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Abstract

The reconstruction of a distribution knowing only a finite number of its moments is an extremely important but in practice still unsolved
question for many fields of science (chemical and process engineering, electronic engineering, nuclear physics, image analysis, biotechnology. . .).
Several methods have been proposed and corresponding mathematical formulations have been introduced in the literature during the last
decades. Nevertheless, all these are generally limited to particular, often simple cases and require specific assumptions. It is indeed extremely
difficult from a theoretical point of view (it is necessary, however, not sufficient, that all moments are available for a correct reconstruction)
as well as from a practical point of view (ill-posed inverse problem) to find an accurate and relatively fast method which can be applied to all
scientific areas. In the present paper, different possible methods (prescribed functions, discrete method, spline-based reconstruction) allowing
such a reconstruction are explained, compared in terms of efficiency and accuracy, and validated for chemical engineering applications using
examples with different degrees of difficulty.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction and state of the art

1.1. Possible applications

In the last decade, a renewed interest can be observed in the
scientific community dealing with chemical engineering ap-
plications concerning moment-based determination of distribu-
tions, e.g., particle size distributions (PSD). This is in partic-
ular due to the fact that, when external features like turbulent
flow properties play an important role for the process under
investigation, fast and numerically efficient methods must be
employed to describe the population interacting with this flow.
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Acceptable computational costs are typical for the standard
method of moments (MOM) and for related approaches like
the quadrature method of moments (QMOM) and its direct al-
ternative (DQMOM) (Marchisio and Fox, 2005). For all such
methods, only a finite number of moments associated with the
real distribution are finally determined by the numerical pro-
cedure. Therefore, after having computed these moments, it is
necessary to reconstruct in the best possible way the full, real
distribution corresponding to the resulting PSD. Since the PSD
generally constitutes the key result to judge the quality of the
process, the high importance of the reconstruction procedure
appears clearly.

It is also possible to derive the value of different moments
indirectly through experimental measurements, since the par-
ticle sizing devices provide general knowledge about e.g., the
mean particle size or complete PSD. Once the PSD has been
measured the corresponding moments (such as zeroth-order
moment �0, Marchisio et al., 2002) can then be readily com-
puted using the distribution. Moreover, mean particle size data,
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which are mostly defined as the ratio of two moments (like
d43 = �4/�3, see Bałdyga and Orciuch, 2001; Marchisio et al.,
2001 and d32=�3/�2, see Chen et al., 1996) may also represent
useful information to determine the moments.

This inverse problem is well-known and has been often con-
sidered for more than a century (von Smoluchowski, 1917), not
only in the field of chemical engineering. This issue is for ex-
ample essential for many aspects of image processing (Sluzek,
2005), for determining the magnetic moment from simple ex-
periments (Berkov et al., 2000) or for obtaining the electronic
structure of specific materials (Bandyopadhyay et al., 2005). All
such contributions are of course very interesting and introduce
techniques, like for example the maximum entropy (MaxEnt)
method (Bandyopadhyay et al., 2005), which can be also use-
ful for chemical processing applications (Sanyal et al., 2005).
Nevertheless, they also often rely on specific approximations
or formulations, which might lead to severe restrictions or un-
necessary overhead for chemical engineering.

No satisfactory unified method for reconstructing a function
using only a finite number of its moments can be found in
the literature up to now. For most researchers in chemical en-
gineering dealing with fundamental aspects, this is due to the
fact that, mathematically, all the moments up to infinity are
requested in order to obtain a perfect reconstruction. Further-
more, the knowledge of all moments is only sufficient if the
class of functions in which the reconstruction is sought is re-
stricted appropriately. Considering, e.g., functions which are
defined in [0, ∞) and allowing infinitely many oscillations in
a neighborhood of 0 or allowing the derivatives of the function
to be unbounded in a neighborhood of 0, it can be shown that
even the knowledge of all moments is not sufficient to deter-
mine a function uniquely (see for example the very interesting
publication, McGraw et al., 1998, for concrete examples and
further details).

Therefore, the problem of reconstructing a function using a
finite number of its moments requires an a priori restriction of
the class of functions where the solution is sought. The num-
ber of parameters requested to determine the distribution within
this class should correspond to the available number of known
moments. Following this guideline, chemical engineers dealing
with applications generally assume a very simple a priori shape
for the distribution (Gaussian, log-normal, �-function, etc.), so
that only a very small number of moments are needed to deter-
mine the best fit within this assumed class of functions. In this
paper, this efficient but limited method will be first discussed
before introducing alternative, more general approaches. All
presented techniques have been coded as script files using the
commercial program MATLAB. These scripts have been used
to carry out all the computations presented in the paper.

1.2. Mathematical literature

The problem of reconstructing a function from a given
number of moments is known in mathematics as the finite-
moment problem. It was first studied by Chebyshev (1961)
and it can be regarded as a finite dimensional version of the
Hausdorff moment problem (Shohat and Tamarkin, 1943). The

finite-moment problem is severely ill-conditioned because of
the ill-posedness of the Hausdorff moment problem (Frontini
et al., 1988; Inglese, 1988; Talenti, 1987). This issue is also
related to the inversion of the discrete Laplacian transform
(Bertero et al., 1985).

Several approaches for the reconstruction have been pro-
posed in the mathematical literature. In Inglese (1994), piece-
wise constant functions are studied (splines of order l = 0).
However, there are severe restrictions on the function to recon-
struct: it should be non-negative and moreover non-decreasing.
These properties are not given for usual PSDs. For the case con-
sidered in Inglese (1994), it was proved that a suitable choice
of the nodes of the underlying grid is essential for obtaining
a good reconstruction. In addition, numerical tests were re-
ported, which indicate that a similar behavior holds for higher-
order splines. But this statement could not be proved. In Inglese
(1995), the unknown function is reconstructed with Christoffel
functions.

In Tagliani (1999, 2001), the finite-moment problem is stud-
ied for the maximum entropy approach, i.e., a real-valued func-
tion f (x) : [0, 1] → R+ is sought such that the first moments
of f coincide with given values and the (Shannon) entropy

H [f ] :=
∫ 1

0
f (x) ln[f (x)] dx (1)

becomes maximal. This is a constraint optimization problem
which can be tackled by the Lagrange multiplier approach.
The existence and uniqueness of a solution, the convergence as
the number of given moments increases and the stability of the
problem with respect to data errors in the given moments are
studied or put into a unified framework. It turns out that the
problem is ill-posed and therefore the computation of f is ill-
conditioned. However, it is shown in Tagliani (2001) that the
computation of functionals of f like∫ 1

0
F(x)f (x) dx, (2)

where F(x) is some known function of physical interest, is well
conditioned and can be computed reliably. Nevertheless, exten-
sive numerical tests cannot be found in Tagliani (1999, 2001).

