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Numerical studies of stabilized finite element methods for solving scalar time-dependent convection–dif-
fusion–reaction equations with small diffusion are presented in this paper. These studies include the
streamline-upwind Petrov–Galerkin (SUPG) method with different parameters, various spurious oscilla-
tions at layers diminishing (SOLD) methods, a local projection stabilization (LPS) scheme based on enrich-
ment and two finite element method flux corrected transport (FEM-FCT) methods. The focus of the
evaluation of the numerical results is on the reduction of spurious oscillations.
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1. Introduction

The simulation of time-dependent convection–diffusion–reac-
tion equations is required in various applications. A typical exam-
ple is the simulation of processes which involve a chemical
reaction in a flow field. Such reactions are modeled by a non-linear
system of time-dependent convection–diffusion–reaction equa-
tions for the concentrations of the reactants and the products.
These equations are strongly coupled such that inaccuracies in
one concentration directly affect all other concentrations. Typi-
cally, the size of the diffusion is smaller by several orders of mag-
nitude compared to the size of the flow field. That means, the
convection–diffusion–reaction equations are convection-domi-
nated. Often, there is also a strong chemical reaction such that
the equations become reaction-dominated, too. A characteristic
feature of solutions of convection- and reaction-dominated equa-
tions is the presence of sharp layers. The accurate simulation of
such processes requires numerical methods which are, on the
one hand, able to compute sharp layers and which prevent, on
the other hand, the occurrence of spurious oscillations.

A special example of processes with chemical reactions in a flow
field are precipitation processes. In [39], a calcium carbonate pre-
cipitation was simulated, where the system of time-dependent
ll rights reserved.
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convection–diffusion–reaction equations was discretized in time
with the Crank–Nicolson scheme and in space with the Q1 finite
element method. Since the equations in the system are convection-
and reaction-dominated, a stabilization of the finite element dis-
cretization is necessary. In [39], the standard streamline-upwind
Petrov–Galerkin (SUPG) method [30,7] with the parameter from
[49] was used. This approach led to computed concentrations with
considerable spurious oscillations, see Fig. 1 for an illustration. In
the simulations presented in [39], which use laminar flow fields
in 2D, negative oscillations (negative concentrations) were just
cut off. We could observe in further numerical tests that increasing
the Reynolds number of the flow fields in 2D or performing simu-
lations in 3D (on coarser grids) led to a piling up of the remaining
positive oscillations and finally to a blow-up of the simulations.
Likewise, in [39] is reported that the use of a very diffusive upwind
scheme led to unphysical results. Hence, there is the need of better
methods, namely methods which fulfill the two requirements gi-
ven above.

The first step in identifying appropriate methods for the accu-
rate simulation of the chemical reaction process is of course the
consideration of scalar time-dependent convection–diffusion–
reaction equations. The code which is used for the simulation of
the precipitation process is based on finite element methods. We
will concentrate in this paper on first order finite elements, which
are the simplest and most often used finite elements.

A study of stabilized finite element methods for time-depen-
dent convection–diffusion–reaction equations can be found in
[14]. This study clarified similarities and differences between sev-
eral methods, among them the SUPG method. The basic idea in the
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Fig. 1. Spurious oscillations of a concentration in the simulation of a precipitation
process computed with the SUPG method.
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application of stabilized finite element methods is that after the
temporal discretization of the time-dependent equation, the equa-
tion has the form of a steady-state convection–diffusion–reaction
equation. Appropriate parameters for the SUPG method applied
to steady-state convection–diffusion–reaction equations have been
studied in [15] and for the unusual stabilized finite element meth-
od (USFEM) in [20]. Steady-state convection–diffusion–reaction
equations with positive and negative reactive terms (source terms)
were considered in [26]. A non-linear extension of the SUPG ap-
proach which tries to reduce spurious oscillations, which is similar
to the SOLD method KLR02 in the present paper, was analyzed in
[42]. The analysis was extended to higher order finite elements,
taking the polynomial degree into account, in [49]. Finite element
methods for time-dependent convection–diffusion–reaction equa-
tions which are based on variational multiscale principles were
considered e.g. in [16,27,33,24].

Since it has been known for a long time that the SUPG method
leads to solutions with spurious oscillations also for steady-state
convection–diffusion equations, several methods have been pro-
posed to reduce or to remove these oscillations. These methods
are called Spurious Oscillations at Layers Diminishing (SOLD)
methods, see [34,36] for a review. However, very few of them have
been so far used in the simulation of time-dependent equations,
see [2] for an example.

In recent years, local projection stabilization (LPS) schemes
have been developed for stabilizing convection-dominated prob-
lems [3,5,6]. A scheme of this type was used for the computation
of steady-state convection–diffusion equations in [50]. We are
not aware that LPS schemes were applied already in the simulation
of time-dependent convection–diffusion–reaction equations.

All approaches mentioned so far try to stabilize the finite ele-
ment method by adding additional terms to the Galerkin finite ele-
ment discretization. A different approach are finite element
method flux corrected transport (FEM-FCT) schemes
[46,45,44,43]. These schemes work on the algebraic level, that
means they modify the algebraic equation which is obtained from
the Galerkin finite element method. Roughly speaking, this equa-
tion is firstly replaced with an equation representing a low order
scheme which introduces too much diffusion. Then, the diffusion
is removed again in regions where it is not needed by modifying
the right hand side. The modifications are based on an auxiliary
solution which is computed with a non-oscillatory explicit scheme.

This paper presents first steps in identifying appropriate finite
element methods for the simulation of scalar time-dependent con-
vection–diffusion–reaction equations. Many of the available meth-
ods, like SUPG methods with different parameters, various SOLD
methods, a LPS scheme and two FEM-FCT methods are compared
numerically. To our best knowledge, many of these methods have
not yet been used in the simulation of time-dependent problems so
far. In addition, it seems to be the first comparison of FEM-FCT
methods to more traditional schemes for the stabilization of finite
element methods of convection-dominated and reaction-domi-
nated equations. The main goal of the paper consists in identifying
those methods which show the capability to improve the solution
obtained with the SUPG method considerably.

The paper is organized as follows. Section 2 presents the equa-
tions, the temporal discretization and introduces notations. In Sec-
tion 3, the SUPG method is described and available proposals for
the parameter are reviewed. Section 4 is devoted to the description
of the SOLD methods. The LPS scheme will be introduced in Section
5 and the FEM-FCT schemes in Section 6. Section 7 contains the
numerical studies and the evaluation of the methods. The conclu-
sions are summarized in Section 8.

2. Basic discretizations

Throughout the paper, we use the standard notations LpðXÞ for
Lebesgue spaces and Wk;pðXÞ, HkðXÞ ¼Wk;2ðXÞ for Sobolev spaces.
The inner product in the space L2ðXÞ will be denoted by ð�; �Þ. For
a vector b 2 Rd, the symbol kbk2 stands for its Euclidean norm.

We consider the scalar convection–diffusion–reaction equation

ut � eDuþ b � ruþ cu ¼ f in ð0; T� �X; ð1Þ

where e > 0 is the diffusion coefficient, b 2 L1ð0; T; W1;1ðXÞÞd is the
convection field with r � b ¼ 0, c 2 L1ð0; T; L1ðXÞÞ is the non-nega-
tive reaction coefficient, f 2 L2ð0; T; L2ðXÞÞ, T > 0 is the final time
and X � Rd, d 2 f2;3g, is a bounded domain. This equation has to
be equipped with appropriate boundary conditions and an initial
condition u0 ¼ uð0;xÞ.

