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Abstract

This paper presents a numerical study of two ways for discretizing and linearizing the time-dependent incompressible Navier–Stokes
equations. One approach consists in first applying a semi-discretization in time by a fully implicit h-scheme. Then, in each discrete time,
the equations are linearized by a fixed point iteration. The number of iterations to reach a given stopping criterion is a priori unknown in
this approach. In the second approach, Rosenbrock schemes with s stages are used as temporal discretization. The non-linearity of the
Navier–Stokes equations is treated internally in the Rosenbrock methods. In each discrete time, exactly s linear systems of equations
have to be solved. The numerical study considers five two-dimensional problems with distinct features. Four implicit time stepping
schemes and five Rosenbrock methods are involved.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The motion of an incompressible fluid is governed by the incompressible Navier–Stokes equations given (in dimension-
less form) by

ut � Re�1Duþ ðu � rÞuþrp ¼ f in ð0; T � � X;

r � u ¼ 0 in ½0; T � � X;

u ¼ g on ½0; T � � oX;

uð0; �Þ ¼ u0 in X;Z
X

p dx ¼ 0 in ½0; T �.

ð1Þ

Here, u is the velocity, u0, the initial velocity, p, the pressure, f, represents body forces, g, the given Dirichlet boundary data,
[0,T] is a given time interval and X � Rd , d 2 {2, 3}, a domain. The Navier–Stokes equations posses as parameter the Rey-
nolds number Re. Depending on Re, different flow regimes are described with (1). If Re is sufficiently small and the data in
(1) do not depend on the time, (u,p) represent a stationary flow field. For larger Re, the flow is time-dependent and laminar;
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and for large Re, the flow becomes turbulent. The accurate and fast solution of the Navier–Stokes equations is the core of
many numerical simulations, e.g., in the simulation of crystal growth [1] or of fuel cells [2].

The numerical solution of the time-dependent Navier–Stokes equations requires their discretization in time and space as
well as a linearization. There are much different approaches for all of these components. A large number of them can be
found in [3].

This paper presents numerical studies for the Navier–Stokes equations in the case of two-dimensional laminar time-
dependent flows. The concentration on laminar flows (instead of turbulent ones) avoids the use of a turbulence model.
The turbulence model would be an additional factor which influences the computational results. Even for the two-dimen-
sional laminar regime, the question of an optimal discretization approach is not yet answered.

The most important requirements for the numerical solution of the Navier–Stokes equations are accuracy and efficiency.
It turned out in the last decade that for accurate results temporal discretizations of at least second order [4,5] and spatial
discretizations with at least second-order velocity and first-order pressure [4,6,7,5] should be used. In the numerical studies
presented in this paper, always the Q2=P disc

1 finite element discretization is applied which fulfills this order condition. The
use of even higher order discretizations in space leads to severe difficulties in the solution of the arising discrete problems,
e.g., see [7,8]. Thus, the second requirement, a fast solution of (1), will not be met for such discretizations. Also the use of
explicit time stepping schemes, whose length of the time step is restricted by the CFL condition results in general in an
inefficient solution process, [4]. There are various other schemes for solving time-dependent (partial) differential equations
like the generalized-a method, the linear continuous in time finite element scheme, and constant and linear discontinuous in
time finite element schemes. An analytic study of these methods applied to a stabilized formulation of (1) can be found in
[9].

This paper presents a numerical comparison of two approaches:

• applying first a semi-discretization in time with an implicit h-scheme; applying second a fixed point iteration as linear-
ization in each discrete time; discretizing third the linear problem in space with a finite element method;

• applying first a Rosenbrock scheme with s stages as semi-discretization; the solution of the non-linear problem requires
then s solutions of linear systems in each discrete time; the linear systems are discretized with a finite element method.

These approaches are described in detail in Sections 2 and 3, respectively. Five examples with distinct features have been
chosen for the numerical studies which are presented in Section 4. The results are summarized in Section 5.
2. Implicit h-schemes as semi-discretization in time followed by a fixed point iteration

This approach uses for the discretization of (1) the following strategy:

(i) Semi-discretization of (1) in time. An implicit time stepping scheme will be applied first. The semi-discretization in
time leads in each discrete time step to a non-linear system of equations.

(ii) Variational formulation and linearization. The non-linear system of equations is reformulated as variational problem
and the non-linear variational problem is linearized by a fixed point iteration.

(iii) Discretization of the linear systems in space. The linear system of equations arising in each step of the fixed point iter-
ation is discretized by a finite element method using an inf–sup stable pair of finite element spaces.

The individual steps in this strategy are described in detail now.
Let Dtn be the current time step from tn�1 to tn, i.e., Dtn = tn � tn�1. We denote quantities at time level tk by a subscript k.

To describe the time stepping scheme for the incompressible Navier–Stokes equations (1), a general time step of the form

uk þ h1Dtn½�Re�1Duk þ ðuk � rÞuk� þ Dtkrpk

¼ uk�1 � h2Dtn½�Re�1Duk�1 þ ðuk�1 � rÞuk�1� þ h3Dtnfk�1 þ h4Dtnfk;

r � uk ¼ 0

ð2Þ

is introduced, with the parameters h1, . . . ,h4. The time step (2) allows the implementation of a number of time stepping
schemes by one single formula and the choice between the schemes by setting four parameters.

Three well-known one-step h-schemes are obtained by appropriate choices of these parameters, see Table 1.
The fractional-step h-scheme, [10,11], is obtained by three suitable steps of form (2). We want to present two variants of

this scheme. Let

h ¼ 1�
ffiffiffi
2
p

2
; ~h ¼ 1� 2h; s ¼

~h
1� h

; g ¼ 1� s.



