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Abstract The approximation of the time-dependent Oseen problem using inf-sup stable
mixed finite elements in a Galerkin method with grad-div stabilization is studied. The main
goal is to prove that adding a grad-div stabilization term to the Galerkin approximation has a
stabilizing effect for small viscosity. Both the continuous-in-time and the fully discrete case
(backward Euler method, the two-step BDF, and Crank–Nicolson schemes) are analyzed. In
fact, error bounds are obtained that do not depend on the inverse of the viscosity in the case
where the solution is sufficiently smooth. The bounds for the divergence of the velocity as
well as for the pressure are optimal. The analysis is based on the use of a specific Stokes
projection. Numerical studies support the analytical results.
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1 Introduction

Aconsiderable amount of papers have been recentlywritten concerning the numerical approx-
imation of the steady Oseen equations. These equations play a crucial role in the numerical
simulation of the time-dependent incompressible Navier–Stokes equations. After having
applied an implicit time discretization, a fixed point iteration can be used every step to
solve the resulting non-linear equations. In this context one has to approach a steady Oseen
problem in every step of this iteration. It is well known that the standard Galerkin method
suffers from instabilities for small values of the viscosity. Stabilized methods have to be used
to improve the numerical simulations. The well-known streamline upwind/Petrov–Galerkin
(SUPG) method combined with the pressure-stabilization/Petrov–Galerkin (PSPG) method
allows to achieve both stability and accuracy. A grad-div stabilization is usually included. The
SUPG/PSPG/grad-div stabilized method applied to the steady Oseen equations was analyzed
in [26], see also [24]. In [19], see also [4], the hp version of the stabilized SUPG/PSPG/grad-
div method was analyzed for the same equations. Similar error bounds as in [26] were
obtained. The h version of the method was revisited in [13] using conforming inf-sup stable
elements. In [20], the reduced SUPG/grad-div stabilized schemewas studied again in the case
of using inf-sup stable elements. A stabilized finite element formulation using orthogonal
subscales was analyzed in [8]. All the results mentioned above concern the steady Oseen
equations.

The analysis of the time-dependent Oseen equations can be seen as a first step towards the
analysis of the evolutionaryNavier–Stokes equations.However, in the case of the evolutionary
Oseen equations the literature is rather scarce. The stabilized approach based on orthogonal
subscales was described in [7] but not analyzed. The analysis of the method using time-
dependent subscales can be found in [9]. Recently, in [10] the time-dependent Oseen problem
was considered using Local Projection Stabilization (LPS) methods with stabilization of the
streamline derivative together with grad-div stabilization. In the case of using methods of
order k without compatibility condition, error bounds are obtained under a restriction on the
mesh size: a certain measure for the mesh size should be of order of the square root of the
viscosity, see [10, (35)] for details. In order to avoid the restriction on the mesh size for small
viscosity, the authors of [10] consider pairs satisfying a certain element-wise compatibility
condition between the discrete velocities on the fine mesh and on the projection space. Even
in that case optimal error bounds for the pressure were not obtained in [10].

Several authors have previously studied the effect of grad-div stabilization. In [22] the
author considers the approximation of the steady incompressible Navier–Stokes equations
using both SUPG and grad-div stabilization. The grad-div stabilization is shown to enhance
the accuracy of the solution and to improve the convergence of preconditioned iterations
for the linearized Navier–Stokes problem if the corresponding stabilization parameter is not
too large. In [23] the use of the grad-div term on the numerical solution of the Stokes equa-
tions is considered. The authors show that this stabilization improves the well-posedness
of the continuous problem for small values of the viscosity. They also analyze the influ-
ence of this stabilization on the accuracy of the approximation. A refined analysis was
presented in [16]. In [21] the grad-div stabilization is considered as a subgrid pressure
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model in the framework of variational multiscale methods. Some error estimates for the
steady Oseen problem with grad-div stabilization are proved. In [10] a significant role of
grad-div stabilization for inf-sup stable approximations is observed while a SUPG-type sta-
bilization seems to be much less important. More precisely the authors of [10] say: “it
turned out that the grad-div stabilization with a globally constant parameter set is essential
for an improvement of local mass balance and gives always good results in our numeri-
cal experiments. Nevertheless, the theoretical foundation is not really convincing.” With
the theoretical results obtained in the present paper a theoretical foundation is added to the
fact already observed about the improvement due to the grad-div stabilization. Even for the
simulation of turbulent flows it was observed in [17, Fig. 3] that the addition of only the
grad-div stabilization to the Galerkin approximation was sufficient for performing stable
simulations.

Finally, the role of grad-div stabilization in preconditioning techniques should be men-
tioned. One of the advantages of such a formulation is its positive effect in the solution of
the Schur complement problem. As it is claimed in [2], with this approach, the solution of
the Schur complement is no longer the bottleneck of the iterative solution as it is the case
in many block preconditioning approaches to the original system arising from the linearized
Navier–Stokes equations, see also [3,15]. The optimal value of the stabilization parameter
is found in these works to be small. This fact is in agreement with the size O(1) found to be
optimal in the present paper.

In the present paper, mixed finite element approximations to the time-dependent Oseen
problem are analyzed using inf-sup stable pairs of finite element spaces and a grad-div
stabilization. It is shown that the plain Galerkin approximations can be stabilized by adding
only a grad-div stabilization term. Optimal error bounds with constants that do not depend on
the viscosity parameter are obtained for the L2 norm of the divergence of the velocity and the
L2 norm of the pressure, assuming the solution is smooth enough. In addition, an error bound
for ν1/2 times the gradient of the velocity is proved that is optimal in the diffusion-dominated
regime although it is a weak term in the convection-dominated regime.

The derived optimal error bounds for the L2 norm of the divergence of the velocity
and the L2 norm of the pressure are global bounds that can only be applied to globally
smooth solutions. In [12] local error estimates are obtained for the SUPG method applied
to evolutionary convection-reaction-diffusion equations combined with the backward Euler
scheme. The question of getting local error bounds for the method studied in this paper
following the techniques in [12] will be the subject of future research.

Let Ω ⊂ R
d , d ∈ {2, 3}, be a bounded polyhedral domain with Lipschitz boundary ∂Ω

and let (0, T ) be a time interval with T < ∞. The time-dependent Oseen problem, as a
model problem for the linearized Navier–Stokes equations, reads as follows

∂t ũ − νΔũ + (b · ∇)ũ + ∇ p̃ = f̃ in (0, T ] × Ω,

∇ · ũ = 0 in [0, T ] × Ω,

ũ = 0 on [0, T ] × ∂Ω,

ũ(0, x) = ũ0(x) in Ω,

(1)

where ũ : (0, T )×Ω → R
d and p̃ : (0, T )×Ω → R are the unknown velocity and pressure,

ν > 0 is the viscosity, f̃ : (0, T ) × Ω → R
d the external forces, and b : (0, T ) × Ω → R

d

a solenoidal vector field, i.e., ∇ · b = 0, with b ∈ L∞(0, T ; L∞(Ω)d).
For the numerical analysis it is of advantage to perform a change of variables: (u, p) =

e−αt (ũ, p̃) with α > 0. A direct calculation shows that with this transformation one obtains
a problem with a positive zeroth order term:
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∂tu − νΔu + (b · ∇)u + αu + ∇ p = f in (0, T ] × Ω,

∇ · u = 0 in [0, T ] × Ω,

u = 0 on [0, T ] × ∂Ω,

u(0, x) = u0(x) in Ω.

(2)

The analysis can be applied to the new problem. Finally, one can transform back to the
original variables. In the analysis, α = 1/T is chosen, so that the error bounds only change
in a multiplicative constant of size eαt ≤ e.

In this paper a grad-div scheme to approach problem (2) will be analyzed. The outline
of the paper is as follows. Section 2 introduces the grad-div stabilization of the Galerkin
approximation and some preliminaries are stated. Section 3 is devoted to the analysis
of the continuous-in-time case. In Sect. 4 the fully discrete case is considered using the
backward Euler method, the two-step backward differentiation formula (BDF2), and the
Crank–Nicolson scheme as time integrators. Finally, some numerical studies which support
the analytical results are presented in Sect. 5.

2 Preliminaries and Notation

Using the function spaces, see [6, Sect. 1.2]

V = H1
0 (Ω)d , Q = L2

0(Ω) = {q ∈ L2(Ω) : (q, 1) = 0
}
,

the weak formulation of problem (2) is: Find (u, p) ∈ V ×Q such that for all (v, q) ∈ V ×Q,

(∂tu, v) + ν(∇u,∇v) + ((b · ∇)u + αu, v) − (∇ · v, p) + (∇ · u, q) = ( f , v). (3)

Notice that
((b · ∇)v, v) = 0 ∀v ∈ V . (4)

The Hilbert space Hdiv = {u ∈ L2(Ω)d : ∇ · u = 0, u · n|∂Ω = 0} will be endowed
with the inner product of L2(Ω)d and the space V div = {u ∈ H1

0 (Ω)d : ∇ · u = 0} with
the inner product of H1

0 (Ω)d . Let Π : L2(Ω)d → Hdiv be the Leray projector that maps
each function in L2(Ω)d onto its divergence-free part. The Stokes operator in Ω is given by

A : D(A) ⊂ V div → V div, A = −ΠΔ, D(A) = H2(Ω)d ∩ V div.

The norm in L2(Ω) for scalar-, vector-, and tensor-valued functions will be denoted by ‖ · ‖0
and the norm in Hk(Ω) by ‖ · ‖k .

In the error analysis, the Poincaré–Friedrichs inequality

‖v‖0 ≤ CPF‖∇v‖0 ∀v ∈ V (5)

will be used and also the inequality

‖∇ · v‖0 ≤ ‖∇v‖0 , v ∈ H1
0 (Ω)d , (6)

which follows from the identity, ‖∇v‖20 = ‖∇ · v‖20 + ‖∇ × v‖20, a relation that can be
obtained from the vector identity ∇ × (∇ × v) = −Δv + ∇(∇ · v) after taking the inner
product in L2(Ω)d with v and integrating by parts.

Let Vh ⊂ V and Qh ⊂ Q be two families of finite element spaces that correspond to a
family of partitions Th of Ω into mesh cells with maximal diameter h. In this paper, only
pairs of finite element spaces will be considered that satisfy the discrete inf-sup condition

inf
qh∈Qh

sup
vh∈Vh

(∇ · vh, qh)

‖∇vh‖0‖qh‖0 ≥ β0 > 0. (7)
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It will also be assumed that Vh and Qh comprise piecewise polynomials of degrees at most k
and l, respectively. It will be assumed that themeshes are quasi-uniform and that the following
inverse inequality holds for each vh ∈ Vh , see, e.g., [6, Theorem 3.2.6],

‖vh‖Wm,q (K )d ≤ Cinvh
l−m−d

(
1
q′ − 1

q

)

K ‖vh‖Wl,q′
(K )d

, (8)

where 0 ≤ l ≤ m ≤ 1, 1 ≤ q ′ ≤ q ≤ ∞, hK is the size (diameter) of the mesh cell K ∈ Th ,
and ‖ · ‖Wm,q (K )d is the norm in Wm,q(K )d .

