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spaces. This paper presents a finite element VMS method which chooses the large scale
projection space adaptively. The adaption controls the influence of an eddy viscosity model
and it is based on the size of the so-called resolved small scales. The adaptive procedure is
described in detail. Numerical studies at a turbulent channel flow and a turbulent flow
around a cylinder are presented. It is shown that the method selects the large scale space
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1. Introduction

Incompressible flows are governed by the incompressible Navier-Stokes equations which, in dimensionless form and for
no-slip boundary conditions, read

u —2vVW-D(u)+ (u-V)u+Vp=fin (0,T] x Q,

V-u=0in [0,T] x Q,

u=0in [0,T] x 0Q, (1)
u(0,X) =up in Q,

/p dx =0, in (0,T].
Q

Here, Q ¢ R? is a bounded, connected domain with polyhedral boundary €, [0, T} is a finite time interval, u is the fluid veloc-
ity, p is the pressure, f is an external force, v is the kinematic viscosity, uy is the initial velocity field, and
D(u) = (Vu + (Vu)")/2 is the velocity deformation tensor (symmetric part of the gradient).

Turbulent flows are characterized by a multitude of different sizes for the flow scales, fact which makes the simulation of
such flows by direct discretizations generally infeasible with the currently available computer hardware. As the resolution of
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all flow scales is not possible, and the unresolved scales are important for the turbulent character of the flow, their influence
onto the resolved scales needs to be taken into account via a turbulence model.

Popular methods for simulating turbulent flows include k — ¢ models [1] and large eddy simulation (LES), see for example
[2,3]. In LES, the flow field is decomposed through spatial filtering and this method aims at an accurate simulation of only the
so-called resolved scales. Widely used traditional LES models are Smagorinsky-type models [4-6].

As an alternative, variational multiscale (VMS) methods are a rather new approach for simulating turbulent flows. The
basic idea of VMS methods, in contrast to traditional LES, is the use of variational projections instead of filtering for the scale
decomposition, thus eliminating several difficulties of the traditional LES, e.g. commutation errors [7-10]. VMS methods for
turbulent flow simulations were derived from general principles for treating multiscale phenomena [11,12]. For an introduc-
tion to as well as a review of VMS methods and their relation and differences to traditional LES methods, we refer to [13-15].
There are meanwhile several realizations of VMS methods, see the reviews in [16-18].

The present paper considers a three-scale VMS method, i.e. the flow is decomposed into three scales: large (resolved)
scales, resolved small scales, and (small) unresolved scales. Assuming that the direct influence of the unresolved scales onto
the large scales is negligible, and thus the direct influence of the unresolved scales is confined to the resolved small scales,
the influence of the unresolved scales onto the resolved small scales is modeled with a turbulence model of eddy viscosity
type. There is no direct turbulence modeling for the large scales, however the large scales are still influenced indirectly by the
unresolved scales due to the coupling of all three scales.

The considered VMS method uses finite elements as underlying spatial discretization, therefore it is called finite element
VMS (FEVMS) method. The projection for the definition of the scales is contained explicitly in the set of equations, see [19]
for the first presentation and [20] for a preliminary version of this projection-based FEVMS method. Its parameters are the
finite element spaces used to define the scale decomposition and the turbulence model acting directly only on the resolved
small scales. Regarding the turbulence model, the parameter in the additional viscous term added to the momentum equa-
tion is generally chosen to be an eddy viscosity model of Smagorinsky type [17-19,21]. Regarding the spaces, standard finite
element spaces for the incompressible Navier-Stokes equations are used for all resolved scales and the separation of the
large and the resolved small scales is achieved through an additional tensor-valued large scale space.

Available numerical studies [17,18,21] show that the choice of the additional large scale space has more influence on the
results than changing the parameter in the eddy viscosity turbulence model. All these studies used globally uniform large
scale spaces, i.e. the polynomial degree of the finite element tensors was the same for all mesh cells. This polynomial degree
was chosen before starting the computations and it remained fixed during the simulations of the flows.