Table 1
One-step h-schemes

h1 h2 h3 h4 tk�1 tk Dtk

Forward Euler scheme 0 1 1 0 tn�1 tn Dtn

Backward Euler scheme (BWE) 1 0 0 1 tn�1 tn Dtn

Crank–Nicolson scheme (CN) 0.5 0.5 0.5 0.5 tn�1 tn Dtn

Table 2
The two variants of the fractional-step h-schemes

h1 h2 h3 h4 tk�1 tk Dtk

FS0 sh gh gh sh tn�1 tn�1 + hDtn hDtn

g~h s~h s~h g~h tn�1 + hDtn tn � hDtn
~hDtn

sh gh gh sh tn � hDtn tn hDtn

FS1 sh gh h 0 tn�1 tn�1 + hDtn hDtn

g~h s~h 0 ~h tn�1 + hDtn tn � hDtn
~hDtn

sh gh h 0 tn � hDtn tn hDtn
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The two variants, FS0 and FS1, are presented in Table 2. FS1 requires the evaluation of f only at the times tn�1 and
tn � hDtn whereas FS0 needs the evaluation of f in addition at tn�1 + hDtn and at tn. Both variants are second-order
schemes but FS1 does not integrate second-order polynomials (with respect to t) exactly. However, most of other funda-
mental properties, like stability, are the same for both variants, [12].

There are a number of investigations of the time discretizations introduced above applied to the Navier–Stokes equa-
tions, see Gresho and Sani [3, Section 3.16] or Emmrich [13, Section 4.1] for a survey of the present state of art. The Crank–
Nicolson scheme was studied by Temam [14], Heywood and Rannacher [15] and Bause [16] for the already spatially dis-
cretized Navier–Stokes equations (with a finite element method). One can prove, under a number of assumptions on the
smoothness of the data, that the error between the time discrete and the time-continuous finite element velocity in
L1(0, T;L2(X)) behaves like (Dt)2 for the equidistant time step Dt. The fractional-step h-scheme was investigated analyti-
cally by Klouček and Rys [17] and Müller-Urbaniak [12]. A second-order error estimate similar to the Crank–Nicolson
scheme was proved in [12].

The Crank–Nicolson and the fractional-step h-scheme are widely used in the numerical solution of the incompressible
Navier–Stokes equations, [18,5]. The Crank–Nicolson scheme is A-stable whereas the fractional-step h-scheme is even
strongly A-stable. That means, the Crank–Nicolson scheme may lead to numerical oscillations in problems with rough ini-
tial data or boundary conditions. These oscillations are damped out only if sufficiently small time steps are used. Compared
to the fractional-step h-scheme, a smaller time step might be necessary for the Crank–Nicolson scheme to ensure
robustness.

The solution of (2) will be approximated by a finite element method. Finite element methods are popular and successful
spatial discretizations used in computational fluid dynamics. The basis of the finite element method is a variational formu-
lation of (2). For simplicity, we will consider the case that (1) is equipped with no-slip or homogeneous Dirichlet boundary
conditions since in this case ansatz and test spaces are the same in the variational formulation. Let V ¼ ðH 1

0ðXÞÞ
2,

Q ¼ L2
0ðXÞ. The derivation of the variational problem is done in the usual way by multiplying the equations in (2) with test

functions, integrating over X and applying integration by parts. The variational problem is to find (uk,pk) 2 (V,Q) such
that for all (v,q) 2 (V,Q)

ðuk; vÞ þ h1Dtn½ðRe�1ruk;rvÞ þ ððuk � rÞuk; vÞ� � Dtkðpk;r � vÞ
¼ ðuk�1; vÞ þ h3Dtnðfk�1; vÞ þ h4Dtnðfk; vÞ � h2Dtn½ðRe�1ruk�1;rvÞ þ ððuk�1 � rÞuk�1; vÞ�;

0 ¼ ðr � uk; qÞ;
ð3Þ

where (v,w) = �Xv Æ wdx.
The non-linear system (3) is solved iteratively starting with an initial guess ðu0

k ; p
0
kÞ. Given ðum

k ; p
m
k Þ, the iterate ðumþ1

k ; pmþ1
k Þ

is computed by solving

ðumþ1
k ; vÞ þ h1Dtn½ðRe�1rumþ1

k ;rvÞ þ ððum
k � rÞumþ1

k ; vÞ� � Dtkðpmþ1
k ;r � vÞ

¼ ðuk�1; vÞ þ h3Dtnðfk�1; vÞ þ h4Dtnðfk; vÞ � h2Dtn½Re�1ðruk�1;rvÞ þ ððuk�1 � rÞuk�1; vÞ�;
0 ¼ ðr � umþ1

k ; qÞ
ð4Þ
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for all (v,q) 2 (V,Q), m = 0,1,2, . . . That means, the linearization is done by a fixed point iteration. In a recent numerical
study for laminar time-dependent Navier–Stokes equations, [8], this fixed point has been proven to be superior to a Newton
type method for linearizing systems of type (3). The initial guess is chosen to be the solution of the previous time step
ðu0

k ; p
0
kÞ ¼ ðuk�1; pk�1Þ. Eqs. (4) are called Oseen equations. For larger Reynolds numbers, they are convection dominated.

Eqs. (4) are discretized by a finite element method (FEM). Let (Vh,Qh) be a pair of finite element spaces which fulfill the
inf–sup stability condition. Then, the finite element problem has the following form (indices k,m,m + 1 will be neglected):
Find (uh,ph) 2 Vh · Qh such that

ðuh; vhÞ þ h1Dtn½ðRe�1ruh;rvhÞ þ ððuh
old � rÞuh; vhÞ� � Dtkðph;r � vhÞ

¼ ðuh
k�1; v

hÞ þ h3Dtnðfh
k�1; v

hÞ þ h4Dtnðfh
k ; v

hÞ � h2Dtn½Re�1ðruh
k�1;rvhÞ þ ððuh

k�1 � rÞuh
k�1; vÞ�;

0 ¼ ðr � uh; qhÞ
ð5Þ

for all (vh,qh) 2 (Vh · Qh). Here, uh
old 2 V h is the current approximation of the velocity while fh

k�1 and fh
k are finite element

representations of the right-hand side at the times tk�1 and tk, respectively. Numerical experiences show that it is in general
much more efficient to solve (5) only approximately in each step of the fixed point iteration instead of solving it always
accurately [18,7]. In the computations presented in this paper, the solution of (5) was stopped after having reduced the
Euclidean norm of the initial residual by the factor 10.
3. The vertical method of lines

The Navier–Stokes equations (1) can be written in the abstract form

M _w ¼ F ðt;wÞ; wðt0Þ ¼ w0 ð6Þ

with w = (u,p)T and _w denotes the derivative of w with respect to time. If the square matrix M is non-singular, (6) is an
implicit ordinary differential equation (ODE). However, due to the incompressible constraint, M is singular for the Na-
vier–Stokes equations and (6) is a differential algebraic equation (DAE).

