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Abstract

This paper investigates a multigrid method for the solution of the saddle point formulation of the
discrete Stokes equation obtained with inf±sup stable nonconforming ®nite elements of lowest order. A
smoother proposed by Braess and Sarazin (1997) is used and L2-projection as well as simple averaging
are considered as prolongation. The W-cycle convergence in the L2-norm of the velocity with a rate
independently of the level and linearly decreasing with increasing number of smoothing steps is proven.
Numerical tests con®rm the theoretically predicted results.

AMS Subject Classi®cations: 65N12, 65N22, 65N55.

Key Words: Nonconforming ®nite element discretizations, coupled multigrid methods, Braess±Sarazin
smoother, Stokes equation.

1. Introduction

In a comparative study of solvers for the incompressible Navier±Stokes equation
by means of the nonconforming P1=P0-®nite element discretization, [15], coupled
multigrid methods have been proven to be superior to pressure Schur complement
type schemes, e.g. SIMPLE. In [16], the performance of di�erent smoothers
within coupled multigrid methods have been tested and compared for the solution
of the Navier±Stokes equation. Braess±Sarazin-type smoothers exhibit good
smoothing properties. Although one smoothing step is computationally expen-
sive, coupled multigrid methods using Braess±Sarazin-type smoothers have been
proven as useful solvers for incompressible ¯ow problems. However, a theoretical
support of these methods in the full nonlinear case is still missing. Therefore, in
this paper, we study the Stokes equations as a simple model of Computational
Fluid Dynamics.

Nonconforming ®nite element approximations for incompressible ¯ows are
attractive since they easily ful®l the discrete version of the BabusÏ ka±Brezzi con-
dition. Another advantage of using nonconforming ®nite elements is that the
unknowns are associated with the element faces such that each degree of freedom
belongs to at most two elements. This results in a cheap local communication
when the method is parallelized on MIMD-machines. In addition, these two
advantages of nonconforming ®nite element discretizations have to be combined
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with a fast solver in order to obtain an e�cient computational method. Multigrid
methods for nonconforming ®nite element approximations have been studied in a
number of papers, e.g. see [4±11, 19, 21]. The ®rst convergence proofs have been
given by Braess/VerfuÈ rth [7] and Brenner [8] for the Poisson equation discretized
by nonconforming piecewise linear elements. Later, these techniques have been
extended to the Stokes equation in [9, 21] discretized by the nonconforming P1=P0-
®nite element and the Qrot

1 =Q0-®nite element, respectively. In these papers,
smoothers of Jacobi type and grid transfer operators have been used, which map
discretely divergence free functions on the coarser level to discretely divergence
free functions on the ®ner level. As a result, the convergence of the 2-level method
for a su�ciently large number of smoothing steps could be established. The
convergence rate behaves like O�1=m1=4� with respect to the number m of
smoothing steps. Replacing the nonconforming P1 coarse grid correction by a
conforming P1 coarse grid correction, also the convergence of the V -cycle has been
shown [10, 11]. In [6, 19], a new smoothing iteration has been proposed and
studied in detail for the conforming Taylor±Hood element. This new method
results in a convergence rate of O�1=m� with respect to the number m of
smoothing steps. Here, we will study, theoretically and numerically, this new type
of smoothing iteration for nonconforming ®nite element discretizations of lowest
order for the Stokes equation.

The paper is organized as follows. We formulate the continuous problem and
describe its discretization by nonconforming elements of lowest order in Section 2.
Then, in Section 3, we ®rst explain the smoothing procedure of Braess±Sarazin
type, afterwards the two-level method is de®ned and last special prolongation
operators are studied. Finally, numerical experiments con®rm the theoretical
predictions in Section 4.