The finite-moment problem has been studied in the mathe-
matical literature almost exclusively from the theoretical point
of view. To our best knowledge, the development of general
but efficient numerical algorithms has not been completed. For
this reason, extensive numerical studies are not available.

1.3. Approaches for moment-based reconstruction

Three different reconstruction methods are presented and in-
vestigated in the present paper. The ultimate goal of our work
consists in the development of numerical algorithms which are
able to obtain a good approximation of any realistic distribu-
tion using a finite number of its moments in a stable manner
and at acceptable computational costs.

Section 2 presents the test examples used to evaluate the
different methods considered in this work.
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In Section 3, results obtained with two techniques already
available in the literature will be introduced. First, reconstruc-
tion using a priori basic shapes for a distribution is presented in
order to illustrate the advantages (fast and easy computations)
and drawbacks (limitation to simple shapes, a priori knowledge
needed about the solution) of this approach. A discrete method
based on a time-dependent update of the distribution together
with (or possibly after) the computation of the moments is then
introduced. This method is very fast, numerically efficient and
easy to implement, but cannot be extended to all possible phys-
ical processes encountered in chemical engineering. In the pre-
sented example, by solving numerically the moment equations,
the trajectories of the system are determined and can be used to
recover the time-dependent birth and nucleation profiles during
the process. Knowing the initial particle distribution, a numer-
ical algorithm is then implemented to add new particles and
shift appropriately the existing ones. This is an extension of the
method presented in Giaya and Thompson (2004).

In Section 4, a new, highly flexible algorithm based on low-
order splines is presented to solve the reconstruction problem.
In this approach, no a priori hypotheses concerning the shape
and the extent (mathematically, the support) of the distribution
are requested. In addition, any number of moments can be used
for the reconstruction. The advantages, drawbacks, practical
implementation and possible improvements of this approach
will be discussed in detail.

Further interesting issues concerning reconstruction and pos-
sibilities to solve the inverse finite-moment problem can be
found in the literature but are not further investigated in the
present work. Interested readers should refer to the publica-
tions cited below for details. The already mentioned maximum
entropy method (see for example Bandyopadhyay et al., 2005;
Myers and Hanson, 1990; Gzyl, 2000) is a powerful and quite
flexible technique, but has not been tested in detail for chem-
ical engineering problems to our knowledge. In Diemer and
Olson (2002) and Diemer and Ehrman (2005), a non-linear
regression method based on the minimization of the root-mean-
square-error of the expansion of the solution in a set of orthog-
onal basis functions is employed for the reconstruction. The
main difficulty here is the identification of a suitable set of or-
thogonal functions. In Diemer and Ehrman (2005), modified
�-functions are employed for this purpose. First numerical tests
show that at least 10 moments of the distribution are needed to
get acceptable reconstructions.

2. Examples considered as test-cases for the reconstruction

The ith moment of a function f (t, x) : [0, ∞) → R is
classically defined by

�i (t) =
∫ ∞

0
xif (t, x) dx, i = 0, 1, 2, . . . . (3)

Since practical distributions contain only non-negative values,
the further analysis is restricted to such types of functions.
If f (t, x) represents for example the PSD for a crystalliza-
tion process, the zeroth moment �0 corresponds to the overall
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Fig. 1. Reconstructed distributions obtained with various a priori shape func-
tions for Example 2.1. The solid line corresponds to the exact solution, used
to compute numerically the moments.

number of crystals, while the third moment �3 is proportional
to the volume of the crystalline material in the crystallizer.

Four test-cases of increasing complexity will be considered
in what follows. Up to 11 moments will be used for the recon-
struction. All moment values listed below are given in S.I. Units
and have been obtained numerically. Experimentally measured
moments are not considered in this first study and could lead to
new difficulties, since they will be less accurate and will thus
contain a much higher level of noise.

Example 2.1 (Distribution with a single peak). The first dis-
tribution to reconstruct has been produced arbitrarily. As a con-
sequence, the first moment has been simply normalized. The
distribution is smooth and shows only a single peak (Fig. 1).
The first 11 moments of the corresponding PSD are given by

�0 = 1.0000000000000000e + 00,

�1 = 3.0917926803257545e − 04,

�2 = 1.1593213204304320e − 07,

�3 = 5.0623202094394748e − 11,

�4 = 2.5051920275299736e − 14,

�5 = 1.3765687884540478e − 17,

�6 = 8.2607947507541690e − 21,

�7 = 5.3386730929083559e − 24,

�8 = 3.6713093994877131e − 27,

�9 = 2.6590398851651892e − 30,

�10 = 2.0107822133383323e − 33. (4)

Example 2.2 (Distribution with two peaks). The particle mass
distribution (PMD) in this example shows two peaks (Fig. 2). It
is still smooth but it becomes almost zero between the peaks, so
that the peaks are separated. In addition, the left peak is close
to the zero-boundary, is considerably higher than the right one
and is quite narrow. This distribution is the result of a direct
solution obtained by solving a particle balance equation (PBE).
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Fig. 2. Example 2.2, direct solution of the PBE, used as a reference (solid line) and moment-based reconstruction based on known functions. Top-left:
reconstruction based solely on Gaussian functions. Top-right: reconstruction based solely on log-normal functions. Bottom-left: reconstruction based solely on
�-functions. Bottom-right: reconstruction based solely on Rayleigh functions.

Further details can be found in Öncül et al. (2005a,b). Its first
moments are

�0 = 1.028571810801850e − 02,

�1 = 1.627619528771249e − 05,

�2 = 3.731662761082810e − 08,

�3 = 1.005399673163290e − 10,

�4 = 2.961317428763996e − 13,

�5 = 9.324232740417577e − 16,

�6 = 3.106813835529885e − 18,

�7 = 1.087507001932166e − 20,

�8 = 3.973765578013985e − 23,

�9 = 1.507036647558311e − 25,

�10 = 5.901352427828747e − 28. (5)

Example 2.3 (Distribution with three peaks). In order to fur-
ther increase complexity, this example considers a distribution
with three peaks (see the right picture in Fig. 5). This exam-
ple has been created specifically for the present work. It would
correspond in practice to a batch seeded crystallization process,
when two seed distributions with a different mean size are ini-
tially mixed (left picture in Fig. 5). The first moments of this
distribution are as follows:

�0 = 5.5911475010957845e + 04,

�1 = 9.7447189797086963e + 01,

�2 = 2.2713126695535327e − 01,

�3 = 6.0281801524505118e − 04,

�4 = 1.7044920031329059e − 06,

�5 = 5.0010225203552623e − 09,
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�6 = 1.5051001861147765e − 11,