There are many solvers known for solving implicit ODEs or DAEs of form (6). However, (6) is often stiff. Thus, explicit
solvers will fail generally when they are applied. The use of implicit methods becomes necessary. Fully implicit Runge–
Kutta methods (IRK-methods) are one attempt to approximate the solution of (6). They have very good stability proper-
ties, but require in general the solution of non-linear equations. Hence, IRK-methods are rather expensive schemes. There
are approaches which require only the solution of one linear system in each time step like linearly implicit RK-methods
(LIRK-methods), adaptive RK-methods or the popular Rosenbrock methods. The price of the smaller numerical costs
in these schemes is a reduced stability in comparison to IRK-methods. Furthermore, the Jacobian has to be computed.
If so-called W-methods are used then only an approximation of the Jacobian matrix is needed. It is possible to integrate
(6) with a fixed Jacobian calculated at some previous time step. Of course, the convergence of a W-method can be accel-
erated if this matrix is a good approximation of the Jacobian, for example Ostermann created Rosenbrock methods with
J = ouF + O(Dtn) (i.e., [19]). Standard books on this topic are [20,21]. In [21], one can find many information about the
classification of W-methods.

We will concentrate in our numerical studies on Rosenbrock methods. It is well known that solvers for (6) may have
order reduction if they are applied to a semi-discretized parabolic problem. Rosenbrock methods can avoid this order
reduction if some additional conditions are fulfilled. However, many Rosenbrock solvers need the Jacobian and the time
derivative of the right-hand side F in each discrete time.

In the remainder of this section, we will describe the application of Rosenbrock methods to the Navier–Stokes equations
(1) in detail.

3.1. The semi-discretization of the Navier–Stokes equations in space

First, the Navier–Stokes equations (1) are semi-discretized in space with a finite element method. For simplicity of pre-
sentation, we consider only the case of homogeneous Dirichlet boundary conditions. Writing (1) component-wise

_u1 � Re�1Du1 þ u1oxu1 þ u2oyu1 þ oxp ¼ f1; ð7Þ
_u2 � Re�1Du2 þ u1oxu2 þ u2oyu2 þ oyp ¼ f2; ð8Þ
oxu1 þ oyu2 ¼ 0 ð9Þ

with u = (u1,u2)T, multiplying (7)–(9) by test functions v = (v1,v2)T 2 V, q 2 Q, integrating over X and applying integration
by parts, we obtain the following weak problem: Find (u,p) 2 L2(0, T;V) · L2(0,T; Q) with u = (u1,u2)T such that a.e. in
(0,T)
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ð _u1; v1Þ þ Re�1ðru1;rv1Þ þ ðu1oxu1 þ u2oyu1; v1Þ þ ðoxp; v1Þ ¼ ðf1; v1Þ;
ð _u2; v2Þ þ Re�1ðru2;rv2Þ þ ðu1oxu2 þ u2oyu2; v2Þ þ ðoyp; v2Þ ¼ ðf2; v2Þ;
ðu1; oxqÞ þ ðu2; oyqÞ ¼ 0

holds for all (v,q) 2 V · Q. The finite element method approximates the solution of the weak problem in some finite dimen-
sional subspaces Vh � V and Qh � Q. Let Vh = Wh · Wh, fu1; . . . ;uNu

g be a basis of Wh and fw1; . . . ;wNp
g be a basis of Qh.

The following matrices and vectors are defined:

ðMÞij ¼ ðuj;uiÞ; i; j ¼ 1; . . . ;N u;

ðA11Þij ¼ Re�1ðruj;ruiÞ þ ðu1oxuj þ u2oyuj;uiÞ; i; j ¼ 1; . . . ;N u;

ðA22Þij ¼ ðA11Þij; i; j ¼ 1; . . . ;N u;

ðB1Þij ¼ ðoxwj;uiÞ; i ¼ 1; . . . ;N u; j ¼ 1; . . . ;Np;

ðB2Þij ¼ ðoywj;uiÞ; i ¼ 1; . . . ;N u; j ¼ 1; . . . ;Np;

ðfkÞi ¼ ðfk;uiÞ; i ¼ 1; . . . ;N u; k ¼ 1; 2.

With these settings, we get the so-called MOL-DAE (MOL—method of lines)

M 0 0

0 M 0

0 0 0

0
B@

1
CA

_u1

_u2

_p

0
B@

1
CA ¼

f1

f2

0

0
B@

1
CA�

A11 0 B1

0 A22 B2

BT
1 BT

2 0

0
B@

1
CA

u1

u2

p

0
B@

1
CA

or shorter

H _w ¼ �AðwÞwþ f ¼: F ðt;wÞ. ð10Þ
The differentiation index of the MOL-DAE (10) is 2, see [22]. In [23], it is shown that the perturbation index equals also
to 2.

3.2. General Rosenbrock methods

Let Dtn > 0 be the size of the time step from tn�1 to tn. An s-stage Rosenbrock method applied to (10) has the form

wnþ1 ¼ wn þ Dtn

Xs

i¼1

biKni

with

ðH � DtncAnÞKni ¼ F tn þ aiDtn;wn þ Dtn

Xi�1

j¼1

aijKnj

 !
þ DtnAn

Xi�1

j¼1

cijKnj þ DtnciCn; ð11Þ

where

Cn :¼ oF
ot
ðt;wÞ

����
t¼tn;w¼wn

and An is the Jacobian of F with respect to w at t = tn and w = wn. The coefficients of the method are c, ai, ci, cij, aij and bi.
In each time step, s linear systems with the same matrix have to be solved to compute Kn1, . . . ,Kns. However, the right-hand
side of the (i + 1)th system depends on the solution of the first to the ith system, see (11). The parameters in (11) should be
chosen in such a way that some order conditions are fulfilled to obtain a sufficient consistency order. A derivation of these
conditions with Butcher series can be found in [20]. Here we only summarize the conditions up to order 3 for s = 3

b1 þ b2 þ b3 ¼ 1;

b2b2 þ b3b3 ¼ 1
2
� c;

b2a2
2 þ b3a2

3 ¼ 1
3
;

b3b2b32 ¼ 1
6
� cþ c2;