2. The Problem and its Discretization

2.1. The Continuous Problem

Let X � R2 be a bounded, polygonal domain with boundary C. For any open
subset x of X, we denote by L2�x� and Hk�x�; k � 1, the standard Lebesgue and
Sobolev spaces equipped with the norms k � k0;x :� k � kL2�x� and
k � kk;x :� k � kHk�x� and with the inner product ��; ��x :� ��; ��L2�x� (cf. [1]). Since no
confusion can arise, we use the same notations on the product spaces L2�x�2 and
Hk�x�2, respectively. We also make use of the seminorm j � jk;x :� j � jH k�x� in
Hk�x�. If x � X, we will omit the index x. Put

V :� H1
0 �X�2 :� �v 2 H 1�X�2 : v � 0 on C

	
;

Q :� L2
0�X� :� �q 2 L2�X� : �q; 1� � 0

	
:

We consider the Stokes equation

ÿDu�rp � f in X;
r � u � 0 in X;

u � 0 on C;
�1�

308 V. John and L. Tobiska



where f 2 L2�X�2. The corresponding weak formulation reads:

Find �u; p� 2 V � Q such that for all �v; q� 2 V � Q

a�u; v� � b�v; p� � b�u; q� � �f; v�; �2�

where

a�u; v� � �ru;rv� and b�u; q� � ÿ�r � u; q�:

It is well known that (2) admits a unique solution.

2.2. Nonconforming Finite Element Discretizations

In this paper, we study nonconforming ®nite element discretizations of lowest
order introduced by Crouzeix and Raviart for triangular meshes [12] and by
Rannacher and Turek for quadrilateral meshes [17].

Let the coarse mesh T0 be a conforming decomposition of the domain X into
elements K 2T0 which are allowed to be (open) triangles or convex quadrilat-
erals. Then, for a given mesh Tl, we construct the next ®ner mesh Tl�1 by
subdividing each element into four ``child elements''. For that purpose, we con-
nect the midpoints of the edges in the triangular case and the midpoints of
opposite edges in the quadrilateral case. At the end of this re®nement process, we
get the ®nest level lmax and a ®nal mesh Th �Tlmax .

On each triangulationTl; l � 0; . . . ; lmax, we construct ®nite element spaces V l;Ql

in the following way. Let E�K� denote the set of all edges of an element K 2Tl,
El � [KE�K� the set of all edges of Tl, El

C � fE 2 El : E � Cg, and El
0 � El n El

C
the set of boundary and inner edges, respectively. For a piecewise continuous
function w, the jump w� �E across an edge E 2 El is de®ned by

�w�E :�
lim

t!�0
fw�x� tnE� ÿ w�xÿ tnE�g E 2 El

0;

lim
t!�0

ÿw�xÿ tnE�f g E 2 El
C;

8<:
where nE is the normal unit vector on E and x 2 E. If E � C, we choose the
orientation of nE to be outward with respect to X, otherwise nE has an arbitrary
but ®xed orientation. The continuity condition of conforming ®nite elements at
the edges E 2 El is weakened to

JE�vl� :� 1

jEj
Z

E
vl� �E ds � 0 8 E 2 El; 8 vl 2 V l; �3�

where jEj denotes the length of edge E.

We consider two types of nonconforming ®nite element spaces to approximate the
velocity space V , in correspondence with the triangulation consisting of triangles
or quadrilaterals. In fact, let
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V l :� �vl 2 L2�X�2 : vljK 2 P �K�2 8 K 2Tl; JE�vl� � 0 8 E 2 El	;
where P�K� :� P1�K� if K is a triangle and P �K� :� Qrot

1 �K� for a quadrilateral
element K. Here, P1�K� denotes the space of all linear functions on K and Qrot

1 �K�
the space of so-called ``rotated bilinear'' functions de®ned by

Qrot
1 �K� :� �q̂ � F ÿ1K : q̂ � span �1; x̂1; x̂2; x̂21 ÿ x̂22�

	
;

where FK : K̂ ! K is the bilinear transformation between the reference element
K̂ � �ÿ1; 1�2 and the element K, see [17, 20]. The degrees of freedom of a function
vl 2 V l are the mean values NE�vl� at the inner edges E 2 El

0 given by

NE�vl� :� 1

jEj
Z

E
vljK ds for E 2 E�K�; �4�

where K is an arbitrary element having the edge E. Because of (3), the value NE�vl�
is independent of the choice of K. Thus, the nodal values (4) are well de®ned for
all v 2 V � V l.