The space of discretely divergence-free functions is denoted by

V div
h = {vh ∈ Vh : (∇ · vh, qh) = 0 ∀qh ∈ Qh} .

The linear operator Ah : V div
h → V div

h is defined by

(Ahvh,wh) = (∇vh,∇wh) ∀vh,wh ∈ V div
h . (9)

Note that from this definition it follows that

‖A1/2
h vh‖0 = ‖∇vh‖0, ‖∇A−1/2

h vh‖0 = ‖vh‖0 ∀vh ∈ V div
h . (10)

Additionally, the linear operators Bh : V div
h → V div

h , given by

(Bhvh,wh) = (∇ · vh,∇ · wh) ∀vh,wh ∈ V div
h , (11)

and Dh : L2(Ω) → V div
h , given by

(Dhq, vh) = (∇ · vh, q) ∀q ∈ L2(Ω),∀vh ∈ V div
h , (12)

will be used. Finally, the so-called discrete Leray projection Πdiv
h : L2(Ω)d → V div

h will
be needed in the analysis, which is the L2 orthogonal projection of L2(Ω)d onto V div

h

(Πdiv
h v,wh) = (v,wh) ∀wh ∈ V div

h . (13)

By definition, it is clear that the projection is stable in the L2 norm: ‖Πdiv
h v‖0 ≤ ‖v‖0 for

all v ∈ L2(Ω)d . Denote by πh the L2 projection of the pressure p in (2) onto Qh . Then, for
l ≥ 0 and 0 ≤ m ≤ 1 one has

‖p − πh‖m ≤ Chl+1−m‖p‖l+1 ∀p ∈ Hl+1(Ω). (14)

There exists an interpolation operator Ih : H1(Ω) → Vh that satisfies for all v ∈ Hl(Ω)d

and all mesh cells K ∈ Th

‖v − Ihv‖0,K + hK |v − Ihv|1,K ≤ ChlK ‖v‖l,ω(K ), 1 ≤ l ≤ r + 1, (15)

where ω(K ) denotes a certain local neighborhood of K , see [25].
To carry out the analysis, the Stokes problem

− νΔu + ∇ p = g in Ω,

u = 0 on ∂Ω, (16)

∇ · u = 0 in Ω,

will be considered. The standard Galerkin approximation (uh, ph) ∈ Vh ×Qh is the solution
of the mixed finite element approximation to (16), given by

ν(∇uh,∇vh) + (∇ ph, vh) = (g, vh) ∀vh ∈ Vh, (17)

(∇ · uh, qh) = 0 ∀qh ∈ Qh .
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Following [14] one gets the estimates

‖u − uh‖1 ≤ C

(
inf

vh∈Vh
‖u − vh‖1 + ν−1 inf

qh∈Qh
‖p − qh‖0

)
, (18)

‖p − ph‖0 ≤ C

(
ν inf

vh∈Vh
‖u − vh‖1 + inf

qh∈Qh
‖p − qh‖0

)
, (19)

‖u − uh‖0 ≤ Ch

(
inf

vh∈Vh
‖u − vh‖1 + ν−1 inf

qh∈Qh
‖p − qh‖0

)
. (20)

It can be observed that the error bounds for the velocity depend on negative powers of ν.
For the purpose of analysis, it is useful to have a projection of (u, p) onto Vh × Qh where

the bounds for the velocity are uniform in ν. This goal can be achieved for smooth functions
by choosing a special right-hand side in (16). For theOseen problem, let (u, p) be the solution
of (2) with u ∈ V ∩ Hk+1(Ω)d , p ∈ Q ∩ Hk(Ω), k ≥ 1, and define the right-hand side of
the Stokes problem (16) by

g = f − ∂tu − (b · ∇)u − αu − ∇ p. (21)

Then (u, 0) is the solution of (16). Denoting the corresponding Galerkin approximation in
Vh × Qh by (sh, lh), one obtains from (18) – (20)

‖u − sh‖0 + h‖u − sh‖1 ≤ Chk+1‖u‖k+1, (22)

‖lh‖0 ≤ Cνhk‖u‖k+1, (23)

where the constant C does not depend on ν.

Remark 1 Assuming the necessary smoothness in time and considering (16) with

g = ∂t ( f − ∂tu − (b · ∇)u − αu − ∇ p) ,

then one can derive an error bound of form (22) also for ∂t (u − sh). In the same way, one
can proceed for higher order derivatives in time.

The method that will be studied for solving the Oseen problem (2) is obtained by adding
to the Galerkin method a control of the divergence constraint, the so-called grad-div sta-
bilization: Find (uh, ph): (0, T ] → Vh × Qh such that for all (vh, qh) ∈ Vh × Qh one
has

(∂tuh, vh) + Aμ((uh, ph), (vh, qh)) = ( f , vh), (24)

where the initial discrete velocity is an appropriate approximation of u0 in V h ,

Aμ((w, r), (v, q)) = ν(∇w,∇v) + ((b · ∇)w + αw, v) − (∇ · v, r)

+ (∇ · w, q) + μ(∇ · w,∇ · v),

and μ ≥ 0 is a stabilization parameter, whose optimal asymptotic choice will be determined
by the results of the numerical analysis.

3 Error Analysis of the Method in the Continuous-in-Time Case

The proof of the error estimates is based on the comparison of the Galerkin approximation
(uh, ph) in (24) with the approximation (sh, lh) of the Stokes equations with right-hand side
(21). Let eh = uh − sh ∈ V div

h , then a straightforward calculation, using ∇ · u = 0, yields
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(∂t eh, vh) + Aμ((eh, ph − lh), (vh, qh))

= (∂t (u − sh), vh) + ((b · ∇)(u − sh) + α(u − sh), vh)

+μ(∇ · (u − sh),∇ · vh) + (∇ p, vh), ∀vh ∈ Vh, qh ∈ Qh . (25)

Taking (vh, qh) = (eh, ph − lh) in (25), observing that (∇ p, eh) = −(p,∇ · eh) = −(p −
πh,∇ · eh) since eh ∈ V div

h , using (4), and applying the Cauchy–Schwarz inequality gives

1

2

d

dt
‖eh‖20 + ν‖∇eh‖20 + α‖eh‖20 + μ‖∇ · eh‖20

≤ ‖∂t (u − sh)‖0‖eh‖0 + ‖b‖∞‖∇(u − sh)‖0‖eh‖0
+α‖u − sh‖0‖eh‖0 + (μ‖∇ · (u − sh)‖0 + ‖p − πh‖0) ‖∇ · eh‖0.

With Young’s inequality and hiding terms on the left-hand side, one obtains

d

dt
‖eh‖20 + 2ν‖∇eh‖20 + α‖eh‖20 + μ‖∇ · eh‖20

≤ 3

α

(‖∂t (u − sh)‖20 + ‖b‖2∞‖∇(u − sh)‖20 + α2‖u − sh‖20
)

+ 2μ‖∇ · (u − sh)‖20 + 2μ−1‖p − πh‖20. (26)

Assuming now

(u, p) ∈ L2(0, t; Hk+1(Ω)d) × L2(0, t; Hl+1(Ω)),

(∂tu, ∂t p) ∈ L2(0, t; Hk(Ω)d) × L2(0, t; Hl(Ω)), (27)

applying the estimates (22) and (14), integrating (26) on (0, t), and recalling that α = 1/T ,
one gets

‖eh(t)‖20 + 2ν‖∇eh‖2L2(0,t;L2)
+ α‖eh‖2L2(0,t;L2)

+ μ‖∇ · eh‖2L2(0,t;L2)

≤ ‖eh(0)‖20 + Ch2k
(
(T + μ)‖u‖2L2(0,t;Hk+1)

+ T ‖∂tu‖2L2(0,t;Hk )

)

+Cμ−1h2(l+1)‖p‖2L2(0,t;Hl+1)
, (28)

where C = C
(‖b‖L∞(0,t;L∞)

)
.

Remark 2 It will be assumed that u0 ∈ Hk(Ω)d and that the projection sh is well defined
at t = 0, which implies that compatibility conditions at t = 0 are assumed. Then, if, for
example, uh(0) = Ihu0, the error eh(0) can be bounded by

‖eh(0)‖0 ≤ ‖Ihu0 − u0‖0 + ‖u0 − sh(0)‖0,
and then (15) and (22) can be applied.

Theorem 1 Let (u, p) ∈ V × Q be the solution of (3) and let (uh, ph) ∈ Vh × Qh be the
solution of (24). Assume that (27) and the conditions from Remark 2 hold. Then, the following
error estimate holds for all t ∈ (0, T ]

‖(u − uh)(t)‖20 + ν‖∇(u − uh)‖2L2(0,t;L2)
+ α‖u − uh‖2L2(0,t;L2)

+μ‖∇ · (u − uh)‖2L2(0,t;L2)

≤ Ch2k
(
(T + μ) ‖u‖2L2(0,t;Hk+1)

+ T ‖∂tu‖2L2(0,t;Hk )
+ ‖u0‖2k + ‖u(t)‖2k

)

+Cμ−1h2l+2‖p‖2L2(0,t;Hl+1)
, (29)

where C = C
(‖b‖L∞(0,t;L∞)

)
.
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Proof The result is obtained by applying the triangle inequality to the left-hand side of (29)
and using (28) and (22). 
�

Remark 3 The most common situation for the choice of the finite element spaces consists
in choosing the polynomial degree of the pressure one degree smaller than for the velocity,
i.e., l = k − 1. Then, it follows from (29) that the optimal error boundO(hk) is obtained for
μ = O(1). In the case k = l, e.g., for the MINI element where k = l = 1, one can choose
μ = O(h) or even μ = O(h2). Which choice is the better one depends on the concrete
situation, see the discussion in [16].

To facilitate the presentation of the further analysis, it will be assumed henceforth that
l = k − 1.

