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Abstract

We consider a general framework for analysing the convergence of multi-grid solvers applied to finite
element discretisations of mixed problems, both of conforming and nonconforming type. As a basic
new feature, our approach allows to use different finite element discretisations on each level of the
multi-grid hierarchy. Thus, in our multi-level approach, accurate higher order finite element discreti-
sations can be combined with fast multi-level solvers based on lower order (nonconforming) finite
element discretisations. This leads to the design of efficient multi-level solvers for higher order finite
element discretisations.

AMS Subject Classifications: 65N55, 65N30, 76D07.

Keywords: Multi-level method, finite element discretisation, mixed problems, Stokes problem.

1. Introduction

Multi-grid methods are among the most efficient and most popular solvers for
finite element discretisations of elliptic partial differential equations. Their con-
vergence theory in the case of symmetric operators and nested conforming finite
element methods is well-established; see for example the books [7, 18, 32] and the
bibliographies therein. Multi-grid methods for nonconforming finite element
approximations have been also studied in a number of papers, e.g. see [3, 4, 6,
8–14, 21, 33]. In this case, the finite element space of a coarser level is in general
not a subspace of the finite element space of a finer level; the resulting multi-grid
method is called non-nested. The general framework of analysing the two-level
convergence of non-nested multi-grid methods, developed in [4] for elliptic
problems, will be the starting point for the methods studied herein. Multi-grid
methods for mixed problems, arising in the discretisation of the Stokes equations,
are analysed in [3, 5, 9, 21, 29, 33, 36]. The crucial point in the investigation of
multi-grid methods for mixed problems is the definition and analysis of the
smoother. The currently best understood type of smoothers, here called Braess–
Sarazin type smoother, is a class of symmetric incomplete Uzawa iterations
proposed in [1] and analysed on its smoothing properties in [5, 29, 36]. The
Braess–Sarazin type smoother has a convergence rate of Oð1=mÞ with respect to
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the number of smoothing steps m. By far, most of the analytical studies are
applied to standard multi-grid methods where on each multi-grid level the same
discretisation of the partial differential equation is used.

In this paper, we investigate multi-level solvers for finite element discretisations of
mixed problems which allow different discretisations, in particular the use of
different finite element spaces, on each level of the multi-grid hierarchy. The
motivation for using this type of multi-level solvers comes from general experi-
ences that standard multi-level solvers are very efficient for low order discretisa-
tions. But higher order discretisations might lead to an overwhelming gain of
accuracy of the computed solution so that their use should be preferred for this
reason. The multi-level solvers investigated in this paper allow an accurate dis-
cretisation on the finest level and low order discretisations on all coarser levels. In
this way, an accurate solution can be obtained for whose computation the effi-
ciency of multi-level solvers for low order discretisations is exploited. The crucial
point in the construction of such multi-level methods is the transfer operator
between the finite element spaces defined on different levels. We show that rather
simple L2-stable prolongations guarantee already the convergence of the two-level
method for a sufficiently large number of smoothing steps with a Braess–Sarazin
type smoother. Our approach allows to handle conforming and nonconforming
finite element spaces in a general framework. As a concrete application of the
general theory developed in this paper, we have in mind in particular the Stokes
and Navier–Stokes equations. The efficiency of multi-grid solvers for lowest order
nonconforming discretisations of these equations has been demonstrated, e.g., in
[22, 34] and the gain of accuracy of higher order discretisations in a benchmark
problem in [19, 20]. Let us mention that the ideas presented in this paper can be
also applied to selfadjoint elliptic equations.

Different discretisations on the finest and on coarser grids have been already used
in the convergence theory of nonconforming finite element discretisations of the
Poisson equation in [13, 14]. However, the motive of the approach in [13, 14] is
completely different to ours. The replacement of the P1-nonconforming coarse
grid correction by a conforming P1 coarse grid correction enables the authors to
apply the well-developed theory of multi-grid solvers for conforming discretisa-
tions on the coarser levels.

The plan of the paper is as follows. In Section 2, we investigate the convergence
properties of a multi-level method for solving mixed finite element discretisations
in an abstract way. First, we introduce the variational and the discrete mixed
problem and we describe the matrix representation. Then, based on abstract
mappings between finite element spaces, the prolongation and restriction opera-
tors are defined. As the smoother we use the basic iteration proposed in [5], for
which the smoothing property has been shown in [5, 29, 36] in case of symmetric
positive definite spectral equivalent pre-conditioners. Together with the approx-
imation property, the convergence of a two-level method and the W-cycle of a
multi-level method is established. Section 3 is devoted to the construction of a
general mapping between two finite element spaces. We show that this general
transfer operator satisfies all assumptions which are essential for our theory. As
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applications, we show in Section 4 how various discretisation concepts for solving
the Stokes problem fit in our general theory. Finally, we present numerical results
to verify the theoretical predictions on the multi-level solvers.

Throughout this paper, we denote by C a ‘‘universal’’ constant which is inde-
pendent of the mesh size and the level but whose value can differ from place to
place.

2. Multi-Level Approach

2.1. Variational Problem

We consider a variational problem of the following form. Let V and Q be two
Hilbert spaces and let V � H � V 0 be the Gelfand triple. Given the symmetric
bilinear form a : V � V ! R, the bilinear form b : V � Q! R and a functional
f 2 V 0, we look for a solution ðu; pÞ 2 V � Q of

aðu; vÞ þ bðv; pÞ ¼ f ðvÞ 8 v 2 V ; ð1Þ

bðu; qÞ ¼ 0 8 q 2 Q: ð2Þ

We assume:

(H1) (Solvability) For all f 2 V 0, the problem (1), (2) admits a unique solution
ðu; pÞ 2 V � Q with

kukV þ kpkQ � Ckf kV 0 :

One example for this type of problems is the weak formulation of the Stokes
problem in d space dimensions (d ¼ 2; 3)

Duþrp ¼ f in X � Rd ;

r � u ¼ 0 in X;

u ¼ 0 on oX;

ð3Þ

where X is a bounded domain with Lipschitz continuous boundary. Here we set
V ¼ H 1

0 ðXÞ
d , Q ¼ L20ðXÞ, H ¼ L2ðXÞd , and a and b are given by

aðu; vÞ ¼
Z

X
ru : rv dx; bðv; pÞ ¼ 

Z
X
pr � v dx: ð4Þ

Note that in this case (H1) is satisfied [17] since a is V -elliptic and b satisfies the
Babuška–Brezzi condition, i.e., there is a positive constant b such that

sup
v2V

bðv; qÞ
kvkV

� bkqkQ 8 q 2 Q: ð5Þ
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2.2. Discretisation

Let Vl � H and Ql � Q, l ¼ 0; 1; . . . ; be sequences of (possibly nonconforming)
finite element spaces approximating V and Q, respectively. Instead of the con-
tinuous bilinear forms a and b we use the discrete versions al : Vl � Vl ! R and
bl : Vl � Ql ! R, respectively. We again assume that the bilinear forms al are
symmetric. For f 2 H the discrete problem corresponding to (1), (2) reads

Find ðul; plÞ 2 Vl � Ql such that

alðul; vlÞ þ blðvl; plÞ ¼ ðf ; vlÞ 8 vl 2 Vl; ð6Þ

blðul; qlÞ ¼ 0 8 ql 2 Ql; ð7Þ

where ð�; �Þ denotes the inner product in H .