We will consider fractional-step h-schemes as temporal discret-
ization of (1). These schemes applied to (1) lead at the discrete
time tk to an equation of the form

uk þ h1Dtkð�eDuk þ b � ruk þ cukÞ
¼ uk�1 � h2Dtkð�eDuk�1 þ b � ruk�1 þ cuk�1Þ
þ h3Dtkfk�1 þ h4Dtkfk ð2Þ

with Dtk ¼ tk � tk�1 and the parameters h1; . . . ; h4. The backward Eu-
ler scheme is obtained for h1 ¼ h4 ¼ 1, h2 ¼ h3 ¼ 0 and the Crank–
Nicolson scheme for h1 ¼ h2 ¼ h3 ¼ h4 ¼ 0:5. Eq. (2) can be consid-
ered as a stationary convection–diffusion–reaction equation at tk

with the diffusion, convection and reaction, respectively, given by

D ¼ h1Dtke; ð3Þ
C ¼ h1Dtkb; ð4Þ
R ¼ 1þ h1Dtkc: ð5Þ

Eq. (2) will be discretized with a finite element method. To apply
such a method, (2) can be transformed into a weak formulation in
the usual way by multiplying with test functions from an appropri-
ate space V and applying integration by parts. Finite element meth-
ods employ now a finite dimensional space Vh instead of V. For
simplicity of presentation, homogeneous Dirichlet conditions and
conforming finite elements, Vh � V , are considered. A Galerkin finite
element problem arising from (2) reads as follows: Find uh

k 2 Vh

such that

ðuh
k ;

hÞ þ h1Dtkððeruh
k ;rhÞ þ ðb � ruh

k þ cuh
k ;

hÞÞ
¼ ðuh

k�1;
hÞ � h2Dtkððeruh

k�1;rhÞ þ ðb � ruh
k�1 þ cuh

k�1;
hÞÞ

þ h3Dtkðfk�1;
hÞ þ h4Dtkðfk;

hÞ ð6Þ

for all h 2 Vh. The definition of Vh is usually based on an underlying
triangulation Th of X. We assume that this triangulation fulfills the
usual compatibility conditions, see [12].
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It is well known that in the case of dominant convection or reac-
tion, the Galerkin finite element formulation becomes instable and
the solution of (6) shows spurious oscillations in the whole
domain.

3. The SUPG method

3.1. The general approach

A popular finite element stabilization method for convection-
dominated problems is the streamline-upwind Petrov–Galerkin
(SUPG) method [30,7], which adds a consistent diffusion term in
streamline directionX
K2Th

sK ðresidual of ð2Þ;C � rvhÞK ð7Þ

to (6), where fsKg is a set of parameters depending on the mesh
cells K 2Th, ð�; �ÞK is the inner product in L2ðKÞ and C denotes the
convection. The residual is defined by the difference of the left hand
side and the right hand side of (2).

Inserting (7) into (6), using the convection given by (4) and
rearranging terms lead to

ðuh
k ; v

hÞ þ
X

K2Th

ðsKh1DtkÞðuk;b � rvhÞK

þ h1Dtk

"
ðeruh

k ;rvhÞ þ ðb � ruh
k þ cuh

k ; v
hÞ

þ
X

K2Th

ðsKh1DtkÞðð�eDuk þ b � ruk þ cukÞ;b � rvhÞK

#

¼ ðuh
k�1; v

hÞ þ
X

K2Th

ðsKh1DtkÞðuk�1;b � rvhÞK

� h2Dtk

"
ððeruh

k�1;rvhÞ þ ðb � ruh
k�1 þ cuh

k�1; v
hÞÞ

þ
X

K2Th

ðsKh1DtkÞðð�eDuk�1 þ b � ruk�1 þ cuk�1Þ;b � rvhÞK

#

þ h3Dtk ðfk�1; vhÞ þ
X

K2Th

ðsKh1DtkÞðDtkfk�1;b � rvhÞK

" #

þ h4Dtk ðfk; vhÞ þ
X

K2Th

ðsKh1DtkÞðDtkfk;b � rvhÞK

" #
: ð8Þ
3.2. Proposals for the parameter

The crucial question in the application of the SUPG stabilization
is of course the choice of the parameters fsKg. There is a large
amount of literature concerning this choice in the case that the
reaction term is absent. However, for the time-dependent convec-
tion–diffusion–reaction equations, the reaction (5) might dominate
the diffusion (3) and the convection (4), in particular for small time
steps. Thus, appropriate parameters should take the reaction into
account, see also the numerical studies in Example 7.1. There are
several proposals in the literature for such parameters. Let D;C;R
be the abbreviations for diffusion, convection and reaction, respec-
tively, where we are interested in particular in the expressions
given in (3)–(5).

In [15], it was proposed to set the parameter on the mesh cell K
to be

sCod
K � 4jDj

h2
K

þ 2kbk2

hK
þ jRj

 !�1
which gives for (3)–(5)

sCod
K � h2

K

4h1Dtkeþ 2hKh1Dtkkbk2 þ h2
Kð1þ h1DtkcÞ

: ð9Þ

Here, hK is an appropriate measure for the size of the mesh cell K.
Note that sK depends in general on the point x 2 K.

In [20], the parameter

sFV
K �

h2
K

jRjh2
KnðPeK;1Þ þ ð2jDj=mKÞnðPeK;2Þ

with

PeK;1 ¼
2jDj

mK jRjh2
K

; PeK;2 ¼
mKkCk2hK

jDj ; nðjÞ ¼
1 0 6 j 6 1;
j j P 1

�

was proposed for the unusual finite element method (USFEM). This
parameter was used in the SUPG method in [26]. The parameter mK

comes from an inverse estimate. For linear finite elements, it is
mK ¼ 1=3, which holds in practice also for bilinear finite elements
[26]. Inserting (3)–(5) gives

sFV
K �

h2
K

ð1þ h1DtkcÞh2
KnðPeK;1Þ þ 6h1DtkenðPeK;2Þ

ð10Þ

with

PeK;1 ¼
6h1Dtke

h2
Kð1þ h1DtkcÞ

; PeK;2 ¼
hKh1Dtkkbk2

3h1Dtke
¼ hKkbk2

3e
:

The appropriate measure of the mesh cell hK is also discussed in
[20]. It is proposed to set hK as the diameter of the mesh cell in
the direction of the convection, see also [34] for a discussion of this
topic.

In [42,49], it is proposed to set

sKLR
K �min

hK

pKkCkL1ðKÞ
;

1
kRkL1ðKÞ

;
h2

K

p4
K c2

invkDkL1ðKÞ

( )
;

where pK is the polynomial degree of the finite element in the mesh
cell K and cinv is a constant from an inverse estimate. We consider
(bi-)linear finite elements, i.e. pK ¼ 1 and cinv ¼ 1. From the compu-
tational point of view, it is easier to replace the norms in L1ðKÞ by
the norms which are used in the other proposals of the stabilization
parameter. Thus, we consider

sKLR
K �min

hK

2kCk2
;

1
jRj ;

h2
K

jDj

( )
;

where also the factor 1=2 was introduced in the first term, see the
discussion below of some limit cases for the different parameters.
Inserting (3)–(5) leads to

sKLR
K �min

hK

2h1Dtkkbk2
;

1
1þ h1Dtkc

;
h2

K

h1Dtke

( )
: ð11Þ

It turns out that all three proposals of the parameters give
similar results in some interesting limit cases. Consider first the
convection-dominated regime, where the local Péclet number is
large

PeK ¼
kbk2hK

2e
� 1

with kbk2 ¼ Oð1Þ from which follows e	 hK . If Dtk 	 hK 	 1, then
one obtains

sCod
K � sFV

K � sKLR
K � 1

1þ h1Dtkc
;
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where PeK;1 < 1 in the definition of sFV
K . This case is of interest if fast

reactive processes are modeled, whose numerical simulation
requires the use of a small time scale. Another case which might oc-
cur often in applications is Dtk � hK 	 1. This gives

sCod
K � sFV

K �
hK

2h1Dtkkbk2 þ hKð1þ h1DtkcÞ ;

sKLR
K �min

hK

2h1Dtkkbk2
;

1
1þ h1Dtkc

� �
:

Clearly, if � is replaced by ¼, then sKLR
K P sCod

K ; sFV
K in this case. The

ratio sKLR
K =sCod

K depends on all inputs in the definition of the param-
eters. Fig. 2 shows that sKLR

K might be considerably larger than the
other parameters. Very similar pictures as in this figure are obtained
for c ¼ 0.

In applications like in [39], the convection field b is often a
velocity field which was computed by solving the Navier–Stokes
equations numerically. This velocity field might have regions
where kbk2 is small and generally c is small in these regions, too.
Considering the limit kbk2 ! 0, c ¼ 0, one obtains for the parame-
ters, in the case h2

K � Dtke,

sCod
K � sFV

K � sKLR
K ! 1;

see also Fig. 3. Since the SUPG term vanishes for kbk2 ! 0, thus it
vanishes in the same way for all stabilization parameters.

Remark. The appropriate measure of the mesh cell hK should be
chosen as the length of the mesh cell in the direction of the
convection for scalar convection–diffusion equations [53,20,34].
This choice is recommended also in the case of steady-state
convection–diffusion–reaction equations in [20]. However, it is not
clear if this remains the appropriate choice if the reaction
dominates convection very strongly as in the case of time-
dependent equations with small time steps. The contribution of
the reaction R will dominate all parameters in this case. This term
does not involve the mesh size and thus the actual choice of hK is of
minor importance. In fact, numerical studies (not presented here)
showed that one obtains almost identical results as presented in
Section 7 if hK is simply chosen to be the diameter of the mesh cell
K.