Lemma 1 The following stability estimate holds for the discrete velocity

‖uh(t)‖20 + 2ν‖∇uh‖2L2(0,t;L2)
+ α‖uh‖2L2(0,t;L2)

+ 2μ‖∇ · uh‖2L2(0,t;L2)

≤ ‖uh(0)‖20 + 1

α
‖ f ‖2L2(0,t;L2)

∀t ∈ [0, T ]. (30)

Proof Taking (vh, qh) = (uh, ph) in (24) and using (4), it follows immediately that

1

2

d

dt
‖uh‖20 + ν‖∇uh‖20 + α‖uh‖20 + μ‖∇ · uh‖20 ≤ ‖ f ‖0‖uh‖0.

Applying Young’s inequality on the right-hand side and integrating on (0, t) gives (30). 
�

Remark 4 From (30) it follows in particular that

lim
μ→∞ ‖∇ · uh‖2L2(0,t;L2)

≤ lim
μ→∞

1

2μ

(
‖uh(0)‖20 + 1

α
‖ f ‖2L2(0,t;L2)

)
= 0.

This behavior is in agreement with the result of [5] where the authors show that the grad-div
stabilized Taylor–Hood approximation to the evolutionary Navier–Stokes equations con-
verges to the Scott–Vogelius solution as the stabilization parameter tends to infinity. The
Scott–Vogelius element pair provides point-wise mass conservation. In the numerical tests
of [5] the grad-div stabilized Taylor–Hood approximation with large stabilization parameter
is shown to provide excellent mass conservation for the Navier–Stokes approximation.

The next step in the error analysis consists in obtaining a bound for the pressure error.
This bound is derived as usual on the basis of the discrete inf-sup condition (7).

As a first step, a bound for ‖∂t eh‖−1 is needed. By definition, it is

‖∂t eh‖−1 = sup
ϕ∈H1

0 (Ω)d ,ϕ �=0

|〈∂t eh,ϕ〉|
‖∇ϕ‖0 ,

where 〈·, ·〉 denotes the corresponding duality pairing. To start with, the bound of ‖∂t eh‖−1

is reduced to a bound of ‖A−1/2
h ∂t eh‖0. From [1, Lemma 3.11] it is known that

‖∂t eh‖−1 ≤ Ch‖∂t eh‖0 + C‖A−1/2Π∂t eh‖0, (31)

where Π is the Leray projector introduced in Sect. 2. Applying [1, (2.15)], one obtains

‖A−1/2Π∂t eh‖0 ≤ Ch‖∂t eh‖0 + ‖A−1/2
h ∂t eh‖0, (32)
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with Ah defined in (9). From (31), (32), using the symmetry of Ah , (10), and the inverse
inequality (8), it follows that

‖∂t eh‖−1 ≤ Ch‖∂t eh‖0 + C‖A−1/2
h ∂t eh‖0

= Ch‖A1/2
h A−1/2

h ∂t eh‖0 + C‖A−1/2
h ∂t eh‖0

= Ch‖∇(A−1/2
h ∂t eh)‖0 + C‖A−1/2

h ∂t eh‖0
≤ C‖A−1/2

h ∂t eh‖0. (33)

Next, a bound for ‖A−1/2
h ∂t eh‖0 will be derived. Projecting the error equation (25) onto the

discretely divergence-free space V div
h and using integration by parts, one gets

(∂t eh, vh) + ν(∇eh,∇vh) + ((b · ∇)eh + αeh, vh) + μ(∇ · eh,∇ · vh)

= (∂t (u − sh), vh) + ((b · ∇)(u − sh) + α(u − sh), vh)

+μ(∇ · (u − sh),∇ · vh) − (p − πh,∇ · vh), (34)

whereπh is the L2 projectionof p ontoQh . Recalling definition (12) onehas (p−πh,∇·vh) =
(Dh(p − πh), vh), such that

∂t eh = −νAheh − Πdiv
h

(
(b · ∇)eh + αeh

)− μBheh + Πdiv
h

(
∂t (u − sh)

)

+Πdiv
h

(
(b · ∇)(u − sh) + α(u − sh)

)+ μBh(u − sh)

− Dh(p − πh). (35)

With (11), the Cauchy–Schwarz inequality, (6), and (10), one obtains for all vh ∈ V div
h

‖A−1/2
h Bhvh‖0 = sup

wh∈V div
h ,wh �=0

|(Bhvh, A
−1/2
h wh)|

‖wh‖0

= sup
wh∈V div

h ,wh �=0

|(∇ · vh,∇ · (A−1/2
h wh))|

‖wh‖0

≤ sup
wh∈V div

h ,wh �=0

‖∇ · vh‖0‖∇ · (A−1/2
h wh)‖0

‖wh‖0

≤ sup
wh∈V div

h ,wh �=0

‖∇ · vh‖0‖∇(A−1/2
h wh)‖0

‖wh‖0

= sup
wh∈V div

h ,wh �=0

‖∇ · vh‖0‖wh‖0
‖wh‖0 = ‖∇ · vh‖0. (36)

The same argument applied to ‖A−1/2
h Dh(p − πh)‖0 gives

‖A−1/2
h Dh(p − πh)‖0 ≤ ‖p − πh‖0. (37)

For g ∈ L2(Ω)d , the definition (13) and the symmetry of Ah allows to write
(A−1/2

h Πdiv
h g, vh) = (g, A−1/2

h vh) for all vh ∈ V div
h . Taking vh = A−1/2

h Πdiv
h g ∈ V div

h
in this relation and applying (10) yields

‖A−1/2
h Πdiv

h g‖20 ≤ ‖g‖−1‖∇(A−1/2
h A−1/2

h Πdiv
h g)‖0 = ‖g‖−1‖A−1/2

h Πdiv
h g‖0
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and, hence,
‖A−1/2

h Πdiv
h g‖0 ≤ ‖g‖−1 ∀g ∈ L2(Ω)d . (38)

Next, A−1/2
h is applied to (35). Using (36), (37), and (38), one gets

‖A−1/2
h ∂t eh‖0

≤ ν‖A1/2
h eh‖0 + ‖(b · ∇)eh + αeh‖−1 + μ‖∇ · eh‖0 + ‖∂t (u − sh)‖−1

+‖(b · ∇)(u − sh) + α(u − sh)‖−1 + μ‖∇ · (u − sh)‖0 + ‖p − πh‖0. (39)

Taking the square of (39) and integrating on (0, t) yields
∫ t

0
‖A−1/2

h ∂seh(s)‖20 ds

≤ C

(∫ t

0
ν2‖A1/2

h eh(s)‖20 ds +
∫ t

0
‖((b · ∇)eh + αeh)(s)‖2−1 ds

+μ2
∫ t

0
‖(∇ · eh)(s)‖20 ds +

∫ t

0
‖∂s(u − sh)(s)‖2−1 ds

+
∫ t

0
‖(p − πh)(s)‖20 ds +

∫ t

0
‖((b · ∇)(u − sh) + α(u − sh))(s)‖2−1 ds

+μ2
∫ t

0
‖∇ · (u − sh)(s)‖20 ds

)
. (40)

It will be proved that all the terms on the right-hand-side of (40) areO(h2k). To this end, it
will be assumed as before that the initial error ‖eh(0)‖0 is of order O(hk). Then, the desired
asymptotic behavior is obtained for the first and third terms directly from (28). Comparing
with the bound in (28), an extra factor μ = O(1) multiplies the third term.

For the second term in (40), the definition of the H−1(Ω) norm, integrating by parts and
Poincaré’s inequality leads to

∫ t

0
‖((b · ∇)eh + αeh)(s)‖2−1 ds ≤ C(1 + α2)

∫ t

0
‖eh(s)‖20 ds,

such that the desired order of convergence can be again deduced from (28). Concerning
‖∂t (u− sh)‖−1, the definition of the H−1(Ω) norm and Poincaré’s inequality are applied to
bound this term byC‖∂t (u− sh)‖0. Now, (22) is applied (see Remark 1) and with hypothesis
(27), the estimate for ‖∂t (u − sh)‖−1 isO(hk). Once this term is bounded, it is clear that the
integral of its square is also bounded

∫ t

0
‖∂s(u − sh)(s)‖2−1 ds ≤ Ch2k‖∂tu‖2L2(0,T ;Hk )

.

To bound ‖∇ · (u − sh)‖0, estimate (22) is used again. Arguing as for the second term, one
obtains

∫ t

0
‖((b · ∇)(u − sh) + α(u − sh))(s)‖2−1 ds

≤ C(1 + α2)

∫ t

0
‖(u − sh)(s)‖20 ds.

The bound for this term is concluded by applying (22). Combining the estimates for (40)
with (33), and recalling that α = 1/T , it follows that
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∫ t

0
‖∂s(eh)(s)‖2−1 ds = O(h2k). (41)

Theorem 2 Let the assumptions of Theorem 1 hold, let ν ≤ 1 and l = k − 1, then

‖p − ph‖2L2(0,t;L2)
≤ C (1 + μ) h2k

(‖u0‖2k + ‖u(t)‖2k
)

+ Ch2k
(
(1 + μ) (T + μ)‖u‖2L2(0,t;Hk+1)

+ T (1 + μ)‖∂tu‖2L2(0,t;Hk )

)

+ C
(
1 + μ−1) h2l+2‖p‖2L2(0,t;Hl+1)

, (42)

where C = C
(
β−1
0 , ‖b‖L∞(0,t;L∞)

)
.

Proof Using the discrete inf-sup condition (7) and (25), one obtains

β0‖ph − πh‖0 ≤ ν‖∇eh‖0 + ‖(b · ∇)eh + αeh‖−1 + ‖∂t eh‖−1 + μ‖∇ · eh‖0
+‖∂t (u − sh)‖−1 + ‖(b · ∇)(u − sh) + α(u − sh)‖−1

+μ‖∇ · (u − sh)‖0 + ‖p − πh‖0 + ‖lh‖0.
Squaring both sides of this inequality and integrating on (0, t) one has

β2
0

∫ t

0
‖(ph − πh)(s)‖20 ds

≤ C

(∫ t

0
ν2‖∇eh(s)‖20 ds +

∫ t

0
‖((b · ∇)eh + αeh)(s)‖2−1 ds

+
∫ t

0
‖∂s(eh)(s)‖2−1 ds + μ2

∫ t

0
‖(∇ · eh)(s)‖20 ds

+
∫ t

0
‖∂s(u − sh)(s)‖2−1 ds +

∫ t

0
‖((b · ∇)(u − sh) + α(u − sh))(s)‖2−1 ds

+μ2
∫ t

0
‖∇ · (u − sh)(s)‖20 ds +

∫ t

0
‖(p − πh)(s)‖20 ds +

∫ t

0
‖lh(s)‖20

)
.