(H2) (Solvability and convergence) We assume that the problem (6), (7) admits a
unique solution and that the error estimate

ku ulkH � Ch2lkf kH ð8Þ

holds, where hl characterises how fine is the finite element mesh on which Vl
and Ql are defined.

Remark 2.1. Typically, the convergence estimate (8) is established using a regu-
larity property of the problem (1), (2). Such a regularity property usually states that
if f 2 H , then the solution ðu; pÞ of (1), (2) belongs to a ‘better’ space W�
R � V � Q and satisfies

kukW þ kpkR � Ckf kH :

For example, for the Stokes problem mentioned above, one has W ¼
ðH 2ðXÞ \ H 1

0 ðXÞÞ
d , R ¼ H 1ðXÞ \ L20ðXÞ, and the regularity property holds if the

boundary of X is of class C2 or X is a plane convex polygon. For ðu; pÞ 2 W � R one
can often prove that the solution of (6), (7) satisfies

ku ulkH � Ch2l ðkukW þ kpkRÞ

and taking into considerations the estimate in the regularity property, one obtains
(8).

2.3. Matrix Representation

Let ful;i : i 2 Ilg and fwl;j : j 2 Jlg be bases of the spaces Vl and Ql, respectively,
where Il, Jl denote the corresponding index sets. The unique representations

ul ¼
X
i2Il

ul;iul;i; pl ¼
X
j2Jl

pl;jwl;j
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define the finite element isomorphisms Ul : Ul ! Vl, Wl : Pl ! Ql between the
vector spaces Ul ¼ Rdim Vl , Pl ¼ RdimQl of coefficient vectors ul ¼ ðul;iÞi2Il ,
p
l
¼ ðpl;jÞj2Jl and the finite element spaces Vl and Ql, respectively. We introduce

the finite element matrices Al and Bl having the entries al;ij ¼ alðul;j;ul;iÞ and
bl;ij ¼ blðul;j;wl;iÞ. Now the discrete problem (6), (7) is equivalent to

Al BTl
Bl 0

� �
ul
p
l

� �
¼ f

l
0

� �
ð9Þ

with fl;i ¼ ðf ;ul;iÞ. Note that Al is a symmetric matrix. In the vector spaces Ul

and Pl, we will use the usual Euclidean norms scaled by suitable factors such that
the following norm equivalences

C1kvlkUl
� kvlkH � CkvlkUl

8 vl 2 Vl;
C1kq

l
kPl

� kqlkQ � Ckq
l
kPl

8 ql 2 Ql;
ð10Þ

are satisfied with a mesh- and level-independent constant C.

2.4. Prolongation and Restriction

Essential ingredients of a multi-level algorithm for mixed problems are the
prolongations

Pul1;l : Ul1 ! Ul ; Ppl1;l : Pl1 ! Pl

and the restrictions

Rul;l1 :¼ ðPul1;lÞ
� : Ul ! Ul1 ; Rpl;l1 :¼ ðP

p
l1;lÞ

� : Pl ! Pl1:

In case of a nested finite element hierarchy V0 � � � � � Vl1 � Vl, the canonical
prolongation Pul1;l is obtained by the finite element isomorphisms between Ul1
and Vl1, Ul and Vl and the embedding Vl1 � Vl, thus

Pul1;l :¼ U1l � Ul1:

Similarly, we would have

Ppl1;l :¼ W1
l �Wl1

for Q0 � � � � � Ql1 � Ql: The assumed inclusion property Q0 � � � � � Ql1 � Ql
is often but not always satisfied in applications. For example, this inclusion
property is violated if the spaces Ql are constructed using the nonconforming
piecewise linear element. The corresponding velocity spaces Vl, such that the pair
ðVl;QlÞ satisfies the discrete version of (5), may then be constructed using the
bubble enriched nonconforming piecewise linear element [35] or the modified
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nonconforming piecewise linear element [24]. As a different example one could
also think of using a continuous pressure space Ql on the level l and a discon-
tinuous space Ql1 on the level l 1. We emphasise that Ql1 can be defined on
the same mesh as Ql.

In the general case of non-nested velocity spaces, when Vl1 6� Vl, we have to
replace the natural embedding by a suitable mapping iu : Vl1 ! Vl, which results
in the following prolongation and restriction:

Pul1;l ¼ U1l � iu � Ul1 and Rul;l1 ¼ U�l1 � i�u � ðU�l Þ
1:

It turns out that the convergence analysis requires estimates for iu on the sum
Vl1 þ Vl, thus we will define iu : Rl ! Vl on the (possibly larger) space Rl with
Vl1 þ Vl � Rl � H . In the case Ql1 6� Ql we introduce a mapping ip : Ql1 ! Ql
giving the following prolongation and restriction, respectively,

Ppl1;l ¼ W1
l � ip �Wl1 and Rpl;l1 ¼ W�

l1 � i�p � ðW�
l Þ
1:

We assume that the following properties of the mapping iu hold:

(H3) iuv ¼ v 8 v 2 Vl;

(H4) kiuvkH � CkvkH 8v 2 Rl:

Remark 2.2. In [4], the mapping iu has been assumed to be the product iu ¼ p � r
with r : Rl ! S and p : S ! Vl to allow more flexibility in constructing a suitable iu.
In many cases S can be chosen to coincide with Vl or Ul:

2.5. Smoothing Property

For smoothing the error of an approximate solution of (9), we take the basic
iteration

alDl BTl
Bl 0

� �
ujþ1l  ujl
pjþ1
l
 pj

l

 !
¼ f

l
0

� �
 Al BTl

Bl 0

� �
ujl
pj
l

� �
; ð11Þ

j � 0, which can be considered as a special case of the symmetric incomplete
Uzawa algorithm proposed by Bank, Welfert and Yserentant in [1]. The
smoothing properties of (11) have been studied in [5] for the special case Dl ¼ Il,
in [29] for the general case provided that an additional projection step is per-
formed, and in [36] for a more general setting.

The matrix Dl is a pre-conditioner of Al such that the linear system (11) is more
easily solvable than (9). Note that we have

Blðujþ1l  ujlÞ ¼ Blu
j
l; j � 0;
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implying that after one smoothing step the iterate ujþ1l , j � 0, is discretely di-
vergence-free, i.e., Blu

jþ1
l ¼ 0. We assume that

(H5) Dl is symmetric and positive definite and BlBTl is non-singular.

The matrix BlBTl is non-singular if the bilinear form bl, generating the matrix Bl
satisfies a discrete version of the Babuška–Brezzi condition (5). Since BlBTl is non-
singular, it follows that Sl :¼ BlD1l B

T
l is also non-singular and we have the

representation

alDl BTl
Bl 0

� �1
¼

1

al
ðIl  D1l BTl S1l BlÞD1l D1l B

T
l S
1
l

S1l BlD1l alS1l

0@ 1A:

It is easy to verify that

ul  u
jþ1
l

p
l
 pjþ1

l

 !
¼ alDl BTl

Bl 0

� �1 ðalDl  AlÞðul  u
j
lÞ

0

� �
;

where ðul; plÞ is the solution of (9). This shows that the iteration is a so-called
u-dominant method since the new iterate ðujþ1l ; pjþ1

l
Þ depends on uj but not on pj.