This paper introduces an extension of the projection-based FEVMS method which chooses the large scale space a poste-
riorly and adaptively. To our best knowledge, the idea of adaptively choosing the large scale space seems to be new. Our aim
here is to give a first presentation and first numerical results for this adaptive approach.

The advantages of the adaptive method consist in the fact that, firstly, it is no longer necessary to choose a large scale
space for the whole simulation, the new method computes an appropriate large scale space during the simulation. Secondly,
the large scale space may change. This property is of importance if main features of the flow field change during the simu-
lation. And thirdly, the large scale space is no longer uniform, different mesh cells may have finite element tensors with dif-
ferent polynomial degree. This feature of the new method takes into account the fact that in general the flow is not equally
turbulent in the whole domain. There are subregions, e.g. at walls, with a strong turbulent character and in other subregions
the flow behaves more or less laminar. With respect to the large scale space in the projection-based FEVMS method, the first
situation corresponds to the necessity of using a locally small large scale space which allows a stronger influence of the eddy
viscosity turbulence model. The second situation is vice versa.

The remainder of the paper is organized as follows: Section 2 introduces the considered projection-based FEVMS method.
The adaptive algorithm for choosing the large scale space is described in detail in Section 3. A turbulent channel flow and a
turbulent flow around a cylinder are studied in Section 4. Finally, Section 5 contains the summary of this paper.

2. Projection-based finite element variational multiscale methods

In the projection-based FEVMS method, all resolved scales belong to standard finite element spaces and an additional
large scale space is needed for the scale separation. The resolved scales are decomposed into large and small ones with
the help of a projection into the additional large scale space. The FEVMS method presented here contains this projection
explicitly as an additional equation.

Let V" x Q" be a pair of inf-sup stable, conforming finite element spaces for the velocity and pressure. Consider an addi-
tional finite dimensional space of symmetric 3 x 3 tensor-valued functions [" c {L € (L2(2))*3,1" = L} representing a
coarse or large scale space, and let vy be a non-negative function representing the turbulent viscosity. The semi-discrete
(continuous in time) projection-based FEVMS method with parameters v; and L" then seeks u": [0, T] — V",
p": (0, T]— Q" and G" : [0, T] — L such that

(uf, v') + 2vD(u"), DV") + (" V)u*, v*) - (p", V-v") + (vr(D(U") - G"), D) = (F, V"), W' e V",
(", V-u")=0, vq"eQ" (2)
(D" -6", 1"y =0, vifel”
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The tensor G" is the L?-projection of D(u") into the large scale space L”, representing the large scales of D(u"). Consequently,
D(u") — G" represents the resolved small scales. The additional viscous term (vr(D(u") — G"), D(v")), introduced by the
projection-based FEVMS method in the momentum equation, acts directly only on the resolved small scales, which is a main
feature of three-scale VMS methods.

A crucial issue for the results obtained with a projection-based FEVMS method of form (2) is the choice of the large scale
space L" C {D(v") : v € V). Since L" has been used to distinguish between resolved small scales and large scales, with L"
representing the large scales, it must be in some sense a coarse finite element space. One way of achieving this is by choosing
L to be a lower order finite element space than V" on the same grid, called one-level method. This requires that V" is in some
sense a higher order finite element space. An alternative consists in defining L" on a coarser grid, see [22] for a discussion on
one-level and two-level projection-based FEVMS methods. In the present paper, the one-level approach will be used.

The projection terms in (2) can be treated explicitly or implicitly in time. We will restrict here to the implicit treatment,
see [21] for comments on the explicit approach. The fully implicit projection-based FEVMS method, discretized in time using
a 0-scheme, reads: Find (uf,p", G') € V" x Q" x L" such that

(Ul v") + 01 AL [(2v + Vi) D(ug), DY) + (U - V)ug, v9) = (viGy, DV)] = (pr, V- V1)
= (U}, V') = AL [((2v + Vi 1) D(W,), DVY) + ((u ;- V)ug,, vh)
—(raa G, DOV + 03AL(Fi 1, V") + 02AL(Fe, V), W e VI, (3)
0=(¢" V-u), vg"eQ",
0= (D) -G, 1", vifel”

with Aty = t, — t;_1. We will use in our studies the Crank-Nicolson scheme, 0, = 0, = 0; = 0, = 0.5, since this scheme has
been proven to be a good compromise between accuracy and efficiency [23,24].
For the main features of an efficient implementation of the fully implicit approach we refer to [19].

