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Received 31 October 2005; received in revised form 13 November 2006; accepted 21 November 2006
Abstract

An unwelcome feature of the popular streamline upwind/Petrov–Galerkin (SUPG) stabilization of convection-dominated convec-
tion–diffusion equations is the presence of spurious oscillations at layers. Since the mid of the 1980s, a number of methods have been
proposed to remove or, at least, to diminish these oscillations without leading to excessive smearing of the layers. The paper gives a
review and state of the art of these methods, discusses their derivation, proposes some alternative choices of parameters in the methods
and categorizes them. Some numerical studies which supplement this review provide a first insight into the advantages and drawbacks of
the methods.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is devoted to the numerical solution of the
scalar convection–diffusion equation

�eDuþ b � ru ¼ f in X; u ¼ ub on oX; ð1Þ

where X � Rd , d ¼ 2; 3, is a bounded domain with a polyg-
onal (resp. polyhedral) boundary oX, e > 0 is the constant
diffusivity, b 2 W 1;1ðXÞd is a given convective field satisfy-
ing the incompressibility condition divb = 0, f 2 L2ðXÞ is
an outer source of u, and ub 2 H 1=2ðoXÞ represents the
Dirichlet boundary condition. In our numerical tests we
shall also consider less regular functions ub.

Problem (1) describes the stationary distribution of a
physical quantity u (e.g., temperature or concentration)
determined by two basic physical mechanisms, namely
the convection and diffusion. The broad interest in solving
0045-7825/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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problem (1) is caused not only by its physical meaning just
explained but also (and perhaps mainly) by the fact that it
is a simple model problem for convection–diffusion effects
which appear in many more complicated problems arising
in applications (e.g. in various fluid flow problems).

Despite the apparent simplicity of problem (1), its
numerical solution is still a challenge when convection is
strongly dominant (i.e., when e� jbj). The basic difficulty
is that, in this case, the solution of (1) typically possesses
interior and boundary layers, which are small subregions
where the derivatives of the solution are very large. The
widths of these layers are usually significantly smaller than
the mesh size and hence the layers cannot be resolved prop-
erly. This leads to unwanted spurious (nonphysical) oscilla-
tions in the numerical solution, the attenuation of which
has been the subject of extensive research for more than
three decades.

In this paper, we concentrate on the solution of (1) using
the finite element method which proved to be a very effi-
cient tool for the numerical solution of various boundary
value problems in science and engineering. Unfortunately,
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the classical Galerkin formulation of (1) is inappropriate
since, in case of dominant convection, the discrete solution
is usually globally polluted by spurious oscillations causing
a severe loss of accuracy and stability. This is not surprising
since, in simple settings, the standard Galerkin finite ele-
ment method is equivalent to a central finite difference dis-
cretization and it is well known that central difference
approximations of the convective term give rise to spurious
oscillations in convection dominated regimes (cf. e.g. Roos
et al. [58]).

To enhance the stability and accuracy of the Galerkin
discretization of (1) in the convection dominated regime,
various stabilization strategies have been developed. Ini-
tially, these approaches imitated the upwind finite differ-
ence techniques. An important contribution to this
development was made by Christie et al. [17], who showed
that, in the one-dimensional case, a stabilization can be
achieved using asymmetric test functions in a weighted
residual finite element formulation. Choosing these test
functions in a suitable way, they recovered the usual one-
sided differences used for the approximation of the convec-
tive term in the finite difference method. Two-dimensional
upwind finite element discretizations were derived by Hein-
rich et al. in [32,33] and by Tabata [62]. Many other finite
element discretizations of upwind type have been proposed
later.

Like in the finite difference method, the upwind finite
element discretizations remove the unwanted oscillations
but the accuracy attained is often poor since too much
numerical diffusion is introduced. In addition, if the flow
field b is directed skew to the mesh, an excessive artificial
diffusion perpendicular to the flow (crosswind diffusion)
can be observed. A further important drawback is that
these methods are not consistent, i.e., the solution of (1)
is no longer a solution to the variational problem as it is
the case for a Galerkin formulation. Consequently, the
accuracy is limited to first order. Moreover, non-consistent
formulations are also known to produce inaccurate or
wrong solutions when f (or the time derivative in case of
transient problems) is significant. It can even happen that
the discrete solution is then less accurate than that one pro-
duced by the Galerkin method (cf. e.g. Brooks and Hughes
[9] for a discussion on shortcomings of upwind methods).

A significant improvement came with the streamline
upwind/Petrov–Galerkin (SUPG) method developed by
Brooks and Hughes [9] which substantially eliminates
almost all the difficulties mentioned above. In contrast with
upwind methods proposed earlier, the SUPG method
introduces numerical diffusion along streamlines only and
hence it possesses no spurious crosswind diffusion. More-
over, the streamline diffusion is added in a consistent
manner. Consequently, stability is obtained without com-
promising accuracy and convergence results may be
derived for a wide class of finite elements. In view of its sta-
bility properties and higher-order accuracy, the SUPG
method is regarded as one of the most efficient procedures
for solving convection-dominated equations.
An alternative to the SUPG method is the Galerkin/
least-squares method introduced by Hughes et al. [35]
who observed that stabilization terms can be obtained by
minimizing the square of the equation residual. A variant
to this method was proposed by Franca et al. [26] using
the idea of Douglas and Wang [23] to change the sign of
the Laplacian in the test function. Since the SUPG method
is the most popular approach, we shall restrict ourselves to
this method in the following.

The SUPG method produces accurate and oscillation-
free solutions in regions where no abrupt changes in the
solution of (1) occur but it does not preclude spurious oscil-
lations (overshooting and undershooting) localized in nar-
row regions along sharp layers. It was observed by Almeida
and Silva [3] that these oscillations can even be amplified if
high-order finite elements are used in these regions. This
indicates that using the streamlines as upwind direction is
not always sufficient. Although the remaining nonphysical
oscillations are usually small in magnitude, they are not
permissible in many applications. An example are chemi-
cally reacting flows where it is essential to guarantee that
the concentrations of all species are nonnegative. Another
example are free-convection computations where tempera-
ture oscillations create spurious sources and sinks of
momentum that effect the computation of the flow field.
The small spurious oscillations may also deteriorate the
solution of nonlinear problems, e.g., in two-equations tur-
bulence models or in numerical simulations of compressible
flow problems, where the solution may develop discontinu-
ities (shocks) whose poor resolution may effect the global
stability of the numerical calculations.

The oscillations along sharp layers are caused by the fact
that the SUPG method is neither monotone nor monoto-
nicity preserving. Therefore, various, often nonlinear,
terms introducing artificial crosswind diffusion in the
neighborhood of layers have been proposed to be added
to the SUPG formulation in order to obtain a method
which is monotone, at least in some model cases, or which
at least reduces the local oscillations. This procedure is
referred to as discontinuity capturing or shock capturing.
However, these names are not really appropriate in our
opinion for several reasons. First, the solution of (1) does
not possess shocks or discontinuities because of the pres-
ence of diffusion. Instead, steep but continuous layers are
formed. Second, the position of these layers is in general
already captured well by the SUPG formulation. And
third, a confusion might arise with shock capturing meth-
ods which are used in the numerical simulation of com-
pressible flows. For these reasons, we propose to call the
methods spurious oscillations at layers diminishing (SOLD)

methods and this name is used throughout the paper.
The literature on SOLD methods is rather extended but

the various numerical tests published in the literature do
not allow to draw a clear conclusion concerning their
advantages and drawbacks. Therefore, the main goal of
the present paper is to provide a review of the most pub-
lished SOLD methods, to discuss the motivations of their
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derivation, to present some alternative choices of parame-
ters and to classify them. This review is followed by a
numerical comparison of these methods at two test prob-
lems whose solutions possess characteristic features of solu-
tions of (1). The numerical results will only give a first
insight into the behavior of the SOLD methods and they
serve as a pre-selection to identify those SOLD methods
which deserve further numerical studies. Comprehensive
numerical studies will be presented in the second part of
the paper. In order to keep the paper in a reasonable
length, we do not consider a reaction term in Eq. (1) since
special techniques are necessary if this term is dominant.

A basic problem of all SOLD methods is to find the
proper amount of artificial diffusion which leads to suffi-
ciently small nonphysical oscillations (requiring that the
artificial diffusion is not ‘too small’) and to a sufficiently
high accuracy (requiring that the artificial diffusion is not
‘too large’). Since the artificial diffusion is the sum of the
contributions coming from the SUPG term and the SOLD
term, the definition of both terms will be thoroughly pre-
sented and discussed in this paper.

Sometimes, it is claimed that the SUPG method applied
on adaptively refined meshes should be preferred to SOLD
methods. However, if convection strongly dominates diffu-
sion, the spurious oscillations of the SUPG method disap-
pear only if extremely fine meshes are used along inner and
boundary layers. This leads to a high computational cost
which further increases if systems of equations or transient
problems are considered. The numerical comparison of the
SUPG method on adaptively refined grids and several
SOLD methods will be a topic of the second part of the
paper. Let us also mention that a further reason for using
SOLD methods is that they try to preserve the inverse
monotonicity property of the continuous problem.

The plan of the paper is as follows. In the next section,
we describe the usual Galerkin discretization of (1) and, in
Section 3, we introduce the SUPG method. The accuracy
of the SUPG method is greatly influenced by the choice
of the stabilizing parameter, which is discussed in Section
4. Then, a detailed review of SOLD methods follows in
Section 5. Results of our numerical tests with the SOLD
methods at two typical examples are reported in Section
6. Finally, the paper is closed by Section 7 containing our
conclusions and an outlook.

Throughout the paper, we use the standard notations
LpðXÞ, W k;pðXÞ, HkðXÞ ¼ W k;2ðXÞ, CðXÞ, etc. for the usual
function spaces, see e.g. Ciarlet [18]. The norm and semi-
norm in the Sobolev space HkðXÞ will be denoted by
k � kk;X and j � jk;X, respectively. The inner product in the
space L2ðXÞ or L2ðXÞd will be denoted by ð�; �Þ. For a vector
a 2 Rd , the symbol jaj stands for its Euclidean norm.

