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Abstract: Numerical solutions of convection–diffusion equations obtained 
using the Streamline–Upwind Petrov–Galerkin (SUPG) stabilisation typically 
possess spurious oscillations at layers. Spurious Oscillations at Layers 
Diminishing (SOLD) methods aim to suppress or at least diminish these 
oscillations without smearing the layers extensively. In the recent review  
by John and Knobloch (2007), numerical studies at convection–diffusion 
problems with constant convection whose solutions have boundary layers led to 
a pre-selection of the best available SOLD methods with respect to the two 
goals stated above. The behaviour of these methods is studied in this paper for 
a convection–diffusion problem with a non-constant convection field whose 
solution possesses an interior layer. 
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1 Introduction 

Scalar convection–diffusion equations 
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describe the stationary distribution of a quantity u, like concentration or temperature, 
determined by the physical mechanisms of convection and diffusion. In equation (1), 

⊂ d, d ∈ {2, 3}, is a bounded domain with a polygonal or polyhedral boundary 
with subsets D and N satisfying = D N and D N = . Further, 
ε ∈ + is a constant diffusion coefficient, b ∈ W1, ( )d is a given convection field 
satisfying the incompressibility condition ∇ ⋅ b = 0, f ∈ L2( ) is an outer source of the 
quantity u, n is the outward unit normal vector to , gD ∈ H1/2( D) represents Dirichlet 
boundary conditions and gN ∈ H–1/2( N) Neumann boundary conditions. The solution of 
equation (1) is sought in H1( ).

The interesting case from the practical as well as from the numerical point of view  
is the convection-dominated one, i.e., 

( )
|| || .

L
ε ∞ Ω

b  In this case, the solution of  
equation (1) typically possesses layers. These are regions where the solution still is 
continuous but has very large gradients. The width of the layers is in general much 
smaller than the available mesh width in numerical simulations. Consequently, the layers 
cannot be resolved. It turns out that standard discretisation approaches, like the Galerkin 
Finite Element Method (FEM), even lead to solutions that are globally polluted by 
spurious (unphysical) oscillations. 

A dramatical enhancement of the quality of numerical solutions is obtained with 
stabilised discretisations. In the context of FEM, there are several approaches like upwind 
techniques (Tabata, 1977), the Streamline–Upwind Petrov–Galerkin (SUPG) method 
(Brooks and Hughes, 1982), also called Streamline-Diffusion Finite Element Method 
(SDFEM), or the Galerkin/least-squares method (Hughes et al., 1989), see Roos et al. 
(1996) for an overview. The most popular one is probably the SUPG method, which will 
be also considered in this paper. 

Applying the SUPG stabilisation, the numerical solutions capture the position of the 
layers in general quite well and the layers are not smeared. However, spurious 
oscillations of sometimes considerable magnitude usually appear at the layers. These 
oscillations are intolerable from the physical point of view since they describe,  
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for instance, negative concentrations. From the numerical point of view, these oscillations 
might lead to instabilities in the simulation of coupled systems which involve equations 
of form (1), for instance if, due to negative spurious oscillations, reactive terms  
of product form change locally their signs in coupled, non-linear reaction–convection–
diffusion equations. Thus, there is an urgent need to remove these spurious oscillations, 
however, without smearing the layers extensively. 

The development of numerical schemes for removing (or at least diminishing) the 
spurious oscillations of SUPG solutions of equation (1) started around two decades ago. 
Since then, a number of different approaches have been published, see, e.g., the recent 
review by John and Knobloch (2007). These schemes were called often shock capturing 
methods or discontinuity capturing methods; however, these names do not reflect their 
real purpose. Therefore, the name spurious oscillations at layers diminishing (SOLD)
methods was introduced by John and Knobloch (2007) and this name will be used in this 
paper, too. 