3. The projection-based finite element variational multiscale method with an adaptively chosen large scale space

The projection-based FEVMS method requires the choice of the tensor-valued large scale space L in order to define the
projection. In [19], it has been shown that an efficient implementation of the one-level method requires this space to consist
of discontinuous functions. This is also understandable from the fact that the resolved small scales are the projection of an
already discontinuous function, namely the deformation tensor of the finite element velocity. In [17-19,21] numerical stud-
ies were performed for L" = Py and L" = P9, In the large-space-adaptive FEVMS method, L" is allowed to posses different
polynomial degrees on different mesh cells. The more turbulence a region presents, the stronger the influence of the turbu-
lence model should be and the local polynomial degree of L" should increase as the amount of turbulence decreases. In re-
gions with strong turbulence, e.g. along the boundary of the domain, a turbulence model is necessary, often in contrast to the
interior of the domain.

The local amount of turbulence is given by the local unresolved scales. But these scales are not computable. In the FEVMS
method with adaptive large scale space, the amount of turbulence, and in consequence the local polynomial degree of L, will
be controlled a posteriorly by the local L?>-norm of the resolved small scales D(u") — G". The assumption behind this choice
for the local indicator of the amount of turbulence is that the local turbulence intensity is reflected by the size of the local
resolved small scales. In other words, if there are many resolved small scales in a subregion, we expect that there are also
many scales of the next smaller size, i.e. many unresolved scales, in this subregion. And vice versa, if there are few resolved
small scales in a subregion, we expect that in this subregion the amount of unresolved scales is also small.

In order to obtain information on the amount of turbulence, the size of the local resolved small scales

_ HD(uh) - G’HHLZ(K) _ HD(uh) - G’H”LZ(K)

_ _ CKed (4
K Ml K[ )

where K is a mesh cell of the triangulation 7", is compared to a mean resolved small scale size. The size of the resolved small
scales does not depend on the volume |K]| of the mesh cells, with definition (4) the volume of the mesh cells scales out. In cells
where the size of the resolved small scales 5, is (very) large compared with the mean resolved small scale size, high turbu-
lence is expected, whereas in cells where #, is smaller than the mean, the amount of turbulence is estimated to be low. In the
numerical studies presented in Section 4, three possible definitions of means will be investigated:

_ 1
M= 1o of cells I; Nx, the mean over all mesh cells, (mean), (5)
_ 1 . .
.
M= no. of time steps tim;;epsn, time average (mean.time), (6)
n nt
7= 1’]—1—7177 linear combination, (mean_mean). (7)
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Of course, considering time averages makes sense only if main features of the flow, like the inflow velocity, do not change
much during the simulation. Another possibility for defining a time average would be the consideration of a prescribed num-
ber of last time steps instead of all time steps.

Four different types of turbulence regions will be considered. For very large 1, K € T", the eddy viscosity model should
be applied locally to all resolved scales. This corresponds to choosing L”(K) to be the space consisting only of the zero tensor,
denoted by Py (K). Otherwise, L" (K) can be chosen to be Py(K), PS*¢(K), or P9*¢(K), corresponding to large, small and very
small #,, respectively. The superscript indicates that the global finite element space consists of discontinuous functions,
the functions on each mesh cell are continuous. The choice Pgi“(K) corresponds to (almost) switching off the turbulence
model. There are very few scales left in D(u") — G" in this case. Since we think that the possibility of switching off the tur-
bulence model should be available in the method, we set vy = 0 in the case of very small #,. In more detail, regarding the
definition of the four turbulence regions, consider C; < C, < C3, all non-negative, and denote by 7 the ratio between #;
and one of the means above, then L”(K) will be chosen as follows:

(1) for cells K with < C; : LH(K) _ ziSC(K),vT(K) =0,
(2) for cells K with C; < < Gy : k) = P‘ljisc(K),

(3) for cells K with C; < < Cs: L (K) = Py (K),

(4) for cells K with C5 <7 : LH(K) = Pgo(K)

In the numerical simulations, together with the three different means, different values for Cy, C,, C3 will de studied.