8>>><
>>>:

ð12Þ

where we use the abbreviations bij := aij + cij and bi :¼
Pi�1

j¼1bij. We get an additional consistency condition if we assume
that An is an O(Dtn) disturbance of the Jacobian

b2a2 þ b3a3 ¼
1

2
. ð13Þ
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If the Jacobian is replaced by an arbitrary matrix W we get

b3a32a2 ¼ 1
6
;

b3a32b2 ¼ 1
6
� c

2
;

b3b32a2 ¼ 1
6
� c

2
.

8><
>: ð14Þ

For stability reasons, the matrix W should be an approximation of the Jacobian. If a Rosenbrock method is applied to
semi-discretized PDEs, the following condition has to be satisfied to avoid order reduction:

bTBjð2B2e� a2Þ ¼ 0; 1 6 j 6 2 ð15Þ
with B :¼ ðbijÞ

s
i;j¼1, a2 :¼ ða2

1; . . . ; a2
s Þ

T and e :¼ ð1; . . . ; 1ÞT 2 Rs. With (12), the conditions (15) simplify to

b3b32a
2
2 ¼ 1

6
� 2

3
c;

c ¼ 1
2
þ 1

6

ffiffiffi
3
p

.

(
ð16Þ

For a third-order method with three stages, we get the algebraic condition

b2x22a
2
2 þ b3ðx32a

2
2 þ x33a

2
3Þ ¼ 1; ð17Þ

where ðxijÞsi;j¼1 ¼ B�1. A Rosenbrock method which satisfies (12) and (16) fulfills (17), see [24].
The stability function is given by

R0ðzÞ ¼ 1þ zbTðI � zBÞ�1e.

A Rosenbrock method satisfying

bsi ¼ bi; i ¼ 1; . . . ; s; and as ¼ 1 ð18Þ
is called stiffly accurate. Methods satisfying (18) yield asymptotically exact results for the problem _u ¼ kðu� uðtÞÞ þ _uðtÞ.

In the same way as for Runge–Kutta methods, the step size control can be done with an embedded formula. Therefore
the coefficients bi in (11) are replaced by different coefficients b̂i which yield a second solution ŵn of inferior order, in general
one order less. There are at least two possibilities to estimate the numerical error kwn � ŵnk which can be found in the
books [25,20]. In our numerical tests, we will not exploit the ability of the step length control since we like to compare
the Rosenbrock methods with the implicit h-schemes on the same meshes in space and time.

3.3. The Rosenbrock methods tested in numerical studies

We will study Rosenbrock methods with 3 and 4 stages in our numerical tests.
Lang and Verwer constructed in [24] the solver ROS3P. This method is of order 3, A-stable with R0ð1Þ ¼

ffiffiffi
3
p
� 1 � 0:73

and fulfills the order condition (17). The coefficients are
c = 7.886751346999999e�01
a21 = 1.000000000000000e+00
 c21 = �1.000000000000000e+00

a31 = 1.000000000000000e+00
 c31 = �7.886751346999999e�01

a32 = 0.000000000000000e+00
 c32 = �1.077350269000000e+00
^
b1 = 6.666666667000000e�01
 b1 ¼ 3:333333333000000e�01

b2 = 0.000000000000000e+00
 b̂2 ¼ 3:333333333000000e�01

b3 = 3.333333333000000e�01
 b̂3 ¼ 3:333333333000000e�01
ROWDAIND2 is a stiffly accurate solver of order 3 designed for index 2 problems, see [26], with the coefficients
c = 3.000000000000000e�01
a21 = 5.000000000000000e�01
 c21 = �1.121794871794876e�01

a31 = 2.800000000000000e�01
 c31 = 2.540000000000000e+00

a32 = 7.200000000000000e�01
 c32 = �3.840000000000000e+00

a41 = 2.800000000000000e�01
 c41 = 3.866666666666667e�01

a42 = 7.200000000000000e�01
 c42 = �7.200000000000000e�01

a43 = 0.000000000000000e+00
 c43 = 3.333333333333333e�02
^
b1 = 6.666666666666666e�01
 b1 ¼ 4:799002800355166e�01

b2 = 0.000000000000000e+00
 b̂2 ¼ 5:176203811215082e�01
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b3 = 3.333333333333333e�02
 b̂3 ¼ 2:479338842975209e�03

b4 = 3.000000000000000e�01
 b̂4 ¼ 0:000000000000000e+00
The third-order method ROS3Pw is a strongly A-stable method with R0ð1Þ ¼
ffiffiffi
3
p
� 1 � 0:73, see [27], and the

coefficients
c = 7.8867513459481287e�01
a21 = 1.5773502691896257e+00
 c21 = �1.5773502691896257e+00

a31 = 5.0000000000000000e�01
 c31 = �6.7075317547305480e�01

a32 = 0.0000000000000000e+00
 c32 = �1.7075317547305482e�01
^
b1 = 1.0566243270259355e�01
 b1 ¼ �1:7863279495408180e�01

b2 = 4.9038105676657971e�02
 b̂2 = 3.3333333333333333e�01

b3 = 8.4529946162074843e�01
 b̂3 = 8.4529946162074843e�01
ROS34PW2 is a stiffly accurate W-method of order 3, see [27], whose coefficients are
c = 4.3586652150845900e�01
a21 = 8.7173304301691801e�01
 c21 = �8.7173304301691801e�01

a31 = 8.4457060015369423e�01
 c31 = �9.0338057013044082e�01

a32 = �1.1299064236484185e�01
 c32 = 5.4180672388095326e�02

a41 = 0.0000000000000000e+00
 c41 = 2.4212380706095346e�01

a42 = 0.0000000000000000e+00
 c42 = �1.2232505839045147e+00

a43 = 1.0000000000000000e+00
 c43 = 5.4526025533510214e�01
^
b1 = 2.4212380706095346e�01
 b1 ¼ 3:7810903145819369e�01