2. Galerkin’s finite element discretization

The starting point of defining any finite element discret-
ization is a weak (or variational) formulation of the respec-
tive problem. Denoting by ~ub 2 H 1ðXÞ an extension of ub, a
natural weak formulation of the convection–diffusion
equation (1) reads:

Find u 2 H 1ðXÞ such that u� ~ub 2 H 1
0ðXÞ and

aðu; vÞ ¼ ðf ; vÞ 8v 2 H 1
0ðXÞ; ð2Þ

where

aðu; vÞ ¼ eðru;rvÞ þ ðb � ru; vÞ:

Since aðv; vÞ ¼ ejvj21;X for any v 2 H 1
0ðXÞ, it easily follows

from the Lax–Milgram theorem that this weak formulation
has a unique solution (cf. e.g. Ciarlet [18]).

To define a finite element discretization of (1), we intro-
duce a triangulation Th of the domain X consisting of a
finite number of open polygonal resp. polyhedral elements
K. The discretization parameter h in the notation Th is a
positive real number satisfying diamðKÞ 6 h for any
K 2Th. We assume that X ¼

S
K2Th

K and that the clo-
sures of any two different elements K, eK 2Th are either
disjoint or possess either a common vertex or a common
edge or, if d = 3, a common face. In what follows, we shall
confine ourselves to simplicial elements and to elements
which are images of a d-dimensional cube under a d-linear
mapping (these are general convex quadrilaterals for d = 2
and suitable convex hexahedra for d = 3). In order to pre-
vent the elements from degenerating when h tends to zero,
the elements have to satisfy certain shape-regularity
assumptions.

The Galerkin finite element discretization of (1) is now
obtained by replacing the space H 1

0ðXÞ in (2) by a finite ele-
ment subspace Vh (cf. e.g. Ciarlet [18]). In addition, we
approximate the function ~ub by a finite element interpolate
~ubh. Thus, we may say that uh 2 H 1ðXÞ is a discrete solution
of (1) if uh � ~ubh 2 V h and

aðuh; vhÞ ¼ ðf ; vhÞ 8vh 2 V h:

Again, the discrete problem is uniquely solvable.

3. The SUPG method

Since the Galerkin method lacks stability if convection
dominates diffusion, we enrich it by a stabilization term
proposed by Brooks and Hughes [9] yielding the SUPG
method (also called streamline diffusion finite element
method, SDFEM). For doing this, we change the assump-
tions on the space Vh. First, to introduce the SUPG
method, the functions from Vh have to be at least of class
H2 inside each element K 2Th. To simplify further consid-
erations, we shall assume that they are infinitely smooth
inside each element, which can be justified by the fact that
typical finite element functions are piecewise polynomial.
Second, we shall not require that the functions from Vh

are continuous across element edges (resp. faces), in order
to include nonconforming finite element spaces into the
formulation below. Thus, from now on, we assume that
Vh is a finite-dimensional space satisfying

V h � fv 2 L2ðXÞ; vjK 2 C1ðKÞ 8K 2Thg:
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Defining the discrete operators $h and Dh by

ðrhvÞjK ¼ rðvjKÞ; ðDhvÞjK ¼ DðvjKÞ 8K 2Th;

the bilinear form

ahðu; vÞ ¼ eðrhu;rhvÞ þ ðb � rhu; vÞ

and the residual

RhðuÞ ¼ �eDhuþ b � rhu� f

are well defined for u; v 2 V h.
Then, the streamline upwind/Petrov–Galerkin (SUPG)

method of Brooks and Hughes [9] reads:
Find uh 2 L2ðXÞ such that uh � ~ubh 2 V h and

ahðuh; vhÞ þ ðRhðuhÞ; sb � rhvhÞ ¼ ðf ; vhÞ 8vh 2 V h; ð3Þ

where s 2 L1ðXÞ is a nonnegative stabilization parameter.
For the SUPG method, many theoretical results have

been derived, starting with the fundamental work by
Nävert [52] and subsequently continued, e.g., by Johnson
et al. [43]. Since the analysis of the SUPG method is not
the subject of this paper, we shall not present any details
and only refer to the monograph by Roos et al. [58].

4. Choice of the SUPG stabilization parameter

An important drawback of many stabilized methods
(including the SUPG method) is that they contain stabiliza-
tion parameters for which a general ‘optimal’ choice is not
known. Since the SUPG method attracted a considerable
attention over the last two decades, much research has also
been devoted to the choice of the parameter s. Theoretical
investigations of the SUPG method provide certain bounds
for s for which the SUPG method is stable and leads to
(quasi-)optimal convergence of the discrete solution uh.
However, it has been reported many times that the choice
of s inside these bounds may dramatically influence the
accuracy of the discrete solution. Since most of the SOLD
methods considered in this paper are based on the SUPG
method, the choice of the stabilization parameter s plays
also a vital role for the results of the SOLD methods.
Therefore, possible choices of s will be discussed in some
detail in this section.

It follows from the results of Christie et al. [17] that, for
the one-dimensional case of (1) with constant data, the
SUPG solution with continuous piecewise linear finite ele-
ments on a uniform division of X is nodally exact if

s¼ h
2jbjn0ðPeÞ with n0ðaÞ ¼ cotha� 1

a
; Pe¼ jbjh

2e
: ð4Þ

Here, h is the element length, n0 is the so-called upwind
function and Pe is the local Péclet number which deter-
mines whether the problem is locally (i.e., within a partic-
ular element) convection dominated or diffusion
dominated. The parameter s is often called ‘intrinsic time
scale’ since h=ð2jbjÞ is the time for a particle to travel the
distance h/2 at a speed equal to jbj. Since n0ðaÞ ! 1 for
a!1 and n0ðaÞ=a! 1=3 for a! 0þ (and the SUPG
stabilization is not necessary for a! 0þ), the function n0

is often approximated by

n1ðaÞ ¼ max 0; 1� 1

a

� �
or n2ðaÞ ¼ min 1;

a
3

n o
:

Brooks and Hughes [9] call these functions ‘critical’ and
‘doubly asymptotic’ approximations of n0, respectively. If
the right-hand side of (1) is not constant, the choice (4) gen-
erally does not lead to a nodally exact discrete solution.
Nevertheless, our numerical tests (not reported in this pa-
per) indicate that, in the most cases, the function n0 leads
to better results than n1 and n2. However, it should be
stressed that, for large values of Pe, the results for these
three upwind functions are very close. This is particularly
true for n0 and n1, for which jn0ðaÞ � n1ðaÞj=n0ðaÞ < 10�3

for a > 4 and jn0ðaÞ � n1ðaÞj=n0ðaÞ < 10�10 for a > 12 so
that the corresponding discrete solutions are virtually
indistinguishable for Pe > 10.

Many researchers have tried to find a suitable general-
ization of (4) to the multidimensional case and to more
general finite element spaces Vh. For linear and d-linear
finite elements, this generalization usually takes the form

sjK � sK ¼
hK

2kbkK

nðPeKÞ with PeK ¼
kbkKhK

2e
; ð5Þ

where K is any element of the triangulation Th, hK is a
characteristic dimension of K (also called ‘local length
scale’ or ‘element length’), kbkK is a suitable norm of b, n
is an upwind function (such that nðaÞ=a is bounded for
a! 0þ) and PeK is the local Péclet number. This general-
ization seems to be reasonable since, for linear or d-linear
finite elements on certain uniform meshes aligned with a
constant velocity b, the discrete problem corresponds to
the one-dimensional case and hence the formula for s
should reduce to (4). For higher order finite elements, the
values of PeK and sK should decrease with increasing poly-
nomial degree on K, see, e.g., Codina et al. [20], Almeida
and Silva [3] and Galeão et al. [28]. However, since our
numerical tests in Section 6 are performed for linear ele-
ments only, we confine ourselves to a discussion of the
choice of s for first order finite elements.

The mentioned correspondence between the one-dimen-
sional and d-dimensional cases particularly implies that, if
K is a rectangle and b is constant on K and aligned with one
of its edges, one should choose kbkK ¼ jðbjKÞj and hK equal
to the length of the edge b is aligned with. The same holds if
K is a right triangle and the vector b is aligned with one of
its legs.

Another hint for choosing kbkK and hK follows from the
necessary conditions for uniform convergence of ku� uhk0;X

of order greater than 1/2 introduced by Stynes and Tobiska
[61]. Let d = 2, b ¼ ðb; bÞ with some constant b 2 R and let
Th be a uniform triangulation of X ¼ ð0; 1Þ2 consisting of
equal squares or of equal right triangles with hypotenuses
in the direction (1,1). Then, for (bi)linear finite elements,
the necessary conditions are satisfied if and only if
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sK ¼
diamðKÞ

2jbj n0ðPeK=2Þ with PeK ¼
jbjdiamðKÞ

2e
;

where diamðKÞ � supfjx� yj; x; y 2 Kg is the diameter of
K (see Stynes and Tobiska [61] and Shih and Elman [60]
for details). The necessary conditions of Stynes and
Tobiska were designed for the convection domi-
nated case where n0ðPeK=2Þ � n0ðPeKÞ. This suggests to
set kbkK ¼ jbj and hK ¼ diamðKÞ.

In view of the above considerations, it seems to be rea-
sonable to define hK as the diameter of K in the direction of
the convection b. Generally, given a vector s 2 Rd , s 6¼ 0,
the diameter of K in the direction of s is defined by

diamðK; sÞ ¼ supfjx� yj; x; y 2 K; x� y ¼ as; a 2 Rg:

This value may be sometimes difficult to compute and
therefore we consider a slightly different definition which
was used by Tezduyar and Park [64].