Lemma 2.1. Let al be chosen such that

1

d
kmaxðAlÞ < alkminðDlÞ � alkDlk � ckmaxðAlÞ

for some level- and mesh-independent constants d 2 ½1; 2Þ and c > 0. Moreover, let
the basis ful;i : i 2 Ilg be chosen such that kmaxðAlÞ ¼ Oðh2l Þ: Then, the basic
iteration (11) satisfies the smoothing property

kAlðul  uml Þ þ BTl ðpl  p
m
l
ÞkUl

� C
m
h2l kul  u0lkUl

:

See [5, 29, 36]. u

2.6. Approximation Property

Let an approximation ð~uul; ~pplÞ 2 Vl � Ql of the solution ðul; plÞ 2 Vl � Ql of the
problem (6), (7) be given. We can think of ð~uul; ~pplÞ as being the result after some
smoothing steps, and consequently assume that

blð~uul; qlÞ ¼ 0 8 ql 2 Ql:

Then, the coarse-level correction is defined as the solution of the following
problem:
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Find ðu�l1; p�l1Þ 2 Vl1 � Ql1 such that for all ðvl1; ql1Þ 2 Vl1 � Ql1

al1ðu�l1; vl1Þ þ bl1ðvl1; p�l1Þ ¼ ðf ; iuvl1Þ  alð~uul; iuvl1Þ  blðiuvl1; ~pplÞ;
ð12Þ

bl1ðu�l1; ql1Þ ¼ 0: ð13Þ

The coarse-level correction yields via the transfer operators iu, ip from Section 2.4
the new approximation

unewl ¼ ~uul þ iuu�l1; pnewl ¼ ~ppl þ ipp�l1:

Now, the basic idea for proving the approximation property is to construct an
auxiliary (continuous) problem such that ðu�l1; p�l1Þ and ðul  ~uul; pl  ~pplÞ are
finite element solutions of the corresponding discrete problems in the spaces
Vl1 � Ql1 and Vl � Ql, respectively. This idea has been used for scalar elliptic
equations already in [6] and has been applied to more general situations in [4, 21].
We define the Riesz representation Fl 2 Rl of the residue by

ðFl; sÞ :¼ ðf ; iusÞ  alð~uul; iusÞ  blðius; ~pplÞ 8 s 2 Rl:

Then, the auxiliary problem will be

Find ðz;wÞ 2 V � Q such that

aðz; vÞ þ bðv;wÞ ¼ ðFl; vÞ 8 v 2 V ;
bðz; qÞ ¼ 0 8 q 2 Q:

Indeed, for s 2 Vl we have

ðFl; sÞ ¼ ðf ; sÞ  alð~uul; sÞ  blðs; ~pplÞ ¼ alðul  ~uul; sÞ þ blðs; pl  ~pplÞ;

which means that ðul  ~uul; pl  ~pplÞ is a finite element approximation of ðz;wÞ in
the space Vl � Ql. On the other hand, ðFl; sÞ becomes just the right-hand side of
(12) if s 2 Vl1, i.e., ðu�l1; p�l1Þ is the finite element approximation of ðz;wÞ in the
space Vl1 � Ql1.

Lemma 2.2. Let hl1 � Chl with a mesh- and level-independent constant C. Then,
the approximation property

kul  unewl kH � Ch2lkAlðul  ~uulÞ þ BTl ðpl  ~pp
l
ÞkUl

holds.

Proof: One can use the same technique which has been presented for the case of a
scalar elliptic problem in [4]. u
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2.7. Multi-Level Convergence

We shortly describe the two-level algorithm using m smoothing steps on the level
l, l � 1; and the coarse-level correction (12), (13). Let ðu0l ; p0l Þ be an initial guess
for the solution ðul; plÞ of (6), (7). We apply m steps of the basic iteration (11) and
obtain ðuml ; pml Þ. Now, the coarse-level correction (12), (13) is performed using

ð~uul; ~pplÞ ¼ ðuml ; pml Þ

as an approximate solution of the discrete problem (6), (7). Finally, the new
approximation is obtained by

unewl ¼ uml þ iuu�l1; pnewl ¼ pml þ ipp�l1:

Combining the smoothing and approximation property, we get

Theorem 2.1. Under the assumptions of Lemma 2.1 and Lemma 2.2, the two-level
method converges for sufficiently many smoothing steps with respect to the H - and
Ul-norm. In particular, there are level- and mesh-independent constants C and ~CC
such that

kul  unewl kUl
� C
m
kul  u0lkUl

and

kul  unewl kH �
~CC
m
kul  u0lkH :

Proof: Applying Lemma 2.1 we have

kAlðul  uml Þ þ BTl ðpl  p
m
l
ÞkUl

� C
mh2l

kul  u0lkUl
:

Taking into consideration the norm equivalence (10) and Lemma 2.2, we conclude

kul  unewl kUl
� Ckul  unewl kH
� Ch2lkAlðul  ~uulÞ þ BTl ðpl  ~pp

l
ÞkUl

� C
m
kul  u0lkUl

;

which proves convergence in the Ul-norm for sufficiently many smoothing steps
m. The convergence in the H -norm follows from the norm equivalence (10). (

Remark 2.3. Note that in our context the notation ‘‘two-level’’ does not necessarily
mean that we consider two levels of mesh refinements. Thus, Theorem 2.1 is also
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applicable in cases where we have two different finite element discretisations on the
same mesh (see Sections 4.2 and 4.3).

Once proven the convergence of the two-level method, the convergence of the
W-cycle multi-level method follows in a standard way (see e.g. [4], [18]). This is
also true for a combination of a finite number of different two-level algorithms
provided that Theorem 2.1 holds true for each of these two-level methods.

3. A General Transfer Operator

In this section, we will describe general finite element spaces Vl and we will show
how then a space Rl and a transfer operator iu : Rl ! Vl satisfying

Vl1 þ Vl � Rl � H ¼ L2ðXÞd ð14Þ

and the assumptions (H3) and (H4) can be constructed. In this way, the transfer
operator can be applied on a large class of finite element spaces. In case of the
Stokes problem, for example, also velocity spaces generated by vector-valued
basis functions [17] are included.

We denote by fTlgl�0 a family of triangulations of the domain X. Each trian-
gulation Tl consists of a finite number of mutually disjoint simply connected
open cells K so that we have

�XX ¼
[
K2Tl

K:

We assume that

(H6) For any l > 0, the triangulation Tl is obtained from Tl1 by some ‘‘re-
finement’’, i.e., each cell K 2Tl1 is either a member of Tl or it has been
refined into child cells Ki 2Tl.

In particular, we allow Tl1 ¼Tl, which gives us the additional possibility to
define different finite element spaces Vl1 and Vl on the same mesh.

We assume that there exists a finite number of reference domains bKK1; . . . ; bKKbMM such
that, for any level l � 0 and for any cell K 2Tl, there exists i 2 f1; . . . ; bMMg and a
one-to-one mapping FK 2 W 1;1ðbKKi;KÞ satisfying

FKðbKKiÞ ¼ K; F 1K 2 W 1;1ðK; bKKiÞ: ð15Þ

We assume that

ChdK � j detrFKðbxxÞj � eCChdK 8bxx 2 bKKi; ð16Þ

where hK ¼ diamðKÞ and C, eCC > 0 are independent of K and l. In addition, we
suppose that
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hK � ChK 0 8K;K 0 2Tl;K \ K
0 6¼ ; ð17Þ

and

hK � C sup
B�K is a ball

diam ðBÞ 8K 2Tl; ð18Þ

again with C independent of K, K 0 and l. The validity of (16)–(18) usually follows
from some shape-regularity assumption on the triangulations. Particularly, for
simplicial triangulations, the condition (18) already guarantees a shape-regularity
of the cells and implies (16). Moreover, if the triangulations satisfy usual com-
patibility assumptions (cf. e.g. [15]), then (17) also follows. In case of hanging
nodes, the difference in the refinement levels of neighbouring elements is limited
by (17).

