velocity and
one degree of freedom of the pressure. Using the Vanka-
smoother, local(7×7)-systems with a matrix of the form(

diag(AT) BT

BT
T 0

)
have to be solved. Schieweck [14] pointed out that for the rea-
son of stability it is sometimes better to use a full upper left
block in the(7×7)-systems(

AT BT

BT
T 0

)
.

We call this smootherstabilized Vanka smoother. The solu-
tion of its local (7×7)-system needs about three times the
numerical work (floating point operations) compared to the
Vanka smoother.

On a parallel computer, communications within the
smoothing process should be avoided. That’s why, we use
a block Jacobi smoother where a block consists of all un-
knowns which are stored on one processor. In the blocks, the
Vanka smoother or stabilized Vanka smoother is used. After
each smoothing iteration, a communication is necessary in
order to obtain a consistently stored result via averaging the
values.

The coarsest grid solvers.The linear system on the
coarsest grid often is too large to solve it efficiently with a dir-
ect method. That’s why, we use an iterative method, namely

the same iterative method which is used as smoother on the
finer levels. Astandard approachis to reduce the Euclidean
norm of the residual by a prescribed factor. However, this ap-
proach has some disadvantages on parallel computers, com-
pare Sect. 5. Analternative approachis to prescribe a small
number of iteration steps and break the iteration after these
steps without computing the norm of the residual.

The step length control.In addition to standard multigrid
methods, we apply a step length control after each multigrid
cycle. Let

(
uT, pT

)i
be the current iterate and

(
δuT, δpT

)i+1

the update proposed by the multigrid method. This update is
accepted only as a direction of update and the next iterate is
set to be(
uT , pT

)i+1= (uT, pT
)i +κ (δuT, δpT

)i+1
.

The factorκ ∈ IR is chosen such that the Euclidean norm of
the residual((r

s

)
−A

(
u
p

)i+1
)T ((

r
s

)
−A

(
u
p

)i+1
)1/2

is minimal. This one-dimensional optimization problem has
the solution

κ =
(
(r T , sT)−A(uT, pT)i

)T (
A(δuT, δpT)i+1

)(
A(δuT, δpT)i+1

)T (
A(δuT, δpT)i+1

) . (5)

Numerical tests [6] show the important rôle of the step length
control to improve the efficiency of all multigrid methods.

4 Pressure Schur complement schemes

Pressure Schur complement schemes start with eliminatingu
by means of the momentum equation in (4). The arising equa-
tion for p, the so-calledSchur complement equation, is solved
by an iteration of the form

p0= 0,

pm+1= pm+α (BTC−1B
)−1(−BT A−1Bpm+ BT A−1r −s

)
,

(6)

m= 0,1, . . . ,M−1. Here,C−1 is a matrix approximating
A−1 andα is a damping factor. A linear system of the form

BTC−1Bx=−BT A−1Bpm+ BT A−1r −s (7)

has to be solved in each iteration step. Having finished the it-
eration with stepm=M−1, an approximationuM of u can be
computed with

uM = A−1
(
r − BpM

)
(8)

or

uM = A−1
(
r − BpM−1

)
+ 1

α
C−1B

(
pM− pM−1

)
. (9)

The choice of (8) puts the emphasis on the fulfillment of the
momentum equation whereas (9) guarantees a discrete diver-
gence free solution, see Turek [16]. In (9), no inversion ofA
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is necessary sinceA−1(r − BpM−1) has been computed in the
last step of iteration (6). The main cores of the pressure Schur
complement schemes are the solution of system (7) in each
iteration step and the approximation ofA−1 in (6)–(8).

To approximate the productA−1b, we apply a multigrid
method for solving a linear system for the velocity degrees
of freedom of the formAu= b. As restriction and prolon-
gation, we have chosenL2-projections. As smoother, we
use ILUβ(0)-iterations, see e.g. Wittum [18]. This smoother
is also employed to solve the system on the coarsest grid
approximately. After each multigrid cycle, we apply a step
length control of form (5), now for the systemAu= b.

