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This paper tests if two related types of LES models satisfy some simple necessary conditions for
acceptability: replication of laminar flows and boundedness of total kinetic energy. The considered LES
models are based on the approximation of the Fourier transform of the Gaussian filter by a simpler
function. One uses a Taylor polynomial approximation (Taylor LES model), whereas the other model is
obtained by a rational approximation (rational LES model). The numerical experiments at high
Reynolds number 2D and 3D driven cavity flows show a blow up of the total kinetic energy of
the solutions computed with the Taylor LESmodel. The details of the calculations and the review of this
model’s derivation point to this blow up being clearly a shortcoming of the model. In contrast, the
rational LES model gives solutions with bounded total kinetic energy. In addition, the large eddies are
well captured on a coarse grid.
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INTRODUCTION

Large eddy simulation (LES) is currently one of the most

promising approaches for the simulation of turbulent

flows. In contrast to the direct simulation (DNS), it does

not aim to resolve all length scales in the flow. Given a

length scale d, which is often connected to the mesh size,

LES seeks to compute all flow features of size O(d )

accurately. There are many approaches to develop LES

models but broadly they can be divided into phenomeno-

logical models (such as the Smagorinsky model, 1963),

models based on combination of phenomenology and

extrapolation from the resolved scales (such as the

dynamic model by Germano et al., 1991, and mixed scale

similarity models) and models derived using formal but

systematic asymptotics (such as RNG models and the

models we consider herein). These different approaches

are well surveyed in Sagaut (2001).

In this report, we compare two models derived via

asymptotics inwave number space. The first LESmodelwe

consider evolved from works of Leonard (1974) and Clark

et al. (1979). Since its derivation (given in “The LES

Models and Their Derivation” section) is based on a

truncated Taylor polynomial approximation in wave

number space, we shall call this the “Taylor LES model”.

It is also discussed in current publications, e.g. in Pope

(2000, Chapter 13) or in Sagaut (2001). The second

model’s derivation (also reviewed in “The LESmodels and

their derivation” section) follows a similar path but is based

instead on aPadé approximation—giving the “rational LES

model”. We study two types of the rational LES model.

We also include the Smagorinskymodel in our comparison.

There are many LES models and many more reports of

success with them on very complicated problems. Our goal

is complementary to this work: we seek to find the simplest

problem for which one model fails clearly while others

do not. Thus, we hope to draw a clear distinction among

models for a problem as simple as possible. To further

focus this paper, we are considering primarily two models

based upon a common idea of systematic asymptotic

approximation in wave number space. Since we are also

interested in flows driven by interaction of a fluid with a

boundary, we have selected the driven cavity problem in

2D and 3D. Further comparisons using LES benchmark

problems, e.g. Rodi et al. (1997), are very valuable and in

progress. Numerical studies of the Taylor LES model

for the 2D driven cavity problem have appeared, e.g. in

Cantekin et al. (1994) and in Coletti (1998).

This report investigates primarily if the considered LES

models fulfil or violate two simple necessary conditions
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which are, in our opinion, required for a useful LES

model:

the LES model should replicate laminar flows,

the solution obtained with the LES model should have

bounded total kinetic energy for high Reynolds number

(Re ) flows.

Most LES studies adopt the complementary approach

of checking if a model can be tuned to satisfy a

sufficient condition (such as matching flow statistics) for

a particular problem. Violation of one of the above two

necessary conditions for a simple problem leads to a

reliable conclusion that a model has serious defects. Of

course, if both are satisfied it does not necessarily

follow that the model is good. We shall see that even

these two simple conditions allow us to draw a clear

distinction among asymptotic models: the rational

LES model fulfil both while the Taylor LES model

fails the second one.

The rational LES model is compared further to the

Smagorinsky model. An important drawback of the

Smagorinsky model is that it introduces in general too

much diffusion into the computed flow, i.e. the

computed solution looks like a solution of a low

Reynolds number flow, in particular, the main eddy in

the driven cavity flow is too small. Our numerical tests

show that the solutions obtained with both types of the

rational LES model on a very coarse grid reproduce the

main eddy of a high Reynolds number driven cavity

flow much larger and centred more accurately than the

Smagorinsky model. The LES computations were

carried out on rather coarse grids which reflects the

typical situation of turbulent flow computations of

having too few degrees of freedom (d.o.f.) to resolve all

flow structures.