�7 = 4.6186266332179558e − 14,

�8 = 1.4397849400167651e − 16,

�9 = 4.5478110783254306e − 19,

�10 = 1.4527644074215552e − 21. (6)

Example 2.4 (Distribution with two different-sized, non-smooth
peaks). The distribution considered in this last example is ob-
tained when simulating a preferential crystallization process
(Elsner et al., 2005). It shows only two peaks, but they are as-
sociated with very different maximum values (the right peak is
almost negligible compared to the left one) and the left peak is
extremely steep (right picture in Fig. 6). The first moments of
the distribution are:

�0 = 1.1951949826317582e − 02,

�1 = 1.8240118994119752e − 05,

�2 = 4.1749183311343385e − 08,

�3 = 1.1378087759074244e − 10,

�4 = 3.4031387152032602e − 13,

�5 = 1.0920182412236499e − 15,

�6 = 3.7265448687225173e − 18,

�7 = 1.3442843240712988e − 20,

�8 = 5.0978673694936700e − 23,

�9 = 2.0215211667243400e − 25,

�10 = 8.3393525030070373e − 28. (7)

3. Reconstructing a distribution using known techniques

3.1. Reconstruction by parameter fitting when assuming a
priori a simple shape

In this section, reconstructing a distribution using a priori
elementary shapes is considered in order to illustrate the advan-
tages (fast and easy computations) and drawbacks (limitation
to simple shapes, a priori knowledge needed about the solution)
of this technique.

Indeed, the fastest and the easiest method to reconstruct a
distribution knowing only some of its moments is fitting it
to a prescribed mathematical function (such as Gaussian, log-
normal, �-function, etc., Heinz, 2003; Mersmann, 2001) by
using a small number of low-order moments, obtained for
example numerically with the standard method of moments
(MOM), first proposed by Hulburt and Katz (1964) and used
since then by many authors (Bałdyga and Orciuch (2001),
Ramkrishna (2000), Fox (1998) and Öncül et al. (2006)). The
MOM has been also employed in Giaya and Thompson, 2004
and further extended to more general versions (QMOM in
McGraw, 1997 and DQMOM in Marchisio and Fox, 2005),
since the MOM has been shown to be inappropriate or insuf-
ficiently accurate for a number of cases. Even if these newer
methods are more general in nature, the reconstruction of the
PSD must be carried out exactly in the same manner as using
MOM. A reconstruction based on known functions is in that
case a quite powerful and fast method, allowing quite often

the determination of single-peak PSDs with an excellent accu-
racy. A PSD with several, clearly separated peaks can be re-
constructed using a superposition of single-peak reconstructed
PSDs, as demonstrated below.

Usual a priori functions employed for PSD reconstructions
in the literature are in particular Gaussian (or normal), half-
normal, log-normal, � (beta), � (gamma), exponential, Rayleigh
and Poisson functions. Among those, the Gaussian function is
probably the most common one, also widely applied in natural
and social sciences. One characteristic property of this function
is its symmetrical distribution about the mean. However, this
property directly leads to the presence of particles with nega-
tive sizes. The corresponding amount is sometimes negligible
and can be truncated, but this is not necessarily always the case
and can lead to non-physical properties (Bałdyga and Bourne,
1999). The half-normal function is a special form of the Gaus-
sian function with a mean of zero and a distribution containing
only the positive (physical) particle sizes (i.e., neglecting the
negative half of the curve). This function could for instance
represent the number distribution of particles in an incomplete
crystallization process, where the bulk of the particles are the
newly nucleated ones, which are highly accumulated near the
zero size, considered as the theoretical size of a newly nucle-
ated, molecule-like particle.

In some cases, a symmetric distribution for a reconstruction
is not desirable at all. One of the classical functions for such
cases is the log-normal function, which can display a long tail
in the direction of the larger particle sizes. Due to its shape, this
function is widely used in powder, spray and aerosol technolo-
gies. Another function often used in particle technology is the
�-function that can take various shapes depending on the skew-
ness and kurtosis values deduced from the corresponding mo-
ment data (Heinz, 2003). The exponential function is a special
case of the �-function, with a mean value equal to the standard
deviation. As an alternative, the �-function is capable of taking
more various shapes than the �-function and can thus be used
in a slightly more flexible manner. Moreover, this �-function
can easily display skew on either side of the distribution peak,
unlike the log-normal and �-functions. Therefore, this func-
tion is widely used in engineering applications, for example to
model turbulent flows, or in particle and combustion technolo-
gies. The Rayleigh function is mostly used in radioactivity and
wind energy technology. Finally, the Poisson function is a dis-
crete distribution and can in principle only be considered when
the particle sizes are chosen from discretized values.

All mentioned functions are listed below for the sake of com-
pleteness. For this purpose, a few general distribution proper-
ties like mean size (x), coefficient of variation (cv) and standard
deviation (�) must first be defined in terms of the first three
moments (�j , j = 0, 1, 2):

x = �1

�0
, (8)

cv =
√

�0�2

�2
1

− 1, (9)

� = xcv . (10)
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The various distributions mentioned above are then character-
ized as follows, with all moments necessary for their compu-
tation listed in an explicit manner:

1. Gaussian (normal) function (three moments needed; �0, �1,
�2):

f (x) = 1

�
√

2�
exp

(
− (x − x)2

2�2

)
. (11)

2. Half-normal function (three moments needed; �0, �1, �2):

f (x) = 2� exp(−x2�2/�)

�
where � =

√
� − 2

2�2 . (12)

3. Log-normal function (three moments needed; �0, �1, �2):

f (x) = 1

x ln �g

√
2�

exp

(
− ln2(x/xg)

2 ln2 �g

)

where xg = x

exp(0.5 ln2 �g)
,

�g = exp(

√
ln(c2

v + 1)). (13)

4. �-function (three moments needed; �0, �1, �2):

f (x) = ��x(�−1) exp(−�x/x)

�(�)x�

where � = x2

�2 and �(�) =
∫ ∞

0
z�−1 e−z dz. (14)

5. �-function (three moments needed; �0, �1, �2):

f (x) = x(	−1)(1 − x)(�−1)

B(	, �)

where 	 = x

(
x(1 − x)

�2 − 1

)
,

� = (1 − x)

(
x(1 − x)

�2 − 1

)

and B(	, �) = �(	)�(�)

�(	 + �)
. (15)

6. Exponential function (two moments needed; �0, �1):

f (x) = exp (−x/x)

x
. (16)

7. Rayleigh function (two moments needed; �0, �1):

f (x) = x exp(−0.5x2/s2)

s2 where s = x

√
2

�
. (17)

8. Poisson function (two moments needed; �0, �1):

f (x) = xxe−x

x! . (18)

In order to illustrate the advantages and drawbacks of this
approach, it is sufficient to consider two of the four examples
presented in Section 2.

