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a b s t r a c t

Adaptive time stepping is an important tool in Computational Fluid Dynamics for controlling the accu-
racy of simulations and for enhancing their efficiency. This paper presents a systematic study of three
classes of implicit and linearly implicit time stepping schemes with adaptive time step control applied
to a 2D laminar flow around a cylinder: h-schemes, diagonal-implicit Runge–Kutta (DIRK) methods
and Rosenbrock–Wanner (ROW) methods. The time step is controlled using embedded methods. It is
shown that several ROW methods clearly outperform the more standard h-schemes and the DIRK meth-
ods. The results depend on a prescribed tolerance in the time step control algorithm, whose appropriate
choice varies from scheme to scheme.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Let X � Rd; d 2 f2;3g, be a bounded domain and T > 0. The mo-
tion of incompressible flows is modeled by the incompressible Na-
vier–Stokes equations, which are given in dimensionless form by

ut � Re�1Duþ ðu � rÞuþrp ¼ f in ð0; T� �X;

r � u ¼ 0 in ½0; T� �X:
ð1Þ

Here, u is the velocity, p the pressure, f represents body forces and
the parameter Re is the Reynolds number. The system of Eq. (1) has
to be closed with appropriate initial and boundary conditions. If
Dirichlet conditions are prescribed on the whole boundary @X, a
condition for the pressure, like

R
X pðxÞdx ¼ 0, has to be added. The

accurate and fast solution of the Navier–Stokes equations is the core
of many numerical simulations of complex processes in nature and
industry.

This paper considers the simulation of time-dependent laminar
flows. Thus, discretizations in space and time as well as a lineariza-
tion for solving the nonlinear problem in each discrete time are re-
quired. There are many possible approaches, see [7] for a
comprehensive presentation, and the question of optimal methods
is still an active field of research. With respect to the spatial dis-
cretization, we will use an inf–sup stable finite element method
[6]. It has been demonstrated in a number of numerical studies,
ll rights reserved.
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e.g. in [27,15,10,12], that the pair of second order velocity Q 2 and
first order discontinuous pressure Pdisc

1 on quadrilateral and hexa-
hedral meshes is among the best performing finite element meth-
ods. Thus, the Q2=Pdisc

1 finite element is a popular choice if finite
element methods are used in the simulation of incompressible
flows [7]. Concerning the linearization, a fixed point approach will
be used in this paper, which has been proven to be more efficient
than a Newton method in [13].

The topic of the paper is the temporal discretization of the
incompressible Navier–Stokes equations. By far the most simula-
tions of incompressible flows use explicit schemes or simple impli-
cit schemes, like the backward Euler scheme, the Crank–Nicolson
scheme or the fractional-step h-scheme. We will concentrate in
this paper on implicit and linearly implicit schemes, which are
appropriate for laminar flow simulations and which avoid the
nasty CFL condition. The study [17] showed that for obtaining
accurate results at least a second order time stepping scheme is
necessary. For this reason, only schemes with at least this accuracy
will be considered.

The main focus of this paper is on an adaptive time step control
for implicit and linearly implicit schemes. An adaptive time step
control may undoubtedly improve the accuracy and efficiency of
incompressible flow simulations substantially. However, with the
simple implicit schemes commonly used, an efficient time step
control is hard to achieve. For this reason, simulations with implicit
temporal discretizations and adaptive time step control are rather
rare in the literature. In [31], a strategy for controlling the length of
the time step with h-schemes has been proposed. This approach
compares the results of the fractional-step h-scheme and the
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Crank–Nicolson scheme. These schemes have a different constant
in the leading term of their error expansions. This difference, to-
gether with the difference of the results obtained with both
schemes, can be used to estimate an appropriate length of the time
step. The main drawback is the high computational effort of this
approach. The step with the Crank–Nicolson scheme is used only
to determine the size of the next time step. The costs of this step
are of a similar order as for the fractional-step h-scheme. Thus,
the adaptive time step control increases the costs per time step
by almost a factor of two. A simple approach is considered in [1],
where the time step in a semi-implicit Euler scheme is chosen on
the basis of comparing the change of the solution of two subse-
quent time steps in the L2-norm of the space–time interval. An-
other possibility offer predictor–corrector schemes, for example
the Adams–Bashforth method combined with the Crank–Nicolson
scheme, see [7]. An adaptive time step control based on embedding
techniques is presented in [30], but not studied in detail.

The embedding technique requires the use of more sophisti-
cated time stepping schemes. Such schemes will be studied in this
paper: diagonally implicit Runge–Kutta methods and linearly im-
plicit Runge–Kutta methods (Rosenbrock–Wanner methods
(ROW methods)). Both classes allow the computation of a second
numerical solution with almost the same coefficients such that
an effective time step control can be achieved [18,9]. We are not
aware of any systematic studies of (linearly) implicit time stepping
schemes with adaptive time step control for solving the incom-
pressible Navier–Stokes equations.

An adaptive time step control needs some error indicator or
estimator on which the determination of the next time step is
based. This error estimator suggests a new time step size to reach
a given accuracy. If the time step size is too small then a lot of
unnecessary computational work has to be done. Otherwise, if
the time step size is too large, the results may become too inaccu-
rate. The computational studies will consider the flow around a
cylinder. Besides standard estimators, which estimate the error
for a certain size of the time step in norms of function spaces, also
error indicators for outputs of interest, like drag and lift coefficient,
might be interesting in this example. Here, in our first study, we
will restrict to a standard estimator. The incorporation of indica-
tors for outputs of interest will be postponed to forthcoming
studies.

The paper is structured as follows. First, we give a short presen-
tation of the spatial discretization of the incompressible Navier–
Stokes equations. Then, the h-schemes, the DIRK and ROW meth-
ods are introduced and their application to the incompressible Na-
vier–Stokes equations is explained as well as the control of the
time step. In Section 6, the numerical studies at a 2D laminar flow
around a cylinder are presented. Finally, the most important obser-
vations are summarized and an outlook is given.

2. The finite element discretization in space

For simplicity of presentation, we consider the case that (1) is
equipped with homogeneous Dirichlet boundary conditions in
½0; T�. Then, the velocity ansatz space and test space can be chosen
the same in the weak formulation of (1) as well as in the finite ele-
ment method. Let V ¼ H1

0ðXÞ
� �d

; Q ¼ L2
0ðXÞ, then the time-contin-

uous weak or variational problem reads as follows: find
ðu; pÞ 2 V � Q such that

ðut ;vÞ þ ðRe�1ru;rvÞ þ ððu � rÞu;vÞ � ðp;r � vÞ ¼ ðf;vÞ 8v 2 V ;

ðr � u;qÞ ¼ 0 8q 2 Q :

ð2Þ

The symbol ð�; �Þ denotes the inner product in ðL2ðXÞÞd and
ðL2ðXÞÞd�d

; d 2 f1;2;3g.
Finite element methods are a widely used approach for discret-
izing (a linearization of) (2) in space [7]. The unique solvability of
the arising discrete (linear) systems requires that the velocity finite
element space Vh is sufficiently large compared to the pressure fi-
nite element space Q h, which is mathematically formulated with
the inf–sup condition [6]

inf
qh2Qh

sup
vh2Vh

ðqh;r � vhÞ
kqhkL2krvhkL2

P b > 0:

Here, conforming finite element spaces will be considered to avoid
technical difficulties in the presentation of the methods, i.e., Vh � V
and Qh � Q are assumed. The space-discretized Navier–Stokes
equations read as follows: find ðuh;phÞ 2 Vh � Qh such that

ð _uh;vhÞ þ ðRe�1ruh;rvhÞ þ ððuh � rÞuh;vhÞ
� ðph;r � vhÞ ¼ ðf;vhÞ 8vh 2 Vh;

ðr � uh; qhÞ ¼ 0 8qh 2 Q h;

ð3Þ

where the dot denotes the temporal derivative. Let the space Vh be
equipped with the basis

f/ig
dNu
i¼1 ¼

ui

0
..
.