The paper is organised as follows. The second section

contains a brief derivation of the LES models, which are

involved in the numerical study. The numerical tests are

presented in the third section. The first part of this section

is devoted to the study of the LES models in the 2D driven

cavity problem at a low and at a high Reynolds number

flow. The second part contains the numerical results of a

high Reynolds number flow in the 3D driven cavity. The

conclusions of the numerical studies are given in the

fourth section.

THE LES MODELS AND THEIR DERIVATION

This section presents a traditional Taylor LES model

introduced by Clark et al. (1979) and a new rational LES

model, Galdi and Layton (2000), pointing out the essential

difference in their derivation.

We consider an incompressible viscous fluid flowing in

a bounded domain V in R
d, d ¼ 2; 3; and driven by body

forces f or boundary velocities g. In nondimensionalised

terms, its velocity u and pressure p are solutions of the

Navier–Stokes equations (NSE) given by

›u

›t
2 Re21Duþ u·7uþ 7p ¼ f in V £ ð0; T�;

7·u ¼ 0 in V £ ð0; T�;

uðx; 0Þ ¼ u0ðxÞ in V;

u ¼ g on ›V £ ð0; T�;

ð1Þ

where ›V is the boundary of V with outer normal n,
Ð

V
pðxÞdx ¼ 0; 7·u0 ¼ 0 and

Ð

›V
g·n ds ¼ 0:

LES models try to compute spatial averages of the

velocity and the pressure. The spatial averages are

obtained through convolution with a space filter. One

common filter, which we select herein, is the Gaussian

filter

gdðxÞ U
g

p

� �d=2 1

dd
exp 2g

kxk22
d2

 !

;

where g is a constant (often g ¼ 6; and this is the value we
are using herein), d is the averaging radius and kxk2 the
Euclidean norm of x. Extending all variables appropriately

outsideV, the convolution u ¼ gd*u represents the eddies

of size O(d ) or larger.

Remark 2.1 The main property of the filter which defines

u is to suppress all flow structures smaller than O(d ). That

means in Fourier space that the Fourier transform of

the filter attenuates high frequencies. Figure 1 shows that

the Fourier transform of the Gaussian filter almost

vanishes for large wave number components, which leads

to the strong damping of the high frequencies of the

filtered function.

For constant filter width d and points x [ V sufficiently

away from ›V, differentiation and convolution commute

up to exponentially small terms. Thus, applying this

FIGURE 1 The Fourier transform of the Gaussian filter with Taylor and
rational approximation.
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averaging operator to the Navier–Stokes equations gives

the set of space-filtered Navier–Stokes equations

›u

›t
2 Re21Du

þ 7·ðuuÞ þ 7p ¼ f in V £ ð0; T�;

7·u ¼ 0 in V £ ð0; T�

uðx; 0Þ ¼ u0ðxÞ in V;

uðx; tÞ ¼ ðgd*uÞðx; tÞ on ›V £ ð0; T�:

ð2Þ

To perform a LES, closure in Eq. (2) must be addressed

to obtain a system whose solution approximates ðu; pÞ:
Various models of the stress tensor uu are possible, e.g.

see Aldama (1990) or Sagaut (2001). One way to derive

models for ðu; pÞ uses the decomposition u ¼ uþ u0;
which gives

uu ¼ ðuþ u0Þðuþ u0Þ ¼ u uþ uu0 þ u0uþ u0u0 : ð3Þ

Equation (3) is a decomposition of the averaged

nonlinear interactions into “resolved scales”, uu; “cross
terms”, uu0 þ u0u; describing the interaction of large and

small eddies, and the “subgrid scale” term u0u0; describing
the effects of the interaction of small eddies on the mean

flow. It is well known (Germano, 1986, see also Pope,

2000; Sagaut, 2001) that the terms in Eq. (3) are not

individually Galilean invariant. Thus, for phenomeno-

logical modelling, these should be redefined following

Germano (1986). For asymptotic modelling, the procedure

described below results in the same model with either

regrouping.

The modelling technique used in the derivation of the

class of LES models considered in this report employs a

closure approximation via systematic asymptotics in

Fourier space. The principal steps in this mathematically

based approach are

1. apply the Fourier transform to each term of Eq. (3),

2. if necessary, replace the Fourier transform Fðu0Þ by
FðuÞ using

Fðu0Þ ¼ Fðu2 uÞ ¼ FðuÞ
FðgdÞ

2FðuÞ;

3. approximate the Fourier transform of the Gaussian

filter FðgdÞ by a simpler function,

4. neglect all terms which are formally of order d 4,

5. apply the inverse Fourier transform and simplify.