Let NK be the number of vertices of K and let
u1; . . . ;uNK

be the usual basis functions of P 1ðKÞ (if K is
a simplex) or of Q1ð½0; 1�

dÞ mapped onto K (if K is a quad-
rilateral or a hexahedron). We set

diam	ðK; sÞ ¼ 2jsjPNK
i¼1js � ruiðCKÞj

;

where CK is the barycentre of K. Then diam	ðK; sÞ ¼
diamðK; sÞ if K is a simplex or a parallelogram. If K is a
hexahedron, then generally diam	ðK; sÞ 6¼ diamðK; sÞ
(even not for a cube), but the value of diam	ðK; sÞ is still
reasonable. If s ¼ 0, we set diam	ðK; sÞ ¼ diamðKÞ. Using
this notation, we define

hK ¼ diam	ðK; bÞ: ð6Þ

The norm kbkK will be defined as the Euclidean norm of b,
i.e.,

kbkK ¼ jbj: ð7Þ

Note that, in view of (5)–(7), the parameters hK, kbkK and,
consequently, PeK and sK are generally functions of the
points x 2 K.

Usually, the criterion for choosing s is the accuracy of
the discrete solution measured in some suitable norm. Nev-
ertheless, it is also possible to look for s such that the stiff-
ness matrix corresponding to the discrete problem is well
conditioned and enables an efficient application of iterative
solvers. This idea was followed by Fischer et al. [27] and
Ramage [55,56]. In these papers, Q1-discretizations of
model problems in both two and three dimensions were
investigated and it was observed that there is a close rela-
tionship between ‘best’ solution approximation and fast
convergence of iterative methods. Particularly, for constant
b aligned with a uniform mesh consisting of squares with
side length h, an analysis of the structure of eigenvalues
of the stiffness matrix reveals that one should choose
s ¼ h=ð2jbjÞ for h=e!1 and provides the formula s ¼
h=ð2jbjÞn1ðPeÞ with Pe ¼ jbjh=ð2eÞ as a significant value
with respect to the changes in the eigenvalue structure. In
the general case, the choice of hK as element size in the
direction of b is advocated.

In [24], Elman and Ramage examined how the choice of
s influences the oscillations in a bilinear discrete solution
and demonstrated that, generally, s cannot be chosen in
such a way that the discrete solution is simultaneously
oscillation-free and accurate. The analysis gives a theoreti-
cal justification to the formula for s given by (5)–(7) with
n ¼ n1.

In Harari et al. [31], a formula for s was found by
requiring that the bilinear discrete solution on a uniform
mesh is nodally exact for Eq. (1) with b ¼ const:, f = 0
and X ¼ Rd . It is interesting to note that, for b aligned with
the element diagonals and h=e!1, the formula of Harari
et al. gives only 2/5 of the value obtained from (5)–(7).
However, due to the absence of boundary conditions, the
investigations of Harari et al. do not seem to be relevant
for problems with boundary layers, which is the type of
problems the SUPG method was designed for.

The relations (5)–(7) with n ¼ n0 represent the complete
definition of the stabilization parameter s used in our
numerical tests in Section 6. Let us stress that this defini-
tion mostly relies on heuristic arguments and the ‘best’
way of choosing s for general convection–diffusion prob-
lems is not known. Also, many other ways of computing
s have been proposed in the literature. Let us briefly men-
tion a few of them.

Tezduyar and Osawa [63] proposed to compute stabil-
ization parameters using element-level matrices and vec-
tors. In this way, the local length scales, convection field
and Péclet number are automatically taken into account.
A similar idea was also used by Mizukami [50] for linear
finite elements. A comparison of various definitions of local
length scales and stabilization parameters can be found in
Akin et al. [2]. Let us also mention the work of Akin and
Tezduyar [1] where a comparative investigation of various
ways of calculating the advective limit of s is performed.

Roos et al. [58] propose to set

sK ¼
s0hK if PeK > 1;

s1h2
K=e if PeK 6 1;

�

where s0 and s1 are appropriate positive constants. This
definition of s leads to the best possible convergence rate
of the discrete solution with respect to the streamline diffu-
sion norm. However, an ‘optimal’ choice of the constants
s0 and s1 is unsolved.

Another possibility of defining the parameter s is based
on the observation that adding bubbles to the finite element
space and eliminating them from the Galerkin discretiza-
tion by static condensation is equivalent to the addition
of a stabilizing term of streamline diffusion type. In this
way, the question how to define s is transformed into the
question how to define suitable bubbles (cf. e.g. Brezzi
and Russo [8]). This question was partially answered by
introducing the concept of residual-free bubbles, see e.g.
Brezzi et al. [6–8]. Using a similar approach in the
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framework of multiscale methods, an analytical formula
for s in terms of element Green’s function was derived by
Hughes [34]. Another method for stabilizing convection-
dominated problems was proposed by Oñate [54], who
introduced higher order terms into the continuous problem
using the concept of flow balance over a finite domain.
Applying the Galerkin method, the SUPG method can be
recovered, which also provides a formula for computing
the stabilization parameter s.

5. A review of SOLD methods

In this section, we review most of the SOLD methods
introduced during the last two decades to diminish the
oscillations arising in the solution of the SUPG discretiza-
tion (3). Let us recall that these oscillations appear along
sharp layers of the solution to the continuous problem
(1) due to the fact that the SUPG method is neither mono-
tone nor monotonicity preserving. Therefore, many
researchers tried to design such SOLD terms that the
resulting discretization satisfies the discrete maximum prin-
ciple, at least in some model cases. Since linear monotone
methods can be at most first-order accurate, it is natural
to look for SOLD terms which depend on the discrete solu-
tion in a nonlinear way. However, linear SOLD terms
applicable to first-order finite elements have also been
developed. Let us mention that the discrete maximum prin-
ciple is an important property of a numerical scheme since
it ensures monotonicity and that no spurious oscillations
will appear, not even in the vicinity of sharp layers. More-
over, it enables to prove uniform convergence and point-
wise stability estimates.

The SOLD methods presented in this section will be
divided into five classes. These are upwinding techniques,
SOLD methods which add isotropic additional diffusion
to (3), SOLD methods which add the additional diffusion
to (3) only orthogonally to the streamlines, SOLD methods
which rely upon (3) and an edge stabilization, and, finally,
SOLD methods based on other ideas.

5.1. Upwinding techniques

One of the first successful monotone methods for solv-
ing (1) was introduced by Mizukami and Hughes [51] for
conforming linear triangular finite elements. This method
is based on the observation that the convection vector b
in (1) can be changed in a direction perpendicular to ru
without affecting the solution u of (1). This suggests that
the streamline may not always be the appropriate upwind
direction, an idea which has also been used to derive other
SOLD methods later. Mizukami and Hughes used this idea
to introduce a Petrov–Galerkin method which, due to the
arbitrariness in b, can be viewed as a method satisfying
the discrete maximum principle. In contrast with other
upwinding methods for conforming linear triangular finite
elements satisfying the discrete maximum principle pub-
lished earlier (cf. Tabata [62], Kanayama [45], Baba and
Tabata [4], Ikeda [37]), the Mizukami–Hughes method
adds much less numerical diffusion and provides rather
accurate discrete solutions in the most cases. Recently,
some improvements of the Mizukami–Hughes method
were introduced by Knobloch [46]. Unfortunately, it is
not clear how to generalize the Mizukami–Hughes method
to other types of finite elements.

At the time as the Mizukami–Hughes scheme was pub-
lished, Rice and Schnipke [57] proposed another monotone
method which is based on a direct streamline upwind
approximation to the convective term, rather than modify-
ing the weighting function. This method was developed for
bilinear finite elements and again a generalization does not
seem to be easy.

5.2. SOLD terms adding isotropic artificial diffusion

Hughes et al. [36] came with the idea to change the
upwind direction in the SUPG term of (3) by adding a
multiple of the function

b
k
h ¼

ðb � ruhÞruh

jruhj2
if ruh 6¼ 0;

0 if ruh ¼ 0;

8<:
which corresponds to the direction in which oscillations in
SUPG solutions are observed. This leads to the additional
term

ðRhðuhÞ; rb
k
h � rhvhÞ ð8Þ

on the left-hand side of (3), where r is a nonnegative stabil-
ization parameter. This additional term controls the deriv-
atives in the direction of the solution gradient, thus
increasing the robustness of the SUPG method in the pres-
ence of sharp layers. Since b

k
h depends on the unknown

discrete solution uh, the resulting method is nonlinear.
Of course, the key point here and in many other SOLD

methods is how to choose the parameter r. Unfortunately,
due to the large number of various SOLD methods and the
comparatively small amount of theoretical research on
them, the correct choice of the respective stabilization
parameters is even less clear than for the SUPG method.
Often, the definition of these parameters is related to the
choice of the parameter s in the SUPG stabilization. There-
fore, it is convenient to introduce the notation sðbHÞ repre-
senting s determined by (5)–(7) with b replaced by some
function bH. Note that bH influences the value of sKðbHÞ
not only through the norm kbHkK but also through the def-
inition of hK.

Now let us return to the choice of r from (8). One could
think of using the value sðbkhÞ but this would lead to a
doubling of the SUPG stabilization if b

k
h ¼ b. Therefore,

Hughes et al. [36] proposed to set

r ¼ maxf0; sðbkhÞ � sðbÞg: ð9Þ

Although, for linear triangular finite elements, the method
does not attain the precision of the Mizukami–Hughes



V. John, P. Knobloch / Comput. Methods Appl. Mech. Engrg. 196 (2007) 2197–2215 2203
scheme mentioned above (see Hughes et al. [36]), it has the
important property that it is applicable to general finite
elements.

Tezduyar and Park [64] proposed to redefine sðbkhÞ,
which leads to

r ¼ hkK
2jbkhj

g
jbkhj
jbj

 !
ð10Þ

with

hkK ¼ diam	ðK; bkhÞ; gðaÞ ¼ 2að1� aÞ: ð11Þ

This definition assures that the SUPG effect is not doubled
if b

k
h ¼ b and hence an ad hoc correction like (9) is not

needed. Tezduyar and Park also observed that the SOLD
term (8) with the above definitions of r depends only on
the direction of ruh but not on its magnitude. Since the
SOLD term is required only along steep gradients of the
solution, they suggested to use

r ¼ hkK
2jbkhj

g
jbkhj
jbj

 !
hkK
jruhj

u0

; ð12Þ

where u0 is a global scaling value for uh.
An approach related to the above-described method of

Hughes et al. [36] was used by de Sampaio and Coutinho
[59], who introduced the concept of the effective transport
velocity bk defined on the continuum level analogously as
b
k
h (i.e., with u instead of uh). Before performing a discre-

tization, the convective field b in (1) is replaced by
~b ¼ cbþ ð1� cÞbk with c 2 ½0; 1�. Then, an application of
a standard discretization technique like the Galerkin/
least-squares or, in our case, SUPG method yields a
‘Petrov–Galerkin method containing a SOLD term. The
method uses only one stabilization parameter (defined
using the discrete counterpart of ~b) and hence an alignment
of b and ru does not create the undesirable doubling effect
discussed above. However, it is not clear how to choose the
parameter c and, therefore, the value c ¼ 0:5 is recom-
mended except for regions where ru ¼ 0.