Arguing exactly as for the estimates of the right-hand side of (40), using estimates (41) for∫ t
0 ‖∂s(eh)(s)‖2−1 ds, (23) to bound the last term, and finally the triangle inequality, then (42)
is proved. 
�
Remark 5 Neither the analysis of this section nor the analysis of the fully discrete case in
next section require the assumption Qh ⊂ H1(Ω).

In addition, the analysis works for inf-sup stable divergence-free pairs of finite element
spaces, like the Scott–Vogelius pair on barycenter-refined grids, without grad-div stabiliza-
tion. Proving the error bound for the velocity with such elements, the term (∇ p, eh) =
−(p,∇ · eh) in (25) vanishes since ∇ · eh = 0. To get the error bound for the pressure, the
term (p − πh,∇ · vh) vanishes when (34) is projected onto V div

h . Thus, in the case of stable
divergence-free elements estimates with ν-independent constant (for a sufficiently smooth
solution) are also achieved.

4 Fully Discrete Cases

This section studies fully discrete cases. First, in Sect. 4.1, the backward Euler scheme
is considered as temporal discretization and then BDF2 in Sect. 4.2. Finally, the Crank–
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Nicolson scheme is analyzed in Sect. 4.3. Error estimates for both velocity and pressure
errors are derived.

Consider a decomposition of the time interval [0, T ] with equidistant steps τ such that
0 = t0 < t1 . . . < tN = T and tn = tn−1 + τ, n = 1, . . . , N .

4.1 Backward Euler Method

The backward Euler method, together with an inf-sup stable finite element discretization,
applied to (1) reads as follows: Find (Ũ

n
h, P̃

n
h ) ∈ Vh×Qh such that for all (vh, qh) ∈ Vh×Qh

(
Ũ

n
h − Ũ

n−1
h

τ
, vh

)

+ ν(∇Ũ
n
h,∇vh) + ((b · ∇)Ũ

n
h, v

n
h) − (∇ · vh, P̃

n
h )

+ (∇ · Ũn
h, qh) + μ(∇ · Ũn

h,∇ · vh) = ( f̃
n
, vh), n = 1, . . . , N , (43)

where Ũ
0
h is a finite element approximation of ũ0. Using the notation (Un

h, P
n
h ) =

e−αtn (Ũ
n
h, P̃

n
h ), a direct calculation yields

e−αtn (Ũ
n
h − Ũ

n−1
h ) = Un

h − Un−1
h + α∗τUn−1

h

= Un
h − Un−1

h + α∗τUn
h − α∗τ(Un

h − Un−1
h ),

where α∗ = (1 − e−ατ )/τ = α + Cτ . Using this relation in (43) it follows that (Un
h, P

n
h )

satisfies
(
Un

h − Un−1
h

τ
, vh

)

+ ν(Un
h,∇vh) + ((b · ∇)Un

h, v
n
h) + (α∗Un

h, vh)

− α∗(Un
h − Un−1

h , vh) − (∇ · vh, P
n
h ) + (∇ · Un

h, qh) + μ(∇ · Un
h,∇ · vh)

= ( f n, vh), n = 1, . . . , N , (44)

for all (vh, qh) ∈ Vh×Qh . Let snh = sh(tn) be the solution of the discrete Stokes problem (17)
with right-hand side (21) corresponding to tn and denote enh = Un

h − snh ∈ V div
h . Subtracting

the equation for snh from (44) gives
(
enh − en−1

h

τ
, vh

)

+ ν(∇enh,∇vh) + ((b · ∇)enh, vh) + (α∗enh, vh)

−(∇ · vh, P
n
h − lnh ) + (∇ · enh, qh) + μ(∇ · enh,∇ · vh) − α∗(enh − en−1

h , vh)

=
(

∂t snh − snh − sn−1
h

τ
, vh

)

+ (∂t (un − snh), vh)

+ ((b · ∇) (un − snh) + (αun − α∗sn−1
h ), vh)

+μ(∇ · (un − snh),∇ · vh) + (∇ pn, vh), ∀vh ∈ Vh, qh ∈ Qh . (45)

A direct calculation shows that

(enh − en−1
n , enh) = 1

2
‖enh‖20 − 1

2
‖en−1

h ‖20 + 1

2
‖enh − en−1

h ‖20.

Using this relation, taking vh = enh in (45), using (4), enh ∈ V div
h , integration by parts, the

Cauchy–Schwarz and Young’s inequality yields
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1

2τ

(
‖enh‖20 − ‖en−1

h ‖20 + ‖enh − en−1
h ‖20

)
+ ν‖∇enh‖20 + α∗‖enh‖20 + μ‖∇ · enh‖20

≤ α∗(enh − en−1
h , enh) + 1

α∗

∥
∥
∥
∥
∥
∂t snh − snh − sn−1

h

τ

∥
∥
∥
∥
∥

2

0

+ α∗

4
‖enh‖20

+ 1

α∗ ‖∂t (un − snh)‖20 + α∗

4
‖enh‖20

+ 1

α∗ ‖(b · ∇)(un − snh) + (αun − α∗sn−1
h )‖20 + α∗

4
‖enh‖20

+μ‖∇ · (un − snh)‖20 + μ

4
‖∇ · enh‖20 + 1

μ
‖pn − πn

h ‖20 + μ

4
‖∇ · enh‖20. (46)

With the notations

T n
1 = 1

α∗ ‖∂t (un − snh)‖20, T n
2 = 1

α∗

∥
∥
∥
∥
∥
∂t snh − snh − sn−1

h

τ

∥
∥
∥
∥
∥

2

0

,

T n
3 = 1

α∗ ‖(b · ∇)(un − snh) + (αun − α∗sn−1
h )‖20,

T n
4 = μ‖∇ · (un − snh)‖20 + 1

μ
‖pn − πn

h ‖20,

estimate (46) can be written in the form

1

2τ

(
‖enh‖20 − ‖en−1

h ‖20 + ‖enh − en−1
h ‖20

)
+ ν‖∇enh‖20 + μ

2
‖∇ · enh‖20 + α∗

4
‖enh‖20

≤ α∗(enh − en−1
h , enh) + T n

1 + T n
2 + T n

3 + T n
4 .

Observing that

α∗(enh − en−1
h , enh) ≤ ‖enh − en−1

h ‖20
2τ

+ τ

2
(α∗)2‖enh‖20,

and assuming
τ(α∗)2

2
<

α∗

8
⇐⇒ τ <

1

4α∗ = τ

4(1 − e−ατ )
, (47)

one gets

1

2τ

(
‖enh‖20 − ‖en−1

h ‖20
)

+ ν‖∇enh‖20 + μ

2
‖∇ · enh‖20 + α∗

8
‖enh‖20

≤ T n
1 + T n

2 + T n
3 + T n

4 . (48)

Observe that (47) holds if τ < log(4/3)T , since α = 1/T .
After summation of the discrete times j = 1, . . . , n, one obtains

‖enh‖20 + τ

n∑

j=1

(
2ν‖∇e jh‖20 + μ‖∇ · e jh‖20 + α∗

4
‖e jh‖20

)

≤ ‖e0h‖20 + 2τ
n∑

j=1

(
T j
1 + T j

2 + T j
3 + T j

4

)
. (49)

The terms on the right-hand side have to be bounded. Applying (22) together with Remark 1
and recalling that α∗ ≈ α = 1/T yields
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T j
1 ≤ CTh2k‖∂tu(t j )‖2k, j = 1, . . . , N . (50)

Following is a sequence of inequalities to bound T j
2 , where Taylor series expansion with

reminder in integral form is used, as well as the Cauchy–Schwarz inequality, the trian-
gle inequality, Remark 1 for the second derivative, and the Poincaré–Friedrichs inequality
(5):

T j
2 ≤ CT

∥
∥
∥
∥
∥
∂t s

j
h − s jh − s j−1

h

τ

∥
∥
∥
∥
∥

2

0

= CT
1

τ 2

∥
∥
∥
∥
∥

∫ t j

t j−1

(t − t j−1)∂t t sh dt

∥
∥
∥
∥
∥

2

0

≤ CT
1

τ 2

(∫ t j

t j−1

(t − t j−1)
2 dt

)∫ t j

t j−1

‖∂t t sh‖20 dt

≤ CT τ

∫ t j

t j−1

‖∂t t sh‖20 dt ≤ CT τ

∫ t j

t j−1

‖∂t tu‖21 dt, j = 1, . . . , N . (51)

The first part of T j
3 is bounded by applying (22)

‖(b · ∇)(u j − s jh)‖20 ≤ Ch2k‖u(t j )‖2k+1, j = 1, . . . , N . (52)

To bound ‖(αun − α∗sn−1
h )‖20 one can proceed as follows. Denoting s̃h(t) = eαt sh(t), a

direct calculation leads to the representation

α∗sn−1
h = e−αtn

s̃nh − s̃n−1
h

τ
− snh − sn−1

h

τ
= e−αtn∂t s̃

n
h − ∂t snh + T n

5 + T n
6

= αsnh + T n
5 + T n

6 ,

where

T n
5 = e−αtn

(
s̃nh − s̃n−1

h

τ
− ∂t s̃

n
h

)

, T n
6 = ∂t snh − snh − sn−1

h

τ
.

Since
∥
∥T n

5 + T n
6

∥
∥
0 can be bounded similarly to T n

2 , for n = 1, . . . , N , one gets

‖(αun − α∗sn−1
h )‖20

≤ ∥∥α(un − snh)
∥
∥2
0 + Cτ

(
e−2αtn

∫ tn

tn−1

‖∂t t ũ‖21 dt +
∫ tn

tn−1

‖∂t tu‖21 dt
)

. (53)

Together with (52) it follows that, for j = 1, . . . , N ,

T j
3 ≤ CTh2k‖u(t j )‖2k+1 + CT τ

∫ t j

t j−1

(‖∂t t ũ‖21 + ‖∂t tu‖21
)
dt.

Finally, applying (22) gives

μ‖∇ · (u j − s jh)‖20 ≤ Cμh2k‖u(t j )‖2k+1.