In the review paper by John and Knobloch (2007), numerical tests with constant 
convection fields and P1 finite elements are presented to compare most of the published 
SOLD methods and to obtain a pre-selection of methods that should be studied in detail. 
The methods were evaluated by means of various criteria, which measure the amount  
of spurious oscillations and the smearing of the layers in the discrete solution. Thus,  
if we speak about ‘best methods’ in the present paper, we always mean with respect to 
those criteria (if we refer to John and Knobloch (2007)) or with respect to the criteria 
formulated below. We believe that this procedure is necessary before one should study 
the error of the discrete solution measured in various norms since such a study makes 
only sense for methods which substantially reduce the spurious oscillations without an 
extensive smearing of layers (other methods are not useful in applications). However, 
based on all our experiences, there is still no method fulfilling this requirement  
(save (Mizukami and Hughes, 1985) in special cases, see below) and therefore a study of 
approximation errors is not yet an issue. In our opinion, there are no relations between the 
measures for evaluating the size of the oscillations and norms in which the approximation 
error is bounded. 

The aim of this paper is to present numerical studies for the best SOLD methods from 
John and Knobloch (2007) for a problem without boundary layers but with an interior 
layer created by a non-constant convection field. For such a problem, the localised 
spurious oscillations of the SUPG solution cannot be significantly influenced by the 
choice of the stabilisation parameter  (see below) since the SUPG method does not 
contain any mechanism for stabilisation perpendicular to streamlines. Let us mention that 
we do not use layer-adapted meshes (like Bakhvalov or Shishkin type meshes) since our 
aim is to find methods that can be used in applications, which means in situations where 
the features of the solution (and hence a layer-adapted mesh) are not known a priori. 

The plan of the paper is as follows. In the next section, we formulate the SUPG 
method and, in Section 3, we review SOLD methods, which were identified as the best 
ones by John and Knobloch (2007). Then, in Section 4, we present results of our 
numerical studies. In contrast to John and Knobloch (2007), the Q1 finite element is used 
besides the P1 finite element. The paper ends with our conclusions in Section 5. 
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2 SUPG method 

The SUPG method adds an additional term to the Galerkin FEM to control the  
derivatives in streamline direction. Let the space H1( ) in which the solution  
of equation (1) is sought be approximated by a conforming finite element  
subspace Vh defined on an admissible triangulation h (Ciarlet, 1991) with elements 
(mesh cells) K. We introduce a function gD,h ∈ Vh such that , |

DD hg ∂Ω  approximates gD.
Further, we set 0, { : | 0}.

Dh hV v V v ∂Ω= ∈ =  Then, the SUPG method reads as follows:  
Find uh ∈ Vh such that uh – gD,h ∈ V0,h and

0,
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where (⋅, ⋅)K denotes the inner product in L2(K) or L2(K)d, (⋅, ⋅) = (⋅, ⋅) ,

( )| ( | ) ( )|h h K h K h KR u u u fε= − ∆ + ⋅∇ −b

and ∈ L∞( ) is a non-negative stabilisation parameter. There are several approaches  
for choosing , see John and Knobloch (2007), which lead asymptotically to optimal 
error estimates. However, they may lead to very different results for a concrete situation 
and the optimal choice of  is an open question. We will use in the simulations presented 
in this paper the following definition: 
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with the local Péclet number 

,| ( ) | ( )
Pe ( ) ,

2
K

K

h
ε

= bb x x
x

the upwind function ( ) = coth( ) – –1, |b(x)| the Euclidean norm of the convection 
vector in x ∈ K and hK,b(x) the diameter of the element K in the direction of b(x),
see John and Knobloch (2007) for a detailed discussion of these choices. 

3 SOLD methods 

The most SOLD methods considered in the review by John and Knobloch (2007) are 
defined by adding an artificial diffusion term to the SUPG discretisation (2). The review 
by John and Knobloch (2007) categorises the available SOLD methods into the following 
classes:

• SOLD methods adding isotropic artificial diffusion 

• SOLD methods adding crosswind artificial diffusion 

• SOLD methods based on edge stabilisations 

• SOLD methods that are not based on the SUPG method. 
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Note that the additional terms lead generally to non-linear discrete equations.  
Below, we formulate the SOLD method(s) from each class, which are the best ones 
according to the tests and criteria in John and Knobloch (2007) (and also according to 
further numerical studies we have performed). 