Now, let us return to the SOLD term (8) which can be
written in the form

ð~erhuh;rhvhÞ ð13Þ
with

~e ¼
r

RhðuhÞb � ruh

jruhj2
if ruh 6¼ 0;

0 if ruh ¼ 0:

8<: ð14Þ

Galeão and do Carmo [29] observed that, when f 6¼ 0 in
(1), this SOLD term does not prevent localized oscillations
in the discrete solution. The reason is that this term intro-
duces a negative artificial diffusion ~e if RhðuhÞb � ruh < 0.
As a remedy, Galeão and do Carmo proposed to replace
the flow velocity b in the SUPG stabilization term by an
approximate upwind direction

bup
h ¼ a1bþ a2bh;
where bh is an approximate streamline direction such that,
for any K 2Th, the discrete solution uh satisfies

�eDuh þ bh � ruh ¼ f in K: ð15Þ

Of course, such bh generally does not exist at those points
of K at which ruh ¼ 0. Therefore, we replace (15) by

ð�eDuh þ bh � ruh � f Þjruhj ¼ 0 in K: ð16Þ

A reasonable choice of bh is bh ¼ b� zh with

zh ¼
RhðuhÞruh

jruhj2
if ruh 6¼ 0;

0 if ruh ¼ 0;

8<:
since it minimizes jbh � bj in any K 2Th among all func-
tions bh satisfying (16). Defining the SUPG stabilization
using the approximate upwind direction bup

h , we obtain
the discretization (3) with the additional term

ðRhðuhÞ; rzh � rhvhÞ ð17Þ

on the left-hand side. The parameter s � a1 þ a2 is defined
as before and the choice of r � �a2 will be discussed in the
following. The SOLD term (17) can be written in the form
(13) with

~e ¼ r
jRhðuhÞj2

jruhj2
if ruh 6¼ 0;

0 if ruh ¼ 0;

8><>: ð18Þ

and hence it again introduces an isotropic artificial
diffusion.

If f = 0 and Dhuh ¼ 0 (which holds for (bi,tri)linear finite
elements), we have zh ¼ b

k
h. Hence, the terms (8) and (17)

are the same provided that the parameters r are defined
appropriately. Galeão and do Carmo [29] used (17) with

r ¼ maxf0; sðzhÞ � sðbÞg; ð19Þ

which is identical with (9) if zh ¼ b
k
h. Do Carmo and Galeão

[16] proposed to simplify (19) to

r ¼ sðbÞmax 0;
jbj
jzhj
� 1

� �
; ð20Þ

which assures that the term (17) is added only if jbj > jzhj,
i.e., only if the above-introduced vector bh satisfies the
natural requirement b � bh > 0.

For problems with regular solutions, it was observed
that the SOLD term (17) adds an undesirable crosswind
diffusion and that the discrete solution is less accurate than
for the SUPG method. Therefore, do Carmo and Galeão
[16] introduced a feedback function which should minimize
the influence of the SOLD term (17) in regions where the
solution of (1) is smooth. Since the definition of the feed-
back function is rather involved, we only refer to [16].

The intricacy of the feedback approach of do Carmo
and Galeão [16] motivated do Carmo and Alvarez [14] to
introduce a simpler expression for the parameter r. For
this, the following parameters are used on any element
K 2Th:
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aK ¼
jzhj
jbj ; bK ¼ minf1; hKg1�a2

K ;

cK ¼ minfbK ;
1
2
ðaK þ bKÞg;

kK ¼
maxfaK ; jRhðuhÞjg3þaK=2þa2

K

cmaxf1=2;1=4þaKg
K

;

jK ¼ j2� kK j
1�kK
1þkK � 1; xK ¼

a2
Kc

2�a2
K

K

sKðbÞ
:

Now, denoting by �r the value of r defined by (19), do
Carmo and Alvarez [14] consider (17) with

r ¼ .�r; ð21Þ
where

.jK ¼
1 if aK P 1 or kK P 1;

½xK �r�jK if aK < 1 and kK < 1

�
8K 2Th:

ð22Þ
Like the above-mentioned feedback function, the parame-
ter . should suppress the addition of the artificial diffusion
in regions where the solution of (1) is smooth.

In [15], do Carmo and Alvarez introduced a finer tuning
of the parameters s and r by multiplying them by a factor
s0 on those elements K 2Th whose boundary intersects the
outflow part of the boundary of X. The value of s0 on an
element K depends on the geometry of K and the polyno-
mial degree of shape functions on K. Based on numerical
experiments, do Carmo and Alvarez set s0 = 1 for bilinear
shape functions on quadrilaterals, s0 = 0.5 for biquadratic
shape functions on quadrilaterals or linear shape functions
on triangles and s0 = 0.25 for quadratic shape functions on
triangles.

A remedy for the above-mentioned loss of accuracy which
appears when (17) with (19) or (20) is used was also proposed
by Almeida and Silva [3], who conjectured that this loss of
accuracy was mainly caused by the incapability of the for-
mulas (19) and (20) to avoid the doubling effect. They
observed that, setting vh = uh, the SUPG term in (3) becomes

ðRhðuhÞ; sb � rhuhÞ ¼ ðRhðuhÞ; s#hzh � rhuhÞ
with

#h ¼
b � rhuh

RhðuhÞ
:

Therefore, they proposed to replace (20) by

r ¼ sðbÞmax 0;
jbj
jzhj
� fh

� �
with fh ¼ max 1;

b � rhuh

RhðuhÞ

� �
;

ð23Þ
which provides a reduction of the amount of artificial dif-
fusion along the zh direction, which is the direction of the
approximate solution gradient.

In order to be able to prove some theoretical results on
SOLD methods of the above type, Knopp et al. [47]
suggested to replace the isotropic artificial diffusion in
(13) by
~ejK ¼ rKðuhÞjQKðuhÞj2 8K 2Th ð24Þ

with some appropriate constants rKðuhÞP 0 (e.g., defined
by (19) or (20)) and

QKðuhÞ ¼
kRhðuhÞk0;K

SK þ kuhk1;K

; ð25Þ

SK being some constants (equal to 1 in numerical experi-
ments of [47]).

The SOLD term (13) was also used by Johnson [41], who
proposed to set

~ejK ¼ maxf0; a½diamðKÞ�mjRhðuhÞj � eg 8K 2Th ð26Þ

with some constants a and m 2 ð3=2; 2Þ. He suggested to
take m 
 2. Johnson [42] replaced a by b=maxXjuhj and pro-
posed to set b = 0.1. A similar approach was also used by
Johnson et al. [44]. A priori and a posteriori error estimates
for this type of SOLD discretizations can be found in the
papers by Johnson [41] and Eriksson and Johnson [25].
The mentioned papers [42,44] contain convergence results
for space–time elements.

5.3. SOLD terms adding crosswind artificial diffusion

An alternative approach to the above SOLD methods is
to modify the SUPG discretization (3) by adding artificial
diffusion in the crosswind direction only as considered by
Johnson et al. [43] for the two-dimensional case with
b ¼ ð1; 0Þ and ub = 0. A straightforward generalization of
this approach leads to the additional term

ð~eDrhuh;rhvhÞ ð27Þ

on the left-hand side of (3), where

~ejK ¼ maxf0; jbjh3=2
K � eg 8K 2Th ð28Þ

and D is the projection onto the line or plane orthogonal to
b defined by

D ¼
I � b � b

jbj2
if b 6¼ 0;

0 if b ¼ 0;

8<:
I being the identity tensor. The value h3=2

K was motivated by
a careful analysis of the numerical crosswind spread in the
discrete problem, i.e., of the maximal distance in which
the right-hand side f significantly influences the discrete
solution. The resulting method is linear but non-consistent
and hence it is restricted to finite elements of first order of
accuracy. For the two-dimensional case with b ¼ ð1; 0Þ,
ub ¼ 0 and a reaction term in (1), Johnson et al. [43] proved
pointwise error estimates of order Oðh5=4Þ in regions of
smoothness and a global L1-estimate of order Oðh1=2Þ.
Later, these results were improved by Niijima [53], Zhou and
Rannacher [66] and Zhou [65]. Note that, in the two-dimen-
sional case, the SOLD term (27) can be written in the form

ð~eb? � rhuh; b
? � rhvhÞ with b? ¼ ð�b2; b1Þ

jbj : ð29Þ
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Shih and Elman [60] considered the SUPG discretization
(3) with the additional term (29) for X ¼ ð0; 1Þ2 and a con-
stant vector b. They used bilinear finite elements on a uni-
form triangulation of X and proposed two choices of the
parameters s and ~e based on the requirement that the nec-
essary conditions for uniform convergence of ku� uhk0;X of
order greater than 1/2 introduced by Stynes and Tobiska
[61] hold. However, both methods of Shih and Elman re-
duce to the SUPG discretization (3) whenever the flow vec-
tor b is aligned with the mesh, which indicates that the
methods generally cannot work properly. Therefore, we
do not consider them in our numerical tests.

Codina [19] proposed to set the amount of the artificial
crosswind diffusion ~e in (27), for any K 2Th, to

~ejK ¼
1

2
max 0;C � 2e

jbkhj diamðKÞ

( )
diamðKÞ jRhðuhÞj

jruhj
ð30Þ

(if $uh 5 0), where C is a suitable constant. Codina [19] re-
ports that two-dimensional numerical experiments suggest
to set C � 0:7 for (bi)linear finite elements and C � 0:35
for (bi)quadratic finite elements. The design of (30) is based
on investigations of the validity of the discrete maximum
principle for several simple model problems and on the
requirements that ~e should be small in regions where
jb � ruhj is small (to avoid excessive overdamping) and
proportional to the element residual (to guarantee con-
sistency).