Likewise, using (14) yields

1

μ
‖p j − π

j
h ‖20 ≤ C

h2k

μ
‖p(t j )‖2k,
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such that
T j
4 ≤ Ch2k

(
μ‖u(t j )‖2k+1 + μ−1‖p(t j )‖2k

)
, j = 1, . . . , N . (54)

Collecting all estimates, one gets from (49) for n = 1, . . . , N ,

‖enh‖20 + τ

n∑

j=1

(
2ν‖∇e jh‖20 + μ‖∇ · e jh‖20 + α∗

4
‖e jh‖20

)

≤ ‖e0h‖20 + CT τ 2
(
‖∂t t ũ‖2L2(0,tn;H1)

+ ‖∂t tu‖2L2(0,tn;H1)

)

+Ch2k(T + μ)τ

n∑

j=1

‖u(t j )‖2k+1

+Ch2k

⎛

⎝μ−1τ

n∑

k=1

‖p(t j )‖2k + T τ

n∑

j=1

‖∂tu(t j )‖2k
⎞

⎠ . (55)

Theorem 3 Let (ũ, p̃) ∈ V × Q be the solution of (1) and let (Ũ
n
h, P̃

n
h ) ∈ Vh × Qh be

the backward Euler approximation solving (43) for n = 1, . . . , N. Assume that ‖e0h‖0 =
O(hk), l = k − 1, ν ≤ 1, τ < log(4/3)T (so that (47) holds) and that the solution is
sufficiently regular such that all norms appearing in the formulation of this theorem are well
defined. Then, the following error estimate holds

∥
∥
∥ũ(tn) − Ũ

n
h

∥
∥
∥
2

0
+ τ

n∑

j=1

(
ν

∥
∥
∥∇
(
ũ(t j ) − Ũ

j
h

)∥∥
∥
2

0
+ μ

∥
∥
∥∇ ·

(
ũ(t j ) − Ũ

j
h

)∥∥
∥
2

0

)

≤ Ch2k
(‖ũ0‖2k + ‖ũ(tn)‖2k

)+ CT τ 2‖ũ‖2H2(0,tn;H1)

+ Ch2k(T + μ)τ

n∑

j=1

‖ũ(t j )‖2k+1 (56)

+ Ch2k

⎛

⎝T τ

n∑

j=1

‖∂t ũ(t j )‖2k + μ−1τ

n∑

j=1

‖ p̃(t j )‖2k
⎞

⎠ .

Proof Estimate (56) is obtained applying the triangle inequality and using (22) and (55). 
�

The bound for the error in the pressure can be obtained along the lines of the proof for
the time-continuous case. Considering (45) and simplifying the terms (α∗enh, vh) − α∗(enh −
en−1
h , vh) to (α∗en−1

h , vh), then one obtains with the the discrete inf-sup condition (7)

β0‖Pn
h − πn

h ‖0

≤ ν‖∇enh‖0 + ‖b · ∇enh + α∗en−1
h ‖−1 +

∥
∥
∥
∥
∥
enh − en−1

h

τ

∥
∥
∥
∥
∥−1

+ μ‖∇ · enh‖0

+‖∂t (un − snh)‖−1 +
∥
∥
∥
∥
∥
∂t snh − snh − sn−1

h

τ

∥
∥
∥
∥
∥−1

+ ‖(b · ∇)(un − snh)‖−1

+‖αun − α∗sn−1
h ‖−1 + μ‖∇ · (un − snh)‖0 + ‖pn − πn

h ‖0 + ‖lnh‖0, (57)
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and, consequently

β2
0τ

n∑

j=1

‖P j
h − π

j
h ‖20

≤ C

[
ν2τ

n∑

j=1

‖∇e jh‖20 + τ

n∑

j=1

‖(b · ∇)e jh‖2−1 + τ

n∑

j=1

‖α∗e j−1
h ‖20

+ τ

n∑

j=1

∥
∥
∥
∥
∥
e jh − e j−1

h

τ

∥
∥
∥
∥
∥

2

−1

+ μ2τ

n∑

j=1

‖∇ · e jh‖20 + τ

n∑

j=1

‖∂t (u j − s jh)‖2−1

+ τ

n∑

j=1

∥
∥
∥
∥
∥
∂t s

j
h − s jh − s j−1

h

τ

∥
∥
∥
∥
∥

2

−1

+ τ

n∑

j=1

‖(b · ∇)(u j − s jh)‖2−1

+ τ

n∑

j=1

‖αu j − α∗s j−1
h ‖2−1 + τμ2

n∑

j=1

‖∇ · (un − snh)‖20

+ τ

n∑

j=1

‖p j − π
j
h ‖20 + τ

n∑

j=1

‖l jh‖20
]
. (58)

The first, third, and fifth term on the right-hand side above are already bounded in (55). Since
the bound ‖(b · ∇)e jh‖2−1 ≤ C‖e jh‖20 is satisfied, one can also apply (55) to estimate this
term. For terms ranging from the sixth to the ninth on the right-hand side of (58), one can
first bound ‖·‖−1 by ‖·‖0 and then apply the bounds (50) to (53). To bound the tenth term on
the right-hand side above, (54) may be used. For the last two terms one can apply (14) and
(23). Altogether, to conclude the estimate, it only remains to bound the fourth term on the
right-hand side of (58). The estimate of this term follows with the same arguments as in the
time-continuous case. First, one applies

∥
∥
∥
∥
∥
e jh − e j−1

h

τ

∥
∥
∥
∥
∥−1

≤ C

∥
∥
∥
∥
∥
A−1/2
h

(
e jh − e j−1

h

τ

)∥∥
∥
∥
∥
0

and then one derives the estimate

∥
∥
∥
∥
∥
A−1/2
h

(
e jh − e j−1

h

τ

)∥∥
∥
∥
∥
0

≤ ν‖A1/2
h e jh‖0 + ‖(b · ∇)e jh + α∗e j−1

h ‖−1 + μ‖∇ · e jh‖0

+‖∂t (u j − s jh)‖−1 +
∥
∥
∥
∥
∥
∂t snh − snh − sn−1

h

τ

∥
∥
∥
∥
∥−1

+ ‖(b · ∇)(u j − s jh)‖−1

+‖(αu j − α∗s j−1
h )‖−1 + μ‖∇ · s jh‖0 + ‖p j − π

j
h ‖0.

From this inequality, one gets the bound for the fourth term on the right-hand side of (58) in
the same way as for the other terms.
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Theorem 4 Let the assumptions of Theorem 3 hold, then the following error estimate for
the pressure is valid

τ

n∑

j=1

∥
∥
∥P̃ j

h − p̃(t j )
∥
∥
∥
2 ≤ Ch2k‖ũ0‖2k + CT (1 + μ)τ 2‖ũ‖2H2(0,tn;H1)

+ Ch2k(T + μ)(1 + μ)τ

n∑

j=1

‖ũ(t j )‖2k+1

+ Ch2k
(
T (1 + μ)τ

n∑

j=1

‖∂t ũ(t j )‖2k + (1 + μ−1)τ

n∑

j=1

‖ p̃(t j )‖2k
)
.

(59)

4.2 BDF2

As in the case of the backward Euler method, (Ũ
n
h, P̃

n
h ) denotes the fully discrete approxi-

mation at time tn, n = 2, . . . , N , which satisfies for BDF2
(
1

τ

(
D + 1

2
D2
)
Ũ

n
h, vh

)
+ ν(∇Ũ

n
h,∇vh) + ((b · ∇)Ũ

n
h, vh) − (∇ · vh, P̃

n
h )

+ (∇ · Ũn
h, qh) + μ(∇ · Ũn

h,∇ · vh) = ( f̃
n
, vh). (60)

Here, D is the backward difference for a sequence (yn)Nn=1, i.e., Dyn = yn − yn−1, n =
1, . . . , N . Note that D2yn = yn − 2yn−1 + yn−2, for n = 2, . . . , N , such that

(
D + 1

2
D2
)
Ũ

n
h = 3

2
Ũ

n
h − 2Ũ

n−1
h + 1

2
Ũ

n−2
h , n = 2, . . . , N .

It will be assumed that Ũ
1
h is obtained by one step with the backward Euler method and that

Ũ
0
h is an appropriate finite element approximation of ũ0.
Recall that (Un

h, P
n
h ) = e−αtn (Ũ

n
h, P̃

n
h ), such that a straightforward calculation yields

e−αtn
(3
2
Ũ

n
h − 2Ũ

n−1
h + 1

2
Ũ

n−2
h

)
=
(3
2
Un

h − 2Un−1
h + 1

2
Un−2

h

)

+ τ
(
2α∗Un−1

h − 1

2
α∗∗Un−2

h

)
, (61)

where α∗ = (1 − e−ατ )/τ , as in the case of the backward Euler method, and α∗∗ = (1 −
e−2ατ )/τ . For the last two terms on the right-hand side one can write

2α∗Un−1
h − 1

2
α∗∗Un−2

h

= α∗Un
h − α∗ (Un

h − 2Un−1
h + Un−2

h

)
+
(
α∗ − 1

2
α∗∗)Un−2

h

= α∗Un
h − α∗D2Un

h +
(
α∗ − 1

2
α∗∗)Un−2

h .

Now, observe that τ(α∗ − α∗∗/2) = 1/2 − e−ατ + 1/2e−α2τ that is, a second backward
difference of e−αt at t = 0, and, thus

τ

(
α∗ − 1

2
α∗∗
)

= βτ 2, (62)
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where β = e−αξα2/2 for some ξ ∈ (0, 2τ). Thus, (61) can be written in the form

e−αtn
(3
2
Ũ

n
h − 2Ũ

n−1
h + 1

2
Ũ

n−2
h

)
=
(3
2
Un

h − 2Un−1
h + 1

2
Un−2

h

)
(63)

+ τ
(
α∗Un

h − α∗D2Un
h + βτUn−2

h

)
.

