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Variants of projection-based finite element variational multiscale
methods for the simulation of turbulent flows

Volker John and Adela Kindl∗,†

FR 6.1-Mathematik, Universität des Saarlandes, Postfach 15 11 50, 66041 Saarbrücken, Germany

SUMMARY

Some variants of a three-scale projection-based finite element variational multiscale (VMS) method are
studied for turbulent channel flow computations at Re� =180. Different spaces for the large scales, two
eddy viscosity models and two ways of discretizing the projection terms in time are explored. The results
obtained with the resolved small scales in the definition of the eddy viscosity are very sensitive to the
temporal discretization of the projection terms. The computations were performed on three grids commonly
used in turbulent channel flow simulations. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Variational multiscale (VMS) methods are a rather new approach for simulating turbulent flows.
They are based on basic ideas from [1, 2] and the first application of these ideas to turbulent flow
simulations can be found in [3]. Meanwhile, different classes and realizations of VMS methods
exist, e.g. see [4–9]. The main feature of VMS methods is the definition of scales by projections
into function spaces. Naturally, scales smaller than the mesh width, the unresolved scales, cannot
be computed. A first class of VMS methods uses a two-scale decomposition of the flow and
multiscale concepts are applied to model the influence of the unresolved scales onto the resolved
ones [9]. A second class is based on a three-scale decomposition, where the resolved scales are
decomposed into large and small ones [8]. It is assumed that the scale separation is performed
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such that the direct influence of the unresolved scales onto the large scales can be neglected. The
impact of the unresolved scales onto the resolved small scales is modeled by an eddy viscosity
model. The definition of the scales by projections and the ways of taking the effect of the subgrid
scales into account are important differences to classical LES methods, see [10] for a detailed
discussion, and they avoid problems like commutation errors on boundaries [11, 12].

This paper considers a three-scale VMS method in the context of finite element discretizations,
the so-called projection-based VMS method, described in Section 2. Recently, an assessment of this
method for the benchmark problem of the turbulent channel flow at Re� =180 has been started [10].
The present paper will continue these investigations and study in particular some variants of this
VMS method with respect to the definition of the eddy viscosity model and the discretization of
the projection terms in time.

2. PROJECTION-BASED THREE-SCALE FINITE ELEMENT VMS METHODS

Let V h×Qh be a pair of inf–sup stable, conforming finite element spaces for velocity and pressure.
In addition, let LH be a finite dimensional space of symmetric d×d tensor-valued functions
representing a large-scale space, and a non-negative function �T acting as the turbulent viscosity.
The semi-discrete three-scale projection-based VMS method with parameters �T and LH then
seeks uh : [0,T ]→V h , ph :(0,T ]→Qh , and GH : [0,T ]→ LH such that

(uht ,v
h)+(2�D(uh),D(vh))+((uh ·∇)uh,vh)

−(ph, ∇ ·vh)+(�T (D(uh)−GH ),D(vh)) = (f,vh) ∀vh ∈V h

(qh,∇ ·uh) = 0 ∀qh ∈Qh

(D(uh)−GH ,LH ) = 0 ∀LH ∈LH

(1)

The last equation in (1) states that GH is the L2-projection of D(uh) into LH . Thus, GH represents
large scales of D(uh) and, consequently, D(uh)−GH represents resolved small scales. Hence, the
additional term (�T (D(uh)−GH ),D(vh)), introduced by three-scale VMS methods, is a viscous
term acting directly only on the resolved small scales.

Two static Smagorinsky-type eddy viscosity models for the turbulent viscosity will be considered
in the numerical tests:

• using all resolved scales: �T =CS�
2‖D(uh)‖F ,

• using only the resolved small scales: �T =CS�
2‖D(uh)−GH‖F,

where ‖·‖F is the Frobenius norm. Smagorinsky-type models are commonly used as turbulence
models in three-scale VMS methods. Numerical studies show that using the static Smagorinsky
model within VMS methods works well, often not worse than the dynamic Smagorinsky model,
sometimes even better [7, 13].