0B@
1CA

8><>:
9>=>;

Nu

i¼1

[

0
ui
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.

0BB@
1CCA

8>><>>:
9>>=>>;

Nu

i¼1

[ � � �

and the space Qh with the basis fwig
Np

i¼1. Here, Nu is the number of
degrees of freedom for each component of the velocity and Np is
the number of degrees of freedom for the pressure. Then, the solu-
tion of (3) can be written in the form:

uhðt; xÞ ¼
XdNu

i¼1

uiðtÞ/iðxÞ; phðt;xÞ ¼
XNp

i¼1

piðtÞwiðxÞ;

with the unknown vectors of coefficients uh :¼ uhðtÞ ¼
ðu1ðtÞ; . . . ;udNu ðtÞÞ

T
; ph :¼ phðtÞ ¼ ðp1ðtÞ; . . . ;pNp

ðtÞÞT . For shortness,
the algebraic objects will be given for the two-dimensional case.
The extension to three dimensions is straightforward. The super-
script ðkÞ denotes the k-th component of a vector-valued function.
Then, the following matrices and vectors are defined

ðMÞij ¼ ðuj;uiÞ; i; j ¼ 1; . . . ;Nu;

ðAðuhÞÞij ¼ Re�1ðruj;ruiÞ

þ uð1Þh @xuj þ uð2Þh @yuj;ui

� �
; i; j ¼ 1; . . . ;Nu;

ðB1Þij ¼ �ð@xui;wjÞ; i ¼ 1; . . . ;Nu; j ¼ 1; . . . ;Np;

ðB2Þij ¼ �ð@yui;wjÞ; i ¼ 1; . . . ;Nu; j ¼ 1; . . . ;Np;

ðfðkÞh Þi ¼ ðf
ðkÞ
;uiÞ; i ¼ 1; . . . ;Nu; k ¼ 1;2:

ð4Þ

This leads to the following algebraic analog of (3)
M 0 0
0 M 0
0 0 0

0B@
1CA _uð1Þh ðtÞ

_uð2Þh ðtÞ
_phðtÞ

0B@
1CA¼ fð1Þh

fð2Þh

0

0B@
1CA� AðuhÞ 0 B1

0 AðuhÞ B2

BT
1 BT

2 0

0B@
1CA uð1Þh

uð2Þh

ph

0B@
1CA:

This is a system of differential algebraic equations (DAE). The ma-
trix M is called mass matrix and the matrix A stiffness matrix. All
matrices, M; A; BT

1; B
T
2

� �
, possess full rank.

This paper will study one-step schemes for the temporal dis-
cretization of (3). Let tmþ1 denote the new discrete time, tm the pre-
vious discrete time and sm ¼ tmþ1 � tm; m ¼ 0;1;2; . . . the length of
the time step. The initial time is t0 ¼ 0. For simplicity of notation,
we omit in the following the index h. Moreover, we denote by
um ¼ uð1Þm ;uð2Þm

� �T
the numerical approximation of the solution

uðtmÞ.
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3. h-Schemes

3.1. Application to ordinary differential equations (ODEs)

Consider the following ODE:

M _u ¼ Fðt;uÞ þ F1ðtÞ; uð0Þ ¼ u0: ð5Þ

A h-scheme for solving (5) has the form:

umþ1 ¼ um þ smðh1Fðtmþ1;umþ1Þ þ h2Fðtm;umÞ þ h3F1ðtmÞ
þ h4F1ðtmþ1ÞÞ:
3.2. Application to a the Navier–Stokes equations

The application of a h-scheme to the semi-discretized Navier–
Stokes equations (3) leads to the following algebraic system:

M þ smh1Aðumþ1Þ 0 smh1B1

0 M þ smh1Aðumþ1Þ smh1B2

BT
1 BT

2 0

0@ 1A uð1Þmþ1

uð2Þmþ1
pmþ1

0B@
1CA

¼
ðM � smh2AðumÞÞuð1Þm � smh2B1pm þ smh3fð1Þm þ smh4fð1Þmþ1

ðM � smh2AðumÞÞuð2Þm � smh2B2pm þ smh3fð2Þm þ smh4fð2Þmþ1
0

0B@
1CA;
ð6Þ

where fm denotes here the vector which is obtained by testing the
right hand side of the Navier–Stokes equations at tm with finite ele-
ment test functions. This class of schemes are also called pressure-
corrected h-schemes [24]. If h2 – 0, then this approach requires the
pressure from time tm for the computation of the solution at time
tmþ1. In particular, an initial pressure for the Navier–Stokes equa-
tions has to be defined. To circumvent this difficulty, often an incon-
sistent treatment of the pressure is applied

M þ smh1Aðumþ1Þ 0 smB1

0 M þ smh1Aðumþ1Þ smB2

BT
1 BT

2 0

0@ 1A uð1Þmþ1

uð2Þmþ1
pmþ1

0B@
1CA

¼
ðM � smh2AðumÞÞuð1Þm þ smh3fð1Þm þ smh4fð1Þmþ1

ðM � smh2AðumÞÞuð2Þm þ smh3fð2Þm þ smh4fð2Þmþ1
0

0B@
1CA;

see [11] for a detailed discussion of this way to discretize the pres-
sure in time.

3.3. Studied methods

We will consider only implicit second order pressure-corrected
h-schemes. Such schemes are the Crank–Nicolson scheme (CN), gi-
ven by hi ¼ 0:5; i ¼ 1; . . . ;4, and the fractional-step h-scheme (FS),
which is given in detail in Section 4. In particular, the use of the
Crank–Nicolson scheme is quite popular, see [31]. It has been
shown in [12,17] that the application of the first order backward
Euler scheme ðh1 ¼ h4 ¼ 1; h2 ¼ h3 ¼ 0Þ leads to a considerable loss
in accuracy in comparison to the second order h-schemes. For this
reason, the backward Euler scheme will not be considered in this
paper. For the definition of an initial pressure, we refer to Section 4.

3.4. Adaptive time step control

A strategy for controlling the length of the time step adaptively
with h-schemes has been proposed in [31], see Section 1 for details.
Because of the high computational costs, we do not consider this
approach in our studies. Instead, comparisons with the Crank–
Nicolson scheme and equidistant time steps (CN) will be included
in the numerical studies.
4. DIRK schemes

4.1. Application to ODEs

Consider now an ODE of the form:

M _u ¼ Fðt;uÞ;uð0Þ ¼ u0: ð7Þ

Let s 2 N. An s-stage Runge–Kutta method (RK method) [9,29], is a
one-step-method for solving (7) given by

Mki ¼ Fðtm þ cism;UiÞ; Ui ¼ um þ sm

Xs

j¼1

aijkj; i ¼ 1; . . . ; s;

umþ1 ¼ um þ sm

Xs

i¼1

biki:

The coefficients of an RK method are usually represented with the
help of a Butcher table [3],

The value s is called number of stages. The vector c includes the grid
points of the time discretization and b is vector with weights. The
coefficients aij; bi and ci should be chosen in such a way that certain
conditions are satisfied to obtain a sufficient consistency order [9,29].

In the numerical studies, only RK methods with s P 2 and with
coefficients satisfying

ðH1Þ : aij ¼ 0; i < j; i; j 2 f1; . . . ; sg;
ðH2Þ : a11 ¼ 0;
ðH3Þ : aii – 0; i 2 f2; . . . ; sg;
ðH4Þ : bi ¼ asi; i 2 f1; . . . ; sg;

will be studied. RK methods satisfying ðH1Þ are called diagonal-im-
plicit RK methods (DIRK methods). An RK method satisfying asi ¼ bi,
i.e., ðH4Þ, and cs ¼ 1 is called stiffly accurate. This is an essential
property for applying this method for solving DAEs since it guaran-
tees that the index-1 constraints are satisfied for the numerical
solution. An RK method satisfying a11 – 0 and ðH1Þ has at most
stage order q ¼ 1, see [23]. The stage order can be improved if
a11 ¼ 0, i.e., ðH2Þ is satisfied. In this case an RK method satisfying
ðH1Þ; ðH2Þ and ðH3Þ has at most stage order q ¼ 2 [23].