On each reference cell bKKi, i ¼ 1; . . . ; bMM , we introduce a finite-dimensional spacebPPi � H1ðbKKiÞ having a basis fbuuijgdim P̂ ij¼1 . Employing the mappings FK from (15), we
introduce, for any cell K 2Tl, a finite–dimensional space P

lðKÞ � H 1ðKÞd such
that

PlðKÞ � fbvv � F 1K : bvv 2 ½bPPi�dg:
We denote by uK;j, j ¼ 1; . . . ; dimPlðKÞ, basis functions in PlðKÞ satisfying

uK;j ¼
Xdim P̂ i
k¼1

aK;jkðbuuik � F 1K Þ; aK;jk 2 ½1; 1�d ; k ¼ 1; . . . ; dim bPPi:
Usually, the coefficients aK;jk are zeros or unit vectors in the direction of coor-
dinate axes, and one takes only one non-vanishing coefficient for each j. However,
in some cases, also other choices of the coefficients aK;jk may be of use. Particu-
larly, this is the case if the space PlðKÞ contains vector-valued basis functions
which cannot be obtained by transforming fixed basis functions from the space
½bPPi�d onto K. An example is the Bernardi/Raugel element (cf. [2]) which contains
vector-valued basis functions perpendicular to element faces.

We introduce linear functionals fNK;igdimPlðKÞ
i¼1 defined on PlðKÞ, which we will

call local nodal functionals in the following. We assume that these functionals
possess the usual duality property with respect to the basis functions, i.e.,

NK;iðuK;jÞ ¼ dij 8 i; j ¼ 1; . . . ; dimPlðKÞ;

where dij denotes the Kronecker symbol. Examples of such nodal functionals can
be found in Section 4.

Now, for each level l, we introduce a finite element space Vl satisfying

Vl � fw 2 L2ðXÞd : wjK 2 PlðKÞ 8K 2Tlg: ð19Þ
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This space is smaller than the piecewise discontinuous space on the right-hand
side of (19) since we assume that there is some connection between functions on
neighbouring cells. This connection can be enforced by choosing pairs of nodal
functionals from neighbouring cells and by requiring that the two functionals
from any pair are equal for any function from the space Vl. We denote by ful;igi2Il
a basis of the space Vl obtained in this way, where the set Il is an index set whose
elements will be called nodes in the following. We assume that the mentioned
pairs of local nodal functionals were chosen in such a way that, as usual, these
basis functions have ‘‘small’’ supports. Precisely, we require that, for any i 2 Il,
there exists K 2Tl such that

suppðul;iÞ �
[

K 02Tl;K 0\K 6¼;

K 0: ð20Þ

Further, we assume that, on any cell K 2Tl, the basis functions ul;i coincide with
the local basis functions uK;j. Thus, denoting by

IlðKÞ ¼ fi 2 Il : suppðul;iÞ \ K 6¼ ;g

the set of all nodes which are associated with a cell K, it is natural to assume that
there exists a one-to-one mapping

pK : IlðKÞ ! f1; . . . ; dimPlðKÞg

such that

ul;ijK ¼ uK;pK ðiÞ 8K 2Tl; i 2 IlðKÞ:

Using the mappings pK we can renumber the local nodal functionals, i.e., we set

NK;i ¼NK;pK ðiÞ 8K 2Tl; i 2 IlðKÞ:

Then

NK;iðul;jjKÞ ¼ dij 8 i; j 2 IlðKÞ:

Furthermore, we define for any node j 2 Il

Tl;j ¼ fK 2Tl : j 2 IlðKÞg

which is the set of all cells K 2Tl which are connected with the node j. Then we
can give a precise characterisation of the space Vl, namely,

Vl ¼ w 2 L2ðXÞd : wjK 2 PlðKÞ 8K 2Tl;
n
NK;iðwjKÞ ¼ NK 0;iðwjK 0 Þ 8K;K 0 2Tl;i; i 2 Il

o
:

324 V. John et al.



This shows that a natural choice for a global nodal functional is the arithmetic
mean of the local nodal functionals

Nl;iðwÞ ¼
1

cardðTl;iÞ
X
K2Tl;i

NK;iðwjKÞ: ð21Þ

Note that we again have the duality relation

Nl;iðul;jÞ ¼ dij 8 i; j 2 Il;

which implies that

w ¼
X
i2Il

Nl;iðwÞul;i 8w 2 Vl: ð22Þ

Now, having described the spaces Vl, we can turn to the question how the spaces
Rl and the mappings iu : Rl ! Vl satisfying (14), (H3) and (H4) can be defined.
Following the ideas developed in [31], where the construction of general transfer
operators for finite element spaces has been investigated, we construct Rl as a
discontinuous finite element space

Rl ¼ w 2 L2ðXÞd : wjK 2 SlðKÞ 8K 2Tl

n o
with a finite dimension. To guarantee (14), we furthermore assume that

(H7) The local function space SlðKÞ is constructed such that

Pl1ðFðKÞÞjK þ PlðKÞ � SlðKÞ 8K 2Tl

where FðKÞ 2Tl1 is the parent cell of a child cell K 2Tl for
K 2Tl nTl1 and FðKÞ ¼ K for K 2Tl \Tl1.

We suppose that, for any K 2Tl, the local nodal functionals NK;i are well defined
on SlðKÞ, which usually means that the functions in SlðKÞ are of the same type as
those in PlðKÞ (e.g., continuous). Then we can define the transfer operator
iu : Rl ! Vl simply by

iuw ¼
X
i2Il

Nl;iðwÞul;i; w 2 Rl: ð23Þ

In view of (22) we immediately obtain the validity of (H3). To be able to prove
(H4), we assume that each of the spaces SlðKÞ can be obtained by transforming
functions from one of the reference cells onto K. Thus, we introduce finite element

spaces bSSi � H 1ðbKKiÞd , i ¼ 1; . . . ; bMM , with bases f bwwijg
dim Ŝi
j¼1 and we assume that, for

any K 2Tl, there exists i 2 f1; . . . ; bMMg such that
SlðKÞ ¼ fbvv � F 1K : bvv 2 bSSig; ð24Þ
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NK;mðbwwij � F 1K Þ
��� ��� � C 8m 2 IlðKÞ; j 2 f1; . . . ; dim bSSig; ð25Þ

where FK is the mapping from (15) and C is independent of K and l. The last
assumption is automatically satisfied if the local nodal functionals NK;i are defined
by means of a finite number of functionals defined on the reference spaces bSSi,
which is often the case.

Lemma 3.1. The operator iu defined by (23) is uniformly L2-stable, i.e., it satisfies
(H4) with a constant C independent of l and with k � kH ¼ k � k0 � k � kL2ðXÞ.