SOLD methods adding isotropic artificial diffusion add the term 

( , )
h

h h K
K

u vε
∈

∇ ∇

to the left-hand side of equation (2). Among the schemes reviewed in John and Knobloch 
(2007), the best method of this type seems to be that one proposed by do Carmo and 
Galeão (1991) (dCG91) in which 

2

2

| | | ( ) | | ( ) |
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h h h h
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b

(we set 0ε =  if ∇uh = 0). Here,  is the same as in equation (3). 
SOLD methods adding crosswind diffusion introduce an extra term of the form 
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h
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into the SUPG formulation (2). The best results in this class of SOLD methods  
in John and Knobloch (2007) were obtained with modifications proposed by John and 
Knobloch (2007) of a parameter suggested by Codina (1993) (C93) and of a parameter  
by Burman and Ern (2002) (BE02). The parameter of the method C93 is 

| ( ) |
| max 0,

2 | |
K h h

K
h

h R u
C

u
ε ε= −

∇

( 0ε =  if ∇uh = 0), where C is a user-chosen parameter and hK is the diameter of the 
element K. In the numerical studies in Section 4, the parameter C = 0.6 will be used, 
which is the same value as in John and Knobloch (2007). If f = 0 and (uh|K) = 0 for any 
K ∈ h (which will be the case in Section 4), the above definition of ε  is identical  
with the original method of Codina (1993). The parameter of BE02 has the form 
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| | | | | ( ) |
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b

Edge stabilisation methods for linear simplicial finite elements add to the left-hand side 
of equation (2) the term 
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where t K is a tangential vector on the boundary K of K. The best edge stabilisation 
method in the numerical studies of John and Knobloch (2007) was proposed by Burman 
and Ern (2005) (BE05). It has the parameter function 

( ) | ( )| |.K h h Ku C R uΨ =

The same parameter C = 5 × 10–5 as in John and Knobloch (2007) was chosen for the 
numerical studies presented below. 

From the approaches that do not rely on the SUPG method, we will consider an 
upwind scheme, which was developed by Mizukami and Hughes (1985) (MH85) and 
recently improved by Knobloch (2006). This upwind scheme is defined only for linear 
simplicial finite elements and is based on a rather involved geometrical construction,  
see Knobloch (2006) for details. 

For further properties of the SOLD methods, we refer to John and Knobloch (2007). 

4 Numerical studies 

We will study (1) with = (0, 1)2, N = {0} × (0, 1), f = 0 and b(x, y) = (–y, x)T.
On the outflow boundary N, homogeneous conditions gN = 0 are prescribed.  
The Dirichlet data are discontinuous 

1 if ( , ) (1/ 3,2 / 3) {0},
( , )

0 else on .D
D

x y
g x y

∈ ×
=

∂Ω

The discontinuous Dirichlet boundary condition on (0, 1) × {0} is transported  
counter-clockwise to the outflow boundary, see Figure 1. The width of the layers, for 
instance on the outflow boundary, depends on the size of . This example was  
already studied by Knopp et al. (2002). The solution u of the continuous problem  
does not belong to H1( ) but, due to the positive diffusion, u is smooth in . Moreover,  
it is easy to smooth gD to a function from H1/2( D) (which leads to u ∈ H1( ))
in such a way that the numerical results presented in this paper do not change. We will 
study the cases of a moderate local Péclet number and of a high local Péclet number. 
Similarly as in John and Knobloch (2007), the SOLD methods will be evaluated only on 
measures for the amount of spurious oscillations and layer smearing. The results  
have been double checked with two different codes, one of them was MooNMD  
(John and Matthies, 2004). 

Figure 1  Solution u for ε = 10–4, blue (dark) part is zero, red (light) part is one 
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4.1 Moderate local mesh Péclet numbers 

First, we will present computations for  = 10–4. For this diffusion parameter,  
we computed a reference solution with the Galerkin FEM (P2 FEM, 16 785 409 degrees 
of freedom (dof), 2 / 2048),Kh =  see Figure 2, which will be used to evaluate the 
SOLD methods. 