Remark. The stability of the SUPG method applied to time-depen-
dent convection–diffusion equations was studied analytically in
[4]. It was proven that the coupling of the SUPG method to implicit
time stepping schemes leads to a stable discretization, regardless
of the length of the time step. In addition, it is pointed out that spu-
rious oscillations may be expected for small time steps, which can
be observed also in the numerical studies presented in [4] and in
Section 7.
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4. SOLD methods

SOLD methods have been developed to reduce or even to re-
move spurious oscillations at layers from SUPG finite element solu-
tions of steady-state scalar convection–diffusion equations. One
can distinguish several classes of SOLD methods, see the reviews
[34,36]. These reviews reveal that currently there is no SOLD
method which generally works satisfactorily. Some of the SOLD
methods improve the results of the SUPG discretization consider-
ably in special examples. But in [34–36], for each SOLD method
examples were found where it fails.

Most of the SOLD methods were derived for equations with con-
vection and diffusion but without reactive term. There are only few
examples in which SOLD methods were used for the simulation of
time-dependent problems [2].

In the numerical studies presented in Section 7, a number of SOLD
methods which have been studied for steady-state equations in [34–
36] will be used in the simulation of time-dependent convection–
diffusion–reaction equations. These studies should give first impres-
sions on the effect of the SOLD methods in equations of this kind and
they should provide hints for improving the methods.

The numerical studies in Section 7 investigate SOLD methods
which add isotropic diffusion

ð~eruh
k ;rvhÞ; ð12Þ

SOLD methods which add anisotropic diffusion (orthogonal to the
streamlines)
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K and sCod

K .



V. John, E. Schmeyer / Comput. Methods Appl. Mech. Engrg. 198 (2008) 475–494 479
ð~eCosruh
k ;rvhÞ; ð13Þ

where

Cos ¼
I � C
C

kCk2
2

if C–0;

0 else;

(

and edge stabilization methods. Obviously, the convection C from
(4) in the definition of Cos can be replaced by b.

The terms (12) and (13) appear only on the left hand side of (8).
In the following, all parameters have to be understood in the way
that they are replaced by zero if the denominator of the formula
vanishes.

4.1. Isotropic SOLD methods

The parameter of most of the investigated methods for the iso-
tropic SOLD stabilization (12) has the general form

~e ¼ r
jRhðuh

kÞj
2

kruh
kk

2
2

; ð14Þ

where Rhðuh
kÞ is the residual of (2) (right hand side subtracted from

left hand side).
The definition of the parameter r for many isotropic SOLD sta-

bilizations of steady-state convection–diffusion equations is moti-
vated with the help of an appropriate streamline direction such
that the discrete solution fulfills on each mesh cell the strong form
of the equation, see [34]. Minimizing the Euclidean norm of the dif-
ference of all possible appropriate streamline directions and the
convection gives an auxiliary vector zh. It is much harder to deter-
mine appropriate streamline directions for (2) based on the same
motivation. Therefore, we use in the simulations presented in this
paper in principle the same auxiliary vector as it is proposed for
steady-state convection–diffusion problems. Since this vector is
obtained with a minimization to the convection, it becomes clear
that this vector has to be scaled appropriately for time-dependent
problems, leading to

zh ¼ h1Dtk
RhðuhÞruh

kruhk2
2

:

The first scheme which will be considered was proposed in [22]
(GdC88) where

rjK ¼maxf0; sKðzhÞ � sKg: ð15Þ

Here, sK is the chosen SUPG stabilization parameter and sKðzhÞ is
this SUPG parameter evaluated for the convection zh instead of C.
For the diffusion and reaction, we used the values D and R from
(3) and (5), respectively. For small time steps, the definition of
sKðzhÞ and sK will be dominated both by the reactive term R, leading
to (almost) the same values. Thus, it can be expected that r is in
general small and the results of GdC88 differ not much from the re-
sults obtained with the SUPG method. This expectation will be con-
firmed in the numerical studies. The parameter of GdC88 is
influenced by the time step Dtk only indirectly over the residual
in zh and over the SUPG parameter.

The proposal of [19] (dCG91) has the form

rjK ¼ sK 0;
kCk2

kzhk2
� 1

� �
:

This formula also suggests that zh should be scaled the same way
with respect to Dtk as C.

In [1] (AS97), the parameter

rjK ¼ sK 0;
kCk2

kzhk2
� nh

� �
; nh ¼max 1;

C � ruh

RhðuhÞ

( )
was proposed. In this method, a small time step will generally lead
to nh ¼ 1 such that a similar behavior of the simulations like for the
SOLD method dCG91 can be expected.

Another isotropic SOLD method with the parameter ~e of form
(14) was suggested in [18] (dCA03). The parameter of dCA03 is
an extended version of GdC88 where (15) is multiplied with an
appropriate factor. The definition of this factor is rather involved,
see [34] for details. For the same reasons as for GdC88, it can be ex-
pected that the results of dCA03 will not differ much from the
SUPG results.

In [54], the so-called YZb shock capturing scheme was proposed
for the simulation of compressible flows. This scheme was trans-
ferred to time-dependent convection–diffusion equations in [2]
and applied to the simulation of an arterial drug delivery problem.
In [2], the YZb parameter was used in an isotropic diffusion term of
form (12). This parameter has the form

~e ¼ jYj�bþ1jRhðuhÞjkruhkb�2
2

~hK

2

 !b

;

where Y is a global reference value for the solution, b 2 f1;2g and ~hK

is the diameter of the mesh cell in direction ofruh. This size can be
easily approximated, see [55,34]. In [2], some numerical tests sug-
gest that the choice b ¼ 1 leads to better results than b ¼ 2. For this
reason, we will restrict our numerical studies to the case b ¼ 1,
which leads to the parameter

~e ¼
~hK jRhðuhÞj
2kruhk2

: ð16Þ

This parameter will be influenced by the length of the time step
only over the residual.

4.2. Anisotropic SOLD methods

An anisotropic SOLD method which will be studied was pro-
posed in [13] (C93)

~ejK ¼max 0;C
diamðKÞjRhðuh

kÞj
2kruh

kk2

� D
jRhðuh

kÞj
kCkk2kruh

kk2

( )
; ð17Þ

where C is a user-chosen constant (or parameter), diamðKÞ is the
diameter of the mesh cell K, i.e. the longest distance of two points
of the closure of K, and

Ck ¼ ðC � ruh
kÞ

kruh
kk

2 ruh
k :

The length of the time step has no direct influence on the parame-
ters of C93.

A similar form of the parameter was considered in [42,34]
(KLR02)

~ejK ¼max 0;C
diamðKÞjRhðuh

kÞj
2kruh

kk2

� D

( )
: ð18Þ

The second term of (17) and (18) will be small for small diffusions
D. However, the definition of the second term in (17) introduces an-
other non-linearity into the scheme compared to (18). The numer-
ical studies in Section 7 will reveal that this additional non-linearity
has a negative effect on the efficiency of the iterative scheme for
solving the non-linear problems.

In [8,34] (BE02_2), the parameter

~e ¼ skCk2
2jR

hðuh
kÞj

kCk2jruh
k j þ jR

hðuh
kÞj

ð19Þ

was proposed. This is a simplification of a parameter derived in [9,8]
(BE02_1). To obtain the parameter of BE02_1, (19) is multiplied by a
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longer factor. This factor tends to 1 for small time steps such that
similar results can be expected for BE02_1 and BE02_2. The param-
eters of BE02_1 and BE02_2 scale quadratically with the length of
the time step. For these two methods, only a small effect of the
SOLD term can be expected for small time steps, see Section 7.

Since there is no motivation in [2] for using the YZb parameter
(16) in the isotropic diffusion (12), we will study this parameter
also for the anisotropic diffusion (13). Note, this parameter is sim-
ilar to the first parts of the parameters of C93 (17) and KLR02 (18).
Apart from the scaling factor C, only the used measure for the size
of the mesh cell differs. This seems to be a slight change, however
in contrast to diamðKÞ, the mesh cell measure ~hK is non-linear. This
might affect the efficiency of the iterative scheme for solving the
non-linear problems negatively.