Proof: Consider any w 2 Rl and any K 2Tl and let FK and bSSi be the mapping
and the space from (24), respectively. Then

wjK ¼
Xdim Ŝi
j¼1

wjðbwwij � F 1K Þ

for some real numbers wj and it follows from (25), from the equivalence of norms
on finite-dimensional spaces and from (16) that, for any m 2 IlðKÞ,

jNK;mðwjKÞj � C
Xdim Ŝi
j¼1

jwjj � eCCkw � FKk
0;bKKi � �CChd=2K kwk0;K :

Thus, we see that, for any i 2 Il, we have

jNl;iðwÞj � C
X
K2Tl;i

hd=2K kwk0;K : ð26Þ

For any cell eKK 2Tl, we derive using (16), (26), (20) and (17) that

kiuwk
0;eKK ¼ X

i2Ilð~KÞ
Nl;iðwÞul;i

������
������
0;~K

� Chd=2eKK X
i2Ilð~KÞ

jNl;iðwÞj � eCC X
K�dð~KÞ

kwk0;K ;

where we denoted by

dðeKKÞ ¼ [
i2Ilð~KÞ

[
K2Tl;i

K

the vicinity of any cell eKK 2Tl. In view of (17), (18) and (20), the number of cells
in dðeKKÞ is bounded independently of eKK and l and hence we obtain

kiuwk0;K � Ckwk0;dðKÞ 8w 2 Rl; K 2Tl;
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which expresses a local L2-stability of the operator iu. Again, according to (17),
(18) and (20), the number of the sets dðeKKÞ which contain any fixed cell K 2Tl is
bounded independently of l and hence the local L2-stability of iu immediately
implies the global L2-stability (H4). u

A significant step in the above considerations was the assumption that there exist
spaces SlðKÞ satisfying (H7) and (24). In the remaining part of this section, we
will prove that this is true for simplicial finite elements. Thus, from now on, we
assume that there is only one reference cell bKK, which is a d-simplex. It is essential
for our further proceeding that, for any simplicial cell K, there exists a regular
affine mapping FK : bKK ! K which maps bKK onto K. We denote the set of all these
mappings by LRðbKK;KÞ.
Like above, we introduce a fixed finite-dimensional space bPP � H 1ðbKKÞd and we
assume that, for any K 2Tl and any FK 2LRðbKK;KÞ, we have

PlðKÞ � fbvv � F 1K : bvv 2 bPPg:
We assume that, as usual, the cells of the triangulations are refined according to a
finite number of geometrical rules. Therefore, the refinements of all cells K can be
mapped by the linear mappings F 1K onto a finite number bLL of refinements of the
reference cell bKK into child cells bKKi;1; . . . ; bKKi;bMMi

, i ¼ 1; . . . ;bLL. That means that, for
any cell K 2Tl obtained by refining a parent cell FðKÞ 2Tl1 and for any
FFðKÞ 2LRðbKK;FðKÞÞ, there exist indices i 2 f1; . . . ; bLLg and j 2 f1; . . . ; bMMig such
that K ¼ FFðKÞðbKKijÞ. We denotebPP ij ¼ fbvv � F̂Kij : bvv 2 bPP ; FK̂Kij 2LRðbKK; bKKijÞg:
Then, for any v 2 Pl1ðFðKÞÞ and any FK 2LRðbKK;KÞ, there exists bww 2 bPP ij such
that

vjK ¼ bww � F 1K :

Indeed, v ¼ bvv � F 1FðKÞ for some bvv 2 bPP and hence
vjK ¼ bvv � ðF 1FðKÞ � FKÞ � F 1K ;

where F 1FðKÞ � FK 2LRðbKK; bKKijÞ. Thus, for any K 2Tl and any FK 2LRðbKK;KÞ, we
have

Pl1ðFðKÞÞjK � fbvv � F 1K : bvv 2 bPP ijg
for some indices i 2 f1; . . . ; bLLg and j 2 f1; . . . ; bMMig. Now, we define

bSS ¼ span bPP [[bLL
i¼1

[bMMi

j¼1

bPP ij
8<:

9=;
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and, for any K 2Tl, we choose some FK 2LRðbKK;KÞ and set
SlðKÞ ¼ fbvv � F 1K : bvv 2 bSSg:

It is easy to see that these spaces SlðKÞ satisfy the assumption (H7).

4. Applications to the Stokes Equations

In this section we give details how the general assumptionsmade in Section 3 can be
fulfilled for the Stokes problem. In particular, we will show that the usually used
multi-grid technique for the nonconforming finite elements of lowest order coin-
cides with the use of the general transfer operator described in the preceding section.

4.1. Lowest Order Nonconforming Elements

Our first examples are the nonconforming finite elements of first order on trian-
gles and quadrilaterals. The triangular element was introduced by Crouzeix and
Raviart and analysed in [16]. The element on quadrilaterals was established by
Rannacher and Turek and analysed in [26, 30].

We consider a hierarchy of uniformly refined grids. Let T0 be a regular trian-
gulation of X � R2 into triangles or into convex quadrilaterals. The mesh Tl is
obtained from Tl1 by subdividing each cell of Tl1 into four child cells. For
triangles, we connect the midpoints of the edges. In the quadrilateral case, we
connect the midpoints of opposite edges.

Now we construct the finite element spaces Vl. Let P1ðKÞ be the space of linear
polynomials on the triangle K. The space of rotated bilinear functions on a
quadrilateral K is defined by

Qrot1 ðKÞ ¼ fq̂q � F 1K : q̂q 2 spanð1; x̂x; ŷy; x̂x2  ŷy2Þg

where FK : K̂K ! K is the bilinear reference transformation from the reference cell
K̂K ¼ ð1; 1Þ2 onto the cell K, see [26, 30]. Let EðKÞ denote the set of all edges of
the element K. We define for any E 2 EðKÞ the nodal functional

NK
E ðvÞ ¼

1

jEj

Z
E
vjK ds:

Let El ¼
S
K2Tl

EðKÞ be the set of all edges of Tl. The set EloX ¼
fE 2 El : E � oXg contains all boundary edges. The finite element space Vl is
given by

Vl ¼ fv 2 L2ðXÞ2 : vjK 2 PðKÞ
2 8K 2Tl;

NK
E ðvÞ ¼ NK 0

E ðvÞ 8E 2 EðKÞ \ EðK 0Þ;K;K 0 2Tl; NK
E ðvÞ ¼ 0 8E 2 EloXg

where P ðKÞ is P1ðKÞ on triangles and Qrot1 ðKÞ on quadrilaterals.
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Since the triangulation Tl is obtained from Tl1 by regular refinement of
all cells, we have Tl \Tl1 ¼ ;. Let us show that the assumptions (H7) and
(24) hold. In the case of triangles, the inclusion Pl1ðFðKÞÞjK � P1ðKÞ2
follows directly from the affine reference mapping and we have
Pl1ðFðKÞÞjK þ PlðKÞ � P1ðKÞ2. Thus, we can choose SlðKÞ ¼ P1ðKÞ2. The sit-
uation is more complicated for the Qrot1 element. Let us consider K 2Tl1 and let
K1; . . . ;K4 2Tl be the child cells of K. We set K̂Ki ¼ F 1K ðKiÞ, i ¼ 1; . . . ; 4 (cf.
Fig. 1). Let for example q 2 Pl1ðFðK1ÞÞjK1 which means that there is a function

q̂q 2 spanð1; x̂x1; x̂x2; x̂x21  x̂x22Þ with q ¼ ðq̂q � F 1K Þ
��
K1
:

The mapping G1 : K̂K ! K̂K1 given by

x̂x1 7!ð1þ x̂x1Þ=2; x̂x2 7!ð1þ x̂x2Þ=2

and FK
��
K̂K1

: K̂K1 ! K1 are bijective. Thus, we have FK1 ¼ FK
��
K̂K1
� G1 and get

q � FK1 ¼ q̂q � F 1K jK1 � FK1 ¼ q̂q � F 1K jK1 � FK
��
K̂K1
� G1 ¼ q̂q � G1:

Since the local space spanð1; x̂x1; x̂x2; x̂x21  x̂x22Þ is invariant with respect to the map-
ping G1 we conclude Pl1ðFðK1ÞÞjK1 � PlðK1Þ. The same arguments can be
applied to Ki, i ¼ 2; 3; 4, which results in

Pl1ðFðKÞÞjK þ PlðKÞ � Qrot1 ðKÞ
2 for all quadrilaterals K 2Tl:

This allows us to choose SlðKÞ ¼ Qrot1 ðKÞ
2 in the definition of the space Rl. Note

that the assumptions (24) and (25) are then fulfilled.