Another parameter in the large-space-adaptive method is the number of time steps n,paae after which the space L will be
updated. This can be done after each time step but also after a prescribed number of time steps only. An update of L” involves
some additional numerical work, since some matrices, which would not change if L would stayed the same, have to be allo-
cated and assembled again because of the changing dimension of L". In a discrete time t;, updates of L" are performed only at
the beginning of the computations. For this reason, the adaptive choice of L" is based on the finite element solution of the
previous discrete time t;_;.

The above criteria for locally choosing the large scale space is based on heuristic arguments. We are presently not aware
of any results we could apply in order to mathematically support this choice. In the next section we will present the results
of first numerical tests showing that the large-space-adaptive method with appropriately chosen parameters selects appro-
priate large scale spaces.

4. Numerical studies

We will consider two examples in the numerical studies, a strongly underresolved turbulent channel flow and a turbulent
flow around a cylinder. The QZ/P§1iSC pair of finite element spaces was used for velocity and pressure in all simulations pre-
sented below. This pair of finite elements is among the best performing ones for incompressible flow simulations [23,25,26].
All simulations were performed with the code MooNMD [27].

4.1. The turbulent channel flow at Re, = 180

Turbulent channel flows are standard benchmark problems for turbulent flow simulations. These flows are statistically
steady-state. The turbulent channel flow at Re; = 180 was defined in [28] where also reference values for time and
space-averaged flow quantities are given. The setup of this problem for the projection-based FEVMS method is presented
in detail in [17].

The numerical studies at the turbulent channel flow should be considered as a proof of concept. Firstly, it will be shown
that (4) gives appropriate information on the appearance of turbulence such that L” (K) is chosen in a way which can be ex-
pected. Secondly, the different possibilities (5)-(7) for defining a mean value of 5, will be studied, several choices of the
parameters C;, C,, C3 and the effect of the frequency of updating the space L”, nypaae, 0N the results of the large-space-adap-
tive method will be investigated. Comparisons with simulations with uniform spaces L" will be presented as well.

The flow is given in Q = (—27, 27) x (0, 2) x (—271/3, 27/3) with periodic boundary conditions in streamwise and span-
wise direction. At the walls y = 0 and y = 2, no-slip boundary conditions are prescribed. We will consider this flow on a very
coarse grid. This corresponds to a typical situation in applications where the grid size is often coarser by magnitudes than the
size of the smallest scales. The grid consists of 8 x 16 x 8 = 1024 mesh cells, which results in 25,344 velocity degrees of free-
dom and in 4096 pressure degrees of freedom. It is uniform in streamwise and spanwise direction but anisotropic in wall
normal direction where the grid points are distributed accordingly to

y;=1-cos <%> i=0,...,16.

As eddy viscosity model, we used the van Driest damping of the Smagorinsky model [3,29]

(1-e0 ()" v < o
1 else,

vr = 0.01 (ZhK‘min)ZHD(uh) ||F
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with hg min being the shortest edge of a mesh cell K, || - || being the Frobenius norm, A = 26 and y™ = Re.y = 180y being the
distance from the wall measured in wall units (or viscous lengths). All simulations started with a fully developed flow field.
Initially, L (K) = Po(K) was chosen for all mesh cells. We allowed the simulations 10 (non-dimensionalized) time units to
develop with the parameter (8) and the adaptive strategy for choosing L". The time-averages presented below were com-
puted in another 30 (non-dimensionalized) time units. The Crank-Nicolson scheme was applied with the equidistant time
step At = 0.004. This is smaller than the Kolmogorov time scale and it fits into the range of the time step proposed in [30].
Below, comparisons of the mean velocity profile U" .. and the rms turbulence intensity u. with the data from [28] are gi-
ven. The computed mean values are the average of the mean values of the lower and upper half of the channel. For details on
the computations of these quantities, we refer to [17].