The only linear SOLD method which will be considered in the
numerical studies was proposed in [41] (JSW87). It adds aniso-
tropic diffusion (13) and has the parameter

~ejK ¼maxf0; kCk2h3=2
K � Dg 8K 2Th: ð20Þ

The parameter of JSW87 scales linearly with Dtk. In our numerical
studies, we could observe that the unscaled version of JSW87, i.e.,
with the parameter

~ejK ¼maxf0; kbk2h3=2
K � eg 8K 2Th

is by far too diffusive. Already after a short simulation time, all lay-
ers were smeared extensively.

4.3. Edge stabilization methods

Edge stabilization methods add a term of the form

X
K2Th

jKj
Z

oK
WKðuh

kÞsign
ouh

k

otoK

� �
ovh

otoK
dr;

where oK is the boundary of the mesh cell K, jKj is its measure, toK a
tangential vector on the faces of the boundary and sign denotes the
signum function. The appearance of the factor jKj is motivated in [36].

There are several proposals for the parameter function WKðuh
kÞ.

One goes back to [11] (BH04)

WKðuh
kÞ ¼

diamðKÞ
jKj ðC0Dþ C1diamðKÞÞmax

E�oK
j½jnE � ruh

k j�Ej;

where ½j � j�E denotes the jump of a function across the face E and nE

is a normal vector on E. This parameter has two user-chosen con-
stants C0 and C1. In BH04, the first term in the parentheses is neg-
ligible for small time steps.

In [10], it was proposed to choose (BE05_1)

WKðuh
kÞjE ¼ C

ðkCk2½diamðKÞ�2 þ qjRj½diamðKÞ�3Þ
jKj j½jruh

k j�Ej 8E � oK:

Here, q is a measure of the local quasi-uniformity of the grid. The
numerical examples in Section 7 were computed on uniform
meshes, on which q ¼ 2 can be chosen. The second term in the
nominator of BE05_1 will dominate for small time steps.

Another proposal for the parameter function was considered in
[34] (BE05_2)

WKðuh
kÞjK ¼ CjRhðuh

kÞjK j:

The length of the time step influences this parameter only indirectly
over the residual.

4.4. General remarks

All SOLD methods save JSW87 are non-linear methods. Thus, in-
stead of solving a linear equation at tk, a non-linear equation has to
be solved. This gives rise to questions like existence and unique-
ness of a solution and the convergence of iterative solution
schemes. With respect to these questions, even for the steady-state
equations without reaction, only few results are known [42,21,10].

All non-linear SOLD methods which involve the computation of
the residual require the storage of uh

k�1 and f h
k�1 (if h3–0) during the

whole iteration for solving the non-linear problem. If the data and
the solutions vary only slowly with respect to the length of the
time step, a good approximation of the residual is

uk � uk�1 þ Dtkð�eDuk þ b � ruk þ cukÞ � Dtkfk:

In the simulations presented in this paper, the residual computed
with (2) was used.
5. Local projection stabilization schemes

The goal of local projection stabilization schemes consists in
adding an appropriate stabilization to small scales of the finite ele-
ment solution only. This approach is related to the idea of varia-
tional multiscale methods for the simulation of multiscale
phenomena [29,25], for instance for the simulation of turbulent
flows [28,32,33,31]. The scale separation in local projection meth-
ods is performed with local projections into a large scale space.
This approach requires the use of two finite element spaces. They
can be defined on different grids leading to a two-level method
[3,5], see also [6] for a review, or on the same grid with higher or-
der finite element functions leading to a one-level method, the so–
called LPS method with enrichment [51,50,23]. The numerical
studies will consider one type of a LPS scheme with enrichment.

The considered LPS method adds a linear term of the formX
K2Th

qKðjhðruhÞ;jhðrvhÞÞK

to the left hand side of the Galerkin finite element method (6). Let
id : L2ðXÞ ! L2ðXÞ be the identity map in L2ðXÞ and PK : L2ðKÞ !
DhðKÞ be the local L2-projection into the local coarse finite element
space DhðKÞ. Then the global projection is given by

Ph : L2ðXÞ ! Dh; ðPhvÞjK ¼ PKðvjKÞ:

Now, the flux operator in the term which is introduced by the LPS
scheme is defined by jh :¼ id�Ph: The analysis of steady-state con-
vection–diffusion–reaction equations in [50] leads to the optimal
parameter choice qK ¼ C diamðKÞ, where C is a user-chosen constant.

6. Finite element method – flux corrected transport schemes

FEM-FCT schemes have been developed in [48,46,45,44,43] for
transport equations, i.e., equations of form (1) with e ¼ c ¼ f ¼ 0.
These schemes do not modify the bilinear form which defines
the finite element method, like SUPG, SOLD or LPS schemes.
FEM-FCT schemes work on the algebraic level and they modify
the system matrix and the right hand side vector. The description
of FEM-FCT schemes in this paper will include diffusion, reaction
and a right hand side.

Starting point is the fractional-step h-scheme and the Galerkin
FEM which leads to (6). The matrix–vector form of this equation is

ðMC þ h1DtkAÞuk ¼ ðMC � h2DtkAÞuk�1 þ h3Dtkfk�1 þ h4Dtkfk; ð21Þ

where ðMCÞij ¼ ðuj;uiÞ is the consistent mass matrix. The matrix A
is the sum of diffusion, convection and reaction. The notations
uk; fk etc. stand for the vectors of the unknown coefficients of the fi-
nite element method. As mentioned already, the solution of (21)
shows huge spurious oscillations in many cases.

The first goal of FEM-FCT methods is as follows. If the maximum
principle holds for the continuous Eq. (1), then this principle
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Fig. 4. Initial condition for rotating body problem.
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should be inherited also from the discrete equation. This is given if
the system matrix of the discrete equation is an M-matrix. A suffi-
cient condition for a matrix to be an M-matrix is that all diagonal
entries are positive, all off-diagonal entries are non-positive and
the row sums are positive. Thus, FEM-FCT schemes proceed by
defining the matrices

L ¼ Aþ D;

D ¼ ðdijÞ;
dij ¼ �maxf0; aij; ajig ¼ minf0;�aij;�ajig for i–j;

dii ¼ �
XN

j¼1;j–i

dij; ð22Þ

ML ¼ diagðmiÞ; mi ¼
XN

j¼1

mij; ð23Þ

where N is the number of degrees of freedom. The row and column
sums of D are zero. The matrix L does not posses positive off-diag-
onal entries and the diagonal matrix ML is called lumped mass ma-
trix. Instead of (21), the equation

ðML þ h1DtkLÞuk ¼ ðML � h2DtkLÞuk�1 þ h3Dtkfk�1 þ h4Dtkfk ð24Þ

is considered. This is the algebraic representation of a stable low or-
der scheme. The solution of (24) does not show spurious oscilla-
tions, however layers will be smeared because the operator on
the left hand side is too diffusive.

The second goal of FEM-FCT schemes consists in modifying the
right hand side of (24) such that the equation becomes less diffu-
sive but spurious oscillations are still suppressed

ðML þ h1DtkLÞuk ¼ ðML � h2DtkLÞuk�1 þ h3Dtkfk�1 þ h4Dtkfk

þ f �ðuk; uk�1Þ: ð25Þ

The ansatz for the vector f �ðuk;uk�1Þ uses the residual vector of (24)
and (21)

r ¼ ðML þ h1DtkL� ðMC þ h1DtkAÞÞuk

� ðML � h2DtkL� ðMC � h2DtkAÞÞuk�1

¼ ðML �MCÞðuk � uk�1Þ þ DtkDðh1uk þ h2uk�1Þ:

The residual vector has to be weighted appropriately.
To define the weights, the residual vector is decomposed into

fluxes rij, i; j ¼ 1; . . . ;N, in the following way

ri ¼
XN

j¼1

rij ¼
XN

j¼1

½mijðuk;i � uk;jÞ �mijðuk�1;i � uk�1;jÞ

� Dtkh1dijðuk;i � uk;jÞ � Dtkh2dijðuk�1;i � uk�1;jÞ�; ð26Þ

i ¼ 1; . . . ;N. The derivation of this representation uses (22) and (23).
The ansatz for the correction vector is now

f �i ðuk;uk�1Þ ¼
XN

j¼1

aijrij; i ¼ 1; . . . ;N

with the weights aij 2 ½0;1�. If they depend on the residual vector
then f �ðuk;uk�1Þ becomes a non-linear contribution. If all weights
are equal to 1, the Galerkin finite element method is recovered.