For approximating the pressure, we use piecewise constant functions, i.e.,

Ql :� �ql 2 L2�X� : qljK 2 P0�K� 8 K 2Tl	 \ L2
0�X�:

Now, on each level l, we consider the discrete problem.
Find �ul; pl� 2 V l � Ql such that for all �vl; ql� 2 V l � Ql

al�ul; vl� � bl�vl; pl� � bl�ul; ql� � �f; vl�; �5�

where the mesh dependent bilinear forms al : V l � V l ! R, bl : V l � Ql ! R are
given by

al�ul; vl� �
X

K2Tl

�rul;rvl�K and bl�ul; ql� � ÿ
X

K2Tl

�r � ul; ql�K :

It is well known that (5) is solvable and that the error estimate

juÿ ulj1;h � kp ÿ plk0 � chl�juj2 � jpj1�

holds, [12, 17, 20]. Note that hl is the mesh size parameter of the decomposition
Tl and j � j1;h is the discrete H 1-seminorm

jvj1;h :�
X

K2Tlmax

jvj21;K
 !1=2

:

Under the additional assumption that X is convex, we have (cf. [12, 17])

kuÿ ulk0 � ch2
l �juj2 � jpj1�: �6�
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3. The Convergence of the 2-Level Method

On each level l, the discrete problem (5) corresponds to a linear system of
equations of the form

A B
BT 0

� �
U
P

� �
� F

0

� �
; �7�

where the dimension of the vectors coincides with the dimension of the ®nite
element spaces V l and Ql, respectively. Note that A is a symmetric, positive
de®nite matrix. To simplify the notation, the index l will be omitted as long as no
confusion can arise.

For the smoothing procedure on each level l, we will use the following iteration

C B
BT 0

� �
Uj�1 ÿ Uj

P j�1 ÿ P j

� �
� F

0

� �
ÿ A B

BT 0

� �
U j

P j

� �
; �8�

which has been proposed in [2, 6, 19]. Here, we assume that the matrix C has been
generated by a continuous, elliptic and symmetric bilinear form
c : �V � V l� � �V � V l� ! R.

The error for the next iterate only depends on the error of the velocity component
of the previous iterate and is independent of the error of the pressure component.
Moreover, for an arbitrary initial guess �U 0; P 0�T , the iterates are discretely
divergence free after one smoothing step, i.e.

BT U j � 0; j � 1:

3.1. The 2-Level Algorithm

We shortly describe the 2-level method on the level l, 1 � l � lmax using m1 pre-
smoothing steps and m2 post-smoothing steps. Because Qlÿ1 � Ql, we can choose
the natural injection as a prolongation of the discrete pressure. The prolongation
of the discrete velocity will be denoted by Il

lÿ1 : V lÿ1 ! V l:

Let �u0l ; p0l � be a given approximation of the solution �ul; pl� on level l. For
n � 0; 1; . . . de®ne �un;0

l ; pn;0
l � � �un

l ; p
n
l � and perform

Step 1. Pre-smoothing: Solve for j � 0; 1; . . . ;m1 ÿ 1

cl�un;j�1
l ÿ u

n;j
l ; vl� � bl�vl; p

n;j�1
l ÿ pn;j

l �
� �f; vl� ÿ al�un;j

l ; vl� ÿ bl�vl; p
n;j
l � 8 vl 2 V l

bl�un;j�1
l ÿ u

n;j
l ; ql� � ÿbl�un;j

l ; ql� 8 ql 2 Ql:

Step 2. Coarse grid correction: Solve
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alÿ1�u�lÿ1; vlÿ1� � blÿ1�vlÿ1; p�lÿ1�
� �f; Il

lÿ1vlÿ1� ÿ al�un;m1

l ; Il
lÿ1vlÿ1�

ÿ bl�Il
lÿ1vlÿ1; p

n;m1

l � 8 vlÿ1 2 V lÿ1

blÿ1�u�lÿ1; qlÿ1� � 0 8 qlÿ1 2 Qlÿ1:

�9�

De®ne un;m1�1
l :� un;m1

l � Il
lÿ1u

�
lÿ1 and pn;m1�1

l :� pn;m1

l � p�lÿ1.