Then, arguing as in the case of the backward Euler method, one finds for BDF2 that
enh = Un

h − snh ∈ V div
h satisfies

(
1

τ

(
D + 1

2
D2
)
enh, vh

)
+ ν(∇enh,∇vh) + ((b · ∇)enh, vh) + (α∗enh, vh)

− (∇ · vh, P
n
h − lnh ) + (∇ · enh, qh) + μ(∇ · enh,∇ · vh)

−α∗(D2enh, vh) + βτ(en−2
h , vh)

=
(

(∂t snh) − 1

τ

(
D + 1

2
D2
)
snh, vh

)
+ (∂t (un − snh), vh)

+ ((b · ∇)(un − snh) + (αun − α∗(snh − D2snh) − βτ sn−2
h , vh)

+μ(∇ · (un − snh),∇ · vh) + (∇ pn, vh), ∀vh ∈ Vh, qh ∈ Qh . (64)

Observe that there are the following differences between (64) and (45). In the first term on
both left- and right-hand sides, the first divided differences appearing in (45) are replaced by
(D + D2/2)/τ . Also, the last term on the left-hand side in (45), (enh − en−1

h , vh), is replaced
by the last two terms on the left-hand side in (64). The rest of the terms in (45) is the same as
in (64). Finally, in the fourth term on the right-hand side in (45), the difference αun−α∗sn−1

h ,
is replaced by αun − α∗(snh − D2snh) − βτ sn−2

h in (64).
Due to the similarities between both expressions, now only the terms which are different

to (45) will be considered in detail. Taking vh = enh in (64), a direct calculation reveals that

((
D + 1

2
D2
)
enh, e

n
h

)
= 1

4

∥
∥enh
∥
∥2
0 + 1

4

∥
∥enh + Denh

∥
∥2
0 + 1

4
‖D2enh‖20

− 1

4
‖en−1

h ‖20 − 1

4
‖en−1

h + Den−1
h ‖20. (65)

The last two terms on the left-hand side of (64) can be estimated from below as follows

−α∗(D2enh, e
n
h) + βτ(en−2

h , enh)

≥ −
∥
∥D2enh

∥
∥2
0

4τ
− τ
(
(α∗)2 + β

2

) ∥
∥enh
∥
∥2
0 − τ

β

2
‖en−2

h ‖20

≥ −
∥
∥D2enh

∥
∥2
0

4τ
− α∗

16

∥
∥enh
∥
∥2
0 − α∗

16
‖en−2

h ‖20, (66)

where the last inequality is true only if τ is sufficiently small, i.e., if

τ
(
α∗ + β

2α∗
)

≤ 1

16
(67)

holds. Since in view of (62), τβ/α∗ = 1− α∗∗/(2α∗) = 1− (1+ e−ατ )/2 = (1− e−ατ )/2,
one finds that (67) holds if 5(1 − e−ατ ) ≤ 1/4, which, since α = 1/T is assumed, holds if
τ < log(20/19)T .

For the fourth term on the right-hand side of (64), using (63) with U j
h and Ũ

j
h replaced

by s jh and s̃ jh = eαt j s jh , respectively, for j = n − 2, n − 1, n, one can write
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α∗(snh − D2snh) + βτ sn−2
h = e−αtn 1

τ

(
D + 1

2
D2
)
s̃nh − 1

τ

(
D + 1

2
D2
)
snh .

Thus, it follows that

αun − α∗(snh − D2snh) − βτ sn−2
h = αun − e−αtn∂t s̃

n
h + ∂t snh + T n

5 + T n
6

= α(un − snh) + T n
5 + T n

6 ,

where

T n
5 = e−αtn∂t (s̃

n
h) − e−αtn 1

τ

(
D + 1

2
D2
)
s̃nh, T n

6 = 1

τ

(
D + 1

2
D2
)
snh − ∂t snh . (68)

Consequently, when taking vh = enh in (64) the fourth term on the right-hand side can be
bounded in the following way

(αun − α∗(snh − D2snh) − βτ sn−2
h , enh) ≤ α∗

16

∥
∥enh
∥
∥2
0 + 8

α2

α∗
∥
∥un − snh

∥
∥2
0 + T n

56, (69)

where

T n
56 = 8

α∗ ‖T n
5 + T n

6 ‖20. (70)

Then, arguing as in the case of the backward Euler method and using (65), (66), and (69),
one gets for BDF2, instead of (48),

1

4τ

(
‖enh‖20 + ‖enh + Denh‖20 − ‖en−1

h ‖20 − ‖en−1
h + Den−1

h ‖20
)

+ ν‖∇enh‖20
+ μ

2
‖∇ · enh‖20 + α∗

8
‖enh‖20 ≤ α∗

16
‖en−2

h ‖20 + T n
1 + T̂ n

2 + T̂ n
3 + T n

4 + T n
56, (71)

where T n
1 and T n

4 are as in the case of the backward Euler method,

T̂ n
2 = 1

α∗

∥
∥
∥
∥∂t s

n
h − 1

τ

(
D + 1

2
D2
)
snh

∥
∥
∥
∥

2

0
,

T̂ n
3 = 1

α∗ ‖(b · ∇)(un − snh)‖20 + 8
α2

α∗
∥
∥un − snh

∥
∥2
0 ,

and T n
56 is defined in (68) and (70).

Multiplying (71) by 4τ , summing up, and rearranging terms gives

‖enh‖20+τ

n∑

j=2

(
4ν‖∇e jh‖20 + α∗

4
‖e jh‖20 + 2μ‖∇ · e jh‖20

)

≤‖e1h‖20 + ‖e1h + De1h‖20 + τ
α∗

4

(‖e0h‖20 + ‖e1h‖20
)

+ 4τ
n∑

j=2

(T j
1 + T̂ j

2 + T̂ j
3 + T j

4 + T j
56). (72)

A direct calculation shows that

‖e1h‖20 + ‖e1h + De1h‖20 + τ
α∗

4

(‖e0h‖20 + ‖e1h‖20
)

≤
(
7 + τ

α∗

4

)
‖e1h‖20 +

(
3 + τ

α∗

4

)
‖e0h‖20 ≤ C

(‖e1h‖20 + ‖e0h‖20
)
. (73)
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In view of (52) and (22) one has that

T̂ j
3 ≤ CTh2k‖u(t j )‖2k+1, j = 2, . . . , N . (74)

A Taylor series expansion yields for T̂ j
2

T̂ j
2 ≤ C

T

τ 2

∥
∥
∥
∥
∥

∫ t j

t j−2

(
2(t − t j−1)

2+ − 1

2
(t − t j−2)

2
)

∂t t t sh(t) dt

∥
∥
∥
∥
∥

2

,

j = 2, . . . , N , where x+ = max(x, 0) for x ∈ R. With the Cauchy–Schwarz inequality, one
obtains for j = 2, . . . , N ,

T̂ j
2 ≤ C

T

τ 2

(∫ t j

t j−2

(
2(t − t j−1)

2+ − 1

2
(t − t j−2)

2
)2

dt

)∫ t j

t j−2

‖∂t t t sh(t)‖20 dt

≤ CT τ 3
∫ t j

t j−2

‖∂t t t sh(t)‖20 dt ≤ CT τ 3
∫ t j

t j−2

‖∂t t tu(t)‖21 dt. (75)

Since a similar bound is valid for T j
56, and the bounds (50) and (54) on T

n
1 and T n

4 computed
in the case of backward Euler method also apply in the present case, from (72) – (75), it
follows for n = 2, . . . , N , that

‖enh‖20 + τ

n∑

j=2

(
4ν‖∇e jh‖20 + α∗

4
‖e jh‖20 + 2μ‖∇ · e jh‖20

)

≤ C
(‖e1h‖20 + ‖e0h‖20

)+ CT τ 4
(
‖∂t t tu‖2L2(0,tn;H1)

+ ‖∂t t t ũ‖2L2(0,tn;H1)

)

+Ch2k
(
(T + μ)τ

n∑

j=1

‖u(t j )‖2k+1 + T τ

n∑

j=1

‖∂tu(t j )‖2k
)

+Ch2k
τ

μ

n∑

j=1

‖p(t j )‖2k . (76)

Finally, one has to show that
∥
∥e1h
∥
∥2
0 = O(h2k + τ 4). The first step is performed with the

backward Euler scheme. To prove the needed order with respect to time, it will be exploited
that the length of the first time interval is just τ . Starting from (45) with n = 1 and taking
vh = e1h , the first and third term on the right-hand side of (45) are estimated with the
Cauchy–Schwarz and Young’s inequality

(

∂t s1h − s1h − s0h
τ

, e1h

)

≤ 2τ

∥
∥
∥
∥
∥
∂t s1h − s1h − s0h

τ

∥
∥
∥
∥
∥

2

0

+ 1

8τ
‖e1h‖20,

and

((b · ∇)(u1 − s1h) + (αu1 − α∗s0h), e1h)

≤ CT ‖(b · ∇)(u1 − s1h)‖20 + α∗

4
‖e1h‖20 + 2τ‖αu1 − α∗s0h‖20 + 1

8τ
‖e1h‖20.

All other terms in (45) are bounded as in (46). Arguing in the same way as after (45), now
instead of (48), one arrives at the estimate
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1

2τ

(1
2
‖e1h‖20 − ‖e0h‖20

)
+ ν‖∇e1h‖20 + μ

2
‖∇ · e1h‖20 + α∗

8
‖e1h‖20

≤ T 1
1 + 2τα∗T 1

2 + T 1
31 + 2τT 1

32 + T 1
4 ,

where

T 1
31 = 1

α∗ ‖(b · ∇)(u1 − s1h)‖20, T 1
32 = ‖αu1 − α∗s0h‖20.

Taking into account the bounds on T 1
1 , T 1

2 , T 1
4 given in (50), (51), and (54), respectively, as

well as (52) and (53), one obtains

‖e1h‖20+2τ

(
2ν‖∇e1h‖20 + α∗

4
‖e1h‖20 + μ‖∇ · e1h‖20

)

≤ 2‖e0h‖20 + CTh2k
(‖u(t1)‖2k+1 + ‖∂tu(t1)‖2k + ‖p(t1)‖2k

)

+ CT τ 3
∫ τ

0

(‖∂t t ũ‖21 + ‖∂t tu‖21
)
dt.

The estimate of the last term on the right-hand side provides an additional factor τ from the
length of the first interval

τ 3
∫ τ

0
‖∂t tu‖21 dt ≤ τ 4 ‖∂t tu‖2L∞(0,τ,H1)

≤ Cτ 4
(∥
∥∂t tu

∥
∥2
L2(0,τ,H1)

+ ∥∥∂t t tu
∥
∥2
L2(0,τ,H1)

)
.

In the second step ‖ · ‖L∞(0,τ,H1) ≤ C‖ · ‖H1(0,τ,H1) was used, which is a consequence of
the Sobolev inequality ‖ · ‖L∞(0,τ ) ≤ C‖ · ‖H1(0,τ ). Analogously, one obtains

τ 3
∫ τ

0
‖∂t t ũ‖21 dt ≤ τ 4 ‖∂t t ũ‖2L∞(0,τ,H1)

≤ Cτ 4
(∥
∥∂t t ũ

∥
∥2
L2(0,τ,H1)

+ ∥∥∂t t t ũ
∥
∥2
L2(0,τ,H1)

)
.

Inserting the estimates for the first step into (76) yields for n = 1, . . . , N ,

‖enh‖20+τ

n∑

j=2

(
4ν‖∇e jh‖20 + α∗

4
‖e jh‖20 + 2μ‖∇ · e jh‖20

)

≤C‖e0h‖20 + CT τ 4
(
‖∂t t tu‖2L2(0,tn;H1)

+ ‖∂t t t ũ‖2L2(0,tn;H1)

)

+ CT τ 4
(
‖u‖2H3(0,τ,H1)

+ ∥∥ũ∥∥2H3(0,τ,H1)

)

+ Ch2k

⎛

⎝(T + μ)τ

n∑

j=1

‖u(t j )‖2k+1 + T τ

n∑

j=1

‖∂tu(t j )‖2k
⎞

⎠

+ Ch2kμ−1τ

n∑

j=1

‖p(t j )‖2k . (77)

From this estimate, arguing as for the backwardEuler scheme, one gets the following theorem.