The finite element spaces Vl1 and Vl are non-nested. In order to get a suitable
prolongation we will use the general transfer operator which was introduced in

Figure 1. Refinement of original and reference cell
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Section 3. The definition of the global nodal functionals (21) simplifies for the
above spaces to

NEðwÞ ¼
1

2
NK
E ðwÞ þ NK 0

E ðwÞ
� �

for all inner edges E with the neighbouring elements K and K 0. For boundary
edges we get

NEðwÞ ¼ NK
E ðwÞ

where E 2 EðKÞ. The resulting mapping iu is the same as in [21].

The space Ql which approximates the pressure consists of piecewise constant
functions, i.e.,

Ql ¼ fq 2 L20ðXÞ : qjK 2 P0ðKÞ 8K 2Tlg:

For the proof of assumption (H2) we refer to [16, 26]. Since Ql1 � Ql the transfer
operator ip is the identity.

For numerical experiments with the Crouzeix–Raviart element we refer to [21].

4.2. Modified Crouzeix–Raviart Element

It is sometimes necessary to use other types of boundary conditions than the
Dirichlet boundary condition considered in (3). For example, if a part CN of oX
represents a free surface of a fluid, then one can use the boundary conditions

ðI  n nÞ½ruþ ðruÞT � ¼ 0; u � n ¼ 0 on CN ; ð27Þ

where I is the identity tensor and n is the outer normal vector to CN . The first
condition in (27) states that zero surface forces act in the tangential direction to
CN . The boundary conditions (27) generally do not allow to use the bilinear form
a defined in (4) and instead we have to consider

aðu; vÞ ¼ 1
2

Z
X

�
ruþ ðruÞT

�
:
�
rvþ ðrvÞT

�
dx:

If measd1ðoX n CN Þ > 0, then the ellipticity of this bilinear form for functions
from H1ðXÞd vanishing on oX n CN is assured by the Korn inequality. However,
the discrete Korn inequality does not hold for most first order nonconforming
finite element spaces (cf. [23]), particularly, it fails for the elements investigated in
the preceding section. Consequently, in these cases, the validity of (H2) cannot be
shown.
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One of the few first order nonconforming elements which do not violate the
discrete Korn inequality is the modified Crouzeix–Raviart element Pmod1 which
was developed in [25] for solving convection dominated problems. Here we
confine ourselves to a particular example of this element for which the space of
shape functions on the reference triangle bKK is

bPP ¼ spanfbkk1; bkk2; bkk3; bkk 2
1
bkk2  bkk22bkk1; bkk22bkk3  bkk23bkk2; bkk23bkk1  bkk21bkk3g;

where bkk1, bkk2, bkk3 are the barycentric coordinates on bKK. To each edge bEE of bKK, we
assign two nodal functionals, bNNbEE;1 and bNNbEE;2, defined by

bNNbEE;1ðbvvÞ ¼ 1

jbEEj
Z
bEE bvv dbss; bNNbEE;2ðbvvÞ ¼ 60

jbEEj
Z
bEE bvv bkkbEE  12
� �

dbss;
where bkk̂

E
is a barycentric coordinate on bEE. The space Vl is now obtained by

transforming the space bPP and the six nodal functionals bNN
Ê;1
, bNN

Ê;2
, bEE � obKK, onto

the cells of the triangulation by means of regular affine mappings (cf. the pre-
ceding section). In this way, we get the space

Vl ¼
�
v 2 L2ðXÞ2 : vjK 2 P ðKÞ

2 8K 2Tl; :Z
E
½jvj�Eq ds ¼ 0 8 q 2 P1ðEÞ; E 2 El

�
;

where ½jvj�E denotes the jump of v across the edge E,

PðKÞ ¼ spanfk1; k2; k3; k21k2  k22k1; k
2
2k3  k23k2; k

2
3k1  k21k3g

and k1, k2, k3 are the barycentric coordinates on the cell K. A nice property of the
Pmod1 element is thatZ

E
½jvj�Eq ds ¼ 0 8 v 2 Vl; q 2 P2ðEÞ; E 2 El:

It is easy to verify that the assumptions made in Section 3 are satisfied. The
assumption (H2) holds if the space Ql consists of discontinuous piecewise linear
functions from L20ðXÞ and each cell has at least one vertex in X since then an inf-
sup condition holds (cf. [24] and [16]). Consequently, (H2) is also satisfied if Ql is a
subspace of L20ðXÞ consisting e.g. of piecewise constant functions, continuous
piecewise linear functions or nonconforming piecewise linear functions.

Here we present numerical results for Ql consisting of piecewise constant func-
tions so that the transfer operator ip can be replaced by the identity. The dis-
cretisations are defined on a sequence of uniformly refined triangular grids
starting with the triangular grid from Fig. 2 which we denote asT0 (level 0). We
shall consider two kinds of multi-level solvers for solving the Stokes equations on
a given geometrical mesh level. The first one is a classical multi-level method
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where each mesh corresponds to one level of the algorithm and on each mesh we
consider a discrete problem of the same type, i.e., the Stokes equations discretised
using the Pmod1 =P0 element. In the second multi-level solver, the discretisation
using the Pmod1 =P0 element is used on the finest mesh TL only and on all other
mesh levels a ‘cheaper’ discretisation is employed, namely the Crouzeix–Raviart
element with piecewise constant pressure denoted as Pnc1 =P0. In addition, the
Pnc1 =P0 discretisation is also applied on the finest mesh level TL so that two
different discretisations corresponding to two levels of the multi-level method are
considered on the finest geometrical mesh. We refer to the next section for more
details on this multiple discretisation multi-level approach. Note that both kinds
of multi-level solvers fit into the framework of this paper and the prolongations
and restrictions can be defined using the general transfer operator iu described
above. The numbers of degrees of freedom to which the mentioned discretisations
lead on different meshes are given in Table 3.

As a smoother, we use the basic iteration described in Section 2.5. Therefore, the
system (11) has to be solved in each smoothing step which implies that the efficient
solution of (11) is essential for the efficiency of the multi-level solver. In view of an
application of our procedure to the Navier–Stokes equations [19], where Al and Dl
are no longer symmetric, we solve (11) iteratively by a preconditioned flexible
GMRES method, see e.g. [27]. The preconditioner is defined via the pressure
Schur complement equation of (11)

BlðalDlÞ1BTl ðpjþ1l
 pj

l
Þ ¼ BlðalDlÞ1rjl  s

j
l; ð28Þ

where

rjl
sjl

� �
¼ f

l
0

� �
 Al BTl

Bl 0

� �
ujl
pj
l

� �
is the right-hand side of (11). First, (28) is solved approximately by some steps of
the standard GMRES method by Saad and Schultz [28] providing the approxi-
mation ~pp

l
of pjþ1

l
 pj

l
. Second, an approximation ~uul of u

jþ1
l  ujl is computed by

~uul ¼ ðalDlÞ
1ðrjl  BTl ~pplÞ:

Figure 2. Coarsest grids (level 0)
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The solution of (11) is the most time consuming part of the multi-grid iteration. It
was shown by Zulehner [36] that the smoothing property of the Braess–Sarazin
smoother is maintained if (11) is solved only approximately as long as the ap-
proximation is close enough to the solution. Numerical experiments show that, in
general, one obtains similar rates of convergence of the multi-level algorithm like
with an exact solution of (11). Considering the efficiency of the multi-level solver
measured in computing time, the variant with the approximate solution is in
general considerably better and therefore it is used in practice. Thus, in the
computations presented below we stopped the solution of (11) after the Euclidean
norm of the residual has been reduced by the factor 10. The systems on level 0
were solved exactly.