4.2. Application to DAEs of index 2

Consider the DAE

M _u ¼ Fðt;u;pÞ; ð8Þ
0 ¼ Gðt;uÞ: ð9Þ
We will assume in the following that the matrix @uGM�1@pF is non-
singular, where @uG denotes the Jacobian of G with respect to the
space variable u and @pF the Jacobian of F with respect to p. The
semi-discretized Navier–Stokes equations possess this property
since

Fðt;uh;phÞ ¼ ðfh;/iÞ � ðRe�1ruh;r/iÞ þ ððuh � rÞuh;/iÞ
þ ðph;r � /iÞ; ð10Þ

Gðt;uhÞ ¼ ðr � uh;wiÞ; ð11Þ
ð@pFðt;uh;phÞÞij ¼ ðwj;r � /iÞ;
ð@uGðt;uhÞÞij ¼ ðr � /j;wiÞ:

It follows, see (4),
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@uGM�1@pF ¼ �BT
1;�BT

2

� � M�1 0
0 M�1

 !
�B1

�B2

� �
:

This matrix is non-singular since all factors possess full rank. It is
known [2,9] that in this case the DAE (8) and (9) has the differenti-
ation index 2.

Only an initial velocity u0 is given for the Navier–Stokes equa-
tions. However, the application of DIRK methods to (8) and (9) re-
quires also the definition of an initial pressure p0. To this end, the
algebraic constraint (9) is differentiated which leads to

0 ¼ Gtðt;uÞ þ Guðt;uÞ _u:

Inserting this into (8) yields

�Gtðt;uÞ ¼ Guðt;uÞ _u ¼ Guðt;uÞM�1Fðt;u;pÞ: ð12Þ

This gives an equation for the pressure, in particular at the initial
time.

To derive an RK method for the DAE (8) and (9), one considers
instead of the algebraic constraint (9) the differential equation

eI _p ¼ Gðt;uÞ; e > 0:

For the system of this equation together with (8), an RK method can
be applied. By letting e! 0, the RK method for the DAE (8) and (9)
is obtained [9]:

Mki ¼ Fðtm þ cism;Ui;PiÞ; Ui ¼ um þ sm

Xi

j¼1

aijkj; i ¼ 1; . . . ; s;

0 ¼ Gðtm þ cism;UiÞ; Pi ¼ pm þ sm

Xi

j¼1

aijlj; i ¼ 1; . . . ; s;

umþ1 ¼ um þ
Xs

i¼1

biki; pmþ1 ¼ pm þ
Xs

i¼1

bili:

ð13Þ

Note, that in this case the coefficient matrix A of the Butcher table is
singular and the values lj in (13) are not well-defined. To circum-
vent this difficulty, the second equation of (13) is multiplied by M
and the first equation of (13) is inserted, leading to the system

MUi ¼ Mum þ sm

Xi

j¼1

aijFðtm þ cjsm;Uj;PjÞ; ð14Þ

0 ¼ Gðtm þ cism;UiÞ: ð15Þ

Having solved (14) and (15) gives in particular Us and Ps. If an RK
method is stiffly accurate, then the solution in time tmþ1 is
ðumþ1;pmþ1Þ ¼ ðUs;PsÞ.

4.3. Application to the Navier–Stokes equations

For the application of RK methods to the Navier–Stokes equa-
tions, we consider only stiffly accurate DIRK methods with
a11 ¼ 0. Then, the system (14) and (15) for i ¼ 1 reduces to
U1 ¼ um. The associated pressure field is P1 ¼ pm. Using (10) and
(11) leads to

M þ smaiiAðUiÞ 0 smaiiB1

0 M þ smaiiAðUiÞ smaiiB2

BT
1 BT

2 0

0@ 1A Uð1Þi

Uð2Þi
Pi

0@ 1A

¼

Muð1Þm þ sm
Pi�1

j¼1
aij fð1Þðtm þ cjsmÞ � AðUjÞUð1Þj � B1Pj

� �
þsmaiif

ð1Þðtm þ cismÞ

Muð2Þm þ sm
Pi�1

j¼1
aij fð2Þðtm þ cjsmÞ � AðUjÞUð2Þj � B2Pj

� �
þsmaiif

ð2Þðtm þ cismÞ
0

0BBBBBBBBBB@

1CCCCCCCCCCA
;

i ¼ 2; . . . ; s. Eq. (12) for the initial pressure p0 has the form:

Dpð0;xÞ ¼ r � ðfð0;xÞ þ Re�1Du0ðxÞ � ðu0ðxÞ � rÞu0ðxÞÞ;

and it has to be closed with boundary conditions. In applications, an
initial state is often unknown and one has to start the simulations
with a developed flow field which was computed in a preprocessing
step. In this case, the pressure of the developed flow field can be
used as initial pressure.

4.4. Adaptive time step control

RK methods have the advantage that they allow an easy imple-
mentation of an adaptive time step length control. Consider an RK
method of order p P 2. An adaptive time step control employs a
second RK method which has the coefficients aij; b̂i and
ci; i; j ¼ 1; . . . ; s, and order p� 1. The solution of the second meth-
od at tmþ1 is given by

ûmþ1 ¼ um þ
Xs

i¼1

b̂iki:

Now, the next time step smþ1 is proposed to be

smþ1 ¼ q
s2

m

sm�1

TOL � rm

r2
mþ1

 !1=p

; ð16Þ

where q 2 ð0;1� is a safety factor, TOL > 0 is a given tolerance and

rmþ1 :¼ jJðumþ1Þ � Jðûmþ1Þj or rmþ1 :¼ jJðumþ1 � ûmþ1Þj; ð17Þ

where Jð�Þ is some functional. This step size selection rule is called
PI-controller and it is due to [8]. For details on the numerical error
and the implementation of automatic step length controls, we refer
to [9,18].

4.5. Studied methods

The numerical studies presented in Section 6 will use DIRK
methods with s 2 f2;3;4g internal stages. The method with s ¼ 2
is the pressure-corrected Crank–Nicolson scheme (CN), which is
recovered for a21 ¼ a22 ¼ 1=2, see (6) for its formulation applied
to the Navier–Stokes equations. The Butcher table of the pres-
sure-corrected fractional-step h-scheme (FS) is given by [24],

with the coefficients

h ¼ 1�
ffiffiffi
2
p

2
; ~h ¼ 1� 2h; a ¼

~h
1� h

; b ¼ 1� a:

An embedded method of first order is given by

b̂1 ¼ 0:11785113033497070959;

b̂2 ¼ 0:49509379160690495120;

b̂3 ¼ 0:29636243203812433921;

b̂4 ¼ 0:09069264621404818692:

Three DIRK methods of convergence order p ¼ 3 from [23] will be
studied. The first one, called DIRK3, has the non-zero coefficients

a21 ¼ a22 ¼ a33 ¼
1
2
þ

ffiffiffi
3
p

6
; a32 ¼ �

1
12a22ð2a22 � 1Þ ;

a31 ¼ 1� a33 � a32
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and an embedded method with p ¼ 2 is given by

b̂1 ¼
5

12
þ

ffiffiffi
3
p

12
; b̂2 ¼

3
4
þ

ffiffiffi
3
p

12
; b̂3 ¼ �

1
6
�

ffiffiffi
3
p

6
:

The method DIRK3L possesses the non-zero coefficients

a21 ¼ a22 ¼ a33 ¼ 1�
ffiffiffi
2
p

2
; a32 ¼

1
4ð1� a22Þ

; a31 ¼ 1� a33 � a32

and the coefficients for the embedded method with p ¼ 2 are

b̂1 ¼ b̂2 ¼
1
2
� 1

8

ffiffiffi
2
p

; b̂3 ¼
1
4

ffiffiffi
2
p

:

The non-zero coefficients of the third method, DIRK34, are given by

a21 ¼ a22 ¼ a33 ¼ a44 ¼ 0:1558983899988677;
a31 ¼ 1� a32 � a22; a32 ¼ 1:072486270734370;
a42 ¼ 0:7685298292769537; a43 ¼ 0:09666483609791597:

This method is stiffly accurate, L-stable. An embedded method with
convergence order p ¼ 2 is given by b̂i ¼ a3i; i ¼ 1; . . . ;4.