Example 2.1: For this first, simple example, all functions
mentioned above (except for the exponential function, which
is only a special case of a �-function) have been used to recon-
struct the distribution (see Section 2 for the corresponding set
of moments). In this way it is possible to get a feeling for the
typical form associated with each of these functions. The re-
sults are presented in Fig. 1. As one can see, the reference PSD
is best represented by the �-function in this particular case, with
a maximum relative error well below 10%. It is interesting to
note that the Gaussian function leads here to a non-negligible
amount of particles with a negative size. Moreover, the half-
normal distribution leads to the largest error for this particular
case.

Example 2.2: Due to the fact that the resulting distribution is
an essential criterion for assessing the properties and quality of
a product (Mersmann, 2001), the assumed shape of the curve
must of course accurately fit the corresponding data. The re-
sulting accuracy can be measured quantitatively by comparing
either to a direct, reference solution of the corresponding PBEs
or to experimental results. To illustrate this procedure, such a
comparison is presented in Fig. 2 for the two-peaked PMD of
Example 2.2, comparing the direct solution of the PBE (refer-
ence solution, see Öncül et al., 2005a,b) with the reconstruc-
tion based on some known functions selected from the above
list: Gaussian, log-normal, �- and Rayleigh functions. Here, the
two peaks correspond, respectively, to nucleated crystals (left
part, smaller size, higher peak) and to initial seed crystals after
growth during a crystallization process (right part, larger size,
lower peak). In that case, the reference solution of the PBE
delivers directly the two peaks, while the reconstruction proce-
dure is carried out separately for each peak, based on two sep-
arate sets of moments. These two sets are obtained numerically
from the reference solution of the PBE and are given by

Left peak Right peak
�0 = 4.317540326711211e − 3 �0 = 5.968174268753386e − 3
�1 = 2.179025715100396e − 6 �1 = 1.409715130777033e − 5
�2 = 1.190570221859969e − 9 �2 = 3.612596957795690e − 8

The interest of separating in this manner the different parts of a
distribution has already been pointed out in the past, for exam-
ple in McGraw et al. (1998). As can be seen in Figs. 2 and 3, the
Gaussian function reproduces the shape of the nucleated crys-
tals most exactly among the selected functions, showing that
the nucleated crystals have a rather symmetric distribution. On
the other hand, the crystals initially introduced as seeds at the
beginning of the process are best represented by the �-function.
This is not a surprise since the experimentally measured dis-
tribution of the initial seed crystals is already very close to a
�-function shape (Öncül et al., 2005a; Elsner et al., 2005). In
this case the �-function (not shown for clarity) is almost iden-
tical with the �-function. The previously explained character-
istic property of the log-normal function (i.e., the long tail in
the direction of the larger sizes) can be clearly seen in Fig. 2,
especially for the nucleated crystals. This property causes a
large overlap between the distribution of the nucleated crystals
and the seed crystal distribution, leading to a considerable error
when adding both values to get the global distribution. Finally,
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Fig. 3. Example 2.2, best possible combination for reconstruction based on a priori function shape (Gaussian function for nucleated crystals and �-function for
seeds after growth). Left: separately fitted single-peaked curves. Right: linear superposition of both distributions (dashed line) and the resulting single-peaked
distribution (based on �-function, star symbols) when the single set of moments equal to the sum of the two separate moment sets would have been used.

the Rayleigh function underestimates the peak values of the
nucleated crystals and shows a considerable offset toward the
larger particle sizes for the seed crystal distribution. The recon-
structed, global PMD obtained by superposition is in general
not smooth at the intersection of the two separate curves.

For all these reconstructions, the sets of only the first three
moments of both nucleated and seed crystals are separately
needed for the fitting procedure, so that the corresponding pop-
ulation models are easily solved for. However, separate sets of
moments are often not available in practice. Moreover, the ap-
proach of using separate sets of moments works only if the
peaks are well separated. If only one set of moments equal to
the sum of the two separate moment sets would have been used,
the resulting reconstruction would then give a single-peaked
curve and thus a poor description of the PMD, as shown in
the right picture in Fig. 3. It is also worth reminding that all
these reconstructed curves correspond of course to exactly the
same first three moment sets but show obviously very different
shapes. This underlines the importance (and the difficulty) of
the reconstruction process. Even if the corresponding popula-
tion balance model would deliver accurate final data with re-
spect to the particle properties expressed in terms of moments,
the reconstructed distribution might not be accurate at all, if not
enough moments are available or if a bad reconstruction proce-
dure is used. As explained previously, the issue of completely
different distributions corresponding to the same moments is
considered in more details in McGraw et al. (1998). Choosing
the appropriate function is a major issue and can only been
done by considering reference data.

Fig. 3 illustrates the best possible combination of the re-
constructed PMDs for this particular example. The left picture
shows the fitted curves separately, whereas the right one de-
picts the linear superposition of these two distributions (dashed
line), demonstrating an excellent agreement. Results for

Examples 2.3 and 2.4 are not presented since they do not lead
to any supplementary information. The interested reader can
find other comparisons in John et al. (2005).

The reconstruction of a distribution using a few low-order
moments and considering an a priori assumed function shape
is a very efficient method, since the solution is obtained im-
mediately and without any time-consuming computation. The
obtained accuracy can be very high (relative error of a few %)
when using the correct functional shape. But this method re-
quires a lot of information concerning the expected distribu-
tion. Thus, this method is only accurate and should always be
retained when the properties of the final PSD or PMD are quite
well known (for example when considering a small variation
compared to a known process). On the other hand, when con-
sidering an application with unknown distribution, this method
cannot reasonably be retained in general. In that case, alterna-
tives must be considered.

3.2. Discrete method

A discrete method based on a time-dependent update of the
distribution together with or after the computation of the mo-
ments is now presented. A similar approach has been first re-
ported in Giaya and Thompson (2004), where it has been used
for an unseeded batch cooling crystallizer.

A simplified dynamic model of an ideally mixed seeded batch
crystallizer is obtained by assuming an overall size-independent
growth rate G(t) and an overall nucleation rate B(t). Phenom-
ena like attrition, breakage and agglomeration are neglected.
Under these assumptions, the resulting population balance is
(Ramkrishna, 2000):

�F(t, x)

�t
= −G(t)

�F(t, x)

�x
, (19)
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where t is time, x represents the characteristic particle size and
F(t, x) is the number density function. The following boundary
and initial conditions apply:

F(t, 0) = B(t)

G(t)
, F (0, x) = Fseeds(x), (20)

where Fseeds(x) is the form of the initial seeds distribution.
The mass balance of the liquid phase is modeled by an

integro-differential equation:

dmliq(t)

dt
= −3
skvG(t)

∫ ∞

0
x2F(t, x) dx. (21)

The growth rate G(t) is assumed to depend on the supersat-
uration only and is described by a simple power-law equation:

G(t) = kg(S − 1)g . (22)

Here, kg is an overall crystal growth rate constant and S denotes
the actual degree of supersaturation.