This approach was used the first time by Leonard

(1974). To illustrate it, consider for example the first term

in Eq. (3). Step 1 gives

Fðu uÞ ¼ FðgdÞFðu uÞ ¼ exp 2
d2

4g
kkk22

� �

FðuuÞ;

where k is the k-Fourier wave number. The Taylor

LES model, see e.g. Leonard (1974) and Clark et al.

(1979), uses in step 3 the Taylor polynomial approxi-

mation

exp 2
d2

4g
kkk22

� �

¼ 12
kkk22
4g

d2 þ Oðd4Þ; ð4Þ

see Fig. 1, leading to

FðuuÞ ¼ 12
kkk22
4g

d2

 !

Fðu uÞ þ Cd4
FðuuÞ

< 12
kkk22
4g

d2

 !

Fðu uÞ:

Note, the dropped term depends on u and thus there is a

dependency on d beside the factor d 4. That means, we

have only a formal asymptotic expansion. Applying the

inverse Fourier transform gives the model

u u < u uþ d2

4g
Dðu uÞ:

Thus, the resolved scales have the formal order uu ¼
Oð1Þ: A similar formal estimate of the other orders of

magnitudes gives

u u ¼ Oð1Þ; uu0 þ u0u ¼ Oðd2Þ; u0u0 ¼ Oðd4Þ: ð5Þ

Applying step 1 through 5 also to the other terms in

Eq. (3) using the Taylor polynomial approximation given

in Eq. (4) gives the Taylor LES model

›w

›t
2 Re21Dwþ 7·ðwwÞ þ 7q

þ 7·
d2

2g
7w7w

� �

¼ f in V £ ð0; T�;

7·w ¼ 0 in V £ ð0; T�;

wðx; 0Þ ¼ u0ðxÞ in V;

wðx; tÞ ¼ ðgd*uÞðx; tÞ on ›V £ ð0; T�;

ð6Þ

where (w, q ) is an approximation to ðu; pÞ and (7w7w)i,j
is shorthand for

l

X ›wi

›xl

›wj

›xl
:

The turbulent fluctuations u0u0 in Eq. (3) are modelled

in this approach by zero because they are formally O(d 4),

Eq. (5). Therefore, they are neglected in step 4 of the

general approach. However, u0u0 is believed to represent

an important physical mechanism in turbulence. The usual

way to model u0u0; e.g. used by Aldama (1990) or
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Coletti (1998), is by a Smagorinsky (1963) term of the

form

Csd
2kDðuÞkDðuÞ; ð7Þ

which is added to the left hand side of Eq. (6). Here

DðuÞ ¼ ðdijÞi; j¼1;...;d U ð7uþ ð7uÞT Þ=2 is the deformation

tensor associated with u and

kDðuÞk ¼
X

d

i; j¼1

d2ij

 !1=2

:

Thus, the Taylor LES model becomes

›w

›t
2 Re21Dwþ 7·ðwwÞ þ 7q

þ 7·
d2

2g
7w7w

� �

2 7·ðCsd
2

£ kDðwÞkDðwÞÞ ¼ f in V £ ð0; T�;

7·w ¼ 0 in V £ ð0; T�;

wðx; 0Þ ¼ u0ðxÞ in V;

wðx; tÞ ¼ ðgd*uÞðx; tÞ on ›V £ ð0; T�:

ð8Þ

Existence and uniqueness of a weak solution of Eq. (8)

is proved by Coletti (1998) following the analysis by

Ladyzhenskaya (1967). This theory has one pivotal

condition: the constant Cs has to be large enough such

that Smagorinsky term given in Eq. (7) for u0u0

dominates the term ðd2=2gÞ7w7w arising essentially in

modelling the cross terms. This technical condition is

questionable since u0u0 ¼ Oðd4Þ while the cross terms

are O(d 2), Eq. (5).