The other coefficients of the DIRK methods are defined by
ci ¼

Pi
j¼1aij; i ¼ 1; . . . ; s, and ðH4Þ.

5. Rosenbrock–Wanner schemes

5.1. Application to ODEs

Consider, as in the case of DIRK schemes, an ODE of form (7). An
s-stage Rosenbrock–Wanner method (ROW method) is given by

Mki ¼ Fðtm þ aism; eUiÞ þ smW
Xi

j¼1

cijkj þ smci
_Fðtm;umÞ; ð18Þ

eUi ¼ um þ sm

Xi�1

j¼1

aijkj; i ¼ 1; . . . ; s;

umþ1 ¼ um þ sm

Xs

i¼1

biki; ð19Þ

where s is the number of internal stages, aij; cij; bi are the param-
eters of the method,

ai :¼
Xi�1

j¼1

aij; ci :¼
Xi

j¼1

cij; c :¼ cii > 0; i ¼ 1; . . . ; s;

and W :¼ @uFðtm;umÞ.
A sufficient consistency order can be obtained if the parameters

aij; cij, and bi are chosen appropriately. If W is only an approxima-
tion to @uFðtm;umÞ or if W is an arbitrary matrix, additional consis-
tency conditions arise, see [9,22]. These methods are called W-
methods [29]. It could be already observed [18], that approximated
Jacobians can lead to an order reduction. We will not consider this
option in the numerical studies. If a ROW method is applied to a
semi-discretized partial differential equation, further order condi-
tion should be satisfied to avoid order reduction, see [20].

An efficient implementation of a ROW method introduces the
new variables [18],

Ui :¼ sm

Xi

j¼1

cijkj; i ¼ 1; . . . ; s: ð20Þ

The matrix ðcijÞ
s
i;j¼1 is a lower triangular matrix with the entries

c > 0 in the main diagonal. Consequently, (20) can be solved for
ki, leading to

ki ¼
1
sm

Xi

j¼1

cijUj; ðcijÞsi;j¼1 ¼ ðcijÞ
s
i;j¼1

� ��1
; i ¼ 1; . . . ; s: ð21Þ
The matrix ðcijÞsi;j¼1 can be computed a priori and it is also a lower
triangular matrix with the entries c�1 in its main diagonal. Substi-
tuting (21) into (18) and (19) and rearranging terms give

ðM � csmWÞUi ¼ csmFðtm þ aism; bUiÞ � cM
Xi�1

j¼1

cijUj

þ ccis2
m

_Fðtm;umÞ; ð22Þ

bUi ¼ um þ sm

Xi�1

j¼1

~aijUj; ~aij ¼
Xi�1

l¼1

ailclj; i ¼ 1; . . . ; s;

umþ1 ¼ um þ
Xs

i¼1

bi

Xi

j¼1

cijUj

 !
: ð23Þ

The ROW method (22) and (23) requires the successive solution of s
linear systems of equations with the same matrix M � csmW . Note,
W depends only on um but not on umþ1. The right hand side of the
ith linear system of equations depends on the solutions of the first
ði� 1Þ systems. Thus, a main difference of ROW methods to implicit
h-schemes and DIRK methods is that it is not necessary to solve a
nonlinear system of equations in each discrete time but a fixed
number of linear systems of equations with the same matrix
M � csmW .

5.2. Application to DAEs of index 2

Consider again the DAE (8) and (9) and let

Ui :¼ sm

Xi

j¼1

cijkj; Pi :¼ sm

Xi

j¼1

cijlj; i ¼ 1; . . . ; s:

The ROW method (22) and (23) applied to (8) and (9) reads as
follows:

M � csm@UFðtm;um;pmÞ �csm@PFðtm;um;pmÞ
�csm@UGðtm;umÞ 0

� �
Ui

Pi

� �

¼ csm
Fðtm þ aism; bUi; bPiÞ

Gðtm þ aism; bUiÞ

 !
� c M

Pi�1

j¼1
cijUj

0

0@ 1A
þ ccis2

m

_Fðtm;um;pmÞ
_Gðtm;umÞ

� �
;

bUi ¼ um þ sm

Xi�1

j¼1

~aijUj; bPi ¼ pm þ sm

Xi�1

j¼1

~aijPj; i ¼ 1; . . . ; s;

umþ1 ¼ um þ
Xs

i¼1

bi

Xi

j¼1

cijUj

 !
; pmþ1 ¼ pm þ

Xs

i¼1

bi

Xi

j¼1

cijPj

 !
:

5.3. Application to the Navier–Stokes equations

The derivatives with respect to the phase space variable are gi-
ven by [18, pp. 53/54],

@u1 F1 ¼ mD� @xu1 � u1@x � u2@y; @u2 F1 ¼ �@yu1;

@pF1 ¼ �@x; @u1 F2 ¼ �@xu2;

@u2 F2 ¼ mD� u1@x � u2@y � @yu2; @pF2 ¼ �@y;

@u1 G ¼ �@x; @u2 G ¼ �@y:

Defining the matrices

ðJ11Þij :¼ ðAÞij þ ð@xuð1Þm Þuj;ui

� �
; ðJ12Þij :¼ ð@yuð1Þm Þuj;ui

� �
;

ðJ21Þij :¼ ð@xuð2Þm Þuj;ui

� �
; ðJ22Þij :¼ ðAÞij þ ð@yuð2Þm Þuj;ui

� �
;
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the algebraic form of a ROW method applied to the Navier–Stokes
equations reads as

M þ csmJ11 csmJ12 csmB1

csmJ21 M þ csmJ22 csmB2

csmBT
1 csmBT

2 0

0@ 1A Uð1Þi

Uð2Þi
Pi

0@ 1A

¼ csm

fð1Þðtm þ aismÞ � AðbUiÞbUð1Þi � B1
bPi

fð2Þðtm þ aismÞ � AðbUiÞbUð2Þi � B2
bPi

0

0B@
1CA� c

M
Pi�1

j¼1
cijU

ð1Þ
j

M
Pi�1

j¼1
cijU

ð2Þ
j

0

0BBBBB@

1CCCCCA
þ ccis

2
m

_fð1ÞðtmÞ
_fð2ÞðtmÞ

0

0@ 1A;

bUðkÞi ¼ uðkÞm þ sm

Xi�1

j¼1

~aijU
ðkÞ
j ; bPi ¼ pm þ sm

Xi�1

j¼1

~aijPj;

uðkÞmþ1 ¼ uðkÞm þ
Xs

i¼1

bi

Xi

j¼1

cijU
ðkÞ
j

 !
; pmþ1 ¼ pm þ

Xs

i¼1

bi

Xi

j¼1

cijPj

 !
;

i ¼ 1; . . . ; s; k 2 f1;2g. Note that Gðtm þ aism; bUiÞ ¼ 0 because
BT

1
bUð1Þi þ BT

2
bUð2Þi ¼ 0; i ¼ 1; . . . ; s.

5.4. Adaptive time step control

As for DIRK methods, an automatic step length control can be
implemented with the help of embedded methods which use the
coefficients aij and cij. Only the coefficients b̂i are new and there-
fore the computed values ki from (21) can be used to compute
ûmþ1.