All terms of (1) that occur in the Galerkin finite element formulation of the Navier–Stokes
equations will be treated implicitly in time. The L2-projection for the definition of GH will be
treated explicitly as well as implicitly. The implicit discretization is described in detail in [8].
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Its main features are:

• it is only efficient if LH is a discontinuous finite element space on the finest grid and the
basis of LH is chosen to be L2-orthogonal,

• seven sparse matrices whose dimensions depend on V h and LH are needed,
• four of these matrices have to be assembled only once at the initial time,
• the three other matrices have to be assembled at each discrete time in each step of the iteration

for solving the nonlinearity, since they depend on �T and �T depends on the current finite
element solution,

• matrix–matrix products have to be computed at each discrete time in each step of the iteration
for solving the nonlinearity.

The explicit discretization of the projection term in the additional viscous term removes the
restriction on LH [14]. It is also somewhat cheaper than the implicit approach. Instead of the costs
given in the last two points, the following arise [15]:

• the three other matrices have to be assembled only once at each discrete time,
• matrix–vector products have to be computed only once at each discrete time.

Note that the assembling of matrices in three-dimensional computations is quite expensive [16].
Altogether, one can expect faster computations with the explicit approach. The amount of speed-up
will be studied in the numerical tests.

3. NUMERICAL RESULTS FOR THE TURBULENT CHANNEL FLOW AT Re� =180

The definition of the turbulent channel flow problem at Re� =180 as well as references can be
found in [17]. Its setup and the computation of the values of interest in our simulations have been
discussed in detail in [10]. Starting with an already developed flow field, each solution was allowed
to develop further for 10 s (dimensionless) and statistics were computed for another 20 s.

The computations were performed with the code MooNMD [18]. Hexahedral grids with V h×
Qh =Q2×Pdisc

1 were used, i.e. the pressure finite elements are piecewise linear and discontinuous.
For the temporal discretization, the Crank–Nicolson scheme was used with the equidistant time
steps �t=0.002 and 0.004. Both time steps are smaller than the Kolmogorov time scale and they
fit into the range of time steps proposed in [19]. The following variants of the projection-based
VMS method will be studied:

• LH ∈{P0, Pdisc
1 }; abbreviations: VMS0, VMS1;

• explicit and implicit temporal discretization of the projection term in the momentum equation
and the L2-projection, abbreviations: EXPL, IMPL;

• definition of the turbulent viscosity with all resolved scales or only with the resolved small
scales, abbreviations: ALL, SMALL.

In [8, 10], only VMS0 IMPL ALL and VMS1 IMPL ALL were considered.
The computations were performed on grids that are uniform in streamwise and spanwise direction

but which become finer toward the walls in the wall-normal direction. We studied three different
types of the distribution of the grid points in wall-normal direction, i=0, . . . ,Ny , where Ny is the
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number of grid points:

• Grid 1: yi =1−cos(i�/Ny), y+
min=1.7293, [7, 10];

• Grid 2: yi =1+ tanh(2.75(2i/Ny−1))/tanh(2.75), y+
min=0.7244, [10, 19];

• Grid 3: yi =1+ tanh(2(2i/Ny−1))/tanh(2), y+
min=2.115, [6].

Grid 2 of the present study is the same as Grid 0 from [10]. The degrees of freedom (d.o.f.),
which are not located on mesh cell boundaries in the wall-normal direction, do not obey the
prescribed distribution but are located as it is usual in finite element methods, i.e. in the center
between the mesh cell boundaries for the Q2 finite element. The number y+

min is the smallest
distance of a velocity d.o.f. to the wall, measured in wall units y+ = Re�y. The numerical studies
were performed on 8×16×8 grids, which results in 25 344 velocity d.o.f. (including Dirichlet
nodes) and 4096 pressure d.o.f. These coarse grids require the application of a turbulence model
since a direct numerical simulation (DNS) blows up in a finite time [10]. The dimensions of each
component of the large-scale spaces are 1024 for LH = P0 and 4096 for LH = Pdisc

1 . The parameter
� in the Smagorinsky models was set to twice the length of the shortest edge of the mesh cells.
This is the same choice as in [10] (where, however, in [10] erroneously only once the length of
the shortest edge was given).

Two situations for the application of turbulence models can be distinguished:

• the grid is too coarse to allow a DNS, the turbulence model is needed to perform any
simulations at all,

• the grid is fine enough to perform an underresolved DNS, the turbulence model is used to
improve the results.