Figure 2  Reference curve for  = 10–4 on the outflow boundary 

The initial regular grids and the unstructured triangular grid are presented in Figure 3. 
Refining the regular grids till the legs of the triangles or the edges of the squares have the 
length 1/32 leads to 1089 dof (including Dirichlet nodes). The unstructured grid  
(Grid 3) has 1244 nodes and was obtained using the anisotropic mesh adaptation 
technique of Dolejší (1998). The P1 finite element was used on the simplicial grids  
(Grid 1–Grid 3) and the Q1 finite element on the grid consisting of squares (Grid 4).  
The integrals in the discrete problem were evaluated using quadrature rules which are 
exact for polynomials of degree 8 (triangles) and 9 (squares). 

Figure 3  The grids used in the computations: Grid 1, Grid 2, Grid 3 and Grid 4 (left to right,
top to bottom). The structured grids are refined till the length of the legs of the triangles 
(edges of the squares) is 1/32 in the moderate local Péclet number case and 1/64 in the 
high local Péclet number case 
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Since the convection field is not constant, the local mesh Péclet numbers vary in .
The lowest Péclet number is on all grids zero (at the corner (0, 0)). The largest  
Péclet number is around 150 on Grid 2, 240 on Grid 3 and about 300 on Grid 1 and  
Grid 4. Note that the local mesh Péclet numbers in the regions with the layers are smaller. 

Let us denote by h the set of nodes of the triangulation h. The measures for 
evaluating the numerical results are: 

• 
( , )

min : min ( , ) ,
h

hx y
u x y

∈
=

• 
( , )

max : max ( , ) 1,
h

hx y
u x y

∈
= −

• 
1/ 2

2

( , )
min2 : (min{0, ( , )}) ,

h

h
x y

u x y
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=

• 
1/ 2

2

( , )
max2 : (max{0, ( , ) 1}) ,

h

h
x y

u x y
∈

= −

• 
( , )

mino : min ( , ) ,
h N

hx y
u x y

∈ ∂Ω
=

• 0 1/ 2 1/ 2 1maxo : max{ (0, ) (0, ) : or },h hu y u z y y z y y z y y= − ≤ ≤ ≤ ≤ ≤ ≤

where, denoting by 0 1[ , ]y y  the interval on the outflow boundary with uh(0, y)  0.1,
the point y0 is such that yuh > 0 a.e. on 0 0[ , ]y y  and yuh(y0 +) 0. Similarly, 

yuh < 0 a.e. on 1 1[ , ]y y and yuh(y1–)  0. Finally, (0, y1/2) is the nearest node to  
(0, (y0 + y1)/2). Note that u is non-decreasing on 0[ ,1/ 2]y and non-increasing on 

1[1/ 2, ]y  and hence maxo tries to find the largest violation of these monotonicities. 

• smear := (d – dref)/dref,

where d is the sum of the lengths of the two intervals on the outflow boundary with 
uh(0, y) ∈ [0.1, 0.9] and dref = 0.114518 is the value of d for the interpolation of the 
reference curve on an equidistant grid with mesh width 1/32 (cf. Figure 2), 

• width : = (w – wref)/wref,

where w is the length of the interval on the outflow boundary with uh(0, y) 0.1
and wref = 0.385697 is the value of w for the interpolation of the reference curve  
on an equidistant grid with mesh width 1/32. 

The measures min and max quantify the size of the largest undershoot or overshoot, 
respectively. An average value for the undershoots and overshoots is obtained with min2 
and max2. The oscillations on the outflow boundary are measured with mino and maxo. 
The values for smear and width describe the smearing of the layers on the outflow 
boundary. 