If crystals are already dispersed in the crystallizing medium,
secondary nucleation can occur at supersaturation levels which
are significantly lower than those at which primary nucleation
takes place (Mersmann, 2001). Its rate can then be described
by an overall power-law expression

B(t) = kb(S − 1)b
∫ ∞

0
x3F(t, x) dx, (23)

where kb is generally assumed to be related to the stirring power.
The distributed model (19)–(23) can be considerably sim-

plified by converting it into a moment-based model (Randolph
and Larson, 1988). From the PDE (19) with the boundary con-
dition (20), a set of ODEs for the moments of the PSD can be
derived. By partial integration, it follows from (19), (20) that

d�0(t)

dt
= B(t),

d�i (t)

dt
= iG(t)�i−1(t), i = 1, 2, . . . .

(24)

In the present approach, only the first four moments are used,
as they can be calculated independently from the higher mo-
ments. The solution of this system is not expensive in terms of
computational time, but it describes accurately only the dynam-
ics of the overall characteristics of the PSD. The information on
the internal property (in this case the distribution of the crystal
size x) is lost after applying the transformation involving only
the moments. However, the form of the PSD can be recovered
by a simple numerical algorithm, which exploits the following
assumptions: (1) nucleation at negligible particle size, as used
in (20), (2) no breakage or agglomeration, (3) the PSD evolves
only by growth, see (22).

The numerical solution of the reduced system (21)–(24) de-
livers information about the mass of the dissolved material
mliq(t) at discrete time instances �t during the batch process.
Using Eqs. (22) and (23), the corresponding growth and nucle-
ation rate for each time instance can be calculated. Using the
recovered growth and nucleation time trajectories, the profile
of the boundary condition (20) can be recovered, too. This is
sufficient to reconstruct the final PSD.

Fig. 4. Particle size recovery by discrete method.

The recovery procedure starts from the size-discretized initial
condition Fseeds(x). For each time step �t , particles at zero
size are added, according to the boundary condition profile,
and shifted towards larger sizes, according to the growth rate
profile. Fig. 4 illustrates this process. Reconstruction examples
are now described.

Example 2.3: On the left part of Fig. 5, the employed,
known distribution of the initial seeds is presented. The dotted
line on the right picture presents the numerical solution of the
PBE, where the spatial variable is discretized using backward
differences. This scheme of discretization is stable, but also
introduces a significant amount of numerical diffusion. The
dashed line on the same figure presents the numerical solution
of the distributed model using the high-resolution semi-discrete
scheme of Koren (Qamar et al., 2006) on a uniform grid. The
resulting final distribution is well resolved, the sharp edge
(resulting from burst of nucleus when the seeds are added in
the supersaturated solution) is preserved. The solid line on
the right picture presents the recovered PSD by the discrete
method. Only the temporal evolution of the first four moments
has been used. The resulting final distribution shows a good
agreement with the solution of the high-resolution scheme,
but is associated with a considerably smaller computation
time.

Example 2.4: The applicability of the proposed algorithm
is now tested on a realistic example concerning preferential
crystallization (Elsner et al., 2005). Again, the model is based on
a number of simplifying assumptions: overall size-independent
growth rate G(t), no attrition, no breakage or agglomeration.
This allows the use of the simplified dynamic model for the
first four moments and the dissolved mass (21)–(24), describing
accurately only the overall properties. The high nucleation rate
results in a large number of nucleated particles, which is a
challenge for the reconstruction of the distribution.

The distribution of the used seeds is presented on the left-
hand side of Fig. 6. On the right-hand side of the same figure,
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Fig. 5. Example 2.3, solid line, left figure: form of the initial seeds distribution, determined experimentally. Solid line, right figure: discrete method reconstruction
using four moments. Dotted line, right figure: numerical solution of the PBE using a backward-difference discretization. Dashed line, right figure: numerical
solution of the PBE using Koren’s discretization.
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Fig. 6. Example 2.4, solid line, left figure: form of the initial seeds distribution, determined experimentally. Solid line, right figure: discrete method reconstruction
using four moments. Dotted line, right figure: numerical solution of the population model using a backward-difference discretization. Dashed line, right figure:
numerical solution of the population model using Koren’s discretization.

the computed PMD is presented. Again, there is a very good
agreement between the distributions obtained from reconstruc-
tion using the discrete method (solid line) and the solution of
the PBE with the high-resolution scheme of Koren (dashed
line), while the backward-difference solution (dotted line)
gives smeared results near the discontinuity.

These results demonstrate the good agreement of the dis-
crete reconstruction method with the numerical solution of the
distributed PBE model. The discrete method furthermore pre-
serves the initial form of the seeds crystals, which means that
this algorithm does not introduce significant numerical diffu-
sion. Its low computational cost makes this algorithm suitable
also for online applications like e.g., model-predictive control
or state observers when reduced models are used. Further in-
vestigations are now being carried out to investigate the pos-

sible extension of this approach to problems including other
physical phenomena (breakage, agglomeration...).

In spite of the successful comparisons presented in this sec-
tion, it must be kept in mind that both reconstruction meth-
ods introduced up to now request a number of simplifications
and hypotheses in order to be applicable. Complementary ap-
proaches are therefore clearly needed, as introduced in the next
section.

4. The reconstruction of a distribution by splines

Now, splines are considered for the reconstruction of a func-
tion whose first L moments are given. Let x1 < x2 < x3 < · · ·
< xn+1 be discrete points of the x-axis. A spline (piecewise
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polynomial) s(l)(x) of degree l has the following properties:

• s(l)(x) is in each subinterval [xi, xi+1], i = 1, . . . , n, a poly-
nomial of degree l,

• s(l)(x) is (l − 1)-times continuously differentiable in
[x1, xn+1].

The key features of using a reconstruction by splines are as
follows:

• No a priori assumptions on the shape of the function f (x) to
be reconstructed are needed. The shape of the function will
be approximated by a piecewise polynomial function. The
coefficients of the polynomials are computed by solving an
ill-conditioned linear system of equations.

• Only a rough a priori information about the interval where
f (x) has positive values is needed. An appropriate interval for
computing the reconstruction is later on computed iteratively
in an automatic manner.

• An arbitrary number of available moments can be used.
However, since the reconstruction of a function by a finite
number of its moments is a severely ill-conditioned prob-
lem, only reliable moments should be used. This is due to
the fact (ill-condition) that small changes of the data might
(but must not necessarily) lead to rather large changes in the
reconstruction. This might be a problem for experimentally
measured moments, necessarily associated with a larger
uncertainty.