Step 3. Post-smoothing: Solve for j � 0; 1; . . . ;m2 ÿ 1

cl�un;m1�j�2
l ÿ u

n;m1�j�1
l ; vl� � bl�vl; p

n;m1�j�2
l ÿ pn;m1�j�1

l �
� �f; vl� ÿ al�un;m1�j�1

l ; vl� ÿ bl�vl; p
n;m1�j�1
l � 8 vl 2 V l

bl�un;m1�j�2
l ÿ u

n;m1�j�1
l ; ql� � ÿbl�un;m1�j�1

l ; ql� 8 ql 2 Ql:

Choose un�1
l :� un;m1�m2�1

l , pn�1
l :� pn;m1�m2�1

l .

In the following, we will show that the two-level method converges for su�ciently
many smoothing steps. As a consequence, the W-cycle multigrid algorithm is
convergent, too (cf. [3, 13]).

We follow the general framework of proving a smoothing property and an ap-
proximation property. Putting both properties together, the convergence of the
2-level method is obtained.

3.2. The Smoothing Property

In the following, we denote by Al;Bl;Cl the matrices A;B;C in (7) and (8) on level
l and by Il the identity with dim Il � dimAl. For simplicity, we consider the case
when Cl � alIl and the parameter al satis®es al � kmax�Al�, where kmax�Al� is the
largest eigenvalue of Al. Note that the size of kmax�Al� depends on the basis
functions used to span V l. In contrast to [6], we take the standard basis fUig such
that the mean value NE�Ui� is equal to �0; 0�, �1; 0� or �0; 1�. As a consequence,
kmax�Al� is uniformly bounded by a level-independent constant. Let the discrete l2
norm of a vector U � �Ui� be denoted by

kUk0;d :�
X

i

U2
i

 !1=2

:

This choice is connected with the norm equivalence on each level l, 0 � l � lmax,

c1
hl
kulk0 � kUk0;d �

c2
hl
kulk0; ul �

X
i

UiUi:

Lemma 1. On level l, let �U ; P � be the solution of the discrete problem (7), �U m; P m�
be the ®nal iterate after m � 2 smoothing steps of the relaxation (8) with the initial
guess �U0; P 0�. Then, there is a level independent constant c such that
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kAl�U m ÿ U� � Bl�P m ÿ P �k0;d �
c
m
kU 0 ÿ Uk0;d �10�

holds.

Proof: Theproof is basedonpurely algebraic properties andhas beengiven in [4].(

3.3. L2-Orthogonal Prolongations

We consider the case of L2-orthogonal prolongations, i.e., Il
lÿ1 : V � V lÿ1 ! V l is

given by

�Il
lÿ1vÿ v;wl� � 0 8 wl 2 V l; v 2 V � V lÿ1:

Then, we can show the approximation property based on ideas developed in [7]
for the P1±nonconforming ®nite element discretization applied to the Poisson
equation. Let �um

l ; p
m
l � 2 V l � Ql be the approximate solution after m smoothing

steps and �u�lÿ1; p�lÿ1� the coarse grid correction de®ned in (9).

De®ne the auxiliary variational problem

a�z; v� � b�v;/� � �g; v� 8 v 2 V ;

b�z;w� � 0 8 w 2 Q;
�11�

where g 2 V l � L2�X�2 denotes the Riesz±Fischer representation of the defect
Fl ÿ AlUm ÿ BlP m given by

�g;wl� � �f;wl� ÿ al�um
l ;wl� ÿ bl�wl; pm

l � 8 wl 2 V l: �12�

Under the assumption that the solution of (11) is H 2 � H 1-regular, we have

kzk2 � k/k1 � ckgk0: �13�

Setting wl � Il
lÿ1vlÿ1 in (12) and using the L2-orthogonality of the prolongation,

we see that the coarse grid correction is the nonconforming ®nite element ap-
proximation of (11)

alÿ1�u�lÿ1; vlÿ1� � blÿ1�vlÿ1; p�lÿ1� � �g; vlÿ1� 8 vlÿ1 2 V lÿ1;

blÿ1�u�lÿ1; qlÿ1� � 0 8 qlÿ1 2 Qlÿ1:

On the other hand, �ul ÿ um
l ; pl ÿ pm

l � is the nonconforming ®nite element ap-
proximation of �z;/� on the level l. Indeed, using (5), (12), and that um

l is dis-
cretely divergence free, we have

al�ul ÿ um
l ;wl� � bl�wl; pl ÿ pm

l � � �g;wl� 8 wl 2 V l;

bl�ul ÿ um
l ; ql� � 0 8 ql 2 Ql:
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Consequently, the L2-stability of the prolongation

kIl
lÿ1vk0 � kvk0 8 v 2 V � V lÿ1;

the error estimate (6) on the level l and lÿ 1 and the stability result (13) imply

kul ÿ um
l ÿ Il

lÿ1u
�
lÿ1k0 � kIl

lÿ1�ul ÿ um
l ÿ u�lÿ1�k0

� kul ÿ um
l ÿ zk0 � kzÿ u�lÿ1k0

� c�h2
l � h2

lÿ1�kgk0: �14�

Now, we estimate the L2-norm of g by the discrete l2-norm of the defect
Al�U ÿ U m� � Bl�P ÿ P m�. Assuming that the representation of g 2 V l is given by

g �
X

i

giUi;

we have

kgk20 �
X

i

gi�g;Ui� �
X

i

g2
i

 !1=2 X
i

�g;Ui�2
 !1=2

:

On level l, the discrete l2-norm can be estimated by the L2-norm as follows

X
i

g2
i

 !1=2

� kgk0;d �
c
hl
kgk0:

Taking into consideration that

kAl�U ÿ Um� � Bl�P ÿ P m�k0;d �
X

i

�g;Ui�2
 !1=2

;

we ®nally get

kgk0 �
c
hl
kAl�U ÿ Um� � Bl�P ÿ P m�k0;d ;

which, with (14), proves the following approximation property.

Lemma 2. Let �ul; pl� be the solution of (5), �um
l ; p

m
l � be the approximate solution

after m smoothing steps and �u�lÿ1; p�lÿ1� the coarse grid correction. Then, we have

kul ÿ um
l ÿ Il

lÿ1u
�
lÿ1k0 � c hlkAl�U ÿ U m� � Bl�P ÿ P m�k0;d :

From the smoothing and approximation property, we obtain
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Theorem 3. Let the solution of (11) be H2 � H 1-regular and Cl � alIl with
al � kmax�Al�. Then, the 2-level method convergences in the L2-norm of the velocity
for a L2-orthogonal prolongation operator Il

lÿ1 and su�ciently many smoothing steps
m � 2. In particular, there is a level independent constant c such that

kul ÿ um
l ÿ Il

lÿ1u
�
lÿ1k0 �

c
m
kul ÿ u0lk0; �15�

or equivalently

kU ÿ U m
l ÿ Um�1

l k0;d �
c
m
kU ÿ U 0k0;d ; �16�

where Um�1
l is the corresponding vector representation of Il

lÿ1u
�
lÿ1.

Proof: Starting with the approximation property, using the smoothing property
and the norm equivalence, we get

kul ÿ um
l ÿ Il

lÿ1u
�
lÿ1k0 � c hlkAl�U ÿ U m� � Bl�P ÿ P m�k0;d

� c hl

m
kU ÿ U0k0;d

� c
m
kul ÿ u0lk0:

Owing to the norm equivalence, we conclude (16). (

3.4. L2-Bounded Prolongations

Note that the use of L2-prolongations in the Qrot
1 =Q0-case is too expensive since

the standard basis functions are not L2-orthogonal as it is the case of the
P1-nonconforming ®nite element. Hence, the possibility to use an L2-bounded
prolongation would simplify the multigrid method considerably.

