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Abstract

This paper focusses on a residual-based a posteriori error estimator for the L*-error of the velocity for the nonconforming
P /Py-finite element discretization of the Stokes equations. We derive an a posteriori error estimator which yields a local
lower as well as a global upper bound on the error. Numerical tests demonstrate the efficiency of the global error estimator
and give a comparison with respect to the adaptive grid refinement to an a posteriori error estimator in the discrete energy
norm proposed by Dari et al. (1995). © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The use of a posteriori error estimators for estimating the global error as well as for obtaining
information for adaptive techniques is nowadays a standard component of numerical codes for solving
partial differential equations.

Rigorous analysis of a posteriori error estimators started at the end of the 1970s by the pioneer-
ing paper of BabuSka and Rheinboldt {2]. During the 1980s and at the beginning of the 1990s,
fundamental and general approaches for analyzing a posteriori error estimators for conforming finite
element solutions of many classes of partial differential equations have been developed, e.g. in [1, 10,
16]. In these papers, the conformity of the finite element space, or more generally the orthogonality
of the Galerkin approach for conforming finite element methods plays an essential role. However,
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discretizations which are violating this Galerkin orthogonality are of substantial importance in ap-
plications, such as the use of numerical integration, upwind stabilization techniques for convection
dominated problems or nonconforming finite element discretizations in computational fluid dynam-
ics (CFD). Nonconforming finite element discretizations in CFD easily fulfill the Babuska—Brezzi
stability condition [6, 13] and have advantages on parallel computers [9, 14].

A posteriori error estimators for nonconforming discretizations have been investigated only in a
couple of papers. Residual-based a posteriori error estimators for the nonconforming P, -discretization
of the Laplace equation and the error in the element-wise computed H'-norm have been developed
in [8, 19]. In comparison to related error estimators for conforming finite element discretizations, an
additional term which measures the nonconformity of the discrete solution occurs. The approach in
[8] has been extended to the Stokes equations and the error in the discrete energy norm in [7].

The plan of the paper is the following. In Section 2, the equations and notations are introduced and
mathematical preliminaries are given. The construction of the special cutoff function B in Section 3
enables us to prove a local lower estimate for the L?-error of the velocity and a mesh-dependent
weighted L’-error of the pressure. The global estimate for the L?-error of the velocity is given in
Section 4 and the efficiency of the global error estimator in numerical examples is demonstrated in
Section 5. Section 5 additionally presents a comparison of the local a posteriori error estimator form
Section 3 and the estimator in the discrete energy norm from [7] with respect to the adaptive mesh
refinement.

2. The problem and mathematical preliminaries

We consider the steady state Stokes equations
—Au+ Vp=f in Q,
V-u=0 in Q, (D
u=0 on 0Q

in a two-dimensional domain Q with polygonal boundary 0Q2. A weak formulation of (1) is to find
(u, p)e(H(Q))* x L3(Q) satistying for all (v,q)€(H,(2))* x L{(Q)

(Vu, Vo) —(p,V-0) +(q. V -u)=(f. 1), (2)

where (-,-) stands for the inner product in (L%())?, d =1,2. We assume throughout this paper the
regularity

ue(HA(Q)' N(Hy(Q),  peH'(Q)NLY(Q) (3)

of the solution (u, p) of (1). This is given, e.g., if 2 is convex and f€(L}(Q)).

We focus on the nonconforming P,/Py-finite element discretization of (2) which has been intro-
duced by Crouzeix and Raviart [6]. Let , be a decomposition of € into triangles. For a given
triangulation, we denote by {7}, the set of triangles, with {E;}Y, the set of the edges of the
triangles which do not belong to 8Q, with {E;}X\\?, the set of edges which belong to 0, and with
B; the midpoint of edge E;, i=1,...,N + Np. P(T) is the space of all polynomials defined on T
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with degree not greater than k. The space of the vector valued nonconforming P,-finite elements is
defined as

’ v, (L)) |vu|r €(P(T)) YT €5, v, is continuous
h = . . .
inB;, i=1,...,N, and v,(B;)=0, i=N+1,...,N + Np.