Spline-based reconstruction is considered for l ∈ {1, 2, 3}, i.e.,
linear, quadratic and cubic splines.

4.1. System of equations

The generation of the linear system of equations will be
exemplified for cubic splines, i.e., l = 3. Let [a, b] be a given
interval and a = x1 < x2 < x3 < · · · < xn+1 = b. The ansatz is

si(x) =
3∑

j=0

sij (x − xi)
j , x ∈ [xi, xi+1], i = 1, . . . , n.

(25)

There are 4n unknown coefficients sij to determine. Because
of the regularity assumptions on a cubic spline, it is possible
to define

s′
i (x) =

3∑
j=1

sij j (x − xi)
j−1,

s′′
i (x) =

3∑
j=2

sij (j − 1)j (x − xi)
j−2. (26)

The function f (x) which should be reconstructed is a prob-
ability density function. It is assumed that f (x) vanishes iden-
tically outside [x1, xn+1]. For the moment, a smooth transition
at the boundaries of the interval is assumed (concerning the

treatment of non-smooth boundary transitions, see Remark 4.1).
This means for the left boundary

s1(x1) = 0, s′
1(x1) = 0, s′′

1 (x1) = 0. (27)

Inserting these conditions into the ansatz (25) gives the follow-
ing three equations:

s1(x1) = s10 = 0, s′
1(x1) = s11 = 0, s′′

1 (x1) = 2s12 = 0.

(28)

Analogously, the right boundary corresponds to

sn(xn+1) = 0, s′
n(xn+1) = 0, s′′

n(xn+1) = 0, (29)

which gives the following three equations:

(1 xn+1 − xn (xn+1 − xn)
2 (xn+1 − xn)

3

0 1 2(xn+1 − xn) 3(xn+1 − xn)
2

0 0 2 6(xn+1 − xn)

)⎛⎜⎝
sn0
sn1
sn2
sn3

⎞
⎟⎠

=
(0

0
0

)
. (30)

Now, let us consider the required continuity of s(3)(x) at
xi+1(i = 1, . . . , n− 1): si(xi+1)= si+1(xi+1). This gives n− 1
equations of the form

(1 xi+1 − xi (xi+1 − xi)
2 (xi+1 − xi)

3 − 1)

⎛
⎜⎜⎜⎝

si0
si1
si2
si3

s(i+1)0

⎞
⎟⎟⎟⎠

= 0. (31)

The next requirement consists in the continuity of the first
derivative of s(3)(x) at xi+1(i = 1, . . . , n − 1): s′

i (xi+1) =
s′
i+1(xi+1). This gives another n − 1 conditions which are of

the component-wise form

(1 2(xi+1 − xi) 3(xi+1 − xi)
2 − 1)

⎛
⎜⎝

si1
si2
si3

s(i+1)1

⎞
⎟⎠= 0. (32)

Last, the second derivative of s(3)(x) should be also contin-
uous at xi+1(i = 1, . . . , n − 1): s′′

i (xi+1) = s′′
i+1(xi+1). These

n − 1 conditions have the form

(2(xi+1 − xi) 6(xi+1 − xi) − 1)

(
si2
si3

s(i+1)2

)
= 0. (33)

Altogether, the requirements on the cubic spline in
Eqs. (28)–(33) give 3(n − 1) + 3 + 3 = 3n + 3 conditions for
4n unknowns. That means, L= 4n− 3n− 3 =n− 3 additional
conditions are still required, which have to come from the
known moments.
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Considering the kth moment of the spline s(3), k ∈ N,∫ xn+1

x1

xks(3)(x) dx

=
n∑

i=1

∫ xi+1

xi

xksi(x) dx

=
n∑

i=1

3∑
j=0

sij

∫ xi+1

xi

xk(x − xi)
j dx. (34)

Denoting

I1 = xk+1
i+1 − xk+1

i

k + 1
, I2 = xk+2

i+1 − xk+2
i

k + 2
,

I3 = xk+3
i+1 − xk+3

i

k + 3
, I4 = xk+4

i+1 − xk+4
i

k + 4
, (35)

one obtains∫ xn+1

x1

xks(3)(x) dx

=
n∑

i=1

[I1si0 + (I2 − xiI1)si1 + (I3 − 2xiI2 + x2
i I1)si2

+ (I4 − 3xiI3 + 3x2
i I2 − x3

i I1)si3]. (36)

This expression has to be the same as the kth moment �k of f,
k = 0, 1, . . . .

Now, a 4n×4n linear system of equations has been obtained
and can be solved. The simplifications corresponding to linear
and quadratic splines are straightforward.

Remark 4.1 (Other boundary conditions). In the case of
boundary conditions other than (27) or (29), one can change
the splines in the first or in the last interval. For instance, if
only s1(x1)=0 is known but nothing about the first and second
derivative on the left boundary, one can use a first-order spline
in the first interval. With the ansatz

s1(x) = s10 + s11(x − x1) + 0(x − x1)
2 + 0(x − x1)

3, (37)

the conditions (28) have to be replaced by

s1(x1) = s10 = 0, s12 = 0, s13 = 0. (38)

4.2. Details of the algorithm, treatment of difficulties

The mathematical and numerical problems in the reconstruc-
tion of a distribution by splines are the following:

1. It is crucial to compute the reconstruction in an interval
[x1, xn+1] ⊃ supp(f (x)) such that meas[x1, xn+1]\supp(f (x))

is small. This means, one has to find an interval for the
reconstruction which is as small as possible.

2. Since the reconstruction should be an approximation of a prob-
ability density distribution, its values should be non-negative.

3. The linear system of equations which arises in this approach is
ill-conditioned. The condition number grows (rather rapidly)
towards infinity as the number of used moments increases.

To treat these problems, the reconstruction will be computed
iteratively starting from an initial reconstruction f (0)(x) in an
initial interval [x(0)

1 , x
(0)
n+1].

Let f (k)(x) be a computed reconstruction in [x(k)
1 , x

(k)
n+1].

Each subinterval is divided into 10 equidistant smaller intervals
with the nodes xij , i = 1, . . . , n, j = 1, . . . , 10, xi1 = xi and
xn+1,1 = xn+1. The maximum of the current reconstruction is
denoted by

f (k)
max := max

{
max

i=1,...,n; j=1,...,10
{|f (k)(xij )|}, |f (k)(xn+1)|

}
.