A careful inspection of the convergence proof for the 2-level cycle shows that the
prolongations have not to be L2-orthogonal. Indeed, in (14), we used only the
L2-boundedness of the prolongation Il

lÿ1. The second idea of the proof, to in-
terpret ul ÿ um

l and u�lÿ1 as nonconforming ®nite element discretizations of an
appropriate auxiliary problem, can be also conserved by a clever de®nition of the
Riesz±Fischer representation of the defect. This has been focussed in a recent
paper [5] in a general setting to handle the mortar ®nite element method. Here, we
explain the technique for the nonconforming P1=P0 and the nonconforming
Qrot

1 =Q0-®nite element method.

Let W l denote the space given by

W l :� �wl 2 L2�X�2 : wljK 2 P �K�2 8 K 2Tl	;
with P �K� :� P1�K� and P �K� :� Qrot

1 �K�, respectively. We have no additional
assumptions to guarantee any weak continuity conditions at the edges E 2 El. A
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basis of W l consists of functions ~Ui such that the (one-sided) mean values
NE�~UijK� are �0; 0�, �1; 0� or �0; 1�. Again, the norm equivalence

c3
hl
kwlk0 � kW k0;d �

c4
hl
kwlk0; wl �

X
i

Wi ~Ui;

between the L2-norm of a function in W l and the discrete l2-norm of its vector
representation is satis®ed. Moreover, we see that V lÿ1; V l are contained in W l.

Let us de®ne the prolongation Il
lÿ1 : V � W l ! V l by a simple averaging over the

edges such that

NE�Il
lÿ1w� :� 1

2jEj
Z

E
wjK1
� wjK2

ÿ �
ds 8 E � @K1 \ @K2 2 El: �17�

The properties of this prolongation are summarized in the next lemma.

Lemma 4. The prolongation Il
lÿ1, de®ned in (17), satis®es

kIl
lÿ1wk0 � c kwk0; 8 w 2 W l;

Il
lÿ1w � w; 8 w 2 V l:

Proof: The ®rst statement follows from the de®nition of Il
lÿ1 and the norm

equivalence. The second one is a consequence of imposing the weak continuity
condition over edges for elements of V l. (

Now, we can de®ne the Riesz±Fischer representation g 2 W l � L2�X�2 of the
defect by

�g;w� � �f; Il
lÿ1w� ÿ al�um

l ; I
l
lÿ1w� ÿ bl�Il

lÿ1w; p
m
l � 8 w 2 W l

and consider the auxiliary problem (11). Then, ul ÿ um
l and u�lÿ1 can be considered

again as ®nite element approximations of the ®rst component of the solution
�z;/� of (11).
Repeating the arguments for proving Lemma 2, we obtain

Theorem 5. Let the solution of (11) be H 2 � H 1-regular and Cl � alIl with
al � kmax�Al�. Then, the 2-level method converges in the L2-norm of the velocity for
the prolongation operator Il

lÿ1, de®ned by (17), and su�ciently many smoothing
steps m � 2. In particular, we have

kul ÿ um
l ÿ Il

lÿ1u
�
lÿ1k0 �

c
m
kul ÿ u0lk0;

or equivalently
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kU ÿ Um
l ÿ Um�1

l k0;d �
c
m
kU ÿ U0k0;d ;

where Um�1
l is the corresponding vector representation of Il

lÿ1u
�
lÿ1.

4. Numerical Studies

Numerical experiments have been carried out for the nonconforming P1=P0-®nite
element discretization [12] with the L2-projection as prolongation operator Il

lÿ1.

In order to perform one smoothing step, we have to solve the saddle point
problem (8). For this, we apply a pressure Schur complement method, i.e. ®rst we
solve the Schur complement equation for the pressure

BT Cÿ1B�P j�1 ÿ P j� � BT Cÿ1�F ÿ AU j ÿ BP j� � BT U j �18�

with an iterative scheme: second, the velocity component is computed by

U j�1 ÿ Uj � Cÿ1 �F ÿ AU j ÿ BP j� ÿ B�P j�1 ÿ P j�� �
:

Example 1. This example has been designed to con®rm the theoretically predicted
results with respect to the 2-level method. We consider the Stokes equation (1) in
the unit square with f � 0, such that u � 0; p � 0 is the solution of (1). The
computations were carried out on a sequence of meshes starting with Grid 1
(Fig. 1). The discrete solution on each level is Ul � 0; Pl � 0.