Theorem 5 Let (ũ, p̃) ∈ V × Q be the solution of (1), which should be sufficiently smooth
such that all norms appearing in the formulation of this theorem are well defined, and let
(Ũ

n
h, P̃

n
h ) ∈ Vh × Qh be the BDF2 approximation solving (60) for n = 2, . . . , N. Assume
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that ‖e0h‖ = O(hk), l = k − 1, ν ≤ 1, τ ≤ log(20/19)T (so that (67) holds) and that the
backward Euler method is used for the first step. Then, the following error estimate holds

∥
∥Ũn

h−ũ(tn)
∥
∥2
0 + τ

n∑

j=1

(
ν
∥
∥∇(Ũ j

h − ũ(t j )
)∥∥2

0 + μ
∥
∥∇ · (Ũ j

h − ũ(t j )
)∥∥2

0

)

≤ Ch2k
(‖ũ0‖2k + ‖ũ(tn)‖2k

)+ CT τ 4‖ũ‖2H3(0,tn;H1)

+ Ch2k

⎛

⎝(T + μ)τ

n∑

j=1

‖ũ(t j )‖2k+1 + T τ

n∑

j=1

‖∂t ũ(t j )‖2k
⎞

⎠

+ Ch2kμ−1τ

n∑

j=1

‖ p̃(t j )‖2k . (78)

The estimate for the pressure error is performed also along the same lines as for the back-
wardEuler scheme. It starts from (64). For convenience, the term (α∗enh, vh)−α∗(D2enh, vh)+
βτ(en−2

h , vh) in (64) is expressed in the form

(α∗enh, vh) − α∗(D2enh, vh) + βτ(en−2
h , vh) =

(
2α∗en−1

h − 1

2
α∗∗en−2

h , vh

)
.

Then the arguments used for the backwardEulermethod are valid forBDF2 if one replaces the
occurrences of (enh−en−1

h )/τ, (snh−sn−1
h )/τ, α∗en−1

h , and α∗sn−1
h by (D+D2/2)/τ enh, (D+

D2/2)snh/τ, 2α
∗en−1

h −α∗∗en−2
h /2, and α∗(snh−D2snh)−βτ sn−2

h , respectively. Thus, instead
of (57), for the BDF2 one gets

β0‖Pn
h − πn

h ‖0 ≤
∥
∥
∥
1

τ

(
D + 1

2
D2)enh

∥
∥
∥−1

+ ν‖∇enh‖0 + ∥∥b · ∇enh
∥
∥−1

+ ∥∥2α∗en−1
h − 1

2
α∗∗en−2

h

∥
∥−1 + μ‖∇ · enh‖0 + ‖∂t (un − snh)‖−1

+
∥
∥
∥∂t snh − 1

τ

(
D + 1

2
D2)snh

∥
∥
∥−1

+ ∥∥(b · ∇)(un − snh)
∥
∥−1

+ ∥∥αun − α∗(snh − D2snh) − βτ sn−2
h

∥
∥−1

+ μ‖∇ · (un − snh)‖0 + ‖pn − πn
h ‖0 + ‖lnh‖0. (79)

Since
∥
∥b · ∇enh

∥
∥−1 ≤ C

∥
∥enh
∥
∥
0 and α∗∗ = α∗(1 + e−ατ ) ≤ 2α∗, it follows that

∥
∥b · ∇enh

∥
∥−1 +

∥
∥
∥
∥2α

∗en−1
h − 1

2
α∗∗en−2

h

∥
∥
∥
∥−1

≤ C
(∥
∥enh
∥
∥
0 +

∥
∥
∥en−1

h

∥
∥
∥
0
+
∥
∥
∥en−2

h

∥
∥
∥
0

)
.

Using also the fact that ‖·‖−1 ≤ C ‖·‖0, the truncation errors, i.e., the terms ranging from
the sixth to the tenth on the right-hand side of (79), can be bounded as in the estimate for the
velocity. Applying in addition (77) yields

β2
0τ

n∑

j=2

∥
∥P j

h − π
j
h

∥
∥2
0

≤ Cτ

n∑

j=2

∥
∥
∥
1

τ

(
D + 1

2
D2)e jh

∥
∥
∥
2

−1
+ Cτ

n∑

j=2

(‖pn − πn
h ‖20 + ‖lnh‖20

)+ T n
7 ,
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where T n
7 can be bounded by the right-hand side of (77). Since the second sum on the right-

hand side can be bounded by applying (14) and (23), it only remains to bound the first sum.
Again, arguing as in the case of the backward Euler method,

∥
∥τ−1(D + D2/2)enh

∥
∥−1 can be

bounded in terms of (the square of) those terms on the right-hand side in (79) ranging from
the second until the eleventh. It follows that, for n = 2, . . . , N ,

β2
0τ

n∑

j=2

∥
∥P j

h − π
j
h

∥
∥2
0

≤ C‖e0h‖20 + CT (1 + μ)τ 4
(
‖u‖2H3(0,τ,H1)

+ ∥∥ũ∥∥2H3(0,τ,H1)

)

+CT (1 + μ)τ 4
(
‖∂t t tu‖2L2(0,tn;H1)

+ ‖∂t t t ũ‖2L2(0,tn;H1)

)

+Ch2k

⎛

⎝(T + μ)(1 + μ)τ

n∑

j=1

‖ũ(t j )‖2k+1 + T (1 + μ)τ

n∑

j=1

‖∂tu(t j )‖2k)
⎞

⎠

+Ch2k(1 + μ−1)τ

n∑

j=1

‖p(t j )‖2k .

Now, the estimate for the pressure follows with the same arguments as before.

Theorem 6 Let the assumptions of Theorem 5 hold. Then, the following bound holds for the
approximation to the pressure using BDF2

τ

n∑

j=2

∥
∥
∥P̃ j

h − p̃(t j )
∥
∥
∥
2

0

≤ Ch2k‖ũ0‖2k + CT (1 + μ)τ 4‖ũ‖2H3(0,tn;H1)

+Ch2k

⎛

⎝(T + μ)(1 + μ)τ

n∑

j=1

‖ũ(t j )‖2k+1 + T (1 + μ)τ

n∑

j=1

‖∂̃tu(t j )‖2k
⎞

⎠

+Ch2k(1 + μ−1)τ

n∑

j=1

‖ p̃(t j )‖2k . (80)

4.3 Crank–Nicolson Scheme

The Crank–Nicolson scheme is perhaps the most popular time integrator among the schemes
considered here. The analysis of this scheme is more involved than the analysis of the two
other methods. For instance, it is more difficult to estimate the convective term, which will
be performed here with a special family of test functions, see (95).

The Crank–Nicolson method, together with an inf-sup stable finite element discretization,
applied to (1) reads as follows: Find (Ũ

n
h, P̃

n−1/2
h ) ∈ Vh × Qh such that for all (vh, qh) ∈

Vh × Qh
(
Ũ

n
h − Ũ

n−1
h

τ
, vh

)

+ ν

(

∇ Ũ
n
h + Ũ

n−1
h

2
,∇vh

)

+
(

(bn−1/2 · ∇)
Ũ

n
h + Ũ

n−1
h

2
, vh

)

− (∇ · vh, P̃
n−1/2
h )
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+
(

∇ · Ũ
n
h + Ũ

n−1
h

2
, qh + μ∇ · vh

)

=
(

f̃
n + f̃

n−1

2
, vh

)

, (81)

n = 1, . . . , N , where Ũ
0
h is a finite element approximation of ũ0, tn−1/2 = tn − τ/2, n =

1, . . . , N , and for a function v = v(t), the notation v j = v(t j ) is used. To simplify notation,
in the sequel the superscript in the convection field will be omitted. It will be assumed that

(∇ · Ũ0
h, qh) = 0 for all qh ∈ Qh , so that taking vh = 0 in (81), it follows that

(∇ · Ũn
h, qh) = 0, ∀qh ∈ Qh, n = 0, . . . , N . (82)

For g = f̃ − ∂t ũ − (b · ∇)ũ − ∇ p̃, let (ũ, 0) be the solution of (16), and let (s̃h, l̃h) be
the corresponding Galerkin approximation in Vh × Qh . Using ∇ · ũn = 0 and integration by
parts, one finds with a straightforward calculation that the error ẽnh = Ũ

n
h − s̃nh ∈ V div

h , n =
0, . . . , N , satisfies for all (vh, qh) ∈ Vh × Qh ,

(
ẽnh − ẽn−1

h

τ
, vh

)

+ ν

(

∇ ẽnh + ẽn−1
h

2
,∇vh

)

+
(

(b · ∇)
ẽnh + ẽn−1

h

2
, vh

)

−(∇ · vh, P̃
n−1/2
h − π̃

n−1/2
h ) +

(

∇ · ẽ
n
h + ẽn−1

h

2
, qh + μ∇ · vh

)

= (rn−1/2
123 , vh) + (rn−1/2

45 ,∇ · vh), n = 1, . . . , N , (83)

where π̃
n−1/2
h denotes the orthogonal projection of p̃(tn−1/2) onto Qh ,

rn−1/2
123 = rn−1/2

1 + rn−1/2
2 + rn−1/2

3 ,

rn−1/2
45 = rn−1/2

4 + rn−1/2
5 ,

and

rn−1/2
1 =∂t ũ

n + ∂t ũ
n−1

2
− ũn − ũn−1

τ
,

rn−1/2
2 = ũn − ũn−1

τ
− s̃nh − s̃n−1

h

τ
,

rn−1/2
3 = − (b · ∇)

s̃nh + s̃n−1
h

2
+ (b · ∇)

ũn + ũn−1

2
,

rn−1/2
4 = − μ∇ · s̃

n
h + s̃n−1

h

2
+ μ∇ · ũ

n + ũn−1

2
,

rn−1/2
5 = − l̃nh + l̃n−1

h

2
− p̃n + p̃n−1

2
+ π̃

n−1/2
h .