The Taylor polynomial approximation in Eq. (4) used in

the derivation of model (8) violates the most important

property of the Fourier transform of a filter function

namely that it (almost) vanishes for high frequencies, see

Remark 2.1. In contrast, the absolute values of the Taylor

polynomial approximation become even larger the higher

the frequency is, see Fig. 1. Thus, the high frequencies are

stimulated rather than attenuated. This incorrect stimu-

lation of high frequencies plays an important role in

numerical calculations at high Reynolds numbers, since

increasing the high wave number components (large kkk2)
in the Fourier space is equivalent to increasing the small

scales (small kxk2) in the physical space ðRdÞ: We believe

that this is the true cause of the need for powerful

dissipative mechanisms, such as the O(d 2) Smagorinsky

model for u0u0:
Motivated by the above observation, in Galdi and

Layton (2000) a modified model was developed, which is

consistent with the required attenuation of high frequen-

cies in u. This model is based upon repeating steps 1

through 5 above using a rational approximation of FðgdÞ;

the (0, 1) Padé approximation,

FðgdÞ ¼ exp 2
d2

4g
kkk22

� �

¼ 1

1þ d 2

4g
kkk22

þ Oðd4Þ; ð9Þ

see also Fig. 1, instead of a Taylor expansion. It is possible

to approximate F(gd) by Eq. (9) in all places or only in

some places in step 3 of the general approach leading to

two variants of the rational LES model. The model

through O(d 2) terms is

›w

›t
2Re21Dwþ7·ðwwÞþ7q

þ7· A
d2

2g
7w7w

� �	 


¼ f in V £ ð0;T�;

7·w¼ 0 in V £ ð0;T�;

wðx;0Þ ¼ u0ðxÞ in V;

wðx; tÞ ¼ ðgd*uÞðx; tÞ on ›V £ ð0;T�;

where, depending on the operator A, two types of the

rational LES model can be distinguished:

1. A¼ 2
d 2

4g
Dþ I

� �

21

-rational LES model with auxiliary

problem,

2. A¼ gd*-rational LES model with convolution.

The auxiliary problem can be considered as an

approximation of the convolution operator.

The subgrid scale term u0u0 is formally O(d 4), hence,

can be formally neglected. Since our goal is to do a careful

comparison between the Taylor and the rational models,

we will perform experiments including the same

Smagorinsky term given in Eq. (7) as a model for u0u0

for both. These are supplemented with experiments for the

rational LES model without Smagorinsky term. Other

proposals of modelling u0u0 are given in Iliescu and Layton
(1998).

The rational LES model with auxiliary problem we

consider is

›w

›t
2 Re21Dwþ 7·ðwwÞ þ 7q

þ 7· 2
d2

4g
Dþ I

� �21
d2

2g
7w7w

� �

" #

2 7·ðCsd
2

£ kDðwÞkDðwÞÞ ¼ f in V £ ð0; T�;

7·w ¼ 0 in V £ ð0; T�;

wðx; 0Þ ¼ u0ðxÞ in V;

wðx; tÞ ¼ ðgd*uÞðx; tÞ on ›V £ ð0; T�:

ð10Þ

We have used homogeneous Neumann boundary

conditions for the auxiliary problem as suggested in

Galdi and Layton (2000).
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In the rational LES model with convolution, the first

equation of Eq. (10) is replaced by

›w

›t
2 Re21Dwþ 7·ðwwÞ þ 7q

þ 7· gd*
d2

2g
7w7w

� �	 


2 7·ðCsd
2kDðwÞkDðwÞÞ ¼ f in V £ ð0; T�;

ð11Þ

where the convolution is approximated numerically. All

functions which are convolved are continued by zero

outside V.

Since there is a lot of computational experience with the

Smagorinsky model

›w

›t
2 Re21Dwþ 7·ðwwÞ þ 7q2 7·ðCsd

2

£ kDðwÞkDðwÞÞ ¼ f in V £ ð0; T�;

7·w ¼ 0 in V £ ð0;T�;

wðx; 0Þ ¼ u0ðxÞ in V;

wðx; tÞ ¼ ðgd*uÞðx; tÞ on ›V £ ð0; T�;

ð12Þ

we have included tests with it as well. Although its

drawbacks are well understood, this model is still popular

due to its simplicity.