We shall present numerical results for the following

Example 4.1. W-cycle in a 2d test case. We consider the Stokes problem in
X ¼ ð0; 1Þ2 with the prescribed solution

uðx; yÞ ¼ ðsin x sin y; cos x cos yÞT ;
pðx; yÞ ¼ 2 cos x sin y  2 sin 1ð1 cos 1Þ;
f ðx; yÞ ¼ ð0; 4 cos x cos yÞT :

This example is taken from the paper [5] by Braess and Sarazin.

The computations were performed using the W ðm;mÞ-cycle, Dl ¼ SSORðAlÞ and
al ¼ 1:0. Table 1 shows the geometric means of the error reduction rates

kul  unewl k0
kul  u0lk0

for the multi-level solver which uses the Pmod1 =P0 discretisations on all levels.
Table 2 shows the averaged error reduction rates for the multi-level solver which
combines the use of the Pmod1 =P0 discretisation on the finest level with the use of
Pnc1 =P0 discretisations on all lower levels. We observe that, for each m, the error
reduction rates can be bounded by a level-independent constant as predicted by
Theorem 2.1. In addition, it can be clearly seen from the two tables that, for

Table 1. Example 4.1, Pmod1 =P0, Dl ¼ SSORðAlÞ, al ¼ 1:0, W ðm;mÞ-cycle, averaged error reduction
rates

m mesh level

1 2 3 4 5

1 6.29e-1 6.75e-1 6.95e-1 7.12e-1 7.11e-1
2 4.73e-1 5.25e-1 5.56e-1 5.62e-1 5.60e-1
3 3.65e-1 4.26e-1 4.55e-1 4.60e-1 4.56e-1
4 2.83e-1 3.48e-1 3.78e-1 3.81e-1 3.74e-1
5 2.20e-1 2.87e-1 3.13e-1 3.13e-1 3.08e-1
6 1.70e-1 2.36e-1 2.62e-1 2.62e-1 2.59e-1
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m > 1, the multi-level method which uses the Crouzeix–Raviart element on lower
levels converges faster than the standard multi-level method.

4.3. A Multi-Grid Method for Higher Order Discretisations Based
on Lowest Order Nonconforming Discretisations

As the last and certainly most important application, we consider a multi-grid
method for higher order discretisations which is based on lowest order noncon-
forming discretisations on the coarser multi-grid levels. Like in the previous
section, we use a multiple discretisation multi-level approach with two different
discretisations on the finest geometric mesh level L, i.e., the spaces for the multi-
grid levels L and Lþ 1 are defined both on TL, see Fig. 3. The higher order
discretisation is used on multi-grid level Lþ 1 whereas on all coarser levels l,
0 � l � L, a nonconforming discretisation of lowest order is applied.

Remark 4.1. The construction of this multiple discretisation multi-level approach
was inspired by numerical studies of benchmark problems for the steady state Na-
vier–Stokes equations in [19, 20]. These studies show on the one hand a dramatic
improvement of benchmark reference values using higher order discretisations in
comparison to lowest order nonconforming discretisations. On the other hand, the
arising systems of equations for the lowest order nonconforming discretisations could
be solved very fast and efficiently with the standard multi-grid approach. This
standard multi-grid approach showed a very unsatisfactory behaviour for all higher
order discretisations. Often, it did not converge at all. Sometimes, convergence could
be achieved by heavily damping, leading to a bad rate of convergence and a very
inefficient solver. These difficulties could be overcome by applying the multi-grid
method described in this section. Thus, this method has been proved already to be a
powerful tool in the numerical solution of Navier–Stokes equations combining the
superior accuracy of higher order discretisations and the efficiency of multi-grid
solvers for lowest order nonconforming discretisations.

In case of the Stokes problem, the proposed multi-grid method fits into the
framework of this paper. Between the lower levels l and lþ 1 of the multi-grid
hierarchy, 0 � l < L, we use the transfer operators which have been defined in
Section 4.1. To define the transfer operator between the levels L and Lþ 1, both

Table 2. Example 4.1, Pmod1 =P0 on finest level combined with Pnc1 =P0 on lower levels, Dl ¼ SSORðAlÞ,
al ¼ 1:0, W ðm;mÞ-cycle, averaged error reduction rates

m mesh level

1 2 3 4 5

1 9.44e-1 9.98e-1 1.04e-0 1.02e-0 1.01e-0
2 3.84e-1 4.34e-1 4.31e-1 4.26e-1 4.14e-1
3 1.89e-1 2.51e-1 2.48e-1 2.42e-1 2.41e-1
4 1.17e-1 1.87e-1 1.78e-1 1.75e-1 1.77e-1
5 8.35e-2 1.50e-1 1.33e-1 1.31e-1 1.30e-1
6 6.17e-2 1.27e-1 1.06e-1 1.01e-1 1.02e-1
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mappings iu and ip have to be constructed since in general VL 6� VLþ1 and for some
higher order discretisations also QL 6� QLþ1. The construction can be done by
applying the techniques from Section 3. We choose

RLþ1 ¼ v 2 L2ðXÞ : vjK 2 PLþ1ðKÞ 8K 2TL ¼TLþ1
� �

;

where PLþ1ðKÞ is the space of local shape functions of the corresponding finite
element spaces VLþ1 and QLþ1, respectively.

We will present numerical results obtained with this multi-grid technique for a
number of higher order finite element discretisations. Let P0 and Q0 denote the
spaces of piecewise constant functions on simplicial mesh cells and quadrilateral/
hexahedral mesh cells, respectively. By Pk;Qk; k � 1, we denote the well-known
finite element spaces of continuous functions of piecewise k-th degree. The

Figure 3. A comparison between the standard and the multiple discretisation multi-level approach
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notation Pdisck is used for spaces of discontinuous functions whose restriction to
each mesh cell is a polynomial of degree k. The Crouzeix–Raviart finite element
space is again denoted by Pnc1 .

Three examples for the multi-level approach for higher order discretisations will
be considered. The first example confirms the theoretical results of Theorem 2.1,
i.e., we consider a two-level method and solve the systems (11) arising in the
smoothing process exactly. The solution procedure was described in the preceding
section. Then we consider Example 4.1 from the previous section and Exam-
ple 4.4 defined below to demonstrate the behaviour of the multi-level W-cycle
with approximated solutions of (11) for test problems in 2d and 3d.

Example 4.2. Two-level method. This example has been designed to check the
theoretically predicted results with respect to the two-level method. We consider
the Stokes equations (3) in X ¼ ð0; 1Þ2 with f ¼ 0, such that u ¼ 0, p ¼ 0 is the
solution of (3). The computations were carried out on a sequence of meshes
starting with level 0 (see Fig. 2), for which the corresponding numbers of the
degrees of freedom are given in Table 3. The discrete solution on each level is
ul ¼ 0, pl ¼ 0. Since we consider a two-level method, there is only one mesh level
in a specific computation. On this geometric mesh level, the lowest order non-
conforming discretisation of (3) defines the coarse level in the two-level method
and a higher order discretisation the fine level.