b2 = �1.2232505839045147e+00
 b̂2 ¼ �9:6042292212423178e�02

b3 = 1.5452602553351020e+00
 b̂3 ¼ 5:0000000000000000e�01

b4 = 4.3586652150845900e�01
 b̂4 ¼ 2:1793326075422950e�01
ROS34PW3 is a strongly A-stable W-method of order 3 with R0(1) � 0.63. The coefficients are given by
c = 1.0685790213016289e+00
a21 = 2.5155456020628817e+00
 c21 = �2.5155456020628817e+00

a31 = 5.0777280103144085e�01
 c31 = �8.7991339217106512e�01

a32 = 7.5000000000000000e�01
 c32 = �9.6014187766190695e�01

a41 = 1.3959081404277204e�01
 c41 = �4.1731389379448741e�01

a42 = �3.3111001065419338e�01
 c42 = 4.1091047035857703e�01

a43 = 8.2040559712714178e�01
 c43 = �1.3558873204765276e+00
^
b1 = 2.2047681286931747e�01
 b1 ¼ 3:1300297285209688e�01

b2 = 2.7828278331185935e�03
 b̂2 ¼ �2:8946895245112692e�01

b3 = 7.1844787635140066e�03
 b̂3 ¼ 9:7646597959903003e�01

b4 = 7.6955588053404989e�01
 b̂4 ¼ 0:0000000000000000e+00
3.4. The implementation of the Rosenbrock methods

In the case of Navier–Stokes equations, we have

An ¼
J 11 J 12 B1

J 21 J 22 B2

BT
1 BT

2 0

0
B@

1
CA; Cn ¼

C1

C2

C3

0
B@

1
CA;
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where

ðJ 11Þij ¼ ðA11Þij þ ððoxu1Þuj;uiÞ; ðC1Þi ¼ ð _f 1;uiÞ;
ðJ 12Þij ¼ ððoyu1Þuj;uiÞ; ðC2Þi ¼ ð _f 2;uiÞ;
ðJ 21Þij ¼ ððoxu2Þuj;uiÞ; ðC3Þi ¼ 0;

ðJ 22Þij ¼ ðA22Þij þ ððoyu2Þuj;uiÞ.

We will transform the Rosenbrock method (11) to reduce the number of needed matrix-vector operations. For this reason,
the new variables

Uni ¼ Dtn

Xi

j¼1

cijKnj; i ¼ 1; . . . ; s

are introduced. Since cii = c > 0 and cij = 0 for j > i, the matrix C ¼ ðcijÞ
s
i;j¼1 is invertible and the Kni can be recovered from

the Uni via

Kni ¼
1

Dtn

Xi

j¼1

cijUnj; ðcijÞsi;j¼1 ¼ C�1.

Inserting this formula into (11) yields by a straightforward calculation

1

Dtnc
H � An

� �
Uni ¼ F tn þ aiDtn;wn þ

Xi�1

j¼1

aijUnj

 !
� H

Xi�1

j¼1

cij

Dtn
Unj þ DtnciotF ðtn;wnÞ ð19Þ

and

wnþ1 ¼ wn þ
Xs

i¼1

miUni

with the coefficients

ðaijÞsi;j¼1 ¼ ðaijÞsi;j¼1C
�1; ðm1; . . . ;msÞ ¼ ðb1; . . . ; bsÞC�1.

Because of the special form of the matrix H, see (11), the matrix-vector products with H in the right-hand side of (19) are
cheaper than the matrix-vector products with An in (11).

After rescaling, the system matrix of the Rosenbrock scheme (19) takes the form

M � DtncJ 11 �DtncJ 12 B1

�DtncJ 21 M � DtncJ 22 B2

BT
1 BT

2 0

0
B@

1
CA;

whereas the system matrix for the implicit h-schemes (5) looks like

M � Dtnh1A11 0 B1

0 M � Dtnh1A11 B2

BT
1 BT

2 0

0
B@

1
CA.

Thus, in the Rosenbrock methods one has to assemble and to store four sparse Nu · Nu matrices instead of only one such
matrix in the implicit h-schemes. This advantage of the implicit h-schemes will disappear if for the viscous term instead of
the gradient formulation (Re�1$uh,$vh) the deformation tensor formulation ð2Re�1DðuhÞ;DðvhÞÞ is used. The velocity
deformation tensor is the symmetric part of the velocity gradient. In the deformation tensor formulation, all four blocks
Aij, i, j 2 {1,2}, are non-zero and they are different (with A21 ¼ AT

12). The use of the deformation tensor formulation
becomes necessary if the Navier–Stokes equations are equipped with certain boundary conditions, e.g., slip boundary
conditions.
4. The numerical studies

The discretizations of the Navier–Stokes equations (1) described in the previous sections are studied in a number of
examples which possess different features:
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Example 4.1. The solution is known and the discretization error in space dominates.

Example 4.2. The solution is known and the discretization error in time dominates.

Example 4.3. The solution is known and the problem is very stiff in one component.

Example 4.4. A vortex decay problem computed with different values of the Reynolds number.

Example 4.5. A flow around a cylinder where the quantities of interest are the drag and the lift coefficient at the cylinder as
well as the difference of the pressure values in front and behind the cylinder.

In all numerical studies, the mapped Q2=P disc
1 finite element discretization on quadrilateral grids was used. That means,

the velocity is approximated by a continuous function which is piecewise biquadratic and the pressure by a discontinuous
piecewise linear function. This pair of finite element spaces is considered currently among the best performing ones in the
numerical simulation of incompressible flows, see [3,6,7]. The inf–sup stability condition for this pair of finite element
spaces is proven in [28]. In the temporal discretizations, always a uniform time step Dtn = Dt for all n was used. The linear
systems were solved with a preconditioned flexible GMRES method [29]. The preconditioner is a coupled multigrid method
with Vanka smoother which is described in detail in [6,7,30]. All computations were performed with the code MooNMD,
[31].