To solve (7) efficiently, we must distinguish between the
steady state and the time dependent case. In the time invariant
case, the matrixA has the form

A= νL+ K,

where L is the discretization of the Laplacian andK the
Samarskij upwind discretization of the linearized convective
term. Thus,A generally does not have a dominant diagonal
and is nonsymmetric. The choice ofC−1 has to take into ac-
count these properties. The solution of (7) requires products
of the formC−1b. These products are defined by the approx-
imation of the solution ofAu= b which is obtained with
a multigrid method for the velocity degrees of freedom. The
in general nonsymmetric linear system (7) is solved approxi-
mately bygmres(restart)from Saad and Schultz [11]. In our
computations, we have used the same multigrid scheme to
approximateA−1b and to computeC−1b, i.e. we solve the
pressure Schur complement system with an unpreconditioned
gmres method.

For the time dependent problem, especially for small time
steps, the discretization of the time derivative leads to a diag-
onal dominance inA, since

A= τ−1M+ νL+ K.

Therefore,C−1 = I (identity matrix),C−1 = M−1 (mass ma-
trix, which is diagonal due to theL2-orthogonality of the
standard basis functions ofVh) or C−1 = diag(A)−1 are good
approximations ofA−1. The linear system (7) becomes sym-
metric and positive definite after fixing the constant in the
pressure. It is solved either by apreconditioned conjugate
gradient method (pcg)or by a multigrid method for the pres-
sure degrees of freedom. The matrixBTC−1B can be com-
puted and stored explicitely ifC−1 is a diagonal matrix,
see [6]. Thus, standard multigrid techniques can be applied,
even for piecewise constant functions. We use Gauss–Seidel
iterations as smoother and as iterative solver on the coars-
est grid,L2-projections as grid transfer operations, and a step
length control of form (5), now for the linear system (7).

5 Parallel aspects of multigrid methods

Multigrid methods show in many situations a good numerical
efficiency which is based on global transport of information.
However, thisglobal transport contradicts the optimal condi-
tion of high parallel efficiency, which is locality.

Especially,pure multigrid methods( = one smoothing
step on each level and exact solution of the coarsest grid

system) show a bad parallel performance on all grids which
are coarser than the finest one. The numerical work (flops)
on these grids is in general small compared to the amount
of communications. Even idleness of processors will occur.
The situation is worst on the coarsest grid, where the global
transport of information takes place with the solution of the
coarsest grid system. If the V-cycle is used, the losses of par-
allel and total efficiency (computing time) are less dramatic,
provided the problems are large (with respect to the number
of processors) and the number of levels is moderate (≤ 10),
e.g. see McBryan et al. [8]. But employing the W-cycle, for
the reasons of numerical efficiency and robustness, can lead
to a considerable loss of parallel and total efficiency on par-
allel computers. Here, it is necessary to increase the parallel
efficiency in order to obtain a better total performance. How-
ever, the methods of increasing the parallel efficiency may
decrease the numerical efficiency. Thus, there is the need of
a balance of numerical and parallel efficiency. This balance
should preserve the core of the multigrid algorithm. It should
strengthen the multigrid components which show a good par-
allel performance (these are of single grid character) and
weaken the components which are responsible for the bad
parallel efficiency.

Concerning the last point, Axelsson and Neytcheva [1]
have introduced theshort multigrid cycle, where for deeply
refined grids the level of the coarsest grid is determined as
a function of the level of the finest grid. Thus, the short multi-
grid cycle has a reduced depth compared to the pure multigrid
cycle (which can be interpreted as a compromise between
pure multigrid and single grid). The coarsest grid in the short
multigrid cycle possesses enough degrees of freedom such
that the ratio of numerical work to communications is much
better than on the original coarsest grid. In addition, idleness
of processors is avoided.