5.5. Studied methods

A number of ROW methods were already included into the
numerical studies of Ref. [17]. Since a clear ranking of these meth-
ods could not be obtained in [17], all of them will be considered in
the numerical studies presented in Section 6. Moreover, some
additional ROW methods will be studied, for instance RODASP, a
fourth order, stiffly accurate method for linear PDEs from [28]
and ROSI2P1, a third order, L-stable W-method [26]. The consid-
ered ROW methods are summarized in Table 1. For a detailed
description of the methods which were studied already in [17],
including all coefficients, we refer to [17]. The coefficients of RO-
SI2P1 and RODASP, including their embedded schemes, are given
in Appendix A, Tables A.1 and A.2, respectively. The coefficients
of the embedded schemes of the other ROW methods are given
in Table A.3.
Table 1
ROW methods considered in the numerical studies.

Method Stages Order Remarks

ROS3P 3 3 From [19], A-stable
ROWDAIND2 4 3 From [21], stiffly accurate, only designed for

DAEs of index 2 and not for PDEs
ROS3Pw 3 3 From [25], A-stable
ROS34PW2 4 3 From [25], L-stable W-method, stiffly

accurate
ROS34PW3 4 3 From [25], A-stable W-method
RODASP 6 4 From [28], L-stable, stiffly accurate
ROSI2P1 4 3 From [26], L-stable, W-method, for PDAEs of

index 2
6. Numerical studies

The main goal of our studies consists in investigating the impact
of an adaptive time step control on the accuracy of the results and
the efficiency of the simulations. In order to keep the paper at a
reasonable length, we decided to perform our studies only at one
example and with a fixed discretization in space.

On the one hand, the considered example should be simple en-
ough such that it can be implemented easily in many codes and it
can serve as a benchmark problem. On the other hand, the flow de-
scribed by this example should posses some features which occur
in flows coming from applications. In our opinion, a good test prob-
lem fulfilling these requirements is the 2D flow around a circular
cylinder defined in [27]. Numerical studies at this problem can
be found, e.g. in [12,17,27].

The flow domain is presented in Fig. 1. The Navier–Stokes equa-
tions (1) have the right hand side f ¼ 0 and the final time is set to
be T ¼ 8. The inflow and outflow boundary conditions are given by

uðt; 0; yÞ ¼ uðt; 2:2; yÞ ¼ 0:41�2 sinðpt=8Þð6yð0:41� yÞ; 0Þm=s;
0 6 y 6 0:41:

On all other boundaries, the no-slip condition u = 0 m is prescribed.
The Reynolds number of the flow, based on the mean inflow, the
diameter of the cylinder and the prescribed viscosity
m ¼ 10�3 m2=s is 0 6 ReðtÞ 6 100.

Important parameters of flows around bodies are the drag coef-
ficient cdðtÞ and the lift coefficient clðtÞ at the body. These coeffi-
cients can be computed by

cdðtÞ ¼ �20½ðut ;vdÞ þ ðmru;rvdÞ þ ððu � rÞu;vdÞ � ðp;r � vdÞ�;
clðtÞ ¼ �20½ðut ;vlÞ þ ðmru;rvlÞ þ ððu � rÞu;vlÞ � ðp;r � vlÞ�

for any function vd 2 ðH1ðXÞÞ2 with ðvdÞjS ¼ ð1;0Þ
T
; S being the

boundary of the body, and vd vanishes on all other boundaries
and for any test function vl 2 ðH1ðXÞÞ2 with ðvlÞjS ¼ ð0;1Þ

T and vl

vanishes on all other boundaries, respectively. The numerical stud-
ies in [12,27] showed that the accurate computation of the lift coef-
ficient is more difficult than of the drag coefficient. A third
benchmark parameter defined in [27] is the difference of the pres-
sure between the front and the back at the cylinder at the final time
Dpð8Þ :¼ pð8; 0:15;0:2Þ � pð8; 0:25; 0:2Þ.

The discretization in space was performed with quadrilateral fi-
nite elements, see Fig. 2 for the initial grid, using the inf–sup stable
Q2=Pdisc

1 pair of finite element spaces, see Section 1 for the motiva-
tion of this choice. It is known [15] that for an accurate computa-
tion of the coefficients at the body, the circular boundary has to be
approximated in an appropriate way, e.g. using isoparametric finite
elements. The computations were performed on a mesh with
0.41 m

2.2 m

outletinlet
0.1 m

0.15 m

0.15 m S

Fig. 1. Channel with a cylinder.

Fig. 2. Initial grid (level 0).
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107,712 velocity degrees of freedom and 39,936 pressure degrees
of freedom.

For assessing the accuracy of the results, reference values for
the coefficients are necessary. The reference values for
cd;max; cl;max and Dpð8Þ given in [12] are based on simulations with
the Crank–Nicolson scheme and the fractional-step h-scheme (both
second order) with the fixed time step Dt ¼ 0:00125. In these sim-
ulations, finite element discretizations with second order velocity
and first order pressure with around half a million of degrees of
freedom were used. Since our numerical studies will use some-
times a similar fineness of the discretizations, we performed a sim-
ulation with the third order ROW scheme ROS3Pw and the fixed
time step Dt ¼ 0:00125 (6400 time steps) on a grid with
2,347,776 degrees of freedom in space. The numerical studies be-
low will show the good accuracy of ROS3Pw. A comparison of
the new reference values with the reference values from [12] is
presented in Table 2. It can be seen that the differences are rather
small.

A core of Linux cluster with a 3 GHz system processor was used
for the computations. The linear systems were solved directly with
an LU-decomposition using the package UMFPACK [4,5]. The fixed
point iteration for the h-schemes and the DIRK schemes was
stopped if the Euclidean norm of the residual vector was smaller
than 10�8. The simulations were performed with the code MooN-
MD [16].

The adaptive time step control is based on two solutions which
are computed with schemes of different order. The difference of
these solutions is measured with some functional, see (17). A stan-
dard approach consists in using some norm:

rmþ1 :¼ kðumþ1;pmþ1Þ � ðûmþ1; p̂mþ1Þk: ð24Þ

However, for flows around obstacles, also the difference of flow
coefficients like

rmþ1 :¼ jcdðumþ1; pmþ1Þ � cdðûmþ1; p̂mþ1Þj or
rmþ1 :¼ jclðumþ1; pmþ1Þ � clðûmþ1; p̂mþ1Þj

ð25Þ

would be feasible choices. Finally, it is also possible to define rmþ1 as
a linear combination of the proposals (24) and (25). To keep the pa-
per at a reasonable length, we consider here only the definition (24)
with k � k being the Euclidean vector norm. Other approaches like
(25) will be explored in forthcoming studies. The safety factor in
(16) was set to be q ¼ 0:9. Additionally, the length of the time step
was restricted to the interval ½5e� 4;0:1�.

The application of an adaptive time step control pursues two
goals: to increase the accuracy as well as the efficiency of the sim-
ulations. These two aspects have to be considered in the evaluation
of the numerical results.

The accuracy is measured with respect to the computed refer-
ence values. For the drag and lift coefficient, the Euclidean distance
to the reference value (in the coefficient-time-plane) is used. For
instance, let tref

d;max; c
ref
d;max

� �
be the reference drag, see Table 2, and

ðtd;max; cd;maxÞ be the value of some simulation, the error with
respect to the drag coefficient is defined by
Table 2
Comparison of reference values from [12] and from the computation with ROS3Pw
and 2,347,776 degrees of freedom (here).

Coefficient Computation Value Time

cref
d;max

[12] 2.950921575 3.93625
Here 2.950918381 3.93625

cref
l;max

[12] 0.47795 5.693125
Here 0.47787543 5.692500

Dpð8Þref [12] �0.1116
Here �0.11161567
errd :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tref
d;max � td;max

� �2
þ cref

d;max � cd;max

� �2
r

:

With respect to Dpð8Þ, the distance to the reference value is used.
The efficiency is measured in computing time because this is

the most important criterion in applications. A second measure
will be the number of performed time steps. In the evaluation, only
simulations will be considered whose computing time was less
than 500,000 s. It should be emphasized that the computing time
depends on the implementation of the methods. The used code
MooNMD is a flexible research code which is not tailored for
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1000 10000 100000

de
lta
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CPU Time
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Fig. 3. Computing times versus differences to reference values.