As the initial guess of the 2-level method we have chosen Ul;i � 1 for all interior
degrees of freedom and Pl;i � 0 on each level. Thus, the initial error is smooth.
The number of pre-smoothing steps is denoted by m and the number of post-
smoothing steps was set to be zero. The approximation of Aÿ1l in the Braess±
Sarazin-type smoother was chosen �aIl�ÿ1 with the damping parameter
al � 2maxifal

iig � 16; l � 0; 1; . . ., where al
ii is the i-th diagonal entry of Al. Owing

Figure 1. Grid 1 (left) and Grid 2 (right), level 0
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to the GersÏ gorin theorem, al � kmax�Al�. Thus, we have exactly the situation in-
vestigated in Section 3.

The results of the numerical studies are given in Tables 1 and 2. Table 1 shows the
geometric mean of the smoothing rate

kAlUm ÿ BlP mk0;d
kU 0k0;d

;

over several 2-level steps (cf. [10]), and Table 2 the geometric mean of the error
reduction rate

kUm
l � Um�1

l k0;d
kU 0k0;d

;

over several 2-level steps (cf. [16]). The following observations can be made:

± Both rates are independent of the level.

± The rates decrease like O�1=m� with the number m of smoothing steps, see also
Fig. 2 for a graphical representation.

± In this example, the constant in the smoothing rate is approximately 38 and the
constant in the error reduction rate is about 56. This means that we need at
least m � 6 smoothing steps for the convergence of the 2-level method.

Example 2. This example presents numerical studies of multigrid methods with
Braess±Sarazin-type smoothers. We have studied the same example as in [6] to
compare our results with those of the conforming modi®ed Taylor±Hood ®nite

Table 1. Average smoothing rate for the 2-level method,
Example 1

m\level 3 4 5 6

6 0.641 0.624 0.605 0.601
8 0.504 0.483 0.470 0.472
10 0.409 0.386 0.380 0.381
12 0.341 0.319 0.317 0.317
16 0.253 0.237 0.238 0.238
20 0.202 0.191 0.192 0.192
24 0.168 0.160 0.161 0.161

Table 2. Average error reduction rate for the 2-level method,
Example 1

m\level 3 4 5 6

6 0.831 0.874 0.877 0.875
8 0.667 0.696 0.695 0.693
10 0.550 0.570 0.567 0.567
12 0.463 0.477 0.475 0.475
16 0.347 0.356 0.355 0.355
20 0.274 0.281 0.281 0.281
24 0.223 0.230 0.230 0.230
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element discretization. Thus, we consider the Stokes equations in the unit square
where the right hand side and the boundary conditions are chosen such that

u � �sin�x� sin�y�; cos�x� cos�y��T ;
p � 2 cos�x� sin�y� � constant

is the solution. As approximations ofAÿ1 within the Braess±Sarazin-type smoother,
we have studied the inverse of the diagonal of A (Cÿ1 � diag�A�ÿ1), one step of a
SSOR-iterationwith the damping parameterx � 1 (Cÿ1 � SSOR�A�), and one step
of a ILUb-iteration (Cÿ1 � ILUb�A�), where b is a diagonal compensation factor. In
the ILUb-iteration, the absolute value of each computed nonzero entry which does
not belong to the sparsity pattern ofA ismultiplied byb and added to the diagonal of
the upper part of the decomposition. The Schur complement systems (18) with
Cÿ1 � diag�A�ÿ1 and Cÿ1 � SSOR�A� have been solved approximately by the
conjugate gradient method [14]. For the approximate solution of the systems with
Cÿ1 � ILUb�A�, we used gmres [18]. The pressure Schur complement iterations
stopped either after having reduced the normof the residual by the factor 0:1 or after
10 steps. In each test, the damping parameters al � a have been ®xed for all levels.