We have proposed some methods to increase the parallel
as well as the total efficiency in [7]. On less deep refinements
of a multigrid, the work on the coarsest grid should be small.
Often, the coarsest grid system is solved iteratively. A widely
used approach, which works in general well on workstations,
is the iteration up to a prescribed reduction of the norm of
the residual (e.g. 0.1). However, the computation of the norm
requires global communication on parallel computers, which
is expensive. Therefore, the coarsest grid system should be
solved approximately using a prescribed small maximal num-
ber of iterations (e.g. 10 using the smoother) without com-
puting the norm of the residual. The number of cycles for the
solution of the linear system will slightly increase in general.
But the savings on the coarsest grid are often so large that
the computing times decrease considerably. A second way to
improve the parallel efficiency consists in increasing the num-
ber of smoothing steps, especially on finer grids, which gives
a better ratio of numerical work to communications. This ap-
proach can be viewed again as a compromise between pure
multigrid and single grid methods.

An improvement of the efficiency of multigrid methods,
which is possible for all types of cycles and on workstations
as well as on parallel computers, results from the current
hardware architecture. It is based on the fact that a large num-
ber of flops can be applied extremely fast on data which
are stored in the cache memory. For multigrid methods, this
means to prefer smoothers which perform a lot of flops on
a small set of data (small= fits into the cache) instead of
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smoothers which perform only a small amount of flops. Of
course, the more expensive smoothers should enhance the nu-
merical efficiency and the robustness of the multigrid method
in comparison to the cheaper ones.

Specifically, for this reason we use the stabilized Vanka
smoother instead of the Vanka smoother in the coupled multi-
grid methods. The number of flops in each smoothing step
increases by a factor of three. However, we have observed
an increase of the computing time per smoothing step only
by factor of approximately 1.5; for a comparison of both
smoothers see also [6, 7].

In Table 2, we present results which demonstrate the im-
provements of the total efficiency on a parallel computer
using the modifications described above. On the one hand, we
have used a coupled multigrid method with Vanka smoother,
2 pre and post smoothing steps, and the standard approach
of the coarsest grid iteration with a reduction factor of 0.1.
On the other hand, the computations have been carried out
with the stabilized Vanka smoother, 6 pre and post smooth-
ing steps, and the alternative approach on the coarsest grid
with 10 iterations. On the workstation, both schemes need
almost the same computing time for the solution of the prob-
lem whereas on 16 processors the second scheme is faster by
a factor of 2.6. The amount of communications and the time
spent on the coarsest grid are considerably smaller in the sec-
ond scheme.

The modifications described above can be interpreted as
a compromise between pure multigrid and single grid, but
the resulting algorithm is still far closer to the pure multigrid
method than to a single grid scheme.

6 Numerical results

The test problems

The numerical studies have been performed on benchmark
problems of the DFG priority research program “Flow simu-
lation with high-performance computers”, see Schäfer and
Turek [12]. These problems describe flows in a channel
around a cylinder, see Fig. 2. The steady state problem is to
find a solution of (1) withν = 10−3, f = 0, the parabolic

Table 1. Data of the grid using uniform refinement

level velocity pressure edges on S

0 532 192 8
4 146752 49152 128
5 588416 196608 256

Table 2. Steady state problem, standard and modified coupled multigrid
methods, level 5, above 1 processor, below 16 processors

solver M sm. it. time comm. lev0.

Vanka-W 10 2 11/103 7270 0.0 4.5
stVan-W 10 6 5/32 7190 0.0 0.3

Vanka-W 10 2 13/123 4091 20.0 48.0
stVan-W 10 6 5/33 1575 4.4 5.2

0.41 m

2.2 m

inlet outlet

0.1 m

0.15 m

0.15 m S

Fig. 2. Domain and coarsest grid (level 0) for the numerical tests

inflow and outflow profile

u(0, y)= u(2.2, y)= 0.41−2(1.2y(0.41− y),0),

0≤ y≤ 0.41 and no-slip conditions on the other boundaries.
The Reynold’s number of this flow is Re= 20. Benchmark
reference values are the drag coefficientcD, the lift coefficient
cL , and the difference of the pressure between the front and
the back of the cylinder∆p.