The first situation is given if the Reynolds number is very large compared with the grid size. This
situation is more common in applications and it is considered here.

We studied the mean velocity profile, the rms turbulence intensities uh,∗
rms, v

h,∗
rms, w

h,∗
rms and the

off-diagonal Reynolds stress component R
h,∗
12 . Qualitatively the same results were obtained for

both time steps and we present results for the smaller one.
Representative examples comparing the implicit and explicit discretization of the projection terms

are given in Figure 1. Whereas the differences in the curves are small for the turbulent viscosity
defined with all resolved scales, the curves obtained with the combination EXPL SMALL differ
considerably from their implicit counterparts. This behavior is caused by the strong fluctuations of
the resolved small scales: it makes a big difference if these scales are taken from the previous or the
present discrete time. This high sensitivity of the projection terms on the temporal discretization
is not desirable. We will consider below only the implicit approach.

Differences from the mean velocity profile for all variants of the implicit approach are shown
in Figure 2. The deviation from the reference curve is in general smaller for Cs =0.01 and the
results on Grid 1 are better than on the other grids. The curves obtained with the two models for
�T are in general similar.

Results for second-order statistics are given in Figure 3. All simulations overpredict the (absolute)
values of the reference curves. The rather large differences to the reference curves are caused
by the used coarse grid. We checked that the differences become smaller on finer grids (which
allow to perform an underresolved DNS). The overprediction is often smaller for �T defined with
all resolved scales, if all other parameters of the simulations were chosen to be the same. The
results obtained with Cs =0.01 are in general closer to the reference curves than the results with
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Figure 1. Comparison of the implicit and explicit discretization of the projection terms; left:
difference from the mean velocity profile (Umax=18.301 at y+ =180), Grid 1, Cs =0.01

and right: R
h,∗
12 , Grid 2, Cs =0.005.
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Figure 2. Differences from the reference mean velocity profile (Umax=18.301 at y+ =180), Grid 1
(left), Grid 2 (right), and Grid 3 (bottom).
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Figure 3. Second-order statistics: uh,∗
rms (left), R

h,∗
12 (right); Grid 1, Grid 2, Grid 3 (top to bottom).

Cs =0.005 and VMS0 leads often to better results than VMS1. Thus, the VMS method, which
introduces most turbulent viscosity, VMS0 ALL with Cs =0.01, shows the smallest overprediction
of the second-order statistics. Comparing the grids, the worst results are always obtained on
Grid 3.
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Table I. Computing times in seconds on Grid 1 for a period of 10 s (5000 time steps).

IMPL ALL IMPL SMALL EXPL ALL EXPL SMALL

VMS0, Cs =0.005 309 394 315 292 286 341 277 900
VMS1, Cs =0.005 363 972 384 424 340 980 294 674
VMS0, Cs =0.01 228 071 269 520 217 644 203 413
VMS1, Cs =0.01 316 117 333 937 288 845 208 472

Computing times on Grid 1 are given in Table I. The same solver as in [10] was used. For
using all resolved scales in the definition of �T , the explicit approach saved consistently 5–9% of
the computing time compared with the implicit one. The larger differences in the results of both
temporal discretizations for the resolved small scales in the definition of �T are reflected by larger
differences in the computing times. We consider the results with IMPL SMALL more reliable
than with EXPL SMALL, which is supported for instance with the left picture of Figure 1. The
computations with IMPL SMALL took somewhat more time than the implicit approach with all
resolved scales in the definition of �T .

4. SUMMARY

This paper investigated variations of parameters in a three-scale projection-based finite element
VMS method with respect to the large-scale space, the form of the turbulent viscosity and the
temporal discretization of the projection terms. Three different grids commonly used in turbulent
flow computations were studied. The computations were performed on rather coarse grids.

The main observation was that the results obtained with the resolved small scales in the definition
of �T are sensitive to the temporal discretization of the projection terms. Using these scales from
different times may led to much different results because of their strong fluctuations. The second-
order statistics were overpredicted in all simulations. The method that introduces most viscosity
(VMS0 ALL with Cs =0.01) often gave the best results. The results on Grid 3 are often worse
than on the other grids. The explicit approach with all resolved scales in �T was somewhat (always
less than 10%) faster than the corresponding implicit approach.
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