The functions of V), are linear on each triangle, in general discontinuous across the edges, but
continuous in the midpoints of the edges {B.}Y . The space of piecewise constant functions in
Li(Q) is denoted by Qy:

Qh = {qh EL%(Q) ‘ qh|T€P0(T), \V/TGZ}
The discrete problem is to find (uy, pr)€V, x O, satistying for all (v, q,)€ V% O,

> /(V"hi Vo, = ppV o0, + @iV - wy) dx = (f, vy). (4)
7TeTy r
The norm in (L*(Q))¢, d=1,2, is denoted by || - ||lo and the seminorm in (H*(Q)), d=1,2, by
| - |«. Norms in subdomains w C Q are indicated by an index, e.g., || - ||o..- Because we consider a

nonconforming discretization, we have to introduce element-wise defined norms and seminorms for
v, € Vh

172
ol = (Z mrir) o ol = Coaly + foall2)'2.

TET,

The jump [|v,|]z of a function v, across an edge E is defined by

] lim, . ;o {vu(x + tng) — vi(x — tng)}, E¢oQ
v,]lp =
T timym o {—040x — t15)}, ECQ

where n; is a normal unit vector on £ and xc€E. If ECdQ, we choose the outer normal otherwise
ng has an arbitrary but fixed orientation. With that, every edge £ which separates two neighboring
traingles 7, and 7, is associated with a uniquely oriented normal ng = (n g, 1) (for definiteness
from 7| to 7,) and the jump of a function v, €V, across an edge E is

[valle =] — Va7,

We denote by #r = (—n,g,niz) the tangential vector on E. The functions belonging to V), have the
property

/Ef][|vh|]EdS=O VgeR(E), v,eV). (5)

The symbol /7 stands for the diameter of the triangle 7 (longest edge), 4 for the length of the edge
E, and p; for the diameter of the largest inscribed ball of 7. Positive constants which are independent
of h; and A are denoted by C. We shall consider uniform as well as locally refined families of
triangulations {.7,} which are admissible and shape regular. Thus, we assume the existence of a
constant C such that

h—T <C or lﬂ <C VTed, VECOT.

pPr he
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Analogous to [16], we denote by w; the union of triangles which have the common edge £ and by
wr the union of all triangles which have a common edge with the triangle 7.

We will derive in the global estimate benefit from the fact that ¥, has the subspace X, C(H}(Q))?
of vector valued conforming piecewise linear functions which vanish on ¢¢2. We will need the
standard nodal interpolation operator Ry, : (H*(Q2))? — X, satisfying

o = Ry,0llor < Cihplvlr Yoe(HY(T)Y, (6)

o = Ry,ollor < G vl Voe(HXT))?, ECoT (7)
and an interpolation operator Ry, : H'(Q)+~ O, with the property

lg — Ro.qllor < Cshrlglis, VacH'(Gr), (8)

where @ is the set of all triangles having a common point with the triangle 7. The interpolation
operator of [5] fulfills (8). The constants C;,C; and C; depend only on the smallest angle of the
triangles. We set C; =max{C), C,,C;}.

By #%.H'(T)— P(E) the L*(E)-projection onto the space of the restriction to E of all poly-
nomials of degree & is denoted. Using the Bramble-Hilbert lemma and a scaling argument, the
inequality

/ u(v — M) ds| < CHF V2 ||ullo.l0lmer 7 )
E

with 0 < m < k, for all elements T C wg, ucL*(E), and v€ H™'(T) can be proven [12].
In the following, we need local inverse estimates of seminorms of polynomials in Sobolev
spaces

0] p.7 < Chy ' |0t o7 Vu: vjr €B(T),

_ (10)
Z |0]m, .7 < Chy' Z [Vlmet pr VU1 0|7 €PL(T), YT C wy,

TCwg TCuwg

for m = 1, p€[l,o0]. The proof follows the lines of [4, Theorem 17.2], using the shape regularity
of the triangulation in the second estimate.