The time dependent problem (2) describes a Kármán vor-
tex street byν = 10−3, f = 0, the steady state parabolic inflow
and outflow profile

u(0, y, t)= u(2.2, y, t)= 0.41−2(6y(0.41− y),0),

0≤ y≤ 0.41,0≤ t ≤ T and no-slip conditions on the other
boundaries. The benchmark reference values arecD(t), cL(t)
and∆p(t). The initial time corresponds to a state wherecL
has a maximum. The length of a period is denoted byT. We
found in the numerical testsT ≈ 0.335 s. Additional bench-
mark coefficients are the maximal values ofcD(t) andcL(t),
∆p(t0+T/2), and the Strouhal numberSt. This flow has the
Reynold’s number Re= 100.

We have used the coarsest grid (level 0) depicted in Fig. 2.
The data of the grids which result from uniform refinement
can be seen in Table 1. In [6, 7], we have given results con-
cerning the benchmark reference values using the noncon-
forming P1/P0-finite element discretization on this grid. The
low order of the local polynomials of the discrete spaces
makes it necessary to use level 4 or more often even level 5
to obtain good results for all reference values.

Next, we explain the abbreviations in the tables given be-
low:
Vanka-V(F,W) coupled multigrid method with V-cycle,

(F-cycle, W-cycle), Vanka smoother,
stVan-V(F,W) coupled multigrid method with V-cycle,

(F-cycle, W-cycle), stabilized Vanka
smoother,

pr-cor gm pressure Schur complement scheme with
gmres(restart) for the solution of (7),

pr-cor mg pressure Schur complement scheme with
multigrid for the solution of (7),

pr-cor pcg pressure Schur complement scheme with
pcg for the solution of (7),

M maximal number of multigrid cycles or it-
erations (6) per nonlinear iteration step,

sm. number of pre and post smoothing steps in
the multigrid cycles,
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it. number of nonlinear iterations/number of
multigrid cycles,

time cpu time in seconds,
comm. communication in the cpu time in %,
lev0. iteration on the coarsest grid in the cpu

time in %,
τ fixed length of the time step in the time de-

pendent problem,
t/per. computing time for one period in the time

dependent problem,
t/step average computing time for one time step

in the time dependent problem.
The number of pre- and post-smoothing steps has been cho-
sen equal on all levels.

The computations have been performed on a Parsytec
GCPowerPlus (80 MHz, 9.2 MFlops/processor(LINPACK),
35 MB/s communication,5µs message setup time,60µs
minimal network latency). The implementation of the algo-
rithms has been done using parts of the program package
ugp1.0by Bastian and co-workers [2, 3]. In particular, data
structures, load balancing routines and the parallel environ-
ment of this program have been used. However, the data struc-
tures had to be extended in order to handle multidimensional
data and nonconforming finite elements.

The only criterion for the comparison of the different
solvers is the total computing time!

The steady state case

At first, we consider the stationary problem. We compare the
coupled multigrid methods (V-, F-, and W-cycle) with a pres-
sure Schur complement scheme. We have done comprehen-
sive studies on this subject, see [6, 7]. The results presented
here are representative ones. The computations have been car-
ried out on level 5 using 16 processors. The starting point of
the iterations has been the interpolated solution from level 4
and the stopping criterion has been chosen as an Euclidean
norm of the residual less than 10−7.

The Schur complement system (7) is solved approxi-
mately with 10 gmres iterations without restart. The inverse
of the matrixA is approximated by one W-cycle.

The components of the coupled multigrid methods have
been chosen accordingly to the considerations in the previous
section. Thus, we have used the stabilized Vanka smoother,
the alternative approach of the coarsest grid iteration, and
a large number of smoothing steps has been applied, see
Table 3. The maximal number of iterations on the coarsest
grid has been prescribed by 10.