Besides the L?(K)-norm of the resolved small scales (4), one could think that also the ratio of this norm to the L?(K)-norm
of all resolved scales

. [D(u") — G’HHLZ(K) h

D@y, T )
might be an appropriate measure for the intensity of the local turbulence. In turbulent channel flows, a strong turbulence can
be expected at the walls. Fig. 1 shows typical snapshots of spatial distributions with respect to the wall normal direction of
(4) and (9). Each column in the pictures shows the values of all mesh cells with the respective y-coordinate of the bary cen-
ter. The values of 7, at the walls, which are located aty = 0 and y = 2, are very large compared with the values in the center
of the channel. In contrast, the values of 5 are rather equidistributed in the channel. Thus, it is possible to derive from (4) the
correct information about the distribution of the local turbulence but not from (9).

We performed numerous simulations with different parameters in the large-space-adaptive method for choosing L". For
shortness of presentation, only representative results are given below.

Results obtained with the definitions (5)-(7) of the mean values, for a fixed set of parameters Cq, C,,C3 and a fixed num-
ber of time steps Nypaae = 10 to update L, are presented in Fig. 2. In addition, results obtained with the fixed a priori choices
" = Py (vms0) and " = P‘l1isc (vms1) are shown. It can be observed that there are only very slight differences in the curves
with the different mean values. The rms turbulence intensity is overpredicted in all simulations. The overprediction of sec-
ond order statistics is typically observed in turbulent channel flow simulations with low order discretizations like finite ele-
ments or finite volumes on coarse grids [17,21,31,32].

The choice of the parameters C; and C, has a much stronger effect on the results than the choice of the mean value, see
Fig. 3. Generally, the large-space-adaptive method works the following way: the larger the values C;,C;, Cs, the larger the
space L becomes and the less eddy viscosity is introduced into the simulations. The results presented in Fig. 3 show that
in this example the values C; € {0.2,0.3} and C; € {0.5,0.75} lead to the best results. The value of C; has comparatively little
influence. For C; > 2, the curves are almost identical if all other parameters in the simulations are chosen to be the same.

Fig. 4 presents results with different numbers of time steps between the updates of L. With respect to this parameter,
there are only slight differences in the curves. This parameter plays for simulations of the statistically steady-state turbulent
channel flow obviously a minor role.

Appropriate choices of the parameters in the large-space-adaptive method lead with respect to the mean velocity profile
to somewhat more accurate results than both fixed choices of the large scale space. All results with the large-space-adaptive

method are more accurate than the results with [ = P#¢ with respect to u't..

180 : : : 1.1
160f 1l + . .
b
140 , 0.9¢ i f § i % % } i %
0.8f+ i ’
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Fig. 1. Turbulent channel flow. Size of , computed with (4) (left) and size of (9) (right) in a simulation with " = Py. The y-coordinate is the y-coordinate of
the bary center of the mesh cells.
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8 06 _y-mean_mean, n_update=10, C,=0.25, C,=0.75, C=1.4
o 3r ~4-mean, n_update=10, C,=0.3, C,=0.5, C,=2 )
o 04
2 : —+vms0
e 2.5H
o 02
Q 4 7]
e o £E 2
o p=}
(]
£ 02 Reference 1.5
° _mean, n_update=10, C,=0.25, C,=0.75, C3=1'5
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Fig. 2. Turbulent channel flow. Difference to the reference mean velocity and the rms intensities for using different methods for computing mean values in
the adaptive method for choosing L".

Next, we like to illustrate the way the large scale space L" is chosen with the large-space-adaptive method. Fig. 5 shows
adaptively chosen spaces for two sets of parameters C;, C,, C3. One can observe that at the walls locally small spaces were
chosen for L (K) whereas the eddy viscosity model was switched off in the center of the channel.

Finally, Fig. 6 illustrates the development of the size (number of degrees of freedom) of the space L" for different param-
eters Cy, G2, C3 and Nypgate.