3. A local lower error bound

We define the residual-based local a posteriori error estimator Vv, €V,

=R AR RNV o2+ > BNV - ne — gulnellels e + D Aellllvallells, (A1)
ECeT ECeT
EG 00
where f; is a polynomial approximation of f of fixed degree. The 22 identity matrix is denoted
by I. The first and second term of 57 are norms of element residuals of the strong formulation of
the equation of momentum and mass, respectively. These terms can be found in a posteriori error
estimators for conforming finite element discretizations as well as the third term which often is called
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edge residual. Finally, the last term gives information on the nonconformity of v,. The jump of the
tangential derivatives across the edges may replace the jumps of the nonconforming function in #;
because of

In this section, we investigate if #r can be used as local error estimator for adaptive grid refinement.
Therefore, it will be shown that 5 gives a local lower bound on the error in the L?-norm of
the velocity and the weighted mesh-dependent L?-norm of the pressure. However, the estimate of
the jump terms of the nonconforming function leads to an additional term in the error estimate. The
local lower bound holds for each pair of discrete functions since the solution of the discrete problem
(4) does not play any r6le in the proof of Theorem 1.

2

ov,

Y V.
oty n€ Vi

ICloal1ells - = s ”[

Theorem 1. Let (u, p) be the solution of (1) with the regularity given by (3). Given a shape
regular family of triangulations and a fixed polynomial degree of the approximation f, of f, then
for all pairs of functions (vy,,q,)EV, X Q) satisfying

If = fillo.or = Ol = v4l[5 ., + A7l P = @llc.r,)™)

there is a constant C such that
C(“u - vh”() wr + h ”p qhH(z),u);-)lﬂZ + Ch%"lullwr

+ Ol = v4llo., + A2l P — @illo.0)" )

for all triangles T.

The remainder of this section is devoted to the proof of Theorem 1. Each term of #; will be
estimated separately from above by the local error.

A standard tool for proving local a posteriori error estimates are cutoff functions, see, e.g., [15,
16]. Often, the use of appropriate cutoff functions is the key to obtain local error bounds, e.g., for
robust error estimators in convection dominated problems [17, 18]. The special cutoff function Bg,
defined below, will play an essential role for the nonconforming discretization.

Let T€J, be an arbitrary triangle and E C 0T. We denote by Az the linear function which is
zero on E and 1 in the comer of 7 opposite to E. In contrast to the derivation of a posteriori error
estimates in the discrete energy norm, we need in the following cutoff functions which belong to
C'(Q). We define for each triangle T the element bubble function

(27464545, in T,
BT:

0 otherwise,

(12)

where F1,E,, E; are the edges of 7. Next, we construct an edge bubble function B with supp B =
wg, see Fig. 1. Let E be the common edge of the triangles 7, and 7,. The other edges of T are
E| and E,. The triangle T, is reflected on E with the images E* and E) of E| and E,, respectively.
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Fig. 1. Cutoff function Bg.

In the same way, we obtain E; and E; by reflecting 7> on E. We define
2564z Ag, iz Az on T,
B = { 2567 4; Az Ap. on T, (13)
0 | otherwise.

Some properties of the cutoff functions Br and By are summarized in

Lemma 2. The cutoff functions given in (12) and (13) have the following properties:
Br,B:cC'(2), Br|r€P(T), Belr€R(T) VT Cawg, 0<Bp, B <1, (14a)
B;=0 on 0T, VB, =0 on 0T,

(14b)
BE =0 on (3(05, VBE =0 on ﬁa)g.
By is continuous on E and
VBE‘I’[E:O on E. (15)

Proof. The first and second property, (14a) and (14b), follow directly from the definition of the
cutoff functions. Property (15) follows from

A e = /lE; le=2gle = )~E; e and  Agle= }LE; e =Ae,|e = /15; |-

With that, we find Bglz =2564% A} . Finally, (15) can be proven considering an arbitrary line g
across E and perpendicular to E. The definition of B; on T, is continued to the mirror image of
T,. In this way, a function on g is defined which is continuously differentiable and symmetric with
respect to E. Thus, we have VB, -nz; =0 in the cross point of g and E.