(39)

Treatment of problem 1: After having computed a reconstruc-
tion f (k)(x) in an interval [x(k)

1 , x
(k)
n+1], it will be checked if

the values of f (k)(x) are small in the subintervals [x(k)
1 , x

(k)
2 ]

and [x(k)
n , x

(k)
n+1], respectively. To do this, these subintervals are

divided into 10 smaller subintervals and the values of f (k)(x)

are computed in the nodes of these smaller subintervals (11
values in [x(k)

1 , x
(k)
2 ] and [x(k)

n , x
(k)
n+1], respectively). Then it is

checked if the values of f (k) in these intervals are sufficiently
small compared to the maximal value of f (k). Considering for
brevity only the right boundary, it is checked if⎛
⎝ 10∑

j=1

[(f (k)(xnj ))
2 + (f (k)(x

(k)
n+1))

2]
⎞
⎠

1/2

� tolredf
(k)
max. (40)

If this criterion is fulfilled, we set x
(k+1)
n+1 := (x

(k)
n + x

(k)
n+1)/2,

else x
(k+1)
n+1 := x

(k)
n+1. In the numerical tests presented in this

paper, the tolerance was set to be tolred = 0.01. After having
defined the interval [x(k+1)

1 , x
(k+1)
n+1 ], the nodes are distributed

again equidistantly within the new interval.
Treatment of problem 2: This problem is treated in close con-

nection with the treatment of problem 3. For each reconstruc-
tion step leading to f (k)(x), it will be checked if all values at
the nodes xi (i = 0, . . . , n + 1), and at the midpoints of the
subintervals xi6 = (xi + xi+1)/2 (i = 0, . . . , n), are (almost)
non-negative:

fmin,max := min
j=1,...,k

f (j)
max,

f (k)(xi)

fmin,max
� tolneg

and
f (k)(xi6)

fmin,max
� tolneg, (41)

with tolneg �0. Note that the reconstruction might be more neg-
ative between the nodes and the midpoints of the subintervals.

In our numerical studies, it could be observed that the re-
sult of the reconstruction process is sometimes sensitive to the
choice of tolneg. Quite often, a very small negative value for
tolneg leads to a considerably better result than setting tolneg=0.

If (41) is not fulfilled and if the nodes will not be redis-
tributed, a regularization is applied, as described below.

Treatment of problem 3: This problem is treated by regu-
larizing the linear system of equations by neglecting small
singular values. Therefore, the pseudoinverse routine of
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MATLAB is used for computing a least-squares solution of
the linear system Ax = b. The pseudoinverse routine of MAT-
LAB treats all singular values of A which are smaller than a
prescribed tolerance tolsing as zero values. Neglecting small
singular values removes oscillations from the solution. The
strategy which was implemented for the numerical tests pre-
sented below is as follows:

• The initial tolerance is set to be tolsing = 1e − 36. Practically,
no positive singular value is set to zero in this case.

• After each redistribution of the nodes, tolsing is reset to its
initial value.

• If criterion (41) is not fulfilled, the singular value � of A
with � > tolsing which is closest to tolsing is sought. Then,
this singular value will be neglected in the next computation
of the pseudoinverse of A by setting

tolsing = � + �̃

2
, (42)

where �̃ is the smallest singular value of A which is larger
than �.

• The differentiability of splines with l > 1 is necessary to
have sufficient equations for defining the spline. However,
for the PSD, the continuity is the only important condition.
To weaken the differentiability conditions, the related equa-
tions are multiplied with a constant �i , where i is the order
of the differentiability condition. The effect of this scaling is
that the equations describing higher differentiability are ne-
glected first in the truncation of the singular values.

Another method which helped considerably to decrease the
numerical instabilities is an appropriate scaling of the domain
and of the moments within the computations. This avoids per-
forming the computations with numbers showing a very large
difference in the order of magnitude, for example from 1 to
1e − 33 (see Section 2). Let the data be for example non-zero
only within [a, b] with∫ b

a

xlf (x) dx = �l , l = 0, 1, . . . . (43)

By introducing y = 	x, the integral is transformed to∫ 	b

	a

ylf
(y

	

)
dy = 	l+1�l , l = 0, 1, . . . . (44)

Instead of reconstructing the probability density distribution
f (x) for x ∈ [a, b] from the moments �l , it is preferable to
reconstruct f (y/	) for y ∈ [	a, 	b] from the moments 	l+1�l ,
where 	 is chosen appropriately, see the numerical studies.

Furthermore, the moments are always normalized within the
computations by using∫ 	b

	a

yl f (y/	)

	�0
dy = 	l �l

�0
, l = 0, 1, . . . . (45)

In this way, the 0th moment of the function f (y/	)/(	�0) is
always normalized to 1.

The iteration for reconstructing the probability density func-
tion will finally be stopped automatically if the criterion (41)
is fulfilled and no redistribution of the nodes is recommended.

4.3. Numerical studies

Considering the reconstruction of a probability density dis-
tribution using splines, some parameters can be freely chosen
by the user, for instance the number of moments used for recon-
struction, the value of tolneg and the initial interval [x(0)

1 , x
(0)
n+1].

Under normal conditions, it will not be difficult to determine
appropriate values, but an improper choice of these parameters
might of course influence the convergence process and/or the
results. Due to the limited length of this paper it is not possi-
ble to present systematic studies. Nevertheless, all the values
employed for the test-cases are listed below.

The iterative algorithm has already been briefly demonstrated
in John et al. (2005), Fig. 5. The number of iterations needed to
obtain the results presented below depends on the difficulty of
the considered example and on the degree of the spline. Often,
only a few iterations are necessary. The most difficult case con-
sidered here required less than 50 iterations. As a general rule,
the reconstruction needs more iterations when increasing the
degree of the spline. For all cases, the spline-based reconstruc-
tion took less than 30 s on a standard PC, which is a negligible
short time compared to the time needed to obtain the moments.

Using the transformation described above, the initial domain
within the computations was always the interval [0, 1]. The
scaling parameter of the differentiability conditions was fixed
to � = 10−4.

Example 2.1: First, we present results for the minimal num-
ber of moments which are necessary to reconstruct the global
shape of the distribution (Fig. 7). For this example these have
been found to be (�0, . . . , �6) for the linear spline, (�0, . . . , �5)

for the quadratic spline and (�0, �1, �2) for the cubic spline.
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Fig. 7. Example 2.1, reconstruction of the distribution with seven moments
for the linear spline, six moments for the quadratic spline and three moments
for the cubic spline.
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Fig. 8. Example 2.1, reconstruction of the distribution with 11 moments.

The parameters of the computations are tolneg=0, [x(0)
1 , x

(0)
n+1]=[0, 1e − 3] and the boundary conditions (27) and (29).

The results obtained when using always the first 11 moments
are presented in Fig. 8. The parameters for these computations
are [x(0)

1 , x
(0)
n+1] = [0, 1.5e − 3] and tolneg = 0. One can see

that the algorithm finds automatically the region of interest and
reduces the interval for the reconstruction appropriately. One
obtains almost perfect reconstructions with all splines. Only the
cubic spline shows a small difference compared to the reference
distribution at x ≈ 0.65 mm.