As initial guess of the two-level method for each computation, we have chosen
ul;i ¼ 1 for all interior degrees of freedom and pl;i ¼ 0. Thus, the initial error is
smooth. The results presented in Table 4 were obtained with 3 pre-smoothing
steps, without post-smoothing, and with alDl ¼ 1:5diagðAlÞ. Thus, we have ex-
actly the situation investigated in Section 2.

The results of the numerical studies are given in Table 4 and Fig. 4. Table 4 shows
the averaged error reduction rate for the two-level method applied to a number of
higher order discretisations. It can be clearly seen that the error reduction rate is

Table 3. Degrees of freedom for the discretisations in the 2d test cases, Example 4.1 and 4.2

disc. mesh level

1 2 3 4 5 6 7 8

Qrot1 =Q0 96 352 1344 5248 20736 82432 328704 1312768
Pnc1 =P0 144 544 2112 8320 33024 131584 525312 2099200
Pmod1 =P0 256 960 3712 14592 57856 230400 919552 3674112

Q2=Q1 187 659 2467 9539 37507 148739 592387 2364419
Q2=Pdisc1 210 770 2946 11522 45570 181250 722946 2887682
P2=P1 187 659 2467 9539 37507 148739 592387 2364419

Q3=Q2 419 1539 5891 23043 91139 362499 1445891
Q3=Pdisc2 434 1634 6338 24962 99074 394754 1575938
P3=P2 419 1539 5891 23043 91139 362499 1445891

Q4=Q3 747 2803 10851 42691 169347 674563
Q4=Pdisc3 738 2818 11010 43522 173058 690178
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for all discretisations independent of the level as stated in Theorem 2.1. The
second statement of Theorem 2.1, the decrease of the error reduction rate by
Oð1=mÞ, where m is the number of pre-smoothing steps, is illustrated for the P3=P2
discretisation on mesh level 4 in Fig. 4. The situation is quite similar for the other
higher order discretisations.

Example 4.3. Example 4.1 continued. Now let us turn back to Example 4.1 for-
mulated in the preceding section. Table 5 shows the averaged error reduction
rates obtained for higher order discretisations with the W ð1; 1Þ-cycle,
Dl ¼ ILUðAlÞ and al ¼ 1:0. When solving (11) by the flexible GMRES method the
reduction of the Euclidean norm of the residual by the factor 10 was often
achieved with the first flexible GMRES steps. We applied 10 iteration steps each
time in the GMRES method for solving the pressure Schur complement equation
(28).

Table 4. Example 4.2, Dl ¼ diagðAlÞ, al ¼ 1:5, 3 pre-smoothing steps, no post-smoothing, averaged
error reduction rates

disc. mesh level

1 2 3 4 5 6

Q2=Q1 8.51e-2 1.31e-1 1.34e-1 1.29e-1 1.30e-1 1.27e-1
Q2=Pdisc1 2.80e-2 6.01e-2 6.64e-2 6.68e-2 6.61e-2 6.70e-2
P2=P1 2.19e-1 2.72e-1 2.81e-1 2.79e-1 2.76e-1 2.72e-1

Q3=Q2 2.84e-1 3.37e-1 3.50e-1 3.53e-1 3.54e-1
Q3=Pdisc2 2.84e-1 2.93e-1 3.08e-1 3.09e-1 3.10e-1
P3=P2 7.32e-1 8.45e-1 8.46e-1 8.38e-1 8.34e-1

Q4=Pdisc3 6.71e-1 6.72e-1 6.62e-1 6.55e-1

Figure 4. Example 4.2, averaged error reduction rate for different numbers of pre-smoothing steps,
P3=P2 discretisation, mesh level 4
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Although system (11) is solved only approximately in each smoothing step, the
results in Table 5 show averaged error reduction rates which are independent of
the level.

Example 4.4. W-cycle in a 3d test case. This example demonstrates the behaviour
of the multi-level solver applied to a three-dimensional problem. We consider
X ¼ ð0; 1Þ3 with the prescribed solution u ¼ ðu1; u2; u3Þ and p given by

u1ðx; y; zÞ ¼ sinðpxÞ sinðpyÞ sinðpzÞ þ x4 cosðpyÞ;
u2ðx; y; zÞ ¼ cosðpxÞ cosðpyÞ cosðpzÞ  3y3z;
u3ðx; y; zÞ ¼ cosðpxÞ sinðpyÞ cosðpzÞ þ cosðpxÞ sinðpyÞ sinðpzÞ

 4x3z cosðpyÞ þ 4:5y2z2;
pðx; y; zÞ ¼ 3x sinðy þ 4zÞ þ c:

The constant c is chosen such that p 2 L20ðXÞ and the right hand side f is chosen
such that ðu; pÞ fulfil (3).

For discretisations based on hexahedra, the initial grid (level 0) was obtained by
dividing the unit cube into eight cubes of edge length 1=2 as indicated in Fig. 5.
The initial grid for discretisations based on simplicial mesh cells consists of
48 tetrahedra. The corresponding numbers of degrees of freedom are given in

Table 5. Example 4.3, Dl ¼ ILUðAlÞ, al ¼ 1:0, W ð1; 1Þ-cycle, averaged error reduction rates

disc. mesh level

2 3 4 5 6 7 8

Q2=Q1 4.63e-2 5.86e-2 7.54e-2 6.15e-2 6.09e-2 5.66e-2 5.32e-2
Q2=Pdisc1 7.03e-2 6.27e-2 7.91e-2 6.94e-2 6.61e-2 6.21e-2 5.85e-2
P2=P1 9.66e-2 1.76e-1 1.62e-1 1.59e-1 1.55e-1 1.49e-1 1.43e-1

Q3=Q2 1.27e-1 1.49e-1 1.33e-1 1.42e-1 1.32e-1 1.26e-1
Q3=Pdisc2 1.32e-1 1.39e-1 1.33e-1 1.25e-1 1.19e-1 1.13e-1
P3=P2 2.88e-1 4.02e-1 3.99e-1 4.19e-1 3.99e-1 3.95e-1

Q4=Q3 4.82e-1 4.80e-1 4.73e-1 4.66e-1 4.59e-1
Q4=Pdisc3 2.29e-1 2.27e-1 2.25e-1 2.21e-1 2.18e-1

Figure 5. Mesh level 0 (left) and 1 (right)
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Table 6. It is noteworthy that sometimes a lower order finite element space pos-
sesses more degrees of freedom than a higher order space on the same mesh level,
e.g. compare Pnc1 =P0 and P2=P1.

Table 7 presents results obtained with the W ð3; 3Þ-cycle, Dl ¼ ILUðAlÞ and
al ¼ 1:5. The saddle point problems in the smoothing process (11) were solved up
to a reduction of the Euclidean norm of the residual by a factor 104 or at most 20
flexible GMRES iterations. Computations with weaker stopping criteria did not
lead to such clearly level-independent rates of convergence as presented in
Table 7. This behaviour corresponds to the theory by Zulehner [36] which is valid
if the approximation of the solution of (11) is close enough to the solution.
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Sokolovská 83, 186 75 Praha 8
Czech Republic
e-mail: knobloch@karlin.mff.cuni.cz

Non-Nested Multi-Level Solvers for Finite Element Discretisations 341