In the following, we need uniform norm equivalences of weighted L*-norms in finite dimensional
spaces. The proofs follow the lines of Lemma 3.3 in [16] using the equivalence of norms in finite
dimensional spaces, the boundedness of the cutoff functions and scaling arguments.
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Lemma 3. The cutoff functions defined in (12) and (13) satisfy the following inequalities:

ol <C [ ¥Brdr VoeR(D) 16

lolfs <€ [ Brdr VoeR(E). 17
E

lvBrllo.r < llvflo,r YoER(T), (18)

lvBello.we < ||Vl Y0 With v]7, € P(T), T; C g, (19)

where C is a constant independent of T and hr. In (16) and (17), C depends on k.

The residual of the equation of mass will be estimated in the following lemma.

Lemma 4. Let (u, p) be the solution of (1) and v,€V, an arbitrary function. Then, there is a
constant C such that for each element T of the shape regular family of triangulations {7}, the
estimate

he||V - vullor < Cllu —vallo.r

is valid.
Proof. Using (16), V - u =0, integration by parts and (14), we obtain

IV - w37 < c/ V- (v, —u)V - v,Br)dx
T

= C/(ll — v;,) . V(V : v;,BT)dx.
T
Applying the Cauchy-Schwarz inequality, the inverse estimate (10) and (18), we get
IV - ollG 7 < Chy 'l —ollo oV - oallor. D

We will estimate the norm of the residual of the equation describing the conservation of momentum
in the following lemma.

Lemma 5. Let (u, p) be the solution of (1) and (vy,q4)EV, x Q, an arbitrary pair of functions.
Assuming the regularity of the solution given by (3), then there is a constant C such that

B\ fillo.r < Clllu = villo.r + kel p — gullo.r + A2 = fillo.r] (20)

for each T of a shape regular family of triangulations.

Proof. Let 7 be an arbitrary triangle. Using (16), (1) and Av,|; =0, Vgu|r =0, Y(v,q1)E Vi X Oh,
we get

A2, <C / (=A@ =) + V(p — a))fiBr + (i — £)fiBr dx.
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Now, integration by parts and (14) yield

Iz, <C / (e — ) AfiBr) — (p— a0)V - (fiBr) + (fy — £) By dx.

All terms can be estimated using the Cauchy—Schwarz inequality, the inverse estimate (10), and
(18) which yields (20). O

The edge residual is estimated in a similar way using the cutoff function B;. The smoothness of
Br plays an essential role for the following estimate. Integrating by parts in wg, we obtain a line
integral on the edge E which vanishes because of VBg -n; =0 on E.

Lemma 6. With the assumptions of Lemma 5, there is a constant C such that
HN0Von - ne — qulnellello
< Cll|u = vallo.wr + 2l 2 — qrllo.or + hi‘”f ~ Sillo.we]
for all edges E with E ¢0SL.

Proof. Before starting the estimate, we note that [|Vv, - ng — ¢ulng|]e is a constant vector valued
function on each edge E. Let us denote with [|Vv, - ny — g,lng|1$ the constant continuation of
[|Vv, - ng — gulng|]s to wge. Then, taking into consideration the regularity of the triangulation, we
have the estimate

I Vos - e — gudne| 1§ llo.or < ChZNUIVOL - ng — qulng]1gllo.e- (21)

Now, using (17), element-wise integration by parts and (14), we obtain

IV - g — thnE|]E||(2),E

<C ). [fr V(u—v,): V([|Vv, - ng — qulng|];Bg)dx

TCuwg

—f(p—qh)V-([IVvh-nE—qhanHSBE)dx

T

+/ (A — 0 — V(p — g)) - [V - ng — qulng|ISB dx |
T

Integrals on E containing jumps of Vu and p vanish since these functions are continuous almost
everywhere. In the following, we estimate each term separately. The first term is integrated by parts
once more. Using (14), we get