4.2. Turbulent flow around a cylinder with square cross-section at Re = 22,000

This example was defined in [33]. The flow domain and the initial grid (level 0) consisting of hexahedra are presented in
Fig. 7. We performed the simulations on level 2, resulting in 522,720 velocity degrees of freedom and 81,920 pressure de-
grees of freedom. The inflow is prescribed by

u(t,0,y,z) = (1 +0.04 rand,0,0)",

where rand is a random number in [-0.5,0.5]. The noise in the inflow serves to stimulate the turbulence. No-slip boundary
conditions were prescribed at the column. Outflow boundary conditions were set at x = 2.5 m. On all other boundaries, free
slip conditions were used. The Reynolds number of the flow, based on the mean inflow U, = 1 m/s, the length of the cyl-
inder D = 0.1 m and the viscosity v = 1/220,000 m? /s is Re = 22,000. There are no external forces acting on the flow.

The Crank-Nicolson scheme was applied with equidistant time steps of length At = 0.005. Again, the Smagorinsky model
with van Driest damping (8) was used as eddy viscosity model. Since we could not find in the literature values for u, to com-
pute y* = u.y/v, we performed as preprocessing step simulations with the FEVMS method with L" = P, to get estimates for
u,. We obtained u, = 2300 for the front wall of the cylinder, u,; = 1500 for the lateral walls and u,; = 1000 for the back wall.
These values were used in the van Driest damping model (8) for all simulations presented below.

This example describes a statistically periodic flow. Functionals of interest of the flow are the drag and the lift coefficient
at the cylinder and the Strouhal number. The coefficients can be computed as volume integrals, e.g. see [8],

ca(t) = (U, va) + (vWu, Vvy) + b(u,u,vy) — (p, V - vyg)]

~ pDHU.
for any function v, € (H'(2))? with (v4)|s = (1,0,0)", where v, vanishes on all other boundaries and S is the boundary of the
cylinder. The density of the fluid is in this example p = 1 kg/m3. Similarly, it holds

2

=———
Cl() pDHUi[

(utyvl) + (vVl.l, vv[) + b(u7 uvvl) - (p* \ V{)]

for any function v, € (H'(Q))* where (v))|s = (0,1,0)" and v, vanishes on all other boundaries. Note, there is a jump in the
definition of v; and v, at the upper and lower edges of the cylinder. However, using quadrature rules with interior quadra-
ture points for the evaluation of ¢4(t) and ¢(t), e.g. Gaussian quadrature, this inconsistency does not play any role in the com-
putation of c4(t) and ¢(t). The actual choice of v; and v, in our computations was the same as in [34]. The Strouhal number is
defined by St = DU, /T, where T is a characteristic time scale (the average length of a period in this example). Below, time-
averaged drag and lift coefficients, ¢; and ¢;, root mean squared (rms) values for c4, ¢; which are defined by

12 12
Cdrms = <Z(Cd(ti) - Cd)2> y  Clrms = <Z(Cl(ti) - Cl)2> 5

1

1
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Fig. 3. Turbulent channel flow. Difference to the reference mean velocity and the rms intensities for using different sets of constants in the adaptive method
for choosing L".

where the summation covers all discrete times in the time interval for which ¢y, ¢; were computed, and the Strouhal number
are presented.

All computations started with a fully developed flow field. After having allowed the flows 10 (non-dimensionalized) time
units for developing with respect to the used method, the time averages were computed using the data of the following 30
full periods. The beginning of a period is defined by ¢, changing from negative to positive values.

Results of our simulations are presented in Table 1. Experimental values, from [33], are given as comparison with the val-
ues obtained with the numerical simulations. One can observe that ¢, is overpredicted in all simulations. This overprediction
can already be seen for most codes in the comparative study from [33]. The value ¢; is close to zero for all simulations. The
predicted Strouhal numbers are often rather similar.
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Fig. 4. Turbulent channel flow. Difference to the reference mean velocity and the rms intensities for using different numbers of time steps nypq.e between
the updates of L".
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right: different numbers of time steps between the updates of L".