Knopp et al. [47] proposed to use (27) with ~e defined,
for any K 2Th, by

~ejK ¼
1

2
max 0;C � 2e

QKðuhÞdiamðKÞ

� �
diamðKÞQKðuhÞ;

ð31Þ

where QKðuhÞ is given by (25). This was also motivated by a
posteriori error estimates which show that the action of the
SOLD stabilization should be restricted to regions where
the local residual is not small. Like in case of (24) with
(25), this definition of ~e satisfies assumptions enabling
Knopp et al. [47] to perform a priori and a posteriori error
analyses of a rather general class of nonlinear discretiza-
tions of (1) which include SOLD discretizations with
stabilizing terms defined by (27), (31), (25) or (13), (24),
(25).

Combining the above two definitions of ~e, we further
propose to use (27) with ~e defined by (31) where

QKðuhÞ ¼
jRhðuhÞj
jruhj

if ruh 6¼ 0: ð32Þ

This is equivalent to (30) if f = 0 and Dhuh ¼ 0. Another
possibility is to set

QKðuhÞ ¼
kRhðuhÞk0;K

juhj1;K
:

For the computations considered in this paper (P1 finite
element, constant data b and f in (1)), this value is identical
with (32).

It was proposed by Codina and Soto [21] to add both
isotropic and crosswind artificial diffusion terms to the
left-hand side of (3). Denoting the parameters in (13) and
(27) by ~eiso and ~ecross, respectively, the parameter choice
from [21] is

~eiso ¼ maxf0;~edc � sðbÞjbj2g; ~ecross ¼ ~edc � ~eiso;

with ~edc defined similarly to (31) and QKðuhÞ given in (32).
We found in our numerical tests that the results are very
similar to those obtained with ~e defined by (27), (31) and
(32) (method denoted by KLR02_3 below). For this rea-
son, numerical results for the method from [21] will not
be presented.

Burman and Ern [11] derived formulas for ~e in (27) and
(13) that guarantee a discrete maximum principle for
strictly acute meshes and linear simplicial finite elements.
However, they observed that, from a numerical viewpoint,
the stronger one wishes to enforce a discrete maximum
principle, the more ill behaved the nonlinear discrete equa-
tions become. Therefore, they slightly changed the for-
mulas implied by the theoretical investigations and
recommended to use (27) with ~e defined, on any K 2Th,
by

~ejK ¼
sðbÞjbj2jRhðuhÞj
jbjjrhuhj þ jRhðuhÞj

� jbjjrhuhj þ jRhðuhÞj þ tan aK jbjjDrhuhj
jRhðuhÞj þ tan aK jbjjDrhuhj

ð33Þ

(~e ¼ 0 if one of the denominators vanishes). The parameter
aK is equal to p=2� bK where bK is the largest angle of K if
K is a triangle and bK is the largest angle among the six
pairs of faces of K if K is a tetrahedron. If bK ¼ p=2 (and
hence the strictly acute condition is violated), it is recom-
mended to set aK ¼ p=6. Further, to improve the conver-
gence of the nonlinear iterations, it is recommended to
replace the absolute value jxj of a real number x by the reg-
ularized expression jxjreg � x tanhðx=eregÞ. We apply this
regularization only to jRhðuhÞj and set ereg ¼ 2.

Our numerical experiments in Section 6 indicate that the
above artificial diffusion ~e is too large and therefore we also
consider (27) with ~e defined by

~e ¼ sðbÞjbj2jRhðuhÞj
jbjjrhuhj þ jRhðuhÞj

: ð34Þ

In this case, we do not apply any regularization of the
absolute values.

An apparently similar simplification of (33) given, on
any K 2Th, by

~ejK ¼
sðbÞjbj2jRhðuhÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jRhðuhÞj2 þ ðtan aKÞ2jbj2jDrhuhj2
q ð35Þ
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was also proposed by Burman and Ern [11]. Like in (33),
we regularize jRhðuhÞj to improve the convergence of the
nonlinear iterations. We shall see that (34) and (35) lead
to qualitatively different results.

5.4. Edge stabilization methods

Another SOLD strategy for linear simplicial finite ele-
ments was introduced by Burman and Hansbo [13]. The
SOLD term to be added to the left-hand side of (3) is
defined byX
K2Th

Z
oK

WKðuhÞsignðtoK � rðuhjKÞÞtoK � rðvhjKÞdr; ð36Þ

where toK is a tangent vector to the boundary oK of K,

WKðuhÞ ¼ diamðKÞðC1eþ C2diamðKÞÞmax
E�oK
j½jnE � ruhj�Ej;

ð37Þ

nE are normal vectors to edges E of K, ½jvj�E denotes the
jump of a function v across the edge E and C1, C2 are
appropriate constants (note that C2 has to be proportional
to jbj). Burman and Hansbo proved that, using an edge sta-
bilization instead of the SUPG term, the discrete maximum
principle is satisfied provided that C1 P 1=2 and C2 is suf-
ficiently large. In their numerical tests with jbj ¼ 1, they
used C2 ¼ 10. To improve the convergence of the nonlinear
iterative process, they further regularize the sign operator
in (36) by replacing it by the hyperbolic tangent.

Burman and Ern [12] proposed to use the SOLD term
(36) with WKðuhÞ defined by

WKðuhÞjE ¼ Cjbj½diamðKÞ�2j½jruhj�Ej 8E � oK; ð38Þ

where C is a suitable constant. For linear simplicial finite
elements on weakly acute triangulations satisfying a local
quasi-uniformity property, they proved the validity of the
discrete maximum principle. Another definition of WKðuhÞ
proposed in [12] is

WKðuhÞ ¼ CjRhðuhÞj: ð39Þ
Let us mention that establishing a discrete maximum prin-
ciple for higher order stabilized Galerkin methods still re-
mains an open problem.

5.5. Further SOLD methods

At the end of this review of SOLD methods, we will
mention some further approaches for reducing spurious
oscillations in SUPG solutions. Lube [49] presented an
asymptotically fitted variant of the SUPG method which
suppresses oscillations along boundary layers. This
method consists in replacing the Dirichlet boundary condi-
tions on the downstream (if e < Ch) and characteristic
(if e < h3=2) parts of the boundary by homogeneous
Neumann’s conditions. Existence, stability and conver-
gence results are proved for (1) containing a suitable reac-
tion term. Burman [10] and Hughes and Bazilevs [5]
demonstrated numerically that using weakly imposed
Dirichlet boundary conditions reduces spurious oscilla-
tions at outflow boundaries considerably. The conse-
quence of this approach is, however, that the Dirichlet
values of the discrete solution will in general not coincide
with the given boundary condition.

If f = 0 in (1), the maximum principle yields a lower
bound umin and an upper bound umax for the solution u.
Layton and Polman [48] proposed to add the nonlinear
term

ch�a min
grid points

fuhðx; yÞ� umin;0gþ max
grid points

fuhðx; yÞ� umax;0g
� �

to the left-hand side of the SUPG Eq. (3), e.g., with c = 1,
a = 1. This term penalizes the violation of the discrete max-
imum principle. However, if f 6¼ 0 or if other types of
boundary conditions are used, it is hard to obtain the
bounds and this method is not generally applicable. Even
for the examples presented in Section 6, it was never among
the best methods (results not explicitly reported in this
paper).

Guermond [30] studied stabilized schemes based on the
minimization of the residual in L1ðXÞ for first order partial
differential equations. Since the second order derivatives
are small in a convection-dominated convection–diffusion
equation, its solution has similar features as the solution
of a first order transport equation, for instance steep layers
on the one hand and shocks on the other hand. In Exam-
ple 4.5 in [30] it is demonstrated that the L1ðXÞ minimiza-
tion approach can be used also for convection–diffusion
equations.

6. Numerical studies

This section presents results of two numerical examples
which are defined in a two-dimensional domain and which
are discretized by conforming piecewise linear finite ele-
ments. The only criterion for the evaluation of the SOLD
methods will be the quality of the computed solution. This
evaluation is twofold: the suppressing of spurious oscilla-
tions and the smearing of layers will be rated. Since spuri-
ous oscillations are far more undesirable than moderately
smeared layers, the results concerning spurious oscillations
will be weighted higher. We would like to note that the
evaluation of the many computational results is rather
complicated. The difficulty is that not errors to a known
solution are of interest but the size of oscillations and the
extent of smearing of layers. Measuring the size of oscilla-
tions is only easy if the solution should be constant on both
sides of the layer. Often, pictures of the computed solutions
give a good impression of their quality. However, due to
the considerable potential length of the paper, it is not pos-
sible to support each computation with one or even more
pictures. Several measures for evaluating the results were
tested in our numerical studies. We found out that the mea-
sures used below are appropriate ones.



Table 1
Summary of SOLD methods considered in the numerical tests

Name Citation Add. diffusion Method param. User param.

MH85 [46] upwind – –
HMM86 [36] iso. (13) (14), (9) –
TP86_1 [64] iso. (13) (14), (10), (11) –
TP86_2 [64] iso. (13) (14), (11), (12) u0

GdC88 [29] iso. (13) (18), (19) –
dCG91 [16] iso. (13) (18), (20) –
dCA03 [14] iso. (13) (18), (21), (22) –
AS97 [3] iso. (13) (18), (23) –
KLR02_1 [47] iso. (13) (24), (19), (25) SK

J90 [41] iso. (13) (26) a; m
JSW87 [43] orth. (27) (28) –
C93 [19] orth. (27) (30) C

KLR02_2 [47] orth. (27) (31), (25) C, SK

KLR02_3 [47], here orth. (27) (31), (32) C

BE02_1 [11] orth. (27) (33) aK

BE02_2 [11], here orth. (27) (34) –
BE02_3 [11] orth. (27) (35) aK

BH04 [13] edge (36) (37) C1;C2

BE05_1 [12] edge (36) (38) C

BE05_2 [12] edge (36) (39) C

V. John, P. Knobloch / Comput. Methods Appl. Mech. Engrg. 196 (2007) 2197–2215 2207
The numerical results presented in this paper give only a
first impression of the capabilities of the SOLD methods.
They will serve as a pre-selection of those methods which
are worth to be studied in detail, also with respect to other
properties like the convergence of the solution in various
norms or the speed of convergence of the nonlinear itera-
tion process. Comprehensive numerical studies of these
methods will be postponed to the second part of this paper.
For some additional numerical studies, we refer to [38,39].