S [ V0 VA1V e - quine)S Be) dx

TCuwyg

_ / (4 — 0 )[| V0 - s — qulng|1S4B;) dx

+/ Uonlle - [| Vo - ng — gulng|1e(VBg - ng)ds.
E
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The miesrs) on Tne ehge T vamsnes pecanse o1 12D). Wiin Ine mverse mepnanty 179109 anbd
(21), we obtain

Z ’/1: V(u — vh) . [|Vvh s Ap — thng‘]g BE dx

TCuwg

S Chi >l — 0y l0.0p || 1V - 1 — galng|1elo.z-

The second 1erm 1s esnmated 1 The same way. We can wnie e imrd jerm, nsing Afn — ) —
V{p—¢q,)=—f on T, in the form

- Z /ﬁz [V, - ng — thng\]g Bz dx
7

TCwor

= [ =) (Vo e — quln B d

TCwe

These terms can be estimated using the Cauchy-Schwarz inequality, (19), (21) and the estimate
(20> for ) £.)s.». The combination of a)) estimates proves fhe lemma. D

Finally, we consider the term of the error estimator which gives information about the noncon-
forrmitty dt e discrete Tanclion.

Lemma 7. Given a shape regular family of triangulations, there is a positive constant C such that
for each edge E, Yve (H*(wg))*, Vv, €V,

R a1z llo.e SCUIR = Onllo.op + HEP]2.00)- (22)

Proof. Let Ry, v € X be the interpolant of v and w; =T7,U 7. Using a standard estimate of the trace
of a polynomial from F(7T) and (6), we get

Iieallells e = / [(v — Ry,0)|7, — (05 — Ry, 0)| 1, ds
E

<2 { [t~ Rowlr P+ [0 - Rxhv)trzf}
< Clhi'|o = vyllg., + A2l03,,). O

Remark 8. An estimate of the form A °[|[|v4|lz]lo.e <C||v — v4llo...,, Would be desirable. However,
such an estimate is not in general true. We consider the union w; of two triangles shown in Fig. 2.
The variable perpendicular to E in the direction of ng is denoted by x. Given an arbitrary function
v, € ¥, with v,(Bz) = 0,]|[|vx]1ello.c = C >0, the left-hand side of (22) is a fixed positive number.
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AN ! !

~L “aps éps

Fig. 2. we (left) and ¢z(x) (right).

Now, defining v, = v,¢; with

(1 x>=e,

(1 — (E — 1)4)4 x €10,¢),
(—1 + (z n 1)4>4 X €(~20),

Ll X< — g,

de(x) =

see Fig. 2, we find v, € (H*(wg))* and ||v, — v]j0,0, — O for ¢ — 0.

4. Global a posteriori estimate for the L2-error of the velocity

We apply a technique developed by Johnson et al., see, e.g., [10]. It consists of four steps:
1. error representation with the solution of a continuous dual problem,
2. Galerkin orthogonality of the discretization,
3. interpolation estimates for the solution of the dual problem,
4. strong stability of the dual problem.
Let (u, py) be the solution of the discrete problem (4). The strong formulation of the continuous

dual problem with the error 4 — u, as right-hand side is

—Az—Vs=u—u, in Q,
V.z=0 in Q, (23)
z=0 on 0Q.

For the solution (z,s) of the corresponding weak problem, we require the regularity

(z.8) € (H(Q) N Hy(2)) x (H'(Q) N L(R2)) (24)
and the stability

|zl2 + Isfr < Csllae — ualfo. (25)

The following theorem gives the estimate of the global L*-error of the velocity.
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Theorem 9. Let (u, p) be the solution of (1) with the regularity given by (3) and (uy, py) the
solution of (4). For the solution (z,s) of the dual problem (23), we assume the regularity given by

(24) and the stability (25). Then, for a shape regular family of triangulations, there is a constant
C = C(C,Cs) such that the global error estimate

1/2
lu —mllo<Cn +C ( > h‘}llf—fh\lé,r)

re7y

holds with

n= Z(h‘}llfhllﬁr +H |V - mlli )

re7;

1/2

+ > mllVu, - ng — palng|lel - + S helllmllelie |- (26)
gggg ECET

Here, C; is defined in (6)—(8), and f, is a polynomial approximation on f of fixed degree.