6.1. A non-linear FEM-FCT scheme

The non-linear FEM-FCT scheme computes an explicit low order
solution ~u at the time tk�h1 ¼ tk � h1Dtk. For the backward Euler
scheme, ~u ¼ uk�1, whereas for the Crank–Nicolson scheme, this ex-
plicit solution is computed with the forward Euler scheme in (24),
i.e. h1 ¼ h4 ¼ 0, h2 ¼ h3 ¼ 1, and the time step Dtk=2

~u ¼ uk�1 �
Dtk

2
M�1

L ðLuk�1 � fk�1Þ: ð27Þ
In the case of transport equations, ~u is a non-oscillating solution if
the time step Dtk is sufficiently small. The non-oscillating auxiliary
solution ~u will be used for deciding in which regions the additional
diffusion in (25) can be removed (setting aij close to 1) and in which
regions this diffusion is necessary (setting aij close to 0), see Section
6.3.

6.2. A linear FEM-FCT scheme

A linear FEM-FCT scheme was presented recently in [43]. Con-
sider the Crank–Nicolson scheme for discretizing the convection–
diffusion–reaction Eq. (1), the residual flux defined in (26)
becomes

rij ¼ mijðuk;i � uk�1;iÞ �mijðuk;j � uk�1;jÞ �
Dtk

2
dijðuk;i þ uk�1;iÞ

þ Dtk

2
dijðuk;j þ uk�1;jÞ: ð28Þ

The idea of the linear FEM-FCT consists in replacing uk in (28) by an
approximation which can be computed with an explicit scheme. To
this end, define the intermediate value

uk�1=2 :¼ uk þ uk�1

2
:

Inserting this value into (28) gives

rij ¼ 2mijðuk�1=2;i � uk�1;iÞ � 2mijðuk�1=2;j � uk�1;jÞ
� Dtkdijðuk�1=2;i � uk�1=2;jÞ: ð29Þ

An approximation of uk�1=2 can be obtained with the forward Euler
scheme applied in the low order method (24) with time step Dtk=2,
see (27) for the solution ~u. Inserting this approximation into (29)
leads to the fluxes in the linear FEM-FCT scheme

rij ¼ Dtk½mijðvk�1=2;i � vk�1=2;jÞ � dijð~ui � ~ujÞ�

with

vk�1=2;i ¼ ðM�1
L ðfk�1 � Luk�1ÞÞi; ~ui ¼ uk�1;i þ

Dtk

2
vk�1=2;i:
6.3. Computation of the weights

For computing the weights, Zalesak’s algorithm [56] is used. The
motivations for this algorithm are discussed in [44]. Here, we will
give this algorithm for completeness of presentation:

(1) compute

Pþi ¼
XN

j¼1;j–i

maxf0; rijg; P�i ¼
XN

j¼1;j–i

minf0; rijg;
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Fig. 5. SUPG solution obtained with parameter (11) [42,49] (left) and parameter (31) (right).
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(2) compute

Qþi ¼max 0; max
j¼1;...;N;j–i

ð~uj � ~uiÞ
� �

; Q�i ¼min 0; min
i¼1;...;N;j–i

ð~uj � ~uiÞ
� �

;

(3) compute

Rþi ¼min 1;
miQ

þ
i

Pþi

� �
; R�i ¼min 1;

miQ
�
i

P�i

� �
;

(4) compute

aij ¼
minfRþi ;R

�
j g if rij > 0;

minfR�i ;R
þ
j g otherwise:

(

Body rotation problem, results obtained with P1 (or Pbubble
1 =P0 for the LPS scheme)
Table 1
Body rotation problem, results obtained with Q 1 (or Qbubble

1 =P0 for the LPS scheme)

Method kehkL2ðL2Þ var(6.28) Time Damp.

SUPG (9) [15] 0.1517 1.5603 2618 –
SUPG (10) [20] 0.1517 1.5603 2624 –
SUPG (11) [42,49] 0.1515 1.5567 2618 –
GdC88 [22] 0.1516 1.5567 20,041 0.75
dCG91 [19] Not converged 0.25
AS97 [1] Not converged 0.25
dCA03 [18] 0.1516 1.5567 20,658 0.75
YZb [54,2], iso 0.1987 0.9300 143,535 0.25
YZb [54,2], aniso 0.1664 1.2873 19,809 1.0
C93 [13], C ¼ 0:1 0.1493 1.3990 9726 1.0
C93 [13], C ¼ 0:2 0.1536 1.3526 12,422 1.0
C93 [13], C ¼ 0:3 0.1597 1.3162 14,822 1.0
C93 [13], C ¼ 0:4 0.1666 1.2841 17,979 1.0
C93 [13], C ¼ 0:5 0.1735 1.2546 23,475 1.0
C93 [13], C ¼ 0:6 0.1800 1.2265 30,403 0.75
C93 [13], C ¼ 0:7 0.1875 1.2002 33,457 0.75
C93 [13], C ¼ 0:8 0.1949 1.1754 36,769 0.75
C93 [13], C ¼ 0:9 0.2011 1.1522 40,863 0.75
C93 [13], C ¼ 1:0 0.2071 1.1288 50,854 0.75
KLR02 [42,34], C ¼ 0:1 0.1493 1.3990 9501 1.0
KLR02 [42,34], C ¼ 0:5 0.1735 1.2546 22,846 1.0
KLR02 [42,34], C ¼ 1:0 0.2070 1.1289 50,693 0.75
BE02_1 [8] 0.1515 1.5560 7841 1.0
BE02_2 [8,34] 0.1502 1.5175 6962 1.0
JSW87 [41] 0.1901 1.3075 3054 –
LPS scheme [50], C ¼ 0:01 0.1325 1.3845 4936 –
LPS scheme [50], C ¼ 0:05 0.1431 1.2732 4981 –
LPS scheme [50], C ¼ 0:1 0.1503 1.2023 4901 –
LPS scheme [50], C ¼ 0:5 0.1821 1.1835 4891 –
LPS scheme [50], C ¼ 1 0.2022 1.1815 4860 –
LPS scheme [50], C ¼ 2 0.2236 1.1612 4801 –
LPS scheme [50], C ¼ 5 0.2547 1.0501 4858 –
LPS scheme [50], C ¼ 10 0.2835 0.9406 4832 –
FEM-FCT linear [43] 0.1866 1.0076 2613 –
FEM-FCT non-linear [45,44] 0.1397 1.0013 47,939 1.0
Remark. Initially, the matrices MC and A have to be assembled
without any modifications for Dirichlet nodes. These modifications
should be performed after having computed f �ðuk;uk�1Þ. It is
recommended to set Rþi ¼ R�i ¼ 1 if i corresponds to a Dirichlet
node.

Remark. If h2 ¼ h3 ¼ 1=2, the first two terms in the right hand side
of (25) can be computed by ML~u, such that the right hand side
becomes
Method kehkL2ðL2Þ varð6:28Þ Time Damp.

SUPG (9) [15] 0.1573 1.5299 2352 –
SUPG (10) [20] 0.1573 1.5299 2323 –
SUPG (11) [42,49] 0.1570 1.5275 2352 –
GdC88 [22] 0.1572 1.5280 17,552 0.75
dCG91 [19] Not converged 0.25
AS97 [1] Not converged 0.25
dCA03 [18] 0.1572 1.5280 17,283 0.75
YZb [54,2], iso Diverged 0.25
YZb [54,2], aniso 0.1688 1.2471 15,749 1.0
C93 [13], C ¼ 0:1 0.1549 1.3648 8487 1.0
C93 [13], C ¼ 0:2 0.1595 1.3010 11,017 1.0
C93 [13], C ¼ 0:3 0.1654 1.2590 13,972 1.0
C93 [13], C ¼ 0:4 Diverged 0.25
KLR02 [42,34], C ¼ 0:1 0.1549 1.3648 8251 1.0
KLR02 [42,34], C ¼ 0:3 0.1654 1.2590 13,439 1.0
KLR02 [42,34], C ¼ 0:4 0.1718 1.2183 16,468 1.0
KLR02 [42,34], C ¼ 0:6 0.1852 1.1681 27,986 0.75
KLR02 [42,34], C ¼ 0:8 0.1992 1.1215 38,207 0.75
KLR02 [42,34], C ¼ 1:0 0.2121 1.0775 61,546 0.75
BE02_1 [8] 0.1570 1.5273 6499 1.0
BE02_2 [8,34] 0.1560 1.4956 5907 1.0
JSW87 [41] 0.1872 1.2877 2574 –
BH04 [11], C0 ¼ C1 ¼ 1e� 4 Diverged 0.25
BE05_1 [10], C ¼ 1e� 5 0.1536 1.3674 5610 1.0
BE05_1 [10], C ¼ 1e� 4 0.1615 1.0192 5672 1.0
BE05_1 [10], C ¼ 1e� 3 0.2881 0.7418 5632 1.0
BE05_2 [10,34], C ¼ 1e� 4 0.1543 1.3683 7465 1.0
BE05_2 [10,34], C ¼ 1e� 3 0.1703 1.0169 7479 1.0
BE05_2 [10,34], C ¼ 1e� 2 0.2998 0.7268 7527 1.0
LPS scheme [50], C ¼ 0:01 0.1453 1.3818 6678 –
LPS scheme [50], C ¼ 0:05 0.1517 1.5368 6703 –
LPS scheme [50], C ¼ 0:1 0.1566 1.5667 6606 –
LPS scheme [50], C ¼ 0:5 0.1667 1.7205 6582 –
LPS scheme [50], C ¼ 1 0.1698 1.7605 6608 –
LPS scheme [50], C ¼ 2 0.1723 1.7887 6602 –
LPS scheme [50], C ¼ 5 0.1757 1.8212 6516 –
LPS scheme [50], C ¼ 10 0.1782 1.8388 6516 –
FEM-FCT linear [43] 0.1920 1.0069 1912 –
FEM-FCT non-linear [45,44] 0.1439 1.0010 19,185 1.0
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ML~uþ h4Dtkfk þ
XN