The results from Table 1 obtained with the FEVMS method with adaptive large scale space show that there is a complex
relation between the parameters of this method and the quantities of interest. It is not possible to identify trends on how the
quantities of interest behave if the parameters of the large-space-adaptive method are changed. Apart of c,, all results are
inside the experimental intervals. The same choices for C; and C; as in the turbulent channel flow problem lead also in this
example to comparatively good results. We found out that the choice of C; does not lead to substantial changes of the results.
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Fig. 7. Turbulent flow around a cylinder with square cross-section. Left: the cross-section of the domain (all length in m), the height of the channel is
H=0.4 m; right: initial grid.

Table 1
Turbulent flow around a cylinder with square cross-section. Time-averaged functionals of interest and corresponding rms values.
Cl C2 C3 Mean nupdate E‘I Clrms Ed Cd rms St
VMS with " = P, —0.002 0.96 248 0.15 0.139
VMS with LH = pdisc -0.015 0.97 2.42 0.17 0.137
0.2 0.5 2 n 1 —0.006 1.30 2.54 0.18 0.137
0.2 0.75 2 n 1 0.005 1.34 2.56 0.14 0.141
0.2 1 2 i 1 0.007 1.14 2.48 0.18 0.136
0.2 1.25 2 n 1 0.013 1.36 2.58 0.11 0.141
0.3 0.5 2 i 1 —-0.010 1.29 2.55 0.15 0.139
0.3 0.75 2 n 1 —-0.016 1.28 2.55 0.14 0.139
0.3 1 2 n 1 0.004 1.27 2.53 0.13 0.137
03 1.25 2 i 1 0.005 1.33 2.55 0.15 0.140
0.2 0.5 2 n 10 0.004 1.35 2.57 0.12 0.140
0.2 0.75 2 i 10 —0.002 1.26 2.52 0.16 0.138
0.2 1 2 i 10 0.004 1.14 247 0.20 0.141
0.2 1.25 2 n 10 -0.015 1.25 2.55 0.11 0.137
0.2 0.5 2 nt/2 1 —-0.024 1.35 2.57 0.11 0.140
0.2 0.75 2 72 1 -0.019 1.20 2.53 0.13 0.141
0.2 1 2 /2 1 —0.004 1.20 2.53 0.12 0.139
0.2 1.25 2 nt/2 1 —-0.021 1.34 2.55 0.18 0.140
Experiments 0.7-1.4 1.9-2.1 0.1-0.2 0.132

The most obvious difference between the FEVMS methods with uniform and with adaptive large scale space is in ¢jms.
Although all values are within the experimental range, the values obtained with the adaptive large scale space are in general
notably larger.

Some other properties of the computed flow fields are presented in Figs. 8-10, where all averages were computed in the
vertices of the mesh cells. One can observe that all results at the cylinder are rather similar, which comes from the small
influence of the eddy viscosity model due to the van Driest damping. Concerning the large-space-adaptive FEVMS method,
representative results are shown.

Fig. 8 presents the mean value of the first component of the velocity U along the center plane y = 0.7. It can be observed
that negative streamwise velocities are computed in the nearest mesh point in front of the cylinder. The modulus of this va-
lue is considerably larger for the FEVMS methods with uniform large scale space. Behind the cylinder, the typical form of the
curves is observed, as can be found e.g. in [33]. In particular, one can recognize that the choice of n,pq,e has a major impact on
the results downstream the cylinder.

Fig. 9 shows the averaged pressure distribution along the cylinder (front side at the beginning). The values were com-
puted by averaging the discontinuous finite element pressure in the vertices of the mesh cells. The singularities of the pres-
sure at the edges between the front and the lateral faces of the cylinder can be clearly seen. These singularities are somewhat
larger for the FEVMS methods with adaptive large scale space. At the lateral sides and the back side, the pressure computed
with the large-space-adaptive schemes is a little bit smaller than for the schemes with uniform large scale space.