We shall test most of the SOLD methods considered in
Section 5. A summary of these methods, introducing also
their abbreviations which will be used in the evaluation of
the numerical examples, is presented in Table 1. The under-
lying SUPG method (3) was applied with s defined by (5)–
(7) using the upwind function n0 from (4). The nonlinear
problems were solved accurately, up to a norm of the resid-
ual lower than 10�10. Methods which worked best in our
opinion are printed boldly in the tables. Italic is used for
methods which also produced acceptable results but which
were clearly worse than the best methods. All numerical
results have been double-checked by computing them with
two different codes, one of them was MooNMD, [40].

Example 1 (Solution with parabolic and exponential bound-

ary layers). We consider the convection–diffusion equation
(1) in X ¼ ð0; 1Þ2 with e ¼ 10�8, b ¼ ð1; 0ÞT, f = 1 and
ub = 0. The solution uðx; yÞ of this problem, see Fig. 1,
possesses an exponential boundary layer at x = 1 and
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Fig. 1. Solution of Example 1 (le

Fig. 2. The grids used in the computations: Grid 1, Grid 2 and Grid 3 (left t
triangles is 1/64.
parabolic boundary layers at y = 0 and y = 1. In the
interior grid points, the solution uðx; yÞ is very close to x.

The numerical tests were performed on a regular and on
an unstructured triangular grid, see Fig. 2 for the initial
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ft) and of Example 2 (right).

o right). The structured grids are refined till the length of the legs of the



Table 2
Example 1, Grid 1, osc and smear defined in (40) and (41)

Name osc2 Score smear 2 Score Total

SUPG 1.340e�1 �4 – – �4
MH85 0 4 5.280e�6 2 6
HMM86 8.737e�2 0 1.141e�2 0 0
TP86_1 1.150e�1 �4 – – �4
TP86_2; u0 = 1 1.312e�1 �4 – – �4
GdC88 2.179e�3 2 4.860e�2 0 2
dCG91 5.992e�4 4 4.515e�2 0 4
dCA03 1.316e�2 1 4.387e�2 0 1
AS97 4.742e�4 4 4.494e�2 0 4
KLR02_1; SK = 1 1.241e�1 �4 – – �4
J90; a ¼ 0:5; m ¼ 2 4.273e�3 2 1.540e�3 0 2
JSW87 1.479e�6 4 2.743e�1 �2 2
C93; C = 0.6 7.816e�2 0 8.076e�4 1 1
KLR02_2;

C ¼ 0:6; SK ¼ 1
9.654e�2 0 2.383e�2 0 0

KLR02_3; C = 0.6 2.469e�4 4 3.680e�2 0 4
BE02_1; aK ¼ p=6 1.528e�2 1 9.184e�2 0 1
BE02_2 6.942e�4 4 4.729e�2 0 4
BE02_3; aK ¼ p=6 6.406e�3 2 2.496e�2 0 2
BH04;

C1 ¼ 0:5;C2 ¼ 0:01
2.477e�3 2 2.168e�1 �2 0

BE05_1; C = 0.05 6.765e�3 2 7.212e�2 0 2
BE05_2; C = 5e�5 2.826e�3 2 1.489e�1 �2 0

 0.6

 0.7
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regular grid (Grid 1) and the final unstructured grid (Grid
3). The latter was obtained using the anisotropic mesh
adaptation technique of [22].

First, we present computations on Grid 1 where
the length of the legs of the triangles was 1/64. Thus,
from (6) follows hK ¼ 1=64 and the Péclet number is
PeK = 108/128 = 781,250. The number of degrees of
freedom is 4225 (including Dirichlet nodes).

For this special example, the stabilization parameter s
used in this paper is optimal along lines y ¼ const outside
the parabolic layers. Applying the SUPG method on Grid
1, one finds that there are no oscillations at the exponential
layer. However, there are still strong oscillations at the par-
abolic layers and for this reason we will concentrate on
these layers in the evaluation of the SOLD methods on
Grid 1. Particularly, we consider the cut line x ¼ 0:5 and
the values

osc :¼ max
y2 1

64;
2

64;...;
63
64f g
fuhð0:5; yÞ � uhð0:5; 0:5Þg; ð40Þ

smear :¼ max
y2 1

64;
2

64;...;
63
64f g

uhð0:5; 0:5Þ � uhð0:5; yÞf g: ð41Þ

The first value measures the oscillations in the parabolic
layers. In the case that the oscillations are suppressed to
the most part, the second value measures the smearing of
these layers. The computational results are given in Table
2 and Fig. 3. To simplify their evaluation and the ranking
of the methods, we scored each result. The scores are as
follows:
 0.5
osc2
 Score
 smear2
 Score

 0.4
[0,1e�3)
 4
 [0,1e�5)
 2
 0.3
[1e�3,1e�2)
 2
 [1e�5,1e�3)
 1

[1e�2,1e�1)
 0
 [1e�3,1e�1)
 0
 0.2
[1e�1,1)
 �4
 [1e�1,1)
 �2

SUPG
MH85
 0

 0.1

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

JSW87
AS97

C93
BE05_1

Fig. 3. Example 1, Grid 1, the parabolic boundary layer computed with
different schemes.
Values which are close to the interval with the next
higher score will get an intermediate score.

Clearly the best method is MH85. Good results were
computed also with dCG91, AS97, KLR02_3 and
BE02_2. All other methods, save JSW87, still exhibit
non-negligible spurious oscillations at the parabolic layers.
These layers are smeared considerably in the solution com-
puted with JSW87. In addition, we want to note that the
solutions obtained with J90, BH04 and BE05_2 show, in
contrast to all other methods, a smearing of the exponen-
tial boundary layer.

Table 4 and Figs. 5 and 6 present results obtained on the
unstructured Grid 3 from Fig. 2. This grid possesses 3312
triangles and 1721 vertices (degrees of freedom). Introduc-
ing the sets

X1 ¼ X2 [ X3; X2 ¼ ð0; 0:9Þ � ð0; 0:1�;
X3 ¼ ð0; 0:9Þ � ½0:9; 1Þ; X4 ¼ ½0:9; 1Þ � ð0:1; 0:9Þ;

see Fig. 4, the spurious oscillations are measured by

oscparað1Þ :¼ max
ðx;yÞ2X1

ðuhðx; yÞ � xÞ; ð42Þ
oscparað2Þ :¼max max
ðxs;ysÞ2X2

�ouhðxs;ysÞ
oy

� �
; max
ðxs;ysÞ2X3

ouhðxs;ysÞ
oy

� �
;

ð43Þ

oscexp :¼ max
ðxs;ysÞ2X4

ouhðxs; ysÞ
ox

; ð44Þ

where ðx; yÞ are the nodes in X1 and ðxs; ysÞ are the coordi-
nates of the barycentres of the triangles. The optimal value
of oscparað2Þ is zero and of oscexp is one. The larger these val-
ues are, the stronger are the oscillations in the parabolic
and exponential layer, respectively. For evaluating the ex-
tent of the global smearing, the value



�

Ω4

3

Ω2

Ω1 Ω2

Ω

Fig. 4. The subdomains X1; . . . ;X4 from Example 1 (left) and X1;X2 from
Example 2 (right).

V. John, P. Knobloch / Comput. Methods Appl. Mech. Engrg. 196 (2007) 2197–2215 2209
smear :¼
X

interior nodes ðx;yÞ
ðminf0; uhðx; yÞ � xgÞ2

 !1=2

ð45Þ

is computed. The rating of the results is given in Table 3.
Again, intermediate scores will be given if values are

close to the interval with the next higher score. Since there
are two criteria for the oscillations in the parabolic layers,
the score of each is half of the score of oscexp.

For MH85 and HMM86, we were not able to solve the
nonlinear problems. It is remarkable that only the edge sta-
bilization schemes BH04, BE05_1 and BE05_2 and the
Table 3
Definition of scores for the results in Table 4

oscpara(1)2 Score oscpara(2)2 Score

[0,1e�3) 2 [0,1e�1) 2
[1e�3, 1e�2) 1 [1e�1,3e�1) 1
[1e�2, 1e�1) 0 [3e�1,1) 0
[1e�1,1) �2 [1,10) �2

Table 4
Example 1, Grid 3, the measures for evaluating the oscillations and the smear
same as in Table 2

Name oscpara(1) Score oscpara(2) Score

SUPG 1.545e�1 �2 7.883e+0 �2
MH85 No conv. –
HMM86 No conv. –
TP86_1 9.225e�2 0 3.612e+0 �2
TP86_2 1.291e�1 �2 6.369e+0 �2
GdC88 7.103e�3 1 2.679e�1 1
dCG91 7.048e�3 1 2.746e�1 1
dCA03 1.191e�2 0.5 5.550e�1 0
AS97 8.961e�3 1 4.336e�1 0
KLR02_1 1.313e�1 �2 6.786e+0 �2
J90 3.245e�2 0 1.205e+0 �1
JSW87 6.167e�4 2 2.002e�2 2
C93 2.416e�2 0 8.591e�1 0
KLR02_2 9.862e�2 0 4.741e+0 �2
KLR02_3 2.829e�3 1.5 1.112e�1 1.5
BE02_1 5.336e�3 1 2.189e�1 1
BE02_2 2.604e�3 1.5 1.030e�1 1.5
BE02_3 7.142e�3 1 3.074e�1 0.5
BH04 8.941e�3 1 3.549e�1 0.5
BE05_1 5.431e�3 1 1.998e�1 1
BE05_2 8.367e�3 1 3.417e�1 0.5
method J90 were able to compute solutions almost without
spurious oscillations at the exponential layer, see Table 4
and Fig. 5. The results at the exponential layer obtained
with the most other methods are similar to the result of
KLR02_3 in the middle of Fig. 5. However, the edge stabil-
ization schemes lead to a larger smearing of layers, see
Fig. 6 for the parabolic layer at y = 0. The method J90 pro-
duces much larger spurious oscillations in the parabolic
layers than BH04, BE05_1 and BE05_2. Altogether,
BH04, BE05_1 and BE05_2 worked best on the unstruc-
tured Grid 3 since these methods suppressed the spurious
oscillations at the exponential layer well and they worked
also relatively well in the parabolic layers. A second group
of methods, GdC88, dCG91, KLR02_3 and BE02_2, com-
puted good results outside the exponential layer.