Examples 4.1–4.4 are defined on the unit square. In these examples, we used a grid consisting of squares of edge length h

with h = 1/64. The Q2=P disc
1 finite element discretization contains 33,282 degrees of freedom (d.o.f.) for the velocity and

12,288 d.o.f. for the pressure.
In Examples 4.1–4.4, we will study the velocity error in the semi-norm of L2(0, T;H1(X))

ku� uhkL2ð0;T ;H1ðXÞÞ ¼
Z T

0

kðru�ruhÞðtÞk2
L2ðXÞ dt

� �1=2

ð20Þ

and the pressure error in L2(0, T;L2(X))

kp � phkL2ð0;T ;L2ðXÞÞ ¼
Z T

0

kðp � phÞðtÞk2
L2ðXÞ dt

� �1=2

. ð21Þ

Some general comments to the results of the computational tests are collected in Section 4.6.

4.1. An example with a dominating space error

Let X = (0,1)2 and the solution of (1) given by

u1 ¼ sin t sinðpxÞ sinðpyÞ;
u2 ¼ sin t cosðpxÞ cosðpyÞ;

p ¼ sin t sinðpxÞ þ cosðpyÞ � 2

p

� �

with u = (u1,u2)T. The right-hand side f, the initial condition u0 and the non-homogeneous Dirichlet boundary conditions
are chosen such that (u1,u2,p)T is the closed form solution of (1) for the given Reynolds number. We will present compu-
tations with different Reynolds numbers. The final time is set to be T = 1. The spatial grid consisted of squares with edge
length h = 1/64. The fineness of the spatial grid is chosen in such a way that the discretization error in space will dominate
the discretization error in time already for rather large time steps (for the most methods). The computations were done for
the time steps Dt = 0.1 · 2�k, k = 0, . . . , 8.

The small Reynolds number case Re = 1. Fig. 1 presents the results for Re = 1. Considering the velocity error in
L2(0, T;H1(X)), it can be observed that for all schemes (except FS1) the velocity error reduces to the discretization error
in space for Dt = 0.1 · 2�k, k P 2. The best results for the pressure error in L2(0,T;L2(X)) are obtained with the stiffly accu-
rate method ROS34PW2 and ROWDAIND2. The errors for all h-schemes are much larger than for the Rosenbrock meth-
ods. The largest errors have FS1 and CN.

The higher Reynolds number case Re = 1000. The results for Re = 1000 are presented in Fig. 2. The velocity error in
L2(0, T;H1(X)) is reduced to the discretization error in space for most of the discretizations when Dt = 0.1 · 2�k, k P 2.
BWE is by far the most inaccurate scheme for all time steps. The situation for the pressure error in L2(0,T;L2(X)) is similar
as in the case Re = 1.
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Fig. 2. Example 4.1, results for Re = 1000.
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Fig. 1. Example 4.1, results for Re = 1.
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Summary of this example. If one is interested only in the velocity error in L2(0, T;H1(X)), then CN, FS0 and all of the
Rosenbrock schemes are comparable in accuracy for both Reynolds numbers. If the interest lies in the pressure error in
L2(0, T;L2(X)) or the error in the energy norm (square root of the sum of the velocity error squared and the pressure error
squared), then the accuracy of the Rosenbrock methods for large time steps is achieved by the other methods only for much
smaller time steps. If the pressure is of interest, the Rosenbrock methods are clearly to prefer to the other ones.

4.2. An example where only a discretization error in time occurs

Let T = 1 and X = (0,1)2. We consider (1) with Re = 1. The right-hand side f, the initial condition u0 and the non-homo-
geneous Dirichlet boundary conditions are chosen such that

u1ðx; yÞ ¼ t3y2;

u2ðx; yÞ ¼ t2x;

pðx; yÞ ¼ txþ y � ðt þ 1Þ=2

is the solution of (1). We used a mesh consisting of squares with edge length h = 1/64. Note that for any t the solution can
be represented exactly by the finite element functions. Hence, all occurring errors will results from the temporal discreti-
zation. As time steps, we used nt = 0.1 · 2�k, k = 0, . . . , 8.
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Fig. 3. Results for Example 4.2.
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Fig. 3 shows the results of the calculations. The best velocity error in L2(0,1;H1(X)) was obtained by the fractional-step
h-schemes FS0 and FS1 which differ only slightly. Also good results were produced by CN. All Rosenbrock methods
behave almost the same. They have for large time steps larger errors than CN, FS0 and FS1. For smaller time steps the
results of the Rosenbrock methods become better. BWE gave inaccurate results.

If we look at the pressure error in L2(0,1;L2(X)), we see that the difference between the results of the Rosenbrock
method is quite small. For large time steps, their errors are larger than the errors for the implicit h-schemes. The relation
changes for smaller time steps. It is interesting to note that there are large differences between FS0 and FS1 where FS0
performed much better.
4.3. A very stiff problem

A very popular example for a stiff ODE is the initial value problem

_u ¼ �ku; k� 1; uðt0Þ ¼ u0.

Explicit ODE solvers like explicit Runge–Kutta methods may have the problem that they cannot approximate in general
the solution for any step sizes. From the theory of ODEs it is known that the allowed step size is bounded by Dt < k�1.

In the following example, we include this problem into the second component of u with k = 50. Hence, we consider the
Navier–Stokes equations (1) with the solution

u1 ¼ t3y2;

u2 ¼ expð�50tÞx;

p ¼ ð10þ tÞ expð�tÞðxþ y � 1Þ

in X = (0, 1)2. The computations were carried out with Re = 1, T = 1 and a spatial grid consisting of squares of edge length
h = 1/64.

The computations were done for the time steps Dt = 0.1 · 2�k, k = 0, . . . , 8, see Fig. 4. Considering the velocity error in
L2(0, T;H1(X)), it can be observed that FS0 gives very good results for large step sizes and that ROS34PW2 and
ROS34PW3 give very good results for small step lengths. A similar observation can be made for the pressure error in
L2(0, T;L2(X)). For large step sizes, FS0 and FS1 gave the best results whereas all Rosenbrock yield very good results
for small step lengths. The most inaccurate results with respect to both, the velocity and the pressure, were computed with
BWE.