The results for the moderate Péclet number case are given in Tables 1–4.  
It can be seen that all SOLD methods considerably reduce the spurious oscillations  
of the SUPG solution. However, they also increase the smearing of the layers. 
Concerning the reduction of the oscillations, the best results are obtained with MH85 on 
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the simplicial meshes and with dCG91 and BE02 on the quadrilateral mesh. The second 
best method on the simplicial grids was C93. The edge stabilisation method BE05 gives 
quite poor results on the regular triangular grids. It becomes much better in comparison 
with the other methods on the unstructured mesh. The good performance of edge 
stabilisation methods on unstructured grids was observed already by John and Knobloch 
(2007). It is noteworthy that the results on Grid 2 are worse than on Grid 1 although  
the local Péclet numbers are smaller on Grid 2. This shows that the orientation of the 
edges in Grid 1 is better suited to the direction of the convection in this example. Let us 
mention that, in all computations, the difference of uh(0, 0.5) to 1 was less than 1%. 

Even in the small local Péclet number case, there is no method that worked 
satisfactorily in all respects. 

Table 1 Results for the computations with moderate local mesh Péclet number, Grid 1 

min max min2 max2 mino maxo smear width

SUPG 1.068 e–1 8.374 e–2 3.137 e–1 2.544 e–1 3.183 e–2 3.933 e–2 2.225 e–1 7.338 e–2 

MH85 2.131 e–12 0.000 e+0 5.189 e–12 0.000 e+0 0.000 e+0 0.000 e+0 6.242 e–1 1.330 e–1 

dCG91 8.489 e–3 5.589 e–3 9.316 e–3 8.317 e–3 4.150 e–6 0.000 e+0 8.565 e–1 1.672 e–1 

C93 1.247 e–4 3.136 e–4 1.266 e–4 3.209 e–4 0.000 e+0 0.000 e+0 6.591 e–1 1.398 e–1 

BE02 3.761 e–3 2.663 e–3 3.915 e–3 3.005 e–3 0.000 e+0 0.000 e+0 8.713 e–1 1.693 e–1 

BE05 2.544 e–2 1.604 e–2 6.243 e–2 4.403 e–2 4.367 e–3 7.453 e–3 4.504 e–1 1.084 e–1 

Table 2 Results for the computations with moderate local mesh Péclet number, Grid 2 

min max min2 max2 mino maxo smear width

SUPG 1.242 e–1 1.020 e–1 4.808 e–1 4.229 e–1 4.833 e–2 5.879 e–2 6.661 e–1 1.390 e–1 

MH85 7.416 e–13 0.000 e+0 1.888 e–12 0.000 e+0 0.000 e+0 0.000 e+0 1.570 e+0 2.769 e–1 

dCG91 1.972 e–2 1.833 e–2 7.519 e–2 8.377 e–2 1.175 e–2 0.000 e+0 1.298 e+0 2.334 e–1 

C93 5.792 e–3 2.856 e–3 1.297 e–2 7.815 e–3 1.651 e–3 0.000 e+0 1.464 e+0 2.569 e–1 

BE02 1.167 e–2 1.333 e–2 3.930 e–2 4.528 e–2 6.099 e–3 0.000 e+0 1.309 e+0 2.354 e–1 

BE05 4.335 e–2 3.003 e–2 1.047 e–1 7.845 e–2 7.449 e–3 0.000 e+0 1.263 e+0 2.279 e–1 

Table 3 Results for the computations with moderate local mesh Péclet number, Grid 3 

min max min2 max2 mino maxo smear width

SUPG 7.204 e–2 9.425 e–2 3.452 e–1 3.639 e–1 4.712 e–2 4.682 e–2 2.705 e–1 8.894 e–2 

MH85 1.528 e–12 0.000 e+0 3.802 e–12 0.000 e+0 0.000 e+0 0.000 e+0 9.717 e–1 1.877 e–1 

dCG91 5.408 e–2 3.589 e–2 9.850 e–2 7.845 e–2 4.952 e–3 0.000 e+0 9.097 e–1 1.877 e–1 

C93 2.754 e–2 3.273 e–2 5.494 e–2 5.519 e–2 2.188 e–3 0.000 e+0 6.914 e–1 1.553 e–1 

BE02 4.047 e–2 2.966 e–2 6.832 e–2 5.479 e–2 1.688 e–3 0.000 e+0 9.455 e–1 1.924 e–1 