Table 5
Best methods with respect to lift coefficient.

Method TOL Time cl;max Error Points

ROS34PW3 1.0e�5 5.692574 0.4783535647 4.07e�4 12
ROSI2P1 5.0e�5 5.692586 0.4783225874 4.40e�4 12
ROWDAIND2 5.0e�3 5.692226 0.4783157020 5.17e�4 12
ROS3Pw 5.0e�5 5.692201 0.4783032054 5.41e�4 12
ROSI2P1 5.0e�6 5.692876 0.4783606393 5.44e�4 12
ROWDAIND2 5.0e�4 5.692880 0.4783606945 5.47e�4 12
ROS3P 5.0e�5 5.692470 0.4781503872 6.05e�4 12
ROS3Pw 1.0e�5 5.692977 0.4783611948 6.18e�4 12
ROS34PW3 1.0e�6 5.692979 0.4783613903 6.20e�4 12
ROWDAIND2 1.0e�3 5.693059 0.4783610276 6.84e�4 12
ROS3P 1.0e�5 5.693104 0.4783588544 7.22e�4 12
ROSI2P1 1.0e�5 5.693176 0.4783593009 7.83e�4 12
ROS3Pw 1.0e�4 5.693109 0.4781962762 8.26e�4 12

Table 6
Best methods with respect to pressure difference.

Method TOL Dpð8Þ Error Points

ROSI2P1 5.0e�5 �0.11161655 8.81e�7 4
ROSI2P1 1.0e�5 �0.11161659 9.18e�7 4
DIRK34 1.0e�6 �0.11161206 3.61e�6 4
ROSI2P1 5.0e�6 �0.11162077 5.10e�6 4
ROWDAIND2 5.0e�4 �0.11162159 5.92e�6 4
ROWDAIND2 1.0e�3 �0.11162167 6.00e�6 4
ROS34PW3 1.0e�6 �0.11162169 6.02e�6 4
ROS3Pw 1.0e�5 �0.11162188 6.21e�6 4
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solving a special class of problems or to use a special discretization.
Since all routines of the solution process (assembling, solver) were
the same for all considered methods, we think that the computing
times give nevertheless a rather fair comparison.

The errors with respect to the reference values versus comput-
ing time are presented in Fig. 3. The lines start left with the largest
tolerance TOL and they are drawn with respect to decreasing TOL
(decreasing sm for CN). Simulations in the upper part of the pic-
tures are inaccurate, simulations in the right hand part needed a
long computing time. The best simulations with respect to accu-
racy and efficiency can be found towards the lower left corner. It
can be already seen at these pictures that the h-schemes and DIRK
methods show a bad ratio of accuracy and efficiency. Several meth-
ods seem to have reached a minimal error plateau for the lift coef-
ficient and Dpð8Þ. Probably, the error in the spatial discretization
starts to dominate the temporal error.

We like to present also a quantitative evaluation of the simula-
tions. For this reason, all results are grouped into classes, from very
good to very bad. Each class obtains points from f2;1;0;�1;�2g.
These points are multiplied with a factor which weights the impor-
tance of the considered parameter. The definitions of the classes
and the weighting factors are given in Table 3.

It can be seen that we decided to weight accuracy somewhat
higher than efficiency, with the ratio 3:2, because we think that
the first goal should be to perform accurate simulations. It is
known [27,12] that the computation of the lift coefficient is consid-
erably more delicate than the computation of the drag coefficient.
For this reason, the lift has a larger weight. The pressure difference
seemed us to be the least important parameter. After having eval-
uated the simulations with respect to the accuracy, the worst sim-
ulations (accuracy points lower or equal than �5), were not
considered further, because the obtained results are practically
worthless. The best computing time and number of time steps
were determined among the remaining simulations. Results which
are close to the next better class got intermediate points. That
means, if the class is defined in the interval ðr0; r1�, an intermediate
Table 3
Definition of classes and weighting factors for the quantitative evaluation of the
results. The results of a simulation should be less or equal than the given numbers to
obtain the given points.

Points cd;max cl;max Dpð8Þ Time # Time steps

2 1e�4 1e�3 1e�5 2�best 2�best
1 1e�3 5e�3 1e�4 4�best 4�best
0 1e�2 1e�2 1e�3 8�best 8�best
�1 1e�1 5e�2 1e�2 16�best 16�best
�2 >1e�1 >5e�2 >1e�2 >16�best >16�best

Weight 4 6 2 6 2

Table 4
Best methods with respect to drag coefficient.

Method TOL Time cd;max Error Points

ROS3P 1.0e�5 3.936271 2.9509238408 2.21e�5 8
ROWDAIND2 5.0e�4 3.936224 2.9509238442 2.68e�5 8
ROWDAIND2 1.0e�3 3.936302 2.9509238423 5.25e�5 8
DIRK3 5.0e�6 3.936219 2.9507989116 1.24e�4 6
ROSI2P1 5.0e�6 3.936391 2.9509238516 1.41e�4 6
ROSI2P1 1.0e�4 3.936411 2.9509226624 1.61e�4 6
ROS34PW3 1.0e�6 3.936434 2.9509238499 1.84e�4 6
ROS3Pw 1.0e�5 3.936441 2.9509238485 1.91e�4 6
DIRK3 5.0e�5 3.936420 2.9508103135 2.01e�4 6
ROS3Pw 1.0e�4 3.936033 2.9509228400 2.17e�4 6
ROS34PW3 5.0e�6 3.936017 2.9509238130 2.33e�4 6
ROS34PW3 1.0e�5 3.935977 2.9509238140 2.73e�4 6
ROSI2P1 1.0e�5 3.936531 2.9509238396 2.81e�4 6
value is given if the result is in ðr0; r0 þ 0:25ðr1 � r0Þ�. For the worst
class, an intermediate value is given if the result is not worse than
1.25 times the limit for getting �1 point.

The evaluations with respect to the criteria from Table 3 are
presented in Tables 4–9. For the individual parameters, only the
best result are given in detail. Table 9 gives an overview on the
quality of all results for all methods.
ROS3P 1.0e�5 �0.11162203 6.36e�6 4
ROS34PW3 5.0e�6 �0.11162209 6.42e�6 4
ROS34PW3 1.0e�5 �0.11162239 6.72e�6 4
ROWDAIND2 5.0e�3 �0.11162342 7.75e�6 4
ROS3Pw 5.0e�5 �0.11162436 8.69e�6 4

Table 7
Best methods with respect to computing time (in s).

Method TOL CPU Points

ROWDAIND2 5.0e�2 3990 12
ROSI2P1 5.0e�4 5742 12
RODASP 1.0e�5 7042 12
ROS3Pw 5.0e�4 7519 12
RODASP 5.0e�6 8546 9
ROS34PW3 1.0e�4 12,149 6
RODASP 1.0e�6 12,980 6
RODASP 5.0e�7 14,336 6
ROS34PW2 5.0e�6 15,731 6

Table 8
Best methods with respect to needed time steps.

Method TOL nts Points

ROWDAIND2 5.0e�2 219 4
ROSI2P1 5.0e�4 300 4
DIRK34 1.0e�4 334 4
RODASP 1.0e�5 334 4
RODASP 5.0e�6 400 4
DIRK34 5.0e�5 406 4
ROS3Pw 5.0e�4 432 4
FS 1.0e�4 526 3



Table 9
Final evaluation of the simulations; for CN stands in the column TOL the length of the
equidistant time step.