THE NUMERICAL STUDIES

Based on “The LES models and their derivation” section,

the usual Galerkin finite element method for the Navier–

Stokes equations (1), the Taylor LES model (8), the two

variants of the rational LES model (10), (11) and the

Smagorinsky model (12) are compared with respect to

the criteria given in the introduction using the two- and

three-dimensional driven cavity problem. The total kinetic

energy of the computed velocity wh is defined by

EkinðwhÞ U 1

2
V

ð

wh·wh dx:

The Two-dimensional Driven Cavity Problem

This problem is given by V ¼ ð0; 1Þ2; the boundary

conditions w ¼ ð1; 0Þ for 0 , x , 1; y ¼ 1; homo-

geneous Dirichlet boundary conditions at the other

boundaries, and f ¼ 0: Although less popular than

channel flow, it has been used in tests of LES models,

including the Taylor LES model (see Cantekin et al.,

1994; Coletti, 1998) and the dynamic subgrid scale

model, (Zang et al., 1993). An appropriate initial

condition for the time dependent problem is not agreed

upon in the literature. For all models, we have tried to

use a, so-called, impulsive start in our computations, i.e.

the velocity inside the domain is chosen zero at the

beginning. Investigations by Gresho and Sani (1998;

2000) show that an impulsive start can create a quickly

decaying but nonphysical transient in the solution of an

incompressible flow problem. For this reason, we

repeated the tests which failed the boundedness criterion

of the total kinetic energy with the impulsive start also

with other initial conditions to make sure that their

failure is not caused by the impulsive start.

We performed computations for a low Reynolds number

flow ðRe ¼ 400Þ and a high Reynolds number flow ðRe ¼
10; 000Þ: All LES models are applied without turbulent

viscosity for Re ¼ 400 ðCs ¼ 0 in Eq. (7)) and with Cs ¼
0:01 in the tests for Re ¼ 10; 000: The Smagorinsky

model (12) was applied also with Cs ¼ 0:01: Thus, Cs is

small compared to most computations with the Smago-

rinsky model from the literature which use Cs . 0.01.

First, the LES models are discretised in time by the

fractional-step-u-scheme, e.g. see Bristeau et al. (1987),

which is analysed for the time dependent Navier–Stokes

equations by Klouček and Rys (1994). This implicit

scheme is of second order accuracy, more stable than the

Crank–Nicolson scheme and is currently considered

“best” on the basis of accuracy and reliability, e.g. see

Turek (1999) or Rannacher (2000). Unless mentioned

otherwise, all computations were carried out with the

equidistant time step Dt ¼ 0:01:
The equations in each time step are linearised by a

fixed point iteration and the linear equations arising in

this iteration are discretised by the Q2=P
disc
1 finite

element (called Q2=P21 in Gresho and Sani, 2000), i.e.

the velocity is approximated by continuous piecewise

biquadratics and the pressure by discontinuous linears.

This conforming pair of finite element spaces fulfils the

inf–sup or Babuška-Brezzi stability condition, (Matthies

and Tobiska, 2002). It is currently considered the most

stable and best performing element for finite element

discretisations of Navier–Stokes equations, e.g. see

Fortin (1993) or Gresho and Sani (2000). In addition, it

has been proven to be superior to other pairs of finite

elements in recent studies of benchmark problems for

laminar flows (John and Matthies, 2001; John, 2002).

All computations were carried out on equidistant grids

with squares of size h £ h: We used the deformation

tensor formulation

2ðDðwÞ; DðvÞÞ

as variational form of the viscous term. These choices

give a discretisation which is strictly conservative, so

any blow up or excessive smearing is caused by the

model rather than the discretisation.

The fractional-step-u-scheme divides each time step

into three sub time steps. In each sub time step, a nonlinear

saddle point problem has to be solved. All terms in the

Galerkin finite element method of the Navier–Stokes

equations and of the Smagorinsky model are treated
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always fully nonlinear. In the LES models, the convective

term and the Smagorinsky term (7) are also treated

implicitly, whereas the additional term coming from the

LES models is computed in each sub time step before

the nonlinear iteration and it is not changed within this

iteration. The linear problems are solved by a coupled

multigrid method with Vanka-type smoothers as studied

numerically, e.g. in John and Tobiska (2000) and John and

Matthies (2001) or John (2002).

We present results for the mesh widths h ¼ 1=16; h ¼
1=32 and h ¼ 1=64: The corresponding numbers of d.o.f.

in space are given in Table I. If not mentioned otherwise,

the averaging radius d is chosen to be the diameter of the

mesh cell, i.e. the longest distance of two of its vertices,

which is d ¼
ffiffiffi

2
p

h:
All computations were carried out with the code

MooNMD (John and Matthies, 2002).