BE05 3.111 e–2 2.905 e–2 7.437 e–2 6.821 e–2 6.212 e–3 6.071 e–3 7.072 e–1  1.569 e–1 
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Table 4 Results for the computations with moderate local mesh Péclet number, Grid 4 

min max min2 max2 mino maxo smear width

SUPG 1.316 e–1 1.026 e–1 4.205 e–1 3.311 e–1 4.235 e–2 5.191 e–2 3.544 e–1 9.283 e–2 

dCG91 1.244 e–2 7.865 e–3 2.381 e–2 1.477 e–2 4.049 e–4 0.000 e+0 9.936 e–1 1.906 e–1 

C93 3.311 e–2 2.908 e–2 5.992 e–2 4.414 e–2 1.299 e–5 0.000 e+0 7.823 e–1 1.535 e–1 

BE02 1.351 e–2 8.321 e–3 2.267 e–2 1.180 e–2 5.280 e–8 0.000 e+0 1.022 e+0 1.958 e–1 

Remark 1: The results in Tables 1–4 also show that the quality of the solution on the 
outflow boundary is often better than of the solution inside  and hence the outflow 
profile cannot be used as the only measure for an assessment of the considered numerical 
methods. For the Galerkin discretisation with small , it can even happen that the inflow 
profile is almost exactly reproduced on the outflow boundary whereas the solution wildly 
oscillates inside .

4.2 High local mesh Péclet numbers 

We consider the same example as before, however, with the diffusion parameter  = 10–8.
The regular Grids 1, 2 and 4 from Figure 3 are used with edges (legs of the triangles) of 
length 1/64. The number of degrees of freedom for the P1, resp. Q1, discretisation is 4225 
(including Dirichlet nodes). The unstructured grid, which was used in the high local mesh 
Péclet number computations has 1721 nodes and is presented in Figure 4. The largest 
local mesh Péclet numbers are around 7.7 × 105 for Grid 2, 1.5 × 106 for Grid 1 and  
Grid 4 and 2.1 × 106 for Grid 5. 

Concerning the oscillations, the same measures are used as in the moderate local 
Péclet number case. The smearing of the layers will be evaluated by means of graphs of 
the discrete solutions on the outflow boundary. Thus, the measures do not need a 
reference solution. 

Figure 4  Unstructured Grid 5 for the high local Péclet number case 

The results concerning the spurious oscillations are collected in Tables 5–8. All SOLD 
methods give again much better results than the SUPG method. Only on the regular  
Grids 1 and 2, the fixed-point iterations for solving the non-linear problem of BE05 did 
not converge (100,000 iterations). On the triangular grids, MH85 was again the best 
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method. Among the other methods, there is no really a best one. BE02 is slightly better 
than the other ones on Grid 1 and C93 on Grid 2. On the unstructured Grid 5, the edge 
stabilisation method BE05 is the second best after MH85. We think that the good 
performance of MH85 on Grid 3 (with = 10–4) and Grid 5 might be caused by the  
fact that these grids possess only acute triangles. On the quadrilateral Grid 4, all SOLD 
methods give similar results. Note that the amount of the spurious oscillations is not 
much different in comparison with the moderate local Péclet number case. 

Table 5 Results for the computations with high local mesh Péclet number, Grid 1 

 min max min2 max2 mino maxo 
SUPG 1.551 e–1 1.353 e–1 6.602 e–1 5.734 e–1 5.533 e–2 7.004 e–2 
MH85 1.176 e–12 6.160 e–13 4.627 e–12 1.406 e–12 3.414 e–13 0.000 e+0 
dCG91 5.579 e–3 3.979 e–3 8.559 e–3 6.268 e–3 5.266 e–6 0.000 e+0 
C93 5.004 e–3 1.681 e–4 7.299 e–3 1.723 e–4 2.784 e–6 1.602 e–6 
BE02 2.198 e–3 1.567 e–3 2.933 e–3 2.119 e–3 5.675 e–8 0.000 e+0 
BE05 No convergence 