To summarize the results obtained in this example, FS0 behaves best for large time steps and all Rosenbrock methods
with the exception ROWDAIND2, for small time steps. This is due to the fact that ROWDAIND2 was not designed to
solve semi-discretized PDEs. The most inaccurate results were obtained with BWE.
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Fig. 4. Results for Example 4.3.
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4.4. A vortex decay problem

The following problem, which can be found in [32], is defined in X = (0, 1)2. The prescribed solution has the form

u1 ¼ � cosðnpxÞ sinðnpyÞ expð�2n2p2t=sÞ;
u2 ¼ sinðnpxÞ cosðnpyÞ expð�2n2p2t=sÞ;

p ¼ � 1

4
ðcosð2npxÞ þ cosð2npyÞÞ expð�4n2p2t=sÞ.

For the relaxation time s = Re, this is a solution of the Navier–Stokes equations (1) with f = 0 consisting of an array of
oppositely signed vortices which decay exponentially as t!1.

The right-hand side f, the initial condition u0 and the non-homogeneous Dirichlet boundary conditions are chosen such
that (u1,u2,p)T is the closed form solution of (1) for a given set of parameters. We will present computations for the relax-
ation time s = 1, the vortex configuration n = 4 and the final time T = 1 with different Reynolds numbers on a fixed spatial
grid consisting of squares with edge length h = 1/64.

The small Reynolds number case Re = 1. The computations were done for the time steps Dt = 0.05 · 2�k, k = 0, . . . , 6, see
Fig. 5 for the results. Concerning the velocity error in L2(0, T;H1(X)), one can observe that both fractional-step h-schemes
FS0 and FS1 give very good results. Also the results obtained with ROS34PW2 and ROWDAIND2 are among the best
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Fig. 5. Example 4.4, results for Re = 1.
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Fig. 6. Example 4.4, results for Re = 106.
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ones. The velocity error with CN was always larger than the velocity error of all Rosenbrock methods. Bad results are
obtained with BWE (with small step lengths). Similar observations can be made with respect to the pressure error in
L2(0, T;L2(X)).

The high Reynolds number case Re = 106. For Re = 106, we carried out computations with the time steps Dt = 0.01 · 2�k,
k = 0, . . . , 6. The results are presented in Fig. 6. For the largest time step, Dt = 0.01, the Rosenbrock methods did not con-
verge, ROS34PW3 even not for Dt = 0.005. Considering first the velocity error in L2(0, T;H1(X)), one can see that FS0, FS1
and all Rosenbrock schemes are similar accurate for finer time steps (k P 3). These schemes reached the level of the discret-
ization error in space for k = 4 (Rosenbrock schemes) or for k = 5 (FS0, FS1), respectively. The worst results were obtained
with BWE. Also CN was in comparison to the other methods rather inaccurate. With respect to the pressure error in
L2(0, T;L2(X)), we obtained the best results for coarse time steps with FS0. For small time steps, all Rosenbrock schemes
were more accurate than the h-schemes. In particular, ROS34PW2 was for all time steps slightly more accurate than the
other Rosenbrock methods. Again, FS0 computed more accurate results for the pressure than FS1. The most inaccurate
results were obtained with BWE.

Summary of this example. For large time steps, FS0 gave the best results for both Reynolds numbers. It is still a good
method for small time steps. The methods ROS34PW2 computed very accurate results for small time steps. Bad results, in
particular in the high Reynolds number case, are obtained with BWE, CN (velocity) and FS1 (pressure).

4.5. The flow around a cylinder

The flow around a cylinder which will be considered was defined as a benchmark problem in [4] and studied numerically
in detail in [5].

Fig. 7 presents the flow domain. The right-hand side of the Navier–Stokes equations (1) is f = 0, the final time is T = 8
and the inflow and outflow boundary conditions are given by

uðt; 0; yÞ ¼ uðt; 2:2; yÞ ¼ 0:41�2 sinðpt=8Þð6yð0:41� yÞ; 0Þ m s�1; 0 6 y 6 0:41.

On all other boundaries, the no-slip condition u = 0 is prescribed. The Reynolds number of the flow, based on the mean
inflow, the diameter of the cylinder and the prescribed viscosity m = 10�3 m2 s�1 is 0 6 Re(t) 6 100.

The coarsest grid (level 0) is presented in Fig. 8. All computations have been carried out on level 3 of the spatial grid
refinement resulting in 107,712 velocity d.o.f. and 39,936 pressure d.o.f. The time step was chosen to be Dt = 0.01.
Fig. 7. Example 4.5, the channel with the cylinder.
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Fig. 8. Example 4.5, the coarsest grid (level 0).
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The characteristic values of the flow are the drag coefficient cd(t) and the lift coefficient cl(t) at the cylinder. These coef-
ficients can be computed by

cdðtÞ ¼ �20½ðut; vdÞ þ ðmru;rvdÞ þ ððu � rÞu; vdÞ � ðp;r � vdÞ�;
clðtÞ ¼ �20 ðut; vlÞ þ ðmru;rvlÞ þ ððu � rÞu; vlÞ � ðp;r � vlÞ½ �

for any function vd 2 (H1(X))2 with (vd)jS = (1, 0)T and vd vanishes on all other boundaries and for any test function
vl 2 (H1(X))2 with (vl)jS = (0,1)T and vl vanishes on all other boundaries, respectively. Note, there is a misprint in these for-
mulas in [5] missing the term with ut. We will concentrate in the evaluation of the results on the lift coefficient because this
coefficient is much more sensitive than the drag coefficient. Another benchmark value in [4] is the difference of the pressure
between the front and the back at the cylinder at the final time p(8; 0.15,0.2) �p(8;0.25, 0.2). Reference values for this dif-
ference and the maximal values of the drag and the lift coefficient are given in [5].

Since the right-hand side of the Navier–Stokes equations vanishes, the schemes FS0 and FS1 are identical for this prob-
lem. We mark the results obtained with these schemes by FS.