j¼1

aijrij

 !
i¼1;...;N

:

Remark. The auxiliary solution ~u is used to guarantee the fulfill-
ment of the maximum principle. Since ~u is computed with an
explicit method, the stability of ~u gives rise to a CFL-like condition
for FEM-FCT schemes. This condition is [44,43]

Dtk <
1
h2

min
i

mi

lii
: ð30Þ
Fig. 6. Body rotation problem, the computed solution with Q1 (or Qbubble
1 =P0 for the LPS s

C ¼ 0:1, C ¼ 1, C ¼ 5, FEM-FCT linear [43]; from top left to bottom right.
Remark. The Crank–Nicolson scheme, hi ¼ 0:5, i ¼ 1; . . . ;4, was
used in the numerical studies of both types of FEM-FCT schemes
presented in Section 7.
7. The numerical studies

The finite element methods presented in Sections 3–6 will be
studied at examples given in a two-dimensional domain X. Stan-
dard benchmark problems for time-dependent scalar convection–
diffusion–reaction equations do not seem to exist.
cheme) at t ¼ 6:28; the linear schemes JWS87 [41], LPS scheme [50] with C ¼ 0:01,



484 V. John, E. Schmeyer / Comput. Methods Appl. Mech. Engrg. 198 (2008) 475–494
The numerical studies are restricted to low order finite ele-
ments. This has several reasons. To our best knowledge, most of
the SOLD methods and the LPS scheme have not yet been studied
for time-dependent scalar convection–diffusion–reaction equa-
tions. Thus, it is natural to perform the first studies with the sim-
plest finite elements. The final goal of our studies consists in
identifying schemes which can be used in applications like in
[39]. Many finite element codes which are used to simulate prob-
lems coming from applications are based on low order finite ele-
ments. For these reasons, apart from the LPS scheme, P1 finite
Fig. 7. Body rotation problem, the computed solution with Q1 at t ¼ 6:28; the non-linear
non-linear [45,44]; from top left to bottom.
elements were used on triangular meshes and Q1 finite elements
on quadrilateral grids.

As mentioned in Section 5, the LPS scheme requires two finite
element spaces. The simplest large scale projection space Dh is
the space of piecewise constant functions. To obtain a well-posed
discrete problem, the fine scale finite element space Vh and the
large scale projection space have to obey an inf–sup condition,
see [51]. Unfortunately, this inf–sup condition is not satisfied by
the spaces Vh ¼ P1 or Vh ¼ Q 1. Appropriate spaces which fulfill
the inf–sup condition have been identified in [51]. These are the
schemes YZb [54,2] anisotropic, C93 [13] with C ¼ 0:1, C ¼ 0:5, C ¼ 1 and FEM-FCT
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spaces Vh=Dh ¼ Pbubble
1 =P0 and Vh=Dh ¼ Q bubble

1 =P0, i.e. the standard
spaces P1; Q 1 have to be enriched with bubble functions.

In all simulations with SUPG and SOLD schemes, the parameter
hK was chosen to be the mesh width of the mesh cell K in the direc-
tion of the convection, see the remark at the end of Section 3. The
length of the mesh cell in the direction of the convection can be
easily approximated, see [55,34]. The SUPG parameters (9)–(11)
were scaled with the factor 1.

The non-linear problems for most of the SOLD methods and the
non-linear FEM-FCT method were solved in each discrete time up
Fig. 8. Body rotation problem, the computed solution with P1 (or Pbubble
1 =P0 for the LPS sch

with C ¼ 0:01, C ¼ 0:1, C ¼ 1, FEM-FCT linear [43]; from top left to bottom right.
to the Euclidean norm of the residual vector less than 10�9. A sim-
ple fixed point iteration was employed, see [36], with a fixed
damping factor. Damping was only applied if the method without
damping diverged (a blow-up occurred) or if it did not converge
(the non-linear problems could not be solved to the required accu-
racy). In applications, it is of advantage if a method works without
a sophisticated choice of the damping factor. We considered damp-
ing factors from the set {1,0.75,0.5,0.25}, where we started with
the largest factor. Only if the non-linear iteration did not work
for the given factor, the simulations were repeated with the next
eme) at t ¼ 6:28; the linear schemes SUPG (11) [42,49], JWS87 [41], LPS scheme [50]
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smaller damping factor. Smaller damping factors than 0:25 would
lead to a very large number of iterations to solve the non-linear
problems and thus to inefficient methods. The maximal number
of iterations in each discrete time was set to be 100. The matrices
were assembled in each iteration, which will be also necessary in
the simulation of chemical reactions.

A lot of studies would have been possible with respect to the
used meshes and time steps. To keep the paper at a reasonable
length, we restricted the studies to the situation which occurs in
the simulation of precipitation processes [39]: rather small time
steps and grid sizes of medium range. It was checked numerically
Fig. 9. Body rotation problem, the computed solution with P1 at t ¼ 6:28; the non-linea
with C ¼ 1e� 4, BE05_2 [10,34] with C ¼ 1e� 3 and FEM-FCT non-linear [45,44]; from
that the used time steps and grid sizes fulfill the CFL-like condition
(30) for the FEM-FCT methods.

All simulations were performed with the code MooNMD [37].
The linear systems of equations were solved with the sparse direct
solver UMFPACK [17].

7.1. A body rotation problem

The first example is an adaption of the three body rotation
transport problem from [47]. This problem with e ¼ 0 was exten-
sively studied in simulations with flux corrected transport finite
r schemes YZb [54,2] anisotropic, KLR02 [42,34] with C ¼ 0:2, C ¼ 0:6, BE05_1 [10]
top left to bottom right.



Table 4
Hump changing its height, results obtained with P1 (or Pbubble

1 =P0 for the LPS scheme)

Method kehkL2ðH1Þ varð0:5Þ Time Damp.

SUPG (9) [15] 13.3334 1.5022 8550 –
SUPG (10) [20] 13.3334 1.5022 8535 –
SUPG (11) [42,49] 12.1257 1.3835 8550 –
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element methods [44,43]. A problem with circular convection was
also considered in [4].

Consider (1) in X ¼ ð0;1Þ2 with the coefficients e ¼ 10�20, b ¼
ð0:5� y; x� 0:5ÞT, c ¼ f ¼ 0. The initial condition consists of three
disjoint bodies, see Fig. 4. The position of each body is given by
its center ðx0; y0Þ. Each of the bodies lies within a circle of radius
r0 ¼ 0:15 with the center ðx0; y0Þ. Outside the three bodies, the ini-
tial condition is zero.

Let

rðx; yÞ ¼ 1
r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ

2
q

:

The center of the slotted cylinder is in ðx0; y0Þ ¼ ð0:5;0:75Þ and its
geometry is given by

uð0; x; yÞ ¼
1 if rðx; yÞ 6 1; jx� x0jP 0:0225 or y P 0:85;
0 else:

�

The conical body at the bottom side is described by ðx0; y0Þ ¼
ð0:5;0:25Þ and

uð0; x; yÞ ¼ 1� rðx; yÞ:

Finally, the hump at the left hand side is given by ðx0; y0Þ ¼
ð0:25;0:5Þ and

uð0; x; yÞ ¼ 1
4
ð1þ cosðpminfrðx; yÞ;1gÞÞ:

The rotation of the bodies occurs counter–clockwise. A full revolu-
tion takes t ¼ 2p. The original example from [47] is a pure transport
problem, i.e. e ¼ 0, and ideally one should obtain the initial condi-
tion after each revolution. But even with the very small diffusion
e used in our numerical studies, an ideal method should give a re-
sult which is very close to the initial condition.