Table 3 shows clearly the superiority of the coupled multi-
grid methods over the pressure Schur complement scheme.
Using gmres(restart), there are no problems to damp the high
frequent modes of the error. However, this method almost
stagnates in the damping of the low frequent error modes
which leads to a very slow rate of convergence and a large
number of iterations. Using multigrid for solving (7) instead
of gmres(restart), the iteration for the solution of the nonlin-
ear system did not converge. Within the coupled multigrid
methods, the W–cycle has been proven best for the considered
example. Using the modifications described in the previous
section, the W-cycle has an acceptable communication over-
head and computing time for the solution of the coarsest

Table 3. Steady state problem, coupled multigrid methods and pressure
Schur complement schemes

solver M sm. it. time comm. lev0.

stVan-V 15 2 28/407 4730 2.4 1.3
stVan-V 15 4 14/200 4066 2.2 0.8
stVan-V 15 6 10/133 3859 2.1 0.5
stVan-V 15 8 8/107 4034 2.0 0.4
stVan-V 15 10 7/79 3673 2.1 0.3
stVan-V 15 12 6/71 3916 2.0 0.3
stVan-V 15 14 6/66 4211 1.9 0.2

stVan-F 10 2 15/144 2356 3.2 4.7
stVan-F 10 4 10/86 2463 2.8 2.7
stVan-F 10 6 6/50 2046 2.6 1.9
stVan-F 10 8 5/41 2178 2.5 1.4
stVan-F 10 10 5/38 2485 2.5 1.2

stVan-W 10 2 11/101 2016 5.4 12.4
stVan-W 10 4 6/51 1722 4.7 7.3
stVan-W 10 6 5/33 1575 4.4 5.2
stVan-W 10 8 4/28 1722 4.3 4.0
stVan-W 10 10 4/27 2039 4.2 3.3

pr-cor gm 10 1 222 14260 15.2 10.2
pr-cor gm 10 2 199 17840 15.3 4.1
pr-cor gm 10 3 178 21050 15.2 2.2
pr-cor gm 10 4 154 22310 15.5 1.5

grid systems. The parallel performance of the V- and F-cycle
is very good which comes essentially from the absence of
crosspoints in the nonconformingP1/P0-finite element dis-
cretization.

The time dependent case

The results given in Table 5 and Table 6 are computed without
using pressure separation. The use of pressure separation has
improved the accuracy of the computed benchmark reference
values but also has led to an increase of the computing times
by a factor of 2 to 3. The stopping criterion of the iteration in
each time step has been chosen such that the Euclidean norm
of the residual is less than 10−5. The maximal number of iter-
ations per time step has been prescribed by 30. The numbers
in Table 5 and Table 6 are given in the form “from – to”.

In the pressure Schur complement schemes, we have cho-
sen C−1 = diag(A)−1, the diagonal preconditioner
diag(BTC−1B)−1 for pcg, and the matrixA−1 has been ap-
proximated by one V-cycle. These schemes have been very
sensitive on the choice of the damping parameterα. A good
choice depends not only on the lengthτ of the time step but
also on the refinement in space. Even small increases ofα
have led to a divergence of the method whereas small de-
creases resulted in a much slower rate of convergence. The
parameters we have chosen are given in Table 4.

The pressure Schur complement scheme using 50 steps
of pcg for the solution of (7) reaches the prescribed norm

Table 4. Choice of the damping factorα for the pressure Schur complement
schemes

τ 0.01 0.005 0.0025

Table 5, level 4 0.15 0.25 0.4
Table 6, level 5 0.05 0.1 0.2
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Table 5. Time dependent problem, coupled multigrid methods and pres-
sure Schur complement schemes, time stepsτ = 0.01, 0.005, 0.0025 (top to
bottom), level 4, 8 processors

solver it. t/per. t/step comm. lev0.