The Low Reynolds Number Flow

One property of a good LES model is that its use in a

laminar or low Reynolds number flow results in a solution

which is very close to the solution obtained by solving the

Navier–Stokes equations. All models in our study show a

very similar behaviour with respect to the total kinetic

energy of the computed solutions, see Table II. Also the

total kinetic energy of the differences to the solution

obtained with the Galerkin FEM of the Navier–Stokes

equation are small, compare Table III.

The behaviour of the Taylor LES model is not

consistent with results in Coletti (1998). In Coletti

(1998), the Taylor LES model does not give a satisfactory

solution for the driven cavity problem with Re ¼ 400 and

the P2=P1 spatial finite element discretisation (Taylor/

Hood) on a triangular mesh. Since the most essential

difference between both studies are the finite element

spaces, the Q2=P
disc
1 element seems to have a better

stabilisation effect on the Taylor LES model than the

P2=P1 finite element.

The High Reynolds Number Flow

The Blow up of the Taylor LES Model

Simulations with the Taylor LES model with

Smagorinsky type turbulent viscosity of form (7) blow

up in finite time for Re ¼ 10; 000; see Figs. 2–4, 7

and 8. Table IV shows that a refinement of the spatial

mesh does not prevent the blow up. A reduction of the

time step on the same mesh level prevents the blow up

but on the next finer mesh level the model blows up

again. The scalings in Table IV show that this does not

occur as a function only of Dt=Dh; i.e. the blow up is

not related to a simple CFL-type condition. When

solving the driven cavity with an impulsive start, Gresho

and Sani (1998) have shown that there is an initial, non-

physical transient that makes small time approximate

solutions questionable. This small time transient is not

responsible for the blow up behaviour because the same

behaviour was observed when starting instead with fully

developed flows as initial condition. Indeed, when we

used the solutions of the other models for h ¼ 1=64 at

T ¼ 1000 as initial conditions, see right lower picture in

Fig. 5 for the solution obtained with the Galerkin FEM

of the Navier–Stokes equations, the Taylor LES model

blew up within only few time steps, see Figs. 2 and 3.

The failure of the Taylor LES model is consistent

with results reported by Cantekin et al. (1994) and

TABLE II 2D driven cavity problem, total kinetic energy for the
stationary state, Re ¼ 400

Model h ¼ 1=16 h ¼ 1=32 h ¼ 1=64

Galerkin FEM
of the NSE

4.222 £ 1022 4.093 £ 1022 4.083 £ 1022

Taylor LES model 4.645 £ 1022 4.337 £ 1022 4.162 £ 1022

Rational LES with
auxiliary problem

5.362 £ 1022 4.354 £ 1022 4.156 £ 1022

Rational LES with
convolution

5.411 £ 1022 4.378 £ 1022 4.160 £ 1022

FIGURE 2 2D driven cavity problem, blow up of the Taylor LES model
starting with various fully developed flow fields as starting conditions at
t ¼ 1000; h ¼ 1=64; d ¼

ffiffiffi

2
p

=64; Re ¼ 10; 000: Note that the blow up
does not depend on using an impulsive start.

TABLE I 2D driven cavity problem, mesh widths and d.o.f.

Mesh width Velocity d.o.f. Pressure d.o.f. Total d.o.f.

1/16 2178 768 2946
1/32 8450 3072 11,522
1/64 33,282 12,288 45,570

TABLE III 2D driven cavity problem, total kinetic energy of the
difference jEkinðwh

2 wh
NSEÞj between the LES solution and the Galerkin

FEM solution wh
NSE of the Navier–Stokes equations, Re ¼ 400

Model h ¼ 1=16 h ¼ 1=32 h ¼ 1=64

Taylor LES model 1.189 £ 1023 1.669 £ 1024 1.468 £ 1025

Rational LES with
auxiliary problem

1.287 £ 1023 9.730 £ 1025 1.741 £ 1026

Rational LES with
convolution

1.602 £ 1023 1.242 £ 1024 1.058 £ 1025

Note that all three LES models replicate well the low Reynolds number laminar

flow.
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Coletti (1998). In Cantekin et al. (1994), a non-physical

eddy near the left upper corner of the cavity is observed at

Reynolds number Re ¼ 3200: The reasons of the

appearance of this eddy, called “counter gradient

diffusion”, are discussed in Cantekin et al. (1994, p. 507 f.).