Proof. We start by testing the dual problem (23) with # — u,, and integrating by parts. Using the
error p — p, as test function from Q, we obtain

= wills = 3 [/TWV(u—uh)+sV~(u—uh)—(p—ph)V-zdx

TeT,

+ Z /E(Vz-n5)~uh +s(uh-n5)ds} 27N

ECeT
Since X, C V},, we get with (2) the Galerkin orthogonality
“=§:{/\ﬂ"*"wiV%—(p—pwv‘w+qﬂ7xu—myu
rez, VT

for all (v;,q,)€X, x Q4. Choosing v, = Ry,z =2, and g, = Rp,s =s,, adding these to (27), and
integrating by parts give

e — sl

= Z l/(—A(u—u;,)%— Vie—p) z—z)+(s—s)V - (0 —u,)dx

TeT,

+ 3 [(V@=m) ne— (p= pdne) = 2)+ (V2 me) - + st - n) ds

ECOT
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The estimate of the first terms is standard [10]. Using the interpolation estimates (6)—(8) and the

stability of the dual problem (25) gives the first three terms of the error estimator.
The terms coming from the nonconformity of u; are estimated using (5), (9), and (25):

Z z /(Vz-n,g)'uhdséz
Teq EcarvE E
=2

£

< CZth’QH[|uh]]E||O,E|Vz : nE|l,(uE
E

/E(Vz g) - [Juef]e ds

/E (Vg — A%V2)) - ng) - [us]] ds

172
< CCs (Z hE”[‘uhl]EH(z),E) [l — wllo,
£
Z Z /s(u,,-ng)ds < Z
£ £
<C

/E (s — M) Je - mg ds

Ted, ECOT

b Ll - mellog sl
E

1/2
<CGs (Z hEll[lﬂhl]Ellég) e —willo. O
E

Errors coming from numerical integration in assembling the right-hand side of the discrete system
(4) and from the termination of the iterative solver at an approximation of the solution of the discrete
system violate the Galerkin orthogonality and result in additional terms in the global error estimate.
These terms will be considered as of higher order in the numerical practice. To justify this, it is
necessary that in the computation of the error estimator  at least a good approximation of (u;, p;)
is used.

In the proof of Theorem 9, we do not need a solution of a discrete problem belonging to the dual
problem (23) but only an interpolant z, of z. We make use of the fact that ¥, contains the conform
subspace X, so that we can choose z, € X,. Thus, line integrals for the reason of discontinuities of
z» do not occur in the following integration by parts. So to speak, the dual problem is treated in a
conforming way.

The analysis of Sections 3 and 4 can be extended to inhomogeneous Dirichlet boundary conditions
and Neumann boundary conditions, in a way analogous to [7, 8].

5. Numerical results
In this section, we present numerical results which demonstrate the efficiency of the global error

estimator # and we give a comparison of the adaptive mesh refinement using the local error estimator
nr (11) and a local estimator of the error in the discrete energy norm

(= wl + 1 p = pall)"”
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proposed by Dari et al. [7]. The global error estimator # is said to be efficient if there are constants
0 < ¢y < ¢ such that for all triangulations 7,

c < . — <.
|0 — unlfo

Example 10. First, we consider an example with a smooth solution satisfying the regularity assump-
tions (3). The right-hand side is chosen such that

u=cul ¥, ¥=xp(1-x(1=yF, p=x+y —05
is the solution of (1) in € =[0,1] x [0,1].

We have performed computations using different coarse grids and uniform refinement. For some
tests, the exact and the estimated error in the L?-norm of the velocity are presented in Fig. 3 together
with the corresponding coarse grids. In each test, the ratio of the exact and estimated error has been
nearly constant on all levels which demonstrates the efficiency of the error estimator.

Example 11. The following example has been used in [3, 16] for testing a posteriori error estimators
for the error in the energy norm and for conforming finite element discretizations.