In the simulations, regular grids consisting of 128� 128 trian-
gular or rectangular (squared) mesh cells were used. This is the
same grid size which was applied in [44,43]. The number of de-
grees of freedom, including Dirichlet nodes, is 16,641. For the LPS
scheme, the numbers of degrees of freedom are 33,025/16,384
for Q bubble

1 =P0 and 49,409/32,768 for Pbubble
1 =P0. In the triangular
Table 3
Hump changing its height, results obtained with Q 1 (or Q bubble

1 =P0 for the LPS scheme)

Method kehkL2ðH1Þ varð0:5Þ Time Damp.

SUPG (9) [15] 11.2143 1.4282 5297 –
SUPG (10) [20] 11.2142 1.4281 5275 –
SUPG (11) [42,49] 10.4631 1.3287 5245 –
GdC88 [22] 10.4631 1.3287 10,133 1.0
dCG91 [19] Not converged 0.25
AS97 [1] Not converged 0.25
dCA03 [18] 10.4631 1.3287 14,824 1.0
YZb [54,2], iso Diverged 0.25
YZb [54,2], aniso 9.9861 1.1566 56,944 1.0
C93 [13], C ¼ 0:1 10.0980 1.2382 39,826 1.0
C93 [13], C ¼ 0:2 9.9485 1.1902 131,413 0.75
KLR02 [42,34], C ¼ 0:1 10.0987 1.2381 19,249 1.0
KLR02 [42,34], C ¼ 0:2 9.9494 1.1901 22,284 1.0
KLR02 [42,34], C ¼ 0:4 9.9334 1.1553 35,022 1.0
KLR02 [42,34], C ¼ 0:6 10.1140 1.1347 56,608 1.0
KLR02 [42,34], C ¼ 0:8 10.3289 1.1196 83,386 1.0
BE02_1 [8] 10.2129 1.2548 16,613 1.0
BE02_2 [8,34] 9.9418 1.2027 21,250 1.0
JSW87 [41] 9.9255 1.1986 6300 –
LPS scheme [50], C ¼ 0:01 30.1938 1.4198 6016 –
LPS scheme [50], C ¼ 0:05 14.1264 1.3689 6017 –
LPS scheme [50], C ¼ 0:1 11.5793 1.3528 6012 –
LPS scheme [50], C ¼ 0:5 10.5392 1.3432 6026 –
LPS scheme [50], C ¼ 1 11.2444 1.4474 6013 –
LPS scheme [50], C ¼ 5 12.6169 1.5109 6093 –
FEM-FCT linear [43] 9.6811 1.0101 2605 –
FEM-FCT non-linear [45,44] 9.4399 1.0240 10,051 1.0
grids, the diagonals of the triangles were from bottom left to top
right. The simulations were performed with the final time
T ¼ 6:28 and the time step Dt ¼ 10�3. The numerical solutions
were compared with the appropriately rotated initial condition
uðtÞ. Denote the error by eh ¼ u� uh. We present kehkL2ðL2Þ :¼
kehkL2ð0;T;L2ðXÞÞ and

varðtÞ :¼ max
ðx;yÞ2X

uhðt; x; yÞ � min
ðx;yÞ2X

uhðt; x; yÞ;

where the maximum and the minimum were computed in the ver-
tices of the mesh cells. The values kehkL2ðL2Þ give some indication of
the accuracy of the methods and the smearing in the numerical
solutions whereas varðtÞ measures the size of the spurious oscilla-
tions. The optimal value is varðtÞ ¼ 1 for all t 2 ½0; T�.

First, it is demonstrated that the SUPG method has to be used
with a parameter including a contribution from the reactive term.
A standard parameter for steady-state convection–diffusion equa-
tions is

scd
K ¼

hK

2kbk2
nðPeKÞ; PeK ¼

kbk2hK

2e
; nðaÞ ¼ coth a� 1

a
: ð31Þ

Fig. 5 shows that the SUPG solution with the parameter (31) is glob-
ally polluted with large spurious oscillations whereas the solution
obtained with the parameter (11) possesses large spurious oscilla-
tions only at the layers. The spurious oscillations are also consider-
ably larger in the solution obtained with scd

K .
The results of the computations on the rectangular grid are

summarized in Table 1 and on the triangular grid in Table 2.
Among the SUPG methods, the largest parameter (11) gave slightly
better results than the parameters (9) and (10). All SOLD methods
were used together with the SUPG parameter (11).
GdC88 [22] 12.1257 1.3835 16,331 1.0
dCG91 [19] Not converged 0.25
AS97 [1] Not converged 0.25
dCA03 [18] 12.1257 1.3835 24,513 1.0
YZb [54,2], iso Not converged 0.25
YZb [54,2], aniso 10.3968 1.1620 153,748 1.0
C93 [13], C ¼ 0:1 Diverged 0.25
KLR02 [42,34], C ¼ 0:1 10.9608 1.2467 34,462 1.0
KLR02 [42,34], C ¼ 0:2 10.5832 1.1970 48,901 1.0
KLR02 [42,34], C ¼ 0:4 10.3922 1.1483 84,390 1.0
KLR02 [42,34], C ¼ 0:6 10.5113 1.1279 104,510 1.0
KLR02 [42,34], C ¼ 0:8 10.7120 1.1179 248,731 0.75
BE02_1 [8] 11.5072 1.2985 31,441 1.0
BE02_2 [8,34] 10.5888 1.2081 39,154 1.0
JSW87 [41] 10.4819 1.1992 10,163 –
BH04 [11], C0 ¼ C1 ¼ 1e� 4 Diverged 0.25
BE05_1 [10], C ¼ 1e� 5 12.1116 1.3807 16,349 1.0
BE05_1 [10], C ¼ 1e� 4 11.9987 1.3558 16,311 1.0
BE05_1 [10], C ¼ 1e� 3 11.4126 1.2830 16,222 1.0
BE05_1 [10], C ¼ 1e� 2 Diverged 0.25
BE05_2 [10,34], C ¼ 1e� 4 12.1168 1.3821 17,379 1.0
BE05_2 [10,34], C ¼ 1e� 3 12.0402 1.3695 17,376 1.0
BE05_2 [10,34], C ¼ 1e� 2 11.4982 1.2634 17,150 1.0
BE05_2 [10,34], C ¼ 1e� 1 10.9352 1.2079 17,109 1.0
BE05_2 [10,34], C ¼ 1 Diverged 0.25
LPS scheme [50], C ¼ 0:01 68.6146 1.2007 9683 –
LPS scheme [50], C ¼ 0:05 19.9672 1.2964 9611 –
LPS scheme [50], C ¼ 0:1 15.7470 1.4201 9650 –
LPS scheme [50], C ¼ 0:5 19.8025 1.8261 9578 –
LPS scheme [50], C ¼ 1 26.2342 1.9659 9614 –
LPS scheme [50], C ¼ 2 35.6500 2.1306 9535 –
FEM-FCT linear [43] 9.8994 1.0134 3929 –
FEM-FCT non-linear [45,44] 9.8254 1.0225 9351 1.0
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Remark. Numerical studies (not presented here) showed that
decreasing the size of the time step, which might be necessary in
the simulation of chemical reactions, gave similar solutions as
presented in Fig. 5 (left picture). Only the size of the spurious
oscillations increased somewhat. These observations are consistent
to the analytical results of [4] concerning the stability of the SUPG
method.

The best results in the body rotation problem were obtained
with the non-linear FEM-FCT scheme, see Figs. 7 and 9. This is
not surprising since this method was designed for transport prob-
lems. Also the linear FEM-FCT method suppressed spurious oscilla-
tions but led to some smearing, Figs. 6 and 8.

As expected, the methods GdC88 and dCA03 led to nearly the
same results as the SUPG method. The non-linear iteration did
not converge for the methods dCG91 and AS97. The use of the iso-
tropic variant of the YZb scheme resulted in large difficulties in the
solution of the non-linear problems. For the triangular discretiza-
tion, this method even blew up for all considered damping
parameters.