The average of the first component of the velocity at the body, for x = 0.5, is presented in Fig. 10. The negative values at
the lateral sides of the cylinder are somewhat larger for the schemes with adaptive large scale space. The FEVMS method
with " = Py is the only method where the peak of the negative velocity is not in the nearest mesh point at the wall.
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0.8
0.75F
—e— vms0
=n=: VMS1
> 0.7} .. Mean, n_update=1,C,=0.2, C, = 0.75, C=2 1
.- Mean, n_update=10, C1=U.2, C2 =0.75, 03=2
0.65F E
-
0.2 0 02 0.4 0.6 0.8 1 1.2 1.4 16
u
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Fig. 11. Turbulent flow around a cylinder with square cross-section. Snapshot of #, and [" for C; =0.3,C, =0.75, C3 = 2, Nypdate = 1 and the indicator 7.

Altogether, there are a number of choices for the parameters in the FEVMS method with adaptive large scale space which
lead to satisfactory results. Some clear differences to the results of the methods with uniform large scale space can be
observed.

A typical snapshot of the distribution of the resolved small scales and the corresponding space L is presented in Fig. 11.
Also for the turbulent flow around a cylinder, the large scale space is chosen in such a way that the eddy viscosity model
becomes effective only where turbulence occurs: at the cylinder and downstream the cylinder.

There are a number of open questions concerning the general relation between the parameters of the large-space-
adaptive method and the computed quantities of interest. This situation emphasizes the need of a mathematical analysis
of the method, which has to be started most probably at a much simpler example than the turbulent flow around a
cylinder.

5. Summary and outlook

This paper presented a three-level finite element variational multiscale method for turbulent flow simulations with an
adaptive choice of the large scale space. The large scale space L" is chosen a posteriorly and it is allowed to posses a different
polynomial degree in different mesh cells. The adaption is based on the size of the computed resolved small scales as local
indicator of the amount of turbulence. Four parameters are contained in the algorithm for choosing the local space L"(K), a
fiftth parameter is introduced in the updating process.

The adaption criteria is a heuristic one. In order to test this choice, numerous simulations were performed for a turbulent
channel flow and a turbulent flow around a cylinder, with different values for the parameters. In the snapshots in Figs. 5 and
11 it can be seen that the method chooses the large scale space in an appropriate way, i.e. the effect of the turbulence model
is controlled by the adaptively chosen large scale space. Compared with choosing the same large scale space in all mesh cells
and for all times, it could be seen that appropriate choices of parameters in the large-space-adaptive method often lead to
improvements of the results. Thus, these first numerical results not only support our choice for the adaption criteria, but also
show that the idea of adaptively choosing the large scale space is worthy of further investigations.

Regarding the parameters, in the case of the turbulent channel flow, we could observe only very small differences in the
curves obtained with the different means (5)-(7). The choice of the parameters C; and C, had a much stronger influence on
the results. The value of parameter C; had comparatively little influence, so did n,pqate, the number of time steps between the
updates of L". The rms turbulence intensity was overpredicted in all simulations with the large-space-adaptive approach.
With appropriate choices for the parameters, the approximation of the mean velocity profile was somewhat more accurate
than in the simulations with a uniform large scale space. All approximations of uf:. obtained with the FEVMS method with
adaptive large scale space were better than the ones obtained with L" = P‘f‘“.

In the case of the turbulent flow around a cylinder, the numerical results showed a complex relation between the param-
eters of the large-space-adaptive FEVMS method and the computed quantities of interest, with a number of open questions
left. With respect to a number of flow characteristics, similar results were obtained with the FEVMS methods with uniform
large scale space and with adaptive large scale space for a wide range of parameters. The value of ¢, was overpredicted in all
simulations, all other values were in the experimental range. Notable differences to the FEVMS methods with uniform large
scale space could be observed for ¢;ys.

The presented numerical studies give first guidelines on the importance of the parameters in the large-space-adaptive
FEVMS method and their appropriate choice. Further studies, also at different flows, have to refine these guidelines. For a
sound support of the adaption criteria and an appropriate choice of the parameters involved, a mathematical analysis of
the method would be helpful.
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