Vanka-V 8 14100 382 4-6 3-6
Vanka-F 6 10400 281 4.4 3.7
Vanka-W 5-6 9010 244 6.3 8.2
pr-cor mg (8) 8 21200 574 9-13 3-7
pr-cor mg (9) 8 20200 546 8-12 3-7
pr-cor pcg (8) 30 44000 1200 7.0 0.2

Vanka-V 4-5 14700 204 4-6 2-6
Vanka-F 3-4 11600 161 4.6 3.7
Vanka-W 3-4 10500 146 6.4 8.2
pr-cor mg (8) 4 21100 289 8-12 3-8
pr-cor mg (9) 4 19700 274 8-13 3-8
pr-cor pcg (8) 30 84800 1178 6.9 0.2

Vanka-V 3 16700 117 5.0 3-5
Vanka-F 3 16400 114 4.4 3.6
Vanka-W 3 14600 102 5.9 8.1
pr-cor mg (8) 3 25800 180 9-13 3-8
pr-cor mg (9) 3 24600 172 9-14 3-8
pr-cor pcg (8) 16-30 144900 1013 5.9 0.1

Table 6. Time dependent problem, coupled multigrid methods and pres-
sure Schur complement schemes, time stepsτ = 0.01, 0.005, 0.0025 (top to
bottom), level 5, 16 processors

solver it. t/per. t/step comm. lev0.

Vanka-V 12-17 48900 1359 2.9 1.1
Vanka-F 9-12 37600 1045 3.6 2.7
Vanka-W 9-10 32300 896 6.7 9.2
pr-cor mg (9) 19-22 106000 2960 8-11 2-5

Vanka-V 8-10 56500 807 2.4 1.1
Vanka-F 6-7 42300 605 3.6 2.7
Vanka-W 6 38000 543 7.1 9.0
pr-cor mg (9) 10 95900 1370 8-11 2-5

Vanka-V 4-5 56800 411 2.9 1.1
Vanka-F 3-4 43100 312 3.6 2.7
Vanka-W 3 39400 285 6.6 9.1
pr-cor mg (9) 5 86500 627 7-10 2-4

of the residual only for small time steps. The convergence is
very slow and this method is not competitive with the other
methods. The behaviour of the pressure Schur complement
scheme with multigrid for the solution of (7) is much better.
The both possibilities (8) and (9) of the computation of the
velocity have not led to significant differences in the bench-
mark reference values. Using (9) saves roughly 5% of com-
puting time. The main interesting aspect is the decrease of
the computing times for smaller time steps, see Table 6. How-
ever, for the time steps chosen, which are small enough to
obtain good benchmark reference values, the coupled multi-
grid methods with the Vanka smoother have been superior to
the pressure Schur complement schemes. The W-cycle has
performed again best in all tests.

7 Summary

Coupled multigrid methods have been proven superior to the
pressure Schur complement schemes described in Sect. 4 in
the computation of benchmark problems for steady state and
time dependent incompressible Navier–Stokes equations. The

superiority has been very large in the stationary case. Even
for the time dependent problem, they have performed bet-
ter than the pressure Schur complement scheme with multi-
grid for the solution of (7). However, the coupled multigrid
methods do not profit by a decreasing length of the time step.
The total computing times for a fixed time interval have in-
creased slightly with the decrease of the time step. In con-
trary, the computing times using the pressure Schur comple-
ment scheme with multigrid have decreased for smaller time
steps. This has been observed also by Turek [16]. Thus, it
can be expected that in problems which require very fine
temporal resolution, the pressure Schur complement scheme
with multigrid may be superior to the coupled multigrid
methods. Pressure Schur complement schemes with single
grid methods for the solution of (7) have shown a very poor
performance in all tests. A serious drawback of the pressure
Schur complement schemes seems to us the sensitivity to the
damping factorα. As far as we know, there is neither a gen-
eral guideline nor an a posteriori choice so far presented in
the literature. The coupled multigrid methods with the modi-
fications described in Sect. 5 have shown in all tests a smaller
communication overhead than the pressure Schur comple-
ment schemes.
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