It is interesting to observe that for Reynolds number Re ¼
10; 000; the blow up of the solution starts at the position of

the non-physical eddy, see Fig. 3. Coletti reports blow up

of this model for Re ¼ 10; 000 and the P2=P1 finite

element discretisation. In other calculations, we have

observed the same for the Taylor/Hood finite element on a

quadrilateral grid ðQ2=Q1Þ: Thus, it seems clear that the

Taylor LES model does indeed stimulate rather than

attenuate small eddies and it is not suited for turbulent

flow computations.

The Behaviour of the Rational LES Model

For the rational LES model with the auxiliary problem

and the rational LES model with convolution, both with

turbulent viscosity of type (7), the total kinetic energy

stays bounded for all parameters in contrast to the Taylor

LES model, see Figs. 4, 7 and 8. Both variants of the

rational LES model give similar results for the total kinetic

energy in all tests.

The computations for the mesh width h ¼ 1=16 reflect

best the normal condition for the numerical simulation of

turbulent flows which is a very coarse mesh compared to

the size of the small flow structures. The result in Fig. 4

shows the blow up of the Galerkin FEM of the Navier–

Stokes equations and the Taylor LES model. A

comparison of the computed flow fields with the flow

field of the Galerkin FEM of the Navier–Stokes equations

on a much finer grid, Fig. 5, shows that the solutions of

the rational LES model are reasonable, whereas the

Smagorinsky model is overly diffusive. The value of the

averaging radius in these computations is d ¼
ffiffiffi

2
p

=16 <

0:09: Equilibrium driven cavity DNS simulations include

smaller subeddies in the corners (Ghia et al., 1982). Our

time dependent simulation of averages of u do not show

these. This is correct and expected: all flow structures of

size 0.09 or smaller should not be seen correctly in the

computed solutions. This explains the fact that some of the

sub-eddies in the corners, which can be seen in reference

solutions, (Ghia et al., 1982), are not resolved accurately.

The only eddy which should be computed accurately for

this value of d is the main centre eddy. This is done much

better, as expected, by both types of the rational LES

model than the Smagorinsky model.

The total kinetic energy of the solutions obtained

with the Galerkin FEM of the Navier–Stokes equations

is considerably different for h ¼ 1=32 and h ¼ 1=64:

FIGURE 4 2D driven cavity problem, total kinetic energy, Re ¼
10; 000; h ¼ 1=16; d ¼

ffiffiffi

2
p

=16:

FIGURE 3 2D driven cavity problem, streamlines of the Taylor LES
model solution just before blow up (time step 15 starting with the
Smagorinsky model solution).

TABLE IV 2D driven cavity problem, blow up times for the Taylor LES
model, Re ¼ 10; 000; d ¼

ffiffiffi

2
p

=64

Dt h ¼ 1=64 h ¼ 1=128

1021 2 £ 1021 1021

1022 19 £ 1022 2 £ 1022

1023 no blow up 8 £ 1023

1024 no blow up 239 £ 1024

Note that the blow up behaviour changes if d is fixed and Dt and h are reduced.
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This indicates that the discretisation error in space is still

relatively large. The total kinetic energy of the discrete

solutions in all models decreases for finer meshes. For

h ¼ 1=32; the total kinetic energy of the solution with the

Galerkin FEM of the Navier–Stokes equations is larger

than for the solution of the Smagorinsky model whereas

the situation for h ¼ 1=64 is vice versa. The total kinetic

energy of the solutions for both types of the rational LES

model was always somewhat larger than for the solutions

of the Galerkin FEM of the Navier–Stokes equations and

the Smagorinsky model.

Numerical tests with the rational LES model without

Smagorinsky term, Cs ¼ 0; show a blow up of the solu-

tions. The results presented in Fig. 6 were started with the

solutions of the computations with the Smagorinsky

term. The failing of the rational LES model without

Smagorinsky term is not completely understood, but

suggests that including a model of the effects of the

turbulent fluctuations u0u0 is important.