Example 2 (Solution with interior layer and exponential

boundary layer). The convection–diffusion equation (1) is
considered in X ¼ ð0; 1Þ2 with the data e ¼ 10�8,
b ¼ ðcosð�p=3Þ; sinð�p=3ÞÞT, f = 0 and
ubðx; yÞ ¼
0 for x ¼ 1 or y 6 0:7;

1 else:

The solution, see Fig. 1, possesses an interior layer in the
direction of the convection starting at (0,0.7). On the
oscexp2 Score smear2 Score

[1,1.25) 4 [0,1.25) 2
[1.25,2) 2 [1.25,2) 1
[2,3) 0 [2,3) 0
[3,5) �4 [3,5) �2

ing are defined in (42)–(45), the parameters in the SOLD methods are the

oscexp Score smear Score Total

4.972 �4 8.550e�1 2 �6
– –
– –
2.771 0 9.164e�1 2 0
2.968 0 9.125e�1 2 �2
2.702 0 1.711e+0 1 3
2.675 0 1.846e+0 1 3
2.695 0 1.720e+0 1 1.5
2.876 0 1.849e+0 1 2
4.563 �4 9.508e�1 2 �6
1.156 4 2.833e+0 0 3
2.250 0 4.247e+0 �2 2
2.823 0 1.131e+0 2 2
2.420 0 1.047e+0 2 0
2.823 0 1.549e+0 1 4
3.224 �2 2.177e+0 0 0
2.320 0 1.826e+0 1 4
3.285 �2 1.858e+0 1 0.5
1.086 4 2.309e+0 0 5.5
1.075 4 2.211e+0 0 6
1.080 4 2.013e+0 0.5 6
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Fig. 6. Example 1, the parabolic boundary layer at y = 0 computed with SUPG, KLR02_3 and BH04 (left to right) on Grid 3, cuts of the solution at
x 2 f0:1; 0:15; 0:2; . . . ; 0:9g.
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Fig. 5. Example 1, the exponential boundary layer computed with SUPG, KLR02_3 and BH04 (left to right) on Grid 3, ðx; yÞ 2 ½0:9; 1� � ½0:1; 0:9�.
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boundary x = 1 and on the right part of the boundary
y = 0, exponential layers are developed. This example has
been used, e.g., in [36].

The computations were performed on Grid 1, Grid 2
and Grid 3, see Fig. 2. For the regular triangular Grid 1
and Grid 2, the convection is skew to the grid lines. The
grid size in the computations was chosen to be 1/64 (length
of the legs of the triangles) such that the Péclet number is
PeK = 781,250 and the number of degrees of freedom 4225.
The features of Grid 3 have been mentioned already in
Example 1. Since the right-hand side of (1) vanishes, the
following methods are the identical ones: HMM86 and
GdC88; dCG91 and AS97; C93 and KLR02_3. The choice
of the SUPG parameter s can be regarded as optimal on
Grid 1 since the SUPG solution is nodally exact outside the
inner layer and the boundary layer at x = 1. Denoting

X1 ¼ fðx; yÞ 2 X; x 6 0:5; y P 0:1g;
X2 ¼ fðx; yÞ 2 X; x P 0:7g;

see Fig. 4, the following quantities are considered for
assessing the computational results:
oscint :¼
X
ðx;yÞ2X1

ðminf0;uhðx;yÞgÞ2þðmaxf0;uhðx;yÞ�1gÞ2
 !1=2

;

ð46Þ

oscexp :¼
X
ðx;yÞ2X2

ðmaxf0; uhðx; yÞ � 1gÞ2
 !1=2

; ð47Þ

smearint :¼ x2 � x1; ð48Þ

smearexp :¼
X
ðx;yÞ2X2

ðminf0; uhðx; yÞ � 1gÞ2
 !1=2

; ð49Þ

where x1 is the x-coordinate of the first point on the cut line
ðx; 0:25Þ with uhðx1; 0:25ÞP 0:1 and x2 is the x-coordinate
of the first point with uhðx2; 0:25ÞP 0:9. Thus, (48) gives
a measure for the thickness of the interior layer. The eval-
uation of x1 and x2 used a grid with mesh width 10�5 on the
cut line. The summations are performed over the nodes
(x,y) of the meshes.
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Results of the computations on Grid 1 are presented in
Table 7. The scoring of the results is given in Table 5.
Again, intermediate scores are used.

The method MH85 gives an almost perfect result. Only
the interior layer is smeared somewhat. Quite good results
are obtained also with dCG91, AS97 and BE02_2. We
observed for all SOLD methods that there are no spurious
oscillations in the exponential layer at y = 0 on Grid 1, see
also Fig. 7.

Comparing the results on Grid 1 on the one hand and
Grid 2 and Grid 3 on the other hand, one finds that the
results on Grid 2 and Grid 3 are considerably worse, see
Tables 7–9. Because of this, the conditions for rating the
results on Grid 2 and Grid 3 are relaxed somewhat, see
Table 6. To obtain a better classification of the methods,
intermediate values are used as in the other tests.

The results for Grid 2 are presented in Table 8. The only
method which worked still very good was MH85. Only the
smearing of the interior layer became somewhat larger in
comparison to Grid 1. None of the other SOLD schemes
produced a satisfactory solution with respect to all criteria
of evaluation. It is remarkable that methods which worked
well on Grid 1 completely failed on Grid 2, see Fig. 7 for
dCG91 and AS97. Two other results are presented in
Fig. 8. It can be seen that the solution computed with
HMM86, GdC88 has a big oscillation at the starting point
of the interior layer and another one in a vicinity of the
corner (1,0) of X. The smearing of the layers which led to
bad scores for BE05_2 is clearly visible in the right picture
of Fig. 8.
Table 5
Definition of scores for the results in Table 7

oscint2 Score oscexp2 Score

[0,1e�4) 4 [0,1e�5) 4
[1e�4, 1e�2) 2 [1e�5, 1e�3) 2
[1e�2, 1e�1) 0 [1e�3, 1e�1) 0
[1e�1,1) �4 [1e�1, 10) �4

Fig. 7. Example 2, solutions obtained with dCG

Table 6
Definition of scores for the results in Tables 8 and 9

oscint2 Score oscexp2 Score

[0,1e�3) 4 [0,1e�3) 4
[1e�3, 1e�2) 2 [1e�3, 2.5e�1) 2
[1e�2, 1e�1) 0 [2.5e�1, 1) 0
[1e�1,1) �4 [1, 10) �4
A reason for the bad results obtained with the SOLD
methods on Grid 2 can be found, in our opinion, already in
the underlying SUPG stabilization. Since the SUPG
method gives on Grid 2 considerably worse results than
on Grid 1, there is not sufficient diffusion introduced in the
streamline direction. However, the SOLD methods intro-
duce additional diffusion above all orthogonally to the
streamlines and rely upon the assumption that the SUPG
method has done a good job in the streamline direction. If
this is not the case, the SOLD methods give rather poor
results as this example shows.

The results on the unstructured Grid 3, Table 9, show a
similar tendency like the results on Grid 2. Again, only
MH85 produced a satisfactory solution. All other SOLD
schemes are on the one hand clearly worse than MH85 but
on the other hand, most of them improved the SUPG
solution considerably. We think that the reason for the
SUPG-based SOLD methods being far away from a perfect
solution is the same as given for Grid 2.

6.1. Summary of the numerical studies

The numerical tests were performed in a two-dimensional
domain using the conforming P1 finite element. Under these
conditions, the upwind method MH85 was always the best
method if the nonlinear iterations converged. Among the
other SOLD methods, no one could be preferred in all cases.
The methods dCG91 and BE02_2 were often among the best
ones. However, even the best other SOLD methods gave
sometimes rather unsatisfactory results. There are also some
smearint2 Score smearexp2 Score

[0,4e�2) 2 [0,1e�4) 2
[4e�2, 6e�2) 1 [1e�4, 1e�2) 1
[6e�2, 8e�2) 0 [1e�2, 5e�1) 0
[8e�2, 1) �2 [5e�1, 10) �2

91 (AS97); left: on Grid 1, right: on Grid 2.

smearint2 Score smearexp2 Score

[0,5e�2) 2 [0,1e�4) 2
[5e�2, 8e�2) 1 [1e�4, 1e�2) 1
[8e�2, 1.1e�1) 0 [1e�2, 5e�1) 0
[1.1e�1, 1) �2 [5e�1, 10) �2



Table 7
Example 2, Grid 1 from Fig. 2, the measures for evaluating the oscillations and the smearing are defined in (46)–(49), the parameters in the SOLD methods
are the same as in Table 2