The results of the numerical tests are presented in Tables 3 and 4. The most
important observations are the followings:

± The choice of Cÿ1 is essential for the behaviour of the multigrid method. In our
tests, Cÿ1 � ILU0:0�A� was clearly the best choice. With this choice, we obtained
acceptable rates of convergence for the W±cycles on both grids. The choice
b � 1:0 of the diagonal compensation factor in the ILU±decomposition

Figure 2. Rates of convergence for di�erent numbers of smoothing steps, Example 1, level 6
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worsened the convergence rates considerably. But these rates are still better than
for Cÿ1 � SSOR�A�. The worst behaviour is observed for Cÿ1 � diag�A�ÿ1.
With this choice, we were not able to solve the problem on Grid 2.

± In nearly all tests with the W-cycle, the independency of the rates of conver-
gence of the level could be observed despite of solving the Schur complement
system (18) within the Braess±Sarazin±type smoother only approximately. The
improvement of the error reduction rates is approximately linear with the
number of smoothing steps, see W(2,2) ± W(6,6)-cycle for Cÿ1 � SSOR�A� in
Table 3 and for Cÿ1 � ILU0:0�A� in Table 4.

± The rates of convergence of the V-cycle increase in general with increasing level
of re®nement. Note that there is no theoretical convergence proof for the
V-cycle algorithm. Therefore, in a number of papers [10, 11] conforming coarse
grid corrections have been studied.

± Unfortunately, the rates of convergence are not as good as the rates given in [6]
for the conforming modi®ed Taylor±Hood ®nite element discretization, e.g. for

Table 3. Average error reduction rates, Example 2, Grid 1

Method Cÿ1 a 4 5 6 7

W(3,3) diag�A�ÿ1 1.00 0.57 0.63 0.58 0.60
W(3,3) diag�A�ÿ1 1.25 0.57 0.90 0.68 0.70
W(3,3) diag�A�ÿ1 1.50 0.70 0.89 0.93 0.97

W(2,2) SSOR(A) 1.00 0.56 0.55 0.56 0.56
W(3,3) SSOR(A) 1.00 0.42 0.43 0.42 0.42
W(4,4) SSOR(A) 1.00 0.34 0.33 0.33 0.32
W(5,5) SSOR(A) 1.00 0.24 0.25 0.25 0.24
W(6,6) SSOR(A) 1.00 0.19 0.19 0.18 0.18
W(2,2) SSOR(A) 1.50 0.54 0.67 0.65 0.64
V(4,4) SSOR(A) 1.00 0.27 0.44 0.55 0.70

W(2,2) ILU0:0(A) 1.00 0.17 0.14 0.19 0.18
W(2,2) ILU1:0(A) 1.00 0.35 0.33 0.32 0.33
V(2,2) ILU0:0(A) 1.00 0.16 0.17 0.32 0.44
V(2,2) ILU1:0(A) 1.00 0.38 0.44 0.68 0.79

velocity degrees of freedom 6016 24320 97792 392192
pressure degrees of freedom 2048 8192 32768 131072

Table 4. Average error reduction rates, Example 2, Grid 2

Method Cÿ1 a 4 5 6 7

W(3,3) SSOR(A) 1.0 0.69 0.67 0.66 0.66
V(10,10) SSOR(A) 1.0 0.34 0.84 div.

W(2,2) ILU0:0(A) 1.0 0.32 0.28 0.30 0.30
W(3,3) ILU0:0(A) 1.0 0.20 0.22 0.22 0.22
W(4,4) ILU0:0(A) 1.0 0.12 0.17 0.18 0.18
W(5,5) ILU0:0(A) 1.0 0.07 0.13 0.16 0.13
W(6,6) ILU0:0(A) 1.0 0.05 0.09 0.13 0.11
W(2,2) ILU1:0(A) 1.0 0.41 0.42 0.43 0.43
V(4,4) ILU0:0(A) 1.0 0.13 0.23 0.31 0.39
V(4,4) ILU1:0(A) 1.0 0.31 0.47 0.60 0.73

velocity degrees of freedom 6832 27488 110272 441728
pressure degrees of freedom 2304 9216 36864 147456
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the W(3,3)±cycle, Cÿ1 � SSOR�A�, a � 1, Grid 2, the rates of convergence are
0.095 in [6, Table 3] and 0.66 here (level 7). Up to now, we have no theoretical
explanation for this observation.
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