Fig. 9 shows the lift coefficient as functions of time. In both graphs, also the reference curve from [5] is given. We see that
BWE produced the most inaccurate results. This is the only method which is, for this length of the time step, unable to
generate the correct oscillations in the lift coefficient. From the zoom of lift coefficient curve (right picture in Fig. 9) it
becomes obvious that all Rosenbrock methods produced results which differ only slightly and which are close to the ref-
erence curve. The best results were obtained by ROS34PW2, ROS34PW3 and ROWDAIND2.
Table 3
Pressure difference at t = 8, Dpref = �0.1116 from [5]

Methods Dp Dp � Dpref
Dp � Dpref

Dpref

����
����� 100%

BWE �1.17553e�01 �5.9531e�03 5.33e+00
CN �1.10304e�01 1.2957e�03 1.16e+00
FS �1.10170e�01 1.4301e�03 1.28e+00
ROS3P �1.11683e�01 �8.3245e�05 7.46e�02
ROWDAIND2 �1.11750e�01 �1.4972e�04 1.34e�01
ROS3Pw �1.11653e�01 �5.2525e�05 4.71e�02
ROS34PW2 �1.11570e�01 3.0263e�05 2.71e�02
ROS34PW3 �1.11572e�01 2.7619e�05 2.47e�02
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In Table 3, the pressure difference at time t = 8 is given. We present the value itself, its deviation from the reference value
given in [5] and the relative error. The best results were obtained with ROS34PW2 and ROW34PW3. All other Rosenbrock
methods produced quite accurate results which are much better than the results obtained with the implicit h-schemes. Also
for this value, the result from BWE is the most inaccurate one. One reason is probably the damping which is introduced by
BWE.
4.6. Some general remarks to the computational tests

Besides the accuracy of the results, the computing times are a second important measure of the efficiency of a method.
We have presented computations on fixed grids in time and space. As mentioned above, an s-stage Rosenbrock method

requires in each discrete time the solution of s saddle point problems. Example 4.5 shows that for accurate results, these
saddle point problems have to be solved accurately. In contrast, for the h-schemes, the number of saddle point problems
which must be solved in each discrete time is not known a priori and this number can be different for different discrete
times. This number depends on the difficulty of the given problem, the length of the time step and the stopping criterion
for the fixed point iteration.

In the examples presented in this paper, we could generally observe that BWE and CN were the fastest schemes. FS0 and
FS1 needed roughly twice as much computing time. A mutual comparison in the class of these h-schemes shows that the
ratio of error and computing time is often similar for CN and FS0. The Rosenbrock methods needed in general 3–4 times
the computing times of BWE and CN.

A very important tool for increasing the efficiency of time stepping schemes is an adaptive step length control. For the h-
schemes, Turek [18] proposes to use extrapolation techniques. However, he states that these techniques might be rather
expensive since additional time steps with the h-schemes have to be computed. For Rosenbrock methods, the use of embed-
ded methods for the step length control is possible, which is a very efficient approach. Thus, the Rosenbrock methods have
a good potential of increasing their efficiency if this type of step length control is applied.

A comprehensive study of the costs of the presented methods, including a step length control, for achieving a given accu-
racy will be subject to a forthcoming study.
5. Summary

The paper presented a numerical study of two approaches for the temporal discretization and the linearization of the
incompressible Navier–Stokes equations. One approach consists in using implicit h-schemes which are combined with a
fixed point iteration in each discrete time. The second approach uses Rosenbrock methods with s stages which require
the solution of s linear systems in each discrete time. The numerical tests were carried out at two-dimensional examples
on a fixed mesh in time and space.

An evaluation of the numerical results is presented in Table 4. Among the implicit h-schemes, the fractional-step h-
scheme type 0 (FS0) gave clearly the most accurate results. For the Crank–Nicolson scheme (CN), often the ratio of
the error and the computing time is comparable. If the computation of the right-hand side is not extraordinarily expensive,
FS0 should be preferred to FS1. In several examples, some h-schemes were more accurate than the Rosenbrock methods
for large time steps. But in general, in particular for small time steps, all Rosenbrock methods computed more accurate
results on the same grid in time and space (at the expense of larger computing times than the h-schemes). There is no clear
ranking among the Rosenbrock methods. For the considered examples, ROS34PW2 was always among the best perform-
ing ones.
Table 4
Evaluation of the computational studies: (++) best, (+) good schemes, (	) satisfactory, (�) bad, (��) very bad

Methods Example 4.1 Example 4.2 Example 4.3 Example 4.4 Example 4.5

Re = 1 Re = 1000 Re = 1 Re = 106

BWE � �� �� �� �� �� ��
CN � �� + 	 	 � +
FS0 	 � ++ + ++ + +
FS1 �� � + � ++ � +
ROS3P ++ ++ 	 ++ 	 + ++
ROWDAIND2 ++ ++ 	 + + ++ ++
ROS3Pw ++ ++ 	 ++ 	 + ++
ROS34PW2 ++ ++ 	 ++ + ++ ++
ROS34PW3 ++ ++ 	 ++ 	 + ++
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The best performing h-schemes (CN, FS0) and the Rosenbrock methods will be studied further. One point of interest is
to consider not only their accuracy but also their computational costs, in particular, when adaptive time-step control is
used. A second forthcoming study will explore the behavior of these methods for the three-dimensional incompressible
Navier–Stokes equations.
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Universität Heidelberg, Interdisziplinäres Zentrum für wissenschaftliches Rechnen, 1994.
[13] E. Emmrich, Analysis von Zeitdiskretisierungen des inkompressiblen Navier–Stokes-Problems, Ph.D. thesis, Technische Universität Berlin, appeared

also as book from Cuvillier-Verlag Göttingen, 2001.
[14] R. Temam, Navier–Stokes equations, Theory and Numerical Analysis, Studies in Mathematics and Its Applications, vol. 2, North-Holland

Publishing Company, Amsterdam, 1977.
[15] J. Heywood, R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem IV: error analysis for second order time

discretizations, SIAM J. Numer. Anal. 27 (1990) 353–384.
[16] M. Bause, Optimale Konvergenzraten für voll diskretisierte Navier–Stokes-Approximationen höherer Ordnung in Gebieten mit Lipischitz-Rand,
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