Let Q2 be the disc with the center (0,0) and the radius 1 which has a crack along the x-axis
between the points (0,0) and (1,0), see Fig. 4. We consider the Stokes equations

—Adu+Vp=0 in Q,
Vou=0 in Q, (28)
u=g on 09,

where the boundary condition is chosen such that

3 0 3 ,. 0 . 30 6 0
u—i\/;(cosi —cosE,3sm§ —sm—i->, p-——ﬁcosi
with r* = x> + 3 and 0 < 0 < 2r is the exact solution of (28), see Fig. 5. The solution has a
singularity in the origin, it is u & (H*(2))* and p¢ H'(Q). Thus, the theoretical assumptions of
Sections 3 and 4 are not fulfilled. As criteria for the quality of the computed solution (u, py),
we have chosen ||# — m||o and the resolution of the singularity of the pressure. This resolution is
measured with the minimal value p, ., and the maximal value pjm.x Of ps. The coarsest grid is
presented in Fig. 4.
Besides the local error estimator #7, we have applied for the adaptive grid refinement the local
error estimator in the discrete energy norm

’ﬁ",eng = hzT”ﬁl“(z)T + “V : uh”é,T
+ > hellllvVun - e — palnellells e + D ke IUmallelo
ECer ECer

EZ éQ

proposed by Dari et al. [7]. For the adaptive grid refinement criteria have to be set for choosing
elements for refinement or coarsening, tolerances for these criteria, a minimal amount of refinement,
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Fig. 3. Example 10, coarse grids (level 0), exact and estimated errors.
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Fig. 4. Domain and coarsest grid (level 0) for Example 11.

Fig. 5. Solution (velocity and pressure) of Example 11.

and a starting point for the adaptive refinement process. For details on these subjects see [11]. The
sequence

assemble — solve — estimate the error — refine — interpolate

is called a step.

The results of the numerical tests are presented in Table 1. The use of both types of local error
estimators leads to much better results than uniform refinement. Only 1.5% of the degrees of freedom
are necessary to achieve similar results on the locally refined meshes of #7.e, (step 9) like with
uniform refinement (step 7). The local a posteriori error estimator #y.., refines above all at the
singularity whereas the local refinement produced by #; covers a larger domain, compare Fig. 6. It
turns out that the solution computed on the meshes which are generated with the help of #7qg is
better.

The efficiency of the global error estimator # can be seen in Fig. 7. Thus, despite the missing
of regularity of the solution, the local and global a posteriori error estimators could be applied
successfully.

Remark 12. The solutions on the meshes generated by the local a posteriori error estimator #r,eng
for the discrete energy norm have been better than on the meshes produced by #; in Example 11.
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Fig. 6. Example 11, locally refined grids with #7..ne (2bove) and 7 (below), step 9 and 14.
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Fig. 7. Example 11, exact and estimated error, adaptive mesh refinement with n7.
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Table 1

Example 11 with uniform refinement, #7.cng, and #r (from top to bottom)

Step dof velocity dof pressure Hu — wylo Ph.min D, max
6 197,376 65,536 1.197-2 —-69.6 69.6
7 787,968 262,144 6.017-3 —98.9 98.9
9 12,420 4179 5.719-3 —198.0 198.2

14 83,656 27,979 7.036-4 —1121.3 1121.6

18 352,654 117,749 1.649-4 —4492.9 4457.2
9 12,790 4301 9.038-3 —98.0 98.1

14 67,542 22,639 1.568-3 —276.8 278.2

18 237,298 79,311 6.458-4 —396.2 396.0

We have observed the same for solutions of convection—diffusion equations with one singularity [11].
However, for convection—diffusion equations whose solutions have singularities of different kind we
found the meshes of the error estimator in the weaker norm superior.

Remark 13. In a comprehensive study [11], we have applied residual-based a posteriori error esti-
mators for conforming discretizations for the adaptive grid refinement in examples where we have
used a nonconforming discretization. The difference of the conforming error estimators to #; and
Nr.eng 15 the missing of the jumps of the discrete function. We have not found any example where
the addition of these jump terms has led to clearly different meshes or improved discrete solutions.
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