Table 6 Results for the computations with high local mesh Péclet number, Grid 2 

 min max min2 max2 mino maxo 
SUPG 1.655 e–1 1.467 e–1 8.311 e–1 7.438 e–1 6.313 e–2 6.815 e–2 
MH85 1.086 e–12 5.294 e–13 3.868 e–12 1.296 e–12 2.500 e–13 0.000 e+0 
dCG91 1.405 e–2 1.174 e–2 7.014 e–2 6.853 e–2 7.660 e–3 3.375 e–3 
C93 3.948 e–3 1.567 e–3 9.394 e–3 3.714 e–3 4.840 e–4 6.758 e–4 
BE02 7.501 e–3 8.482 e–3 3.405 e–2 3.152 e–2 3.951 e–3 9.976 e–4 
BE05 No convergence 

Table 7 Results for the computations with high local mesh Péclet number, Grid 4 

 min max min2 max2 mino maxo 
SUPG 1.868 e–1 1.642 e–1 8.126 e–1 6.755 e–1 6.618 e–2 6.740 e–2 
dCG91 2.861 e–2 2.562 e–2 5.910 e–2 4.747 e–2 1.330 e–4 1.832 e–5 
C93 3.898 e–2 3.464 e–2 7.993 e–2 6.243 e–2 7.491 e–6 2.859 e–5 
BE02 2.961 e–2 2.740 e–2 5.932 e–2 4.854 e–2 5.965 e–6 1.424 e–5 

Table 8 Results for the computations with high local mesh Péclet number, Grid 5 

 min max min2 max2 mino maxo 
SUPG 1.156 e–1 9.801 e–2 5.591 e–1 4.947 e–1 7.953 e–2 7.639 e–2 
MH85 9.530 e–13 0.000 e+0 2.839 e–12 0.000 e+0 2.029 e–13 0.000 e+0 
dCG91 6.264 e–2 7.172 e–2 9.784 e–2 9.648 e–2 6.206 e–3 0.000 e+0 
C93 4.470 e–2 4.347 e–2 5.771 e–2 6.197 e–2 2.936 e–4 0.000 e+0 
BE02 4.974 e–2 5.225 e–2 6.785 e–2 6.691 e–2 1.995 e–3 0.000 e+0 
BE05 3.528 e–2 3.122 e–2 5.767 e–2 5.429 e–2 4.108 e–3 2.622 e–3 
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Parts of the outflow profiles for selected methods are presented in Figures 5–8.  
The improvement in comparison with the SUPG solution concerning the spurious 
oscillations is clearly visible. Likewise, the smearing of the layers in the solutions 
computed with the SOLD methods can be seen. The smearing is more or less the same 
for all SOLD methods. Often, the curves are on top of each other. All layers (including 
the SUPG solution) are extremely smeared on Grid 2. This is a further hint that this grid 
is less suited for the present example than the other ones. The reason for the stronger 
smearing of the layers on Grid 5 in comparison with Grids 1 and 4 is the considerably 
smaller number of degrees of freedom on Grid 5. 

The method MH85 practically removes the spurious oscillations in the high local 
Péclet number computations. The spurious oscillations of the other methods are still not 
negligible. In addition, all SOLD methods lead to a smearing of the layers. 

Figure 5  Solution at the lower part of the outflow boundary for the high local Péclet number 
case, Grid 1 

Figure 6  Solution at the lower part of the outflow boundary for the high local Péclet number 
case, Grid 2 
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Figure 7  Solution at the lower part of the outflow boundary for the high local Péclet number 
case, Grid 4 

Figure 8  Solution at the lower part of the outflow boundary for the high local Péclet number 
case, Grid 5 

5 Conclusions 

The present numerical studies support an observation by John and Knobloch (2007):  
if the upwind method MH85 can be used, then it is the best method. The edge 
stabilisation method BE05 worked only properly on the unstructured grids with acute 
triangles. The differences among the other SOLD methods were small. On the one hand, 
their results are clearly better than the results of the SUPG method, but on the other hand, 
the remaining spurious oscillations are still not tolerable in many applications. 
Combining the results of John and Knobloch (2007) and the present study, one  
has to conclude that the SOLD methods are still far away from being able to solve 
convection-dominated problems successfully. 
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