The increasing influence of the SOLD term can be observed
clearly in the parameter studies for C93 and KLR02. Since D is very
small in the rotating body problem, these methods gave nearly
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Fig. 10. Body rotation problem, evolution of varðtÞ for the solutions computed with
Q1 (or Qbubble

1 =P0 for the LPS scheme).
identical results. Large parameters, which make the problems
more non-linear, led on the one hand to smaller spurious oscilla-
tions and larger smearing, see Figs. 7 and 9. On the other hand,
some damping in the non-linear iteration became necessary for
0 1 2 3 4 5 6
t

0 1 2 3 4 5 6

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

t

va
r 

(t
)

SUPG(11)
YZβ, aniso
KLR02_3 C = 0.1
KLR02_3 C = 0.6
BE05_1 C = 1e−4
BE05_2 C = 1e−3
FEM−FCT nonlin.

Fig. 11. Body rotation problem, evolution of varðtÞ for the solutions computed with
P1 (or Pbubble

1 =P0 for the LPS scheme).
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Fig. 12. A hump changing its height, solution at t ¼ 0:5.
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large parameters, the numbers of iterations to solve the non-linear
problems and accordingly the computing times increased. It is hard
to decide which is the best parameter choice if all aspects (spurious
oscillations, smearing, computing times) are taken into consider-
ation. The computations on the triangular grid show clearly the dif-
ficulties in the solution of the non-linear equations of C93 which
arise from the non-linearity of the second term in (17).

As expected, the SOLD term in BE02_1 and BE02_2 had only lit-
tle influence and one obtained similar results as with the SUPG
method.
Fig. 13. Hump changing its height, the computed solution with Q1 (or Qbubble
1 =P0 for the

scheme [50] with C ¼ 0:01, C ¼ 0:1, C ¼ 1, FEM-FCT linear [43]; from top left to bottom
The linear SOLD scheme JSW87 tended to reduce the spurious
oscillations but also to smear the discrete solution considerably.

For the edge stabilization method BH04, the iteration for solving
the non-linear problems diverged even for very small user-chosen
parameters C0 and C1. The parameter studies of BE05_1 and
BE05_2 show again that increasing the influence of the SOLD term
reduced the spurious oscillations but smeared the solution.

The parameter study of the LPS scheme leads to different results
for the quadrilateral and the triangular mesh. Increasing the
parameter resulted on the quadrilateral mesh to less spurious
LPS scheme) at t ¼ 0:5; the linear schemes SUPG with (11) [42,49], JSW87 [41], LPS
right.
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oscillations and larger smearing, Table 1 and Fig. 6. This situation is
vice versa on the triangular mesh, Table 2 and Fig. 8.

The temporal evolution of the spurious oscillations is illustrated
in Figs. 10 and 11. For the FEM-FCT schemes, the value varðtÞ
was all the time close to the optimal value. Many schemes
exhibited rather large spurious oscillations at the beginning of
the time interval which were smoothed somewhat in later times.
Among these schemes are JSW87, C93 and KLR02 for large param-
eters, YZb anisotropic and the LPS schemes on the quadrilateral
grid.

7.2. A hump changing its height

This example is an adaption of Example 2 from [38] for the stea-
dy-state convection–diffusion–reaction equation. The prescribed
solution has the form

uðt; x; yÞ ¼ 16 sinðptÞxð1� xÞyð1� yÞ

� 1
2
þ arctan½2e�1=2ð0:252 � ðx� 0:5Þ2 � ðy� 0:5Þ2Þ�

p

 !
:

ð32Þ

This is a hump changing its height in the course of the time, see
Fig. 12 for the solution at t ¼ 0:5. The steepness of the circular inter-
nal layer depends on the diffusion parameter e. The thickness of the
layer is

ffiffiffi
e
p

which is typical for interior layers [52].
Fig. 14. Hump changing its height, the computed solution with Q1 at t ¼ 0:5; the non-line
non-linear [45,44]; from top left to bottom.
We present simulations for e ¼ 10�6, b ¼ ð2;3Þ, c ¼ 1 and T ¼ 2.
In contrast to the previous example, a reactive term of order 1 ap-
pears and the right hand side does not vanish. The time step was
chosen to be Dt ¼ 10�3 and the computations were performed on
the same grids as in Example 7.1. Hence, the convection is not
aligned to the grid.

It is important to note that for the computation of this example
very accurate quadrature rules, at least for the right hand side, are
necessary. Since the solution possesses a steep layer, the right hand
side has also regions with large gradients. We found that using low
order quadrature rules leads to a strong pollution of the computed
solutions with all schemes. For the results presented in this sec-
tion, Gaussian quadrature which is exact for polynomials of degree
17 (81 quadrature points) was used on the quadrilateral mesh. On
the triangular mesh, a quadrature rule which is exact for polynomi-
als of degree 19 (73 quadrature points) was applied. Since in our
code all matrices and vectors are assembled together, also the
matrices have been assembled with the high order quadrature rule.
The computing times given below are dominated by the costs of
the numerical quadrature.

The variation of the discrete solutions at t ¼ 0:5 (maximal
height of the hump) was used for evaluating the size of the spuri-
ous oscillations. The value for (32) is varð0:5Þ ¼ 0:997453575. We
also monitored the variation of the discrete solution at the final
time T ¼ 2. For almost all schemes, we obtained varð2Þ < 0:04,
i.e. rather small oscillations. For this reason, varð2Þ is not reported
ar schemes YZb [54,2] anisotropic, KLR02 [42,34] with C ¼ 0:2, C ¼ 0:6 and FEM-FCT



Fig. 15. Hump changing its height, the computed solution with P1 (or Pbubble
1 =P0 for the LPS scheme) at t ¼ 0:5; the linear schemes SUPG (11) [42,49], JSW87 [41], LPS scheme

[50] with C ¼ 0:01, C ¼ 0:1, C ¼ 1, FEM-FCT linear [43]; from top left to bottom right.
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in the tables given below. An indication of the smearing of the
solution is derived from kehkL2ðH1Þ :¼ krehkL2ð0;T;L2ðXÞÞ. The simula-
tions with the SOLD methods were based again on the SUPG
parameter (11).

The results are presented in Tables 3 and 4 and in Figs. 13–16. It
can be observed that all schemes led to spurious oscillations be-
hind the hump in the direction of the convection. The only meth-
ods which suppressed spurious oscillations at the interior layer
were the FEM-FCT schemes. These schemes showed also the small-
est errors in L2ðH1Þ. Evaluating the results obtained in this example
leads basically to the same conclusions for each method as for the
rotating body problem. It is an open question if the spurious oscil-
lations behind the hump can be reduced by applying even better
quadrature rules.
8. Summary

The summary contains a short discussion of the methods whose
results are among the best ones.



Fig. 16. Hump changing its height, the computed solution with P1 at t ¼ 0:5; the non-linear schemes YZb [54,2] anisotropic, KLR02 [42,34] with C ¼ 0:2, C ¼ 0:4, C ¼ 0:6,
BE05_2 [10,34] with C ¼ 1e� 1 and FEM-FCT non-linear [45,44]; from top left to bottom right.
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� JSW87: This is an easy linear extension of the SUPG method.
In our studies, the spurious oscillations of the SUPG method
were reduced considerably but not sufficiently. Note, the
parameter of this method scales with the length of the time
step and it has still to be studied which reductions of the
oscillations can be achieved with different time steps. Alto-
gether, this method seems to be not appropriate for the sim-
ulation of complex problems like chemical reactions in flow
fields.
� KLR02: This was, in our opinion, the best SOLD method. Simi-
lar results could be obtained with C93 if the non-linear problems
in this method could be solved. The difficulty in KLR02 is the
presence of the user-chosen parameter. It is even hard to define
a posteriori for the presented examples what is an optimal
parameter, based on the criteria of spurious oscillations,
smearing and computational overhead. Even more complicated
will be the a priori choice of this parameter in complex
applications.
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� YZb aniso: This method gave in the considered examples similar
results to KLR02 with a parameter of C  0:4.

� FEM-FCT schemes: These were clearly the best schemes. In
Example 7.2 it is shown that these schemes may lead to some
spurious oscillations. In particular, the linear FEM-FCT scheme
shows a very good ratio of accuracy and efficiency. The smearing
which is introduced by this scheme will be tolerable in many
applications. This scheme has been identified to be a promising
candidate to be used in the simulation of the chemical reactions
in precipitation processes.

The evaluation of these methods has to be continued. In partic-
ular, examples with different boundary conditions than homoge-
neous Dirichlet boundary conditions and examples in three
dimensions have to be investigated, see [40] for first results. In
addition, the behavior of the methods with respect to changes in
the length of the time step and the mesh size needs to be studied.
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