No. Method TOL Drag Lift Dpð8Þ CPU nts Total

1 RODASP 5.0e�7 2 9 3 6 2 22
2 ROS3Pw 1.0e�4 6 12 3 0 0 21
3 ROWDAIND2 1.0e�2 4 9 3 3 1 20
4 ROS34PW3 5.0e�5 4 9 2 3 2 20
5 RODASP 1.0e�6 0 9 3 6 2 20
6 ROWDAIND2 5.0e�3 4 12 4 0 �1 19
7 ROSI2P1 1.0e�4 6 6 3 3 1 19
8 ROS3Pw 5.0e�4 2 �3 0 12 4 15
9 RODASP 1.0e�5 �2 0 1 12 4 15

10 RODASP 5.0e�6 �2 3 1 9 4 15
11 ROWDAIND2 5.0e�2 0 �3 1 12 4 14
12 ROS34PW3 1.0e�5 6 12 4 �6 �2 14
13 ROSI2P1 5.0e�5 2 12 4 �3 �1 14
14 ROS3P 5.0e�5 4 12 3 �6 0 13
15 ROS3Pw 5.0e�5 4 12 4 �6 �2 12
16 ROS34PW2 1.0e�6 4 6 2 0 0 12
17 ROS34PW2 5.0e�7 4 9 3 �3 �1 12
18 ROSI2P1 5.0e�4 �2 �3 1 12 4 12
19 ROS3P 1.0e�5 8 12 4 �12 �4 8
20 ROWDAIND2 1.0e�3 8 12 4 �12 �4 8
21 ROWDAIND2 5.0e�4 8 12 4 �12 �4 8
22 ROS3P 1.0e�4 0 6 2 �3 2 7
23 ROS34PW3 1.0e�4 0 �3 2 6 2 7
24 ROS34PW3 5.0e�6 6 9 4 �9 �3 7
25 ROS3Pw 1.0e�5 6 12 4 �12 �4 6
26 ROS34PW3 1.0e�6 6 12 4 �12 �4 6
27 ROSI2P1 1.0e�5 6 12 4 �12 �4 6
28 ROSI2P1 5.0e�6 6 12 4 �12 �4 6
29 ROS34PW2 5.0e�6 0 �3 1 6 1 5
30 DIRK34 5.0e�6 2 9 2 �12 1 2
31 FS 5.0e�6 4 9 2 �12 �2 1
32 DIRK34 1.0e�6 2 9 4 �12 �2 1
33 FS 1.0e�5 4 6 1 �12 0 �1
34 CN 1.0e�2 0 �3 0 0 2 �1
35 DIRK34 1.0e�5 0 6 1 �12 2 �3
36 DIRK34 1.0e�4 0 �3 3 �9 4 �5
37 CN 5.0e�3 0 0 0 �6 0 �6
38 DIRK34 5.0e�5 �2 0 3 �12 4 �7
39 DIRK3L 5.0e�6 2 3 1 �12 �2 �8
40 DIRK3 5.0e�5 6 �3 1 �12 �2 �10
41 DIRK3L 1.0e�5 2 �3 0 �9 0 �10
42 CN 2.5e�3 2 �3 2 �9 �2 �10
43 FS 5.0e�5 2 �3 0 �12 2 �11
44 DIRK3 5.0e�6 6 �3 1 �12 �4 �12
45 FS 1.0e�4 2 �6 0 �12 3 �13
46 DIRK3 1.0e�4 2 �6 0 �9 0 �13
47 DIRK3L 1.0e�6 4 �3 1 �12 �4 �14
48 DIRK3L 5.0e�7 4 �3 1 �12 �4 �14
49 CN 1.3e�3 2 �3 1 �12 �4 �16
50 ROS34PW2 1.0e�5 0 �6 0 �15 �15 �36
51 ROWDAIND2 1.0e�1 2 �12 3 �15 �15 �37
52 RODASP 5.0e�5 �2 �6 1 �15 �15 �37
53 RODASP 1.0e�4 0 �9 �1 �15 �15 �40
54 ROS3Pw 1.0e�3 2 �12 �1 �15 �15 �41
55 RODASP 5.0e�4 4 �12 �3 �15 �15 �41
56 ROSI2P1 1.0e�3 2 �12 �1 �15 �15 �41
57 CN 2.0e�2 0 �9 �2 �15 �15 �41
58 DIRK3L 5.0e�5 0 �12 �2 �15 �15 �44
59 ROS3P 5.0e�4 0 �12 �2 �15 �15 �44
60 ROS3P 1.0e�3 �2 �12 �1 �15 �15 �45
61 ROS34PW2 5.0e�5 �2 �12 �3 �15 �15 �47
62 ROS34PW3 5.0e�4 �2 �12 �4 �15 �15 �48
63 RODASP 1.0e�3 �4 �12 �3 �15 �15 �49
64 ROS34PW2 1.0e�4 �4 �12 �4 �15 �15 �50
65 ROS34PW3 1.0e�3 �4 �12 �4 �15 �15 �50

Table 10
Overview of the results obtained with the ROW methods with respect to the choice of
TOL.

Method To inaccurate Good Too slow

ROS3P P 1e� 4 f5e� 5g 6 1e� 5
ROWDAIND2 f5e� 2;1e� 2;5e� 3g 6 1e� 3
ROS3Pw f1e� 3g f5e� 4;1e� 4;5e� 5g 6 1e� 5
ROS34PW2 P 5e� 6 f1e� 5;5e� 7g
ROS34PW3 P 1e� 4 f5e� 5;1e� 5g 6 5e� 6
RODASP P 5e� 4 f1e� 5;5e� 6;1e� 6;5e� 7g
ROSI2P1 f1e� 3g f5e� 4;1e� 4;5e� 5g 6 1e� 5

Table 11
Overview of the accuracy obtained with the h-schemes and the DIRK methods with
respect to the choice of TOL; for CN: with respect to the length of the equidistant time
step.

Method Very accurate Medium accurate Inaccurate

FS 6 1e� 5 P 5e� 5
CN P 1:25e� 3
DIRK34 6 5e� 6 1e�5 P 5e� 5
DIRK3 6 5e� 5 1e�4
DIRK3L 5e�6 P 1e� 5
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RODASP (TOL = 5.00e-07, FSS = 2)
RODASP (TOL = 1.00e-05, FSS = 2)
ROS3Pw (TOL = 1.00e-04, FSS = 2)
ROS3Pw (TOL = 5.00e-04, FSS = 2)
DIRK34 (TOL = 5.00e-06, FSS = 2)

FS (TOL = 5.00e-06, FSS = 2)

Fig. 4. Evolution of the length of the time steps, schemes no. 1, 2, 8, 9, 30, 31 from
Table 9.
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The final results can be grouped into five classes: best (1–7),
good (8–18), medium (19–29), poor (30–49) and worthless (50–
65). Only ROW methods can be found in the first three classes.
The second class contains mainly simulations which are either very
fast, but rather inaccurate (8–11, 18), or very accurate but rather
slow (12–15, 17). The h-schemes and DIRK methods build the
fourth class.
We explored also an alternative way to define the reference val-
ues. The idea consists in considering the same spatial grid as in all
other simulations such that the error in space is the same. In order
to obtain a very small error in time, a high order method (RODASP)
with a very small time step ðsm ¼ 1:25e� 3Þ was used:

cd;max : ð2:950923849;3:93625Þ; cl;max : ð0:47834818;5:6925Þ;
Dpð8Þ ¼ �0:11162153:

With these reference values, exactly the same classes as in Table 9
were obtained. Thus, our evaluation of the results is the same for
either choice of the reference values. Only the order of the methods
within the classes changed somewhat.

The behavior of the ROW schemes with respect to the tolerance
TOL is summarized in Table 10. It can be observed that there is no
universal parameter TOL which yields good results for all ROW
methods. A good choice of TOL depends on the used method. A
rather wide range of good parameters has ROWDAIND2, ROS3Pw,
RODASP and ROSI2P1. The good results of RODASP are mainly
due to the efficiency of the method, in particular for
TOL 2 f1e� 5;1e� 6g. The computed results with this method do
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not belong to the most accurate ones. This method can be recom-
mended if fast simulations are necessary and an average accuracy
is sufficient. If a higher accuracy is required, ROS3Pw and ROWDA-
IND2 (with appropriate parameter TOL) seem to be good choices.
The methods ROS34PW2 and ROS3P have no result in the best
group.