Name oscint Score oscexp Score smearint Score smearexp Score Total

SUPG 5.891e�1 �4 2.124e+0 �4 3.747e�2 2 5.666e�1 �1 �7
MH85 6.081e�13 4 0 4 5.792e�2 1 1.083e�5 2 11
HMM86, GdC88 1.185e�1 �2 3.010e�2 0 5.927e�2 1 2.921e�3 1 0
TP86_1 2.038e�1 �4 2.581e�6 4 4.020e�2 1.5 5.445e�1 �1 0.5
TP86_2 4.700e�1 �4 5.972e�2 0 3.852e�2 2 4.768e�1 0 �2
dCG91, AS97 1.248e�5 4 1.482e�10 4 7.090e�2 0 6.479e�1 �1 7
dCA03 1.299e�1 �2 3.019e�2 0 6.074e�2 0.5 3.220e�3 1 �0.5
KLR02_1 5.256e�1 �4 1.589e+0 �4 3.852e�2 2 4.118e�1 0 �6
J90 8.798e�2 0 4.157e�2 0 5.714e�2 1 3.058e+0 �2 �1
JSW87 5.440e�11 4 1.007e�4 2 1.473e�1 �2 2.656e�1 0 4
C93, KLR02_3 4.278e�3 2 1.959e�5 3 6.677e�2 0 9.042e�1 �2 3
KLR02_2 2.990e�1 �4 6.240e�1 �4 4.247e�2 1 2.292e�1 0 �7
BE02_1 1.083e�2 1 9.488e�4 2 7.527e�2 0 2.274e+0 �2 1
BE02_2 2.470e�8 4 2.546e�5 3 7.132e�2 0 6.723e�1 �1 6
BE02_3 1.558e�2 1 1.239e�3 1 6.795e�2 0 2.444e+0 �2 0
BH04 1.754e�2 1 5.063e�1 �4 7.106e�2 0 3.793e�1 0 �3
BE05_1 4.906e�3 2 1.904e+0 �4 9.685e�2 �2 4.520e�1 0 �4
BE05_2 4.580e�3 2 1.648e�4 2 7.930e�2 0 3.867e+0 �2 2

Table 8
Example 2, Grid 2 from Fig. 2, the measures for evaluating the oscillations and the smearing are defined in (46)–(49), the parameters in the SOLD methods
are the same as in Table 2

Name oscint Score oscexp Score smearint Score smearexp Score Total

SUPG 6.925e�1 �4 3.847e+0 �4 6.206e�2 1 1.698e+0 �2 �9
MH85 0 4 0 4 1.024e�1 0 1.161e�5 2 10
HMM86, GdC88 2.176e�1 �3 1.279e�1 2 1.037e�1 0 2.480e�3 1 0
TP86_1 2.719e�1 �3 6.713e�1 0 7.424e�2 1 4.586e�2 0 �2
TP86_2 5.509e�1 �4 5.489e�1 0 6.498e�2 1 1.952e�1 0 �3
dCG91, AS97 2.971e�1 �3 1.406e+0 �4 8.544e�2 0 2.114e�1 0 �7
dCA03 2.204e�1 �3 1.279e�1 2 1.060e�1 0 2.527e�3 1 0
KLR02_1 6.629e�1 �4 2.681e+0 �4 6.309e�2 1 1.080e+0 �2 �9
J90 2.939e�1 �3 5.950e�2 2 7.978e�2 1 2.681e+0 �2 �2
JSW87 2.444e�1 �3 2.133e+0 �4 1.117e�1 �1 5.005e�1 0 �8
C93, KLR02_3 1.386e�1 �2 3.606e�1 0 9.750e�2 0 3.126e�2 0 �2
KLR02_2 5.125e�1 �4 1.773e+0 �4 6.671e�2 1 5.941e�1 �1 �8
BE02_1 1.496e�1 �2 4.306e�1 0 1.034e�1 0 3.651e�1 0 �2
BE02_2 2.214e�1 �3 1.396e+0 �4 8.634e�2 0 2.102e�1 0 �7
BE02_3 1.453e�1 �2 3.839e�1 0 9.682e�2 0 5.169e�1 �0.5 �2.5
BH04 9.224e�2 0 1.548e+0 �4 9.966e�2 0 1.408e�1 0 �4
BE05_1 6.153e�3 2 3.514e+0 �4 1.528e�1 �2 1.402e+0 �2 �6
BE05_2 6.470e�3 2 2.163e�3 3 1.435e�1 �2 3.411e+0 �2 1
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methods which never produced good results, e.g., TP86_1
and TP86_2 introduce in general not enough artificial diffu-
sion to damp the oscillations sufficiently or JSW87 and J90
Fig. 8. Example 2, solutions obtained on Grid 2 w
are very diffusive and smear the layers considerably. Alto-
gether, there are still many open questions to be answered
which will be started in the second part of this paper.
ith HMM86, GdC88 (left) and BE05_2 (right).



Table 9
Example 2, Grid 3 from Fig. 2, the measures for evaluating the oscillations and the smearing are defined in (46)–(49), the parameters in the SOLD methods
are the same as in Table 2

Name oscint Score oscexp Score smearint Score smearexp Score Total

SUPG 5.933e�1 �4 1.526e+0 �4 5.520e�2 1.5 4.070e�1 0 �6.5
MH85 4.940e�15 4 1.785e�14 4 9.717e�2 0 5.302e�2 0.5 8.5
HMM86, GdC88 1.127e�1 �2 1.961e�1 2 9.535e�2 0 1.944e�1 0 0
TP86_1 2.066e�1 �3 1.421e�1 2 6.364e�2 1 4.597e�1 0 0
TP86_2 4.295e�1 �4 1.830e�1 2 5.890e�2 1.5 4.118e�1 0 �0.5
dCG91, AS97 8.229e�2 0 1.282e�1 2 9.701e�2 0 5.998e�1 �1 1
dCA03 1.243e�1 �2 1.993e�1 2 9.553e�2 0 1.955e�1 0 0
KLR02_1 5.199e�1 �4 1.103e+0 �1 5.752e�2 1.5 2.851e�1 0 �3.5
J90 1.412e�1 �2 5.814e�2 2 8.310e�2 0.5 2.390e+0 �2 �1.5
JSW87 3.188e�3 2 1.035e�1 2 1.865e�1 �2 5.364e�1 �1 1
C93, KLR02_3 7.758e�2 0 5.422e�2 3 9.081e�2 0 7.956e�1 �2 1
KLR02_2 3.759e�1 �4 4.975e�1 0 6.190e�2 1 2.167e�1 0 �3
BE02_1 1.857e�2 1 1.877e�2 3 1.086e�1 0 1.703e+0 �2 2
BE02_2 6.342e�2 0 8.718e�2 3 9.803e�2 0 5.964e�1 �1 2
BE02_3 2.276e�2 1 1.166e�2 3 9.902e�2 0 1.818e+0 �2 2
BH04 3.565e�2 0 5.917e�1 0 9.226e�2 0 2.238e�1 0 0
BE05_1 9.236e�3 2 8.335e�1 0 1.264e�1 �2 2.333e�1 0 0
BE05_2 6.425e�2 0 2.212e�2 3 9.056e�2 0 1.036e+0 �2 1
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7. Conclusions and outlook

A characteristic feature of numerical solutions of scalar
convection-dominated convection–diffusion equations
computed with the popular SUPG stabilization is the pres-
ence of quite large spurious oscillations at layers. The main
goal of SOLD methods consists in suppressing these oscil-
lations without an excessive smearing of the layers. The
present paper gave a review of the state of the art of SOLD
methods. Most of these methods can be classified into
methods adding isotropic diffusion, methods adding diffu-
sion orthogonally to the streamlines and into edge stabil-
ization methods. Some numerical studies gave a first
impression of the behavior of the SOLD methods.

Comprehensive numerical studies which will explore the
limits of the capabilities of the available SOLD methods
will be the subject of the second part of the paper.
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[7] F. Brezzi, D. Marini, E. Süli, Residual-free bubbles for advection–
diffusion problems: The general error analysis, Numer. Math. 85
(2000) 31–47.

[8] F. Brezzi, A. Russo, Choosing bubbles for advection–diffusion
problems, Math. Models Methods Appl. Sci. 4 (1994) 571–587.

[9] A.N. Brooks, T.J.R. Hughes, Streamline upwind/Petrov–Galerkin
formulations for convection dominated flows with particular empha-
sis on the incompressible Navier–Stokes equations, Comput. Meth-
ods Appl. Mech. Engrg. 32 (1982) 199–259.

[10] E. Burman, A unified analysis for conforming and nonconforming
stabilized finite element methods using interior penalty, SIAM J.
Numer. Anal. 43 (2005) 2012–2033.

[11] E. Burman, A. Ern, Nonlinear diffusion and discrete maximum
principle for stabilized Galerkin approximations of the convection–
diffusion–reaction equation, Comput. Methods Appl. Mech. Engrg.
191 (2002) 3833–3855.

[12] E. Burman, A. Ern, Stabilized Galerkin approximation of convec-
tion–diffusion–reaction equations: discrete maximum principle and
convergence, Math. Comput. 74 (2005) 1637–1652.

[13] E. Burman, P. Hansbo, Edge stabilization for Galerkin approxima-
tions of convection–diffusion–reaction problems, Comput. Methods
Appl. Mech. Engrg. 193 (2004) 1437–1453.

[14] E.G.D. do Carmo, G.B. Alvarez, A new stabilized finite element
formulation for scalar convection–diffusion problems: the streamline
and approximate upwind/Petrov–Galerkin method, Comput. Meth-
ods Appl. Mech. Engrg. 192 (2003) 3379–3396.

[15] E.G.D. do Carmo, G.B. Alvarez, A new upwind function in stabilized
finite element formulations, using linear and quadratic elements for
scalar convection–diffusion problems, Comput. Methods Appl. Mech.
Engrg. 193 (2004) 2383–2402.

[16] E.G.D. do Carmo, A.C. Galeão, Feedback Petrov–Galerkin methods
for convection-dominated problems, Comput. Methods Appl. Mech.
Engrg. 88 (1991) 1–16.



2214 V. John, P. Knobloch / Comput. Methods Appl. Mech. Engrg. 196 (2007) 2197–2215
[17] I. Christie, D.F. Griffiths, A.R. Mitchell, O.C. Zienkiewicz, Finite
element methods for second order differential equations with signif-
icant first derivatives, Int. J. Numer. Methods Engrg. 10 (1976) 1389–
1396.

[18] P.G. Ciarlet, Basic error estimates for elliptic problems, in: P.G.
Ciarlet, J.L. Lions (Eds.), Handbook of Numerical Analysis, Finite
Element Methods (pt. 1), vol. 2, North-Holland, Amsterdam, 1991,
pp. 17–351.

[19] R. Codina, A discontinuity-capturing crosswind-dissipation for the
finite element solution of the convection–diffusion equation, Comput.
Methods Appl. Mech. Engrg. 110 (1993) 325–342.
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