The Three-dimensional Driven Cavity Problem

The three-dimensional driven cavity problem is defined in

the unit cube (0, 1)3. The boundary condition w ¼ (1,0,0)

is prescribed at the upper lid of the cavity 0 , x , 1;

0 , y , 1; z ¼ 1: At the other boundaries, homogeneous

Dirichlet boundary conditions are applied. The right hand

side of the momentum equation vanishes in V, f ¼ 0:
We used the fractional-step-u-scheme as temporal

discretisation and the Q2=P
disc
1 finite element as spatial

discretisation. We present results for the Reynolds

FIGURE 6 2D driven cavity problem, blow up of the total kinetic
energy in the rational LES model without Smagorinsky term, Re ¼
10; 000; h ¼ 1=16; d ¼

ffiffiffi

2
p

=16:

FIGURE 5 2D driven cavity problem, velocity for Re ¼ 10; 000 and t ¼ 1000 : upper left: rational LES model with auxiliary problem ðh ¼ 1=16;
d ¼

ffiffiffi

2
p

=16Þ; upper right: rational LES model with convolution ðh ¼ 1=16; d ¼
ffiffiffi

2
p

=16Þ; lower left: Smagorinsky model ðh ¼ 1=16; d ¼
ffiffiffi

2
p

=16Þ; lower
right: Galerkin FEM of the Navier–Stokes equations ðh ¼ 1=64Þ: Note that both variants of the rational LES model reproduce the main eddy well,
whereas the main eddy of the solution of the Smagorinsky model is too small and its centre is too close to the upper lid.
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number Re ¼ 10; 000 on a h £ h £ h mesh with h ¼
1=8: This mesh width leads to 14,739 d.o.f. of the

velocity and 2048 d.o.f of the pressure. The following

parameters are used in the computations:

d ¼
ffiffiffi

3
p

=8 (diagonals of the mesh cells),

Cs ¼ 0:01;

Dt ¼ 0:1;

impulsive start.

The total kinetic energy of the computed solutions is

presented in Fig. 9. The observations are similar as in the

two-dimensional driven cavity problem. The Galerkin

finite element discretisation of the Navier–Stokes

equations and the Taylor polynomial LES model blow

up in finite time. The solution obtained with the

Smagorinsky model possesses a nearly constant total

kinetic energy. One gets an almost steady state solution

which is certainly not correct for Re ¼ 10; 000: Only both
types of the rational LES model compute unsteady

solutions with bounded total kinetic energy which is

qualitatively correct. However, the results for both variants

of the rational LES model differ more than in the 2D

computations. We think that the reason of these

differences is related to the auxiliary problem. The

explicit convolution and the auxiliary elliptic solution

differ mostly near the boundary. The boundary has a

greater influence in 3D on coarse meshes than in 2D. Both

variants of the rational LES model vary above all in such

cells due to the artificial boundary condition of the

auxiliary problem. Cutplanes of the flow fields obtained

with the considered LES models are presented in Fig. 10.

FIGURE 7 2D driven cavity problem, total kinetic energy, Re ¼
10; 000; h ¼ 1=32; d ¼

ffiffiffi

2
p

=32: Note the blow up of the Taylor LES
model.

FIGURE 8 2D driven cavity problem, total kinetic energy, Re ¼
10; 000; h ¼ 1=64; d ¼

ffiffiffi

2
p

=64: Note the blow up of the Taylor LES
model.

FIGURE 9 3D driven cavity problem, total kinetic energy, Re ¼
10; 000; h ¼ 1=8; d ¼

ffiffiffi

3
p

=8:
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CONCLUSIONS

This section summarises the most important results of our

study.

. Both types of the rational LES model with turbulent

viscosity of Smagorinsky type behaved qualitatively

correctly for high Reynolds number driven cavity flows.

The main eddy of these flows is computed on a coarse

grid much better compared to the Smagorinsky model.

. The rational LES model at high Reynolds number still

requires a turbulent fluctuation model to prevent blow

up. The magnitude of turbulent fluctuation required is

much smaller than for the Taylor LES model.

. The Taylor LES model appeared to have an incorrect

total kinetic energy balance leading to nearly

immediate finite time blow up of its total kinetic

energy in high Reynolds number flow computations.

This blow up occurs even including a Smagorinsky

model for u0u0: The Taylor LES model is not suited to

model turbulent flows.

. Laminar driven cavity flow was replicated well by the

Taylor LES model and both types of the rational LES

model.

This first numerical study shows that the rational

LES model fulfils some necessary requirements which

should be satisfied for a useful LES model. Further

studies, including quantitative investigations of solu-

tions, are needed to explore the full potential of this

model. Such investigations are subject of a forthcoming

study.
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