The reason for this behavior might be the smaller reliability
(higher round-up error) of the higher moments. Since the refer-
ence solution is given only as a set of discrete points, a spline
interpolation is used to compute the moments listed for Ex-
ample 2.1 by numerical quadrature. Thus, the available values
are not perfectly accurate since one always has to interpolate
between the discrete points of the reference distribution.

Example 2.2: The results for this example are presented
in Fig. 9. They have been obtained using 11 moments
(�0, . . . , �10), [x(0)

1 , x
(0)
n+1] = [0, 1e − 2], tolneg = −0.05 for

the linear spline, tolneg = −0.001 for the other splines and the
boundary conditions (38) and (29).

All splines identify the correct number of peaks (two). Fur-
thermore, the linear and the quadratic spline reconstruction de-
tect the positions of these peaks reasonably well. However, the
height of the left peak of the reconstruction is too small. Since
this peak is quite narrow, there are not enough grid points in-
side the peak to resolve its height correctly. The reconstruction
with the cubic spline is even worse. The reason is the bound-
ary condition on the left-hand side. Using the smooth transition
condition (27), there are not enough grid points in the inter-
val [0, 1e − 3] to resolve the large curvatures of the narrow
peak. The boundary condition (38), which uses a linear spline
in the first interval, leads to the condition of a vanishing sec-
ond derivative at the grid point x2. The cubic spline in [x2, x3]
has to have also a vanishing second derivative at x2. To follow
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Fig. 9. Example 2.2, reconstruction of the distribution with 11 moments.
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Fig. 10. Example 2.3, reconstruction of the distribution with eight moments.

the peak, however, requires a non-zero curvature in x2, lead-
ing to an incompatible condition. A remedy consists in using a
quadratic spline in [x2, x3], which does not have to obey any
condition on the second derivative in x2 imposed by the linear
spline in [x0, x1], before later on switching to the cubic spline.

The concentration of grid points in regions of interest and the
use of different order splines in different intervals is the subject
of forthcoming studies, as explained at the end of this section.

Example 2.3: The results for the distribution with three peaks
are presented in Fig. 10. In these computations, eight moments
have been employed (�0, . . . , �7) with [x(0)

1 , x
(0)
n+1] = [0, 5e −

3], tolneg = −0.01 and the boundary conditions (38) and (29).
The results are quite close to the reference curve. Despite the
fact that no a priori information on the shape of the reference
distribution has been used, all spline reconstructions directly
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Fig. 11. Example 2.4, reconstruction of the distribution with 11 moments.

recover the three peaks. On the other hand, the splines are not
able to perfectly reconstruct the steep drop down of the crystal
size distribution around x = 1.6 mm. They are smoother than
the reference distribution and resemble the results presented for
the backward-difference method in Fig. 5.

Example 2.4: This is the most difficult example for the re-
construction, see Fig. 11 for a support of this statement, since
the reference distribution shows a very sharp front at x ≈ 0.6
mm, with two completely different peaks: the first one is very
high and narrow, the second one quite small but broad.

The linear and quadratic spline reconstruction show two
peaks which are roughly at the correct positions. But the first
peak of the reconstruction is much too small. The reconstruc-
tion with the cubic spline shows also the correct number (two)
of peaks, however, too far on the right-hand side. The reasons
for the insufficient height of the first peak in the linear and
quadratic spline reconstruction as well as the results of the cu-
bic spline reconstruction are the same as given for Example 2.2.
The non-smooth behavior of the distribution is not detected.

The parameters for the results presented in Fig. 11 are the
use of all 11 moments (�0, . . . , �10), [x(0)

1 , x
(0)
n+1]= [0, 1e−2],

tolneg = −0.05 for the linear spline, tolneg = −0.01 for the
quadratic and cubic spline and the boundary conditions (38)
and (29).

4.4. Possible improvements

The reconstruction of a smooth distribution with splines
works quite well and efficiently. Besides the examples given
above, good results have been also obtained, for example, for
the reconstruction of the sum of two Gaussian curves. Recon-
structing a non-smooth distribution or a distribution with nar-
row and steep peaks is much more challenging.

It is thus appropriate to emphasize again the two main rea-
sons for the results shown in Examples 2.2 and 2.4 since they
offer the directions in which the algorithm can be extended and
improved. First, the quadratic and the cubic spline are smooth

by construction. In our algorithm, the smoothness conditions
are already partly relaxed by the scaling factor �, see the treat-
ment of problem 3. However, one cannot reasonably expect a
good reconstruction of a non-smooth distribution by a smooth
ansatz. The second reason is the equi-distribution of the nodes.
For reconstructing correctly the narrow peak at the left-hand
side of the distributions, more nodes should be concentrated in
this region.

Topics for further studies thus include:

• The use of non-equidistant grids. The nodes should be con-
centrated in regions of interest, e.g., with large curvature, by
using an a posteriori error estimator.

• Using splines with a different order of the polynomials in the
subintervals, in order to handle situations where the proba-
bility density distribution is locally not smooth.

• Studying different approaches for the regularization, which
might be more efficient than the truncation of the singular
value decomposition.

The first two topics are in our opinion the most important ones.
But it is already possible to use the available algorithm with
a good accuracy for a large variety of practical problems, as
demonstrated for several examples considered in this section.

5. Summary

The reconstruction of a probability density distribution using
a finite number of its moments is an ill-posed inverse problem.
Several reconstruction approaches have been introduced, dis-
cussing their advantages, drawbacks and perspectives. Three
different approaches have been then evaluated on probability
density distributions arising typically in chemical engineering
applications.

The reconstruction by parameter fitting using a priori pre-
scribed shape functions is currently the most popular approach
because of its simplicity. This will probably not change in the
near future. However, this approach can only be used if the
shape of the distribution is known in advance, if the distribution
has a simple shape or if additional information on the distribu-
tion are available.

The efficiency of the discrete method has been demonstrated
on two examples. The main restriction of the discrete method
so far is that it is only applicable to simple population models,
where the distribution is influenced only by growth and birth
processes. Further investigations are needed to investigate the
possible extension of this approach to problems including phe-
nomena like breakage, agglomeration, attrition, etc.

The spline reconstruction presented in the last section is
a general and flexible approach, which requires no a priori
knowledge about the distribution to reconstruct. A first work-
ing version of this approach has been presented in detail, us-
ing equidistant grids and equal-order splines in each interior
interval. This approach has been proved to be fully sufficient
to reconstruct smooth distributions accurately and efficiently.
Possible improvements have been identified and are presently
being implemented in order to better deal for example with
narrow peaks near the boundary or local non-smooth behavior.
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