The behavior of the h-schemes and the DIRK schemes with re-
spect to the accuracy is summarized in Table 11. It can be observed
that there are methods (FS, DIRK34) and choices of TOL which lead
to very accurate results. Their rather bad rating is due to their long
computing times. Also the inaccuracy of CN compared to the other
methods becomes obvious. The averaged number of iterations in
the fixed point iteration was 1.6 or below (sometimes very close
to 1) for small TOL and between 2 and 2.5 for larger TOL. These
numbers have to be multiplied by the number of stages for the
DIRK methods and by 3 for FS to obtain the averaged number of
Table A.1
Coefficients of ROSI2P1 and its embedded method.

c ¼ 4:3586652150845900e� 1
a21 ¼ 5:0000000000000000e � 1 c21 ¼ �5:0000000000000000e � 1
a31 ¼ 5:5729261836499822e� 1 c31 ¼ �6:4492162993321323e� 1
a32 ¼ 1:9270738163500176e� 1 c32 ¼ 6:3491801247597734e� 2
a41 ¼ �3:0084516445435860e� 1 c41 ¼ 9:3606009252719842e� 3
a42 ¼ 1:8995581939026787eþ 0 c42 ¼ �2:5462058718013519e� 1
a43 ¼ �5:9871302944832006e� 1 c43 ¼ �3:2645441930944352e� 1
b1 ¼ 5:2900072579103834e � 2 b̂1 ¼ 1:4974465479289098e� 1
b2 ¼ 1:3492662311920438eþ 0 b̂2 ¼ 7:0051069041421810e� 1
b3 ¼ �9:1013275270050265e � 1 b̂3 ¼ 0:0000000000000000e þ 0
b4 ¼ 5:0796644892935516e� 1 b̂4 ¼ 1:4974465479289098e� 1

Table A.2
Coefficients of RODASP and its embedded method.

c ¼ 2:5000000000e � 1
a21 ¼ 7:5000000000e� 1 c21 ¼ �7:5000000000e � 1
a31 ¼ 8:6120400814e� 2 c31 ¼ �1:3551200000e� 1
a32 ¼ 1:2387959919e� 1 c32 ¼ �1:3799200000e� 1
a41 ¼ 7:7403453551e� 1 c41 ¼ �1:2560800000eþ 0
a42 ¼ 1:4926515495e� 1 c42 ¼ �2:5014500000e� 1
a43 ¼ �2:9419969046e� 1 c43 ¼ 1:2209300000eþ 0
a51 ¼ 5:3087466826eþ 0 c51 ¼ �7:0731800000eþ 0
a52 ¼ 1:3308921400eþ 0 c52 ¼ �1:8056500000eþ 0
a53 ¼ �5:3741378117eþ 0 c53 ¼ 7:7438300000eþ 0
a54 ¼ �2:6550101103e� 1 c54 ¼ 8:8500300000e� 1
a61 ¼ �1:7644376488eþ 0 c61 ¼ 1:6840700000eþ 0
a62 ¼ �4:7475655721e� 1 c62 ¼ 4:1826600000e� 1
a63 ¼ 2:3696918469eþ 0 c63 ¼ �1:8814100000eþ 0
a64 ¼ 6:1950235906e� 1 c64 ¼ �1:1378600000e� 1
a65 ¼ 2:5000000000e� 1 c65 ¼ �3:5714300000e� 1
b1 ¼ �8:0368370789e� 2 b̂1 ¼ �1:7644376488eþ 0
b2 ¼ �5:6490613592e� 2 b̂2 ¼ �4:7475655721e� 1
b3 ¼ 4:8828563004e� 1 b̂3 ¼ 2:3696918469eþ 0
b4 ¼ 5:0571621148e� 1 b̂4 ¼ 6:1950235906e� 1
b5 ¼ �1:0714285714e� 1 b̂5 ¼ 2:5000000000e� 1
b6 ¼ 2:5000000000e � 1 b̂6 ¼ 0:0000000000eþ 0

Table A.3
Coefficients of the embedded methods for the other ROW methods.

ROS3P b̂1 ¼ 3:3333333333e�
ROWDAIND2 b̂1 ¼ 4:7990028004e�
ROS3PW b̂1 ¼ �1:7863279495e
ROS34PW2 b̂1 ¼ 3:7810903145e�
ROS34PW3 b̂1 ¼ 3:1300297285e�
iterations per time step. There are several options for improving
the computing times, e.g. using a weaker stopping criterion in
the fixed point iteration (which might have negative consequences
for the accuracy) or to construct better initial guesses for the fixed
point iteration. The study of these options is beyond the scope of
this paper. At any rate, for small TOL, which led to the most accu-
rate results, not more than the factor 1.6 could be saved.

Fig. 4 provides information on the evolution of the length of the
time steps for two methods of the best class (nos. 1, 2), two fast but
comparatively inaccurate methods of the second class (nos. 8, 9)
and two accurate methods of the fourth class (nos. 30, 31). The
most methods used rather large time steps in the first half of the
time interval. The vortex shedding starts at around 3.5 (non-
dimensionalized) s [12], which resulted in a rather strong decrease
of the time steps. Only ROS3Pw (TOL 1e�4) used already a small
time step in the first half, which was also sufficient to simulate
the vortex shedding. By far the smallest time steps for computing
the vortex shedding were needed by FS.

7. Summary and outlook

A number of different time stepping schemes for the instation-
ary Navier–Stokes equations were assessed at a laminar 2D flow
around a cylinder. The emphasis of the numerical studies was on
the effects of using an adaptive time step control with respect to
the accuracy of the results and to the efficiency of the simulations.

A main observation is that several ROW schemes clearly outper-
formed standard approaches (h-schemes, DIRK schemes), in partic-
ular the popular Crank–Nicolson scheme with an equidistant time
step. The results depend much on the tolerance TOL for the adap-
tive choice of the length of the time step. Different methods pos-
sessed in general different appropriate values of TOL. For good
parameters TOL, RODASP showed a high efficiency combined with
an average accuracy. ROS3Pw and ROWDAIND2 produced very
accurate results with medium efficiency.

The investigations of adaptive time stepping schemes have to
be continued in several directions. Instead of using the Euclidean
vector norm of the difference of two solutions as criterion, differ-
ences in functionals of interest have to be considered. Also, the
study of 3D flows, in particular turbulent flows, is of great interest.
A main difference concerning the efficiency will be that it is not
longer advisable to use a sparse direct solver for the linear systems
in 3D. Such solvers become inefficient because of the considerably
larger fill-in. Instead, iterative solvers have to be use, like multigrid
methods [13–15]. That means, the ROW methods lose the advan-
tage that they need only one LU-decomposition of the system ma-
trix and the second to s-th system solve are much cheaper than the
first one.

Appendix A. Coefficients of some ROW methods and all
embedded ROW methods

The appendix presents the coefficients of the schemes ROSI2P1,
RODASP and of all embedded ROW methods. The coefficients of the
other ROW methods can be found in [17].
1, b̂2 ¼ 3:3333333333e� 1, b̂3 ¼ 3:3333333333e� 1

1, b̂2 ¼ 5:1762038112e� 1, b̂3 ¼ 2:4793388430e� 3, b̂4 ¼ 0:0000000000e þ 0

� 1, b̂2 ¼ 3:3333333333e� 1, b̂3 ¼ 8:4529946162e� 1

1, b̂2 ¼ �9:6042292212e� 2, b̂3 ¼ 5:0000000000e� 1, b̂4 ¼ 2:1793326075e� 1

1, b̂2 ¼ �2:8946895245e� 1, b̂3 ¼ 9:7646597959e� 1, b̂4 ¼ 0:0000000000eþ 0
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