Since (∇ · s̃nh, qh) = 0 for all qh ∈ Qh , and in view of (82), it follows that

(∇ · ẽnh, qh) = 0, ∀qh ∈ Qh, n = 0, . . . , N . (84)

Using similar arguments to those applied in (51) and (75), one shows that

‖rn−1/2
1 ‖0 = τ 3/2 ‖∂t t t ũ‖L2(tn−1,tn ,L2) . (85)
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With (22) and Remark 1, one obtains

‖rn−1/2
2 ‖0 =

∥
∥
∥
∥
1

τ

∫ tn

tn−1

(∂t ũ − ∂t s̃h) dt

∥
∥
∥
∥ ≤ C

hk

τ 1/2
‖∂t ũ‖L2(tn−1,tn ,Hk ) (86)

and
‖rn−1/2

3 ‖0 + ‖rn−1/2
4 ‖0 ≤ C(1 + μ)hk(‖ũn‖k+1 + ‖ũn−1‖k+1). (87)

Applying a Taylor series expansion and (23) gives

‖rn−1/2
5 ‖0 = C

⎛

⎝hk
1∑

j=0

(‖ũn− j‖k+1 + ‖ p̃n− j‖k) + τ 3/2‖∂t t p̃‖L2(tn−1,tn ,L2)

⎞

⎠ . (88)

The following formulae are valid for a, b, u, v ∈ R

au − bv = a + b

2
(u − v) + (a − b)

u + v

2
,

au + bv = a + b

2
(u + v) + (a − b)

u − v

2
.

By applying them, one obtains with straightforward calculations

e−αtn−1/2
ẽnh − ẽn−1

h

τ
= (1 + βτ 2)

enh − en−1
h

τ
+ α∗ e

n
h + en−1

h

2
,

e−αtn−1/2
ẽnh + ẽn−1

h

2
= (1 + βτ 2)

enh + en−1
h

2
+ τ

2
α∗ e

n
h − en−1

h

2
, (89)

where

α∗ = 2 sinh(ατ/2)

τ
, β = cosh(ατ/2) − 1

τ 2
,

and, as before, en = e−αtn ẽn, n = 0, . . . , N . Observe that α∗ → α and β → α2/8, as
τ → 0.

Now, the terms on the left-hand side of (83) will be considered. Setting

γn = τe−αtn−1/2 , (90)

it follows that

γn

(
ẽnh − ẽn−1

h

τ
, enh + en−1

h

)

= (1 + βτ 2)(‖enh‖20 − ‖en−1
h ‖20)

+ τ

2
α∗‖enh + en−1

h ‖20, (91)

γnν

(

∇ ẽnh + ẽn−1
h

2
,∇(enh + en−1

h )

)

= τ

2
(1 + βτ 2)ν‖∇(enh + en−1

h )‖20

+ τ 2

4
α∗ν(‖∇enh‖20 − ‖∇en−1

h ‖20),

γnμ

(

∇ · ẽ
n
h + ẽn−1

h

2
,∇ · (enh + en−1

h )

)

= τ

2
(1 + βτ 2)μ‖∇ · (enh + en−1

h )‖20 (92)

+ τ 2

4
α∗μ(‖∇ · enh‖20 − ‖∇ · en−1

h ‖20),
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γn

(

(b · ∇)
ẽnh + ẽn−1

h

2
, enh + en−1

h

)

= τ 2

2
α∗((b · ∇)enh, e

n−1
h ). (93)

The last term has to be canceled by an appropriate choice of the test function. To this end,
inner products with enh − en−1

h will be considered. One has

γn

(

(b · ∇)
ẽnh + ẽn−1

h

2
, enh − en−1

h

)

= −τ(1 + βτ 2)((b · ∇)enh, e
n−1
h ). (94)

Now, the test function vh ∈ V div
h in (83) is chosen as a linear combination of (enh + en−1

h ) and
(enh − en−1

h ) such that the terms on the right-hand sides of (93) and (94) cancel each other.
For this purpose, use qh = 0 and define

vh = γn

(
(enh + en−1

h + ρ(enh − en−1
h )

)
, ρ = α∗τ

2(1 + βτ 2)
. (95)

Direct calculations show

ργn

(
ẽnh − ẽn−1

h

τ
, enh − en−1

h

)

= τ

2
α∗(‖enh − en−1

h ‖20)

+ τ

2
α∗ρ(‖enh‖20 − ‖en−1

h ‖20), (96)

ργnν

(

∇ ẽnh + ẽn−1
h

2
,∇(enh − en−1

h )

)

= τ 2

4
α∗ν(‖∇enh‖20 − ‖∇en−1

h ‖20)

+ τ 2

4
α∗ρν(‖∇(enh − en−1

h )‖20), (97)

ργnμ

(

∇ · ẽ
n
h + ẽn−1

h

2
,∇ · (enh − en−1

h )

)

= τ 2

4
α∗μ(‖∇ · enh‖20 − ‖∇ · en−1

h ‖20)

+ τ 2

4
α∗ρμ‖∇ · (enh − en−1

h )‖20. (98)

With the Cauchy–Schwarz inequality and Young’s inequality, one obtains for vh defined in
(95)

|(rn−1/2
123 , vh)| ≤ τ

4
α∗‖enh + en−1

h ‖20 + τ

4
α∗(‖enh − en−1

h ‖20)
+ τC1‖e−αtn−1/2 rn−1/2

123 ‖20, (99)

where

C1 = 1

α∗ + α∗τ 2

4(1 + βτ 2)2
, (100)

such that the first two terms on the right-hand side in (99) cancel with one half of the
corresponding terms in (91) and (96). In the same way, one gets

|(rn−1/2
45 ,∇ · vh)| ≤ (1 + βτ 2)

τ

4
μ‖∇ · (enh + en−1

h )‖20

+ (α∗)2τ 3

16(1 + βτ 2)
μ‖∇ · (enh − en−1

h )‖20
+ τC2‖e−αtn−1/2rn−1/2

45 ‖20, (101)
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where

C2 = 2

μ(1 + βτ 2)
, (102)

so that the first two terms on the right-hand side in (101) cancel with one half of the sum
of the corresponding terms in (92) and (98). The pressure term on the left-hand side of (83)
vanishes since vh ∈ V div

h because of (84).
Taking (vh, qh) as specified in (95), summing from 1 to n, and ignoring some non-negative

terms on the left-hand side yields

(1 + βτ 2)

⎛

⎝‖enh‖20 + τ

2

n∑

j=1

(
ν‖∇(e jh + e j−1

h )‖20 + μ

2
‖∇ · (e jh + e j−1

h )‖20
)
⎞

⎠

≤ (1 + βτ 2)
∥
∥e0h
∥
∥2
0 + E2

0

+ τ

m∑

n=1

(
C1‖e−αt j−1/2 r j−1/2

123 ‖20 + C2‖e−αt j−1/2r j−1/2
45 ‖20

)
, (103)

where C1 and C2 are the constants in (100) and (102) and

E2
0 = α∗ τ 2

4

(
2ν
∥
∥∇e0h

∥
∥2
0 + 2μ

∥
∥∇ · e0h

∥
∥2
0 + α∗

1 + βτ 2

∥
∥e0h
∥
∥2
0

)
.

For α = 1/T and τ ≤ T , it is a simple calculation to check that C1 ≤ CT and C2 ≤ Cμ−1

where C ≤ 2. In view of (85) – (88) and since e−αt j−1/2 ≤ 1, one obtains

τ

n∑

j=1

(
C1‖e−αt j−1/2 r j−1/2

123 ‖20 + C2‖e−αt j−1/2r j−1/2
45 ‖20

)

≤ C

{
τ 4
(
T ‖∂t t t ũ‖2L2(0,tn ,L2)

+ μ−1 ‖∂t t p̃‖2L2(0,tn ,L2)

)

+ Th2k‖∂t ũ‖2L2(0,tn ,Hk )

+ [(1 + μ)2(T + μ−1) + μ−1] h2kτ
n∑

j=0

‖ũ j‖2k+1 + μ−1h2kτ
n∑

j=0

‖ p̃ j‖2k
}
. (104)

For α = 1/T and τ ≤ T , one has α∗ ≤ 2α sinh(1/2) ≤ C and 1 + βτ 2 ≤ cosh(1/2) ≤ C .
Then, it follows from (103) and (104) that

‖enh‖20 + τ

2

n∑

j=1

(
ν‖∇(e jh + e j−1

h )‖20 + μ

2
‖∇ · (e jh + e j−1

h )‖20
)

≤ ‖e0h‖20 + C

{
τ 2(ν‖∇e0h‖20 + μ‖∇ · e0h‖20 + ‖e0h‖20)

+ τ 4
(
T ‖∂t t t ũ‖2L2(0,tn ,L2)

+ μ−1 ‖∂t t p̃‖2L2(0,tn ,L2)

)

+ Th2k‖∂t ũ‖2L2(0,tn ,Hk )

+ [
(1 + μ)2(T + μ−1) + μ−1] h2kτ

n∑

j=0

‖ũ j‖2k+1 + μ−1h2kτ
n∑

j=0

‖ p̃ j‖2k
}
. (105)

Applying the triangle inequality and (22), the following result is obtained.
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Theorem 7 Let (ũ, p̃) ∈ V × Q be the solution of (1), which should be sufficiently smooth
such that all norms appearing in the formulation of this theorem are well defined, and let
(Ũ

n
h, P̃

n
h ) ∈ Vh × Qh be the Crank–Nicolson approximation solving (81) for n = 1, . . . , N.

Let α = 1/T and μ > 0, assume that (∇ · Ũ0
h, qh) = 0 for all qh ∈ Qh, and that for

some positive constant C it is ‖e0h‖ + h‖∇e0h‖ ≤ Chk+1‖u0‖k+1, l = k − 1, ν ≤ 1, and
τ ≤ T . Then, there exist a positive constant C > 0 independent of ν, μ, τ , and T such that
the following error estimate holds for n = 1, . . . , N,

∥
∥ũ(tn) − Ũ

n
h

∥
∥2
0 + τ

n∑

j=1

ν

∥
∥
∥
∥
∥
∇
(
ũ(t j ) + ũ(t j−1)

2
− Ũ

j
h + Ũ

j−1
h

2

)∥∥
∥
∥
∥

2

0

+τ

n∑

j=1

μ

∥
∥
∥
∥
∥
∇ ·
(
ũ(t j ) + ũ(t j−1)

2
− Ũ

j
h + Ũ

j−1
h

2

)∥∥
∥
∥
∥

2

0

≤ Ch2k
{
(1 + μ)τ 2‖ũ0‖2k+1 + ‖ũ(tn)‖2k + T ‖∂t ũ‖2L2(0,tn ,Hk )

+ [
T (1 + μ)2 + μ + μ−1] τ

n∑

j=0

‖ũ j‖2k+1 + μ−1τ

n∑

j=0

‖ p̃ j‖2k
}

+Cτ 4
{
T ‖∂t t t ũ‖2L2(0,tn ,L2)

+ μ−1 ‖∂t t p̃‖2L2(0,tn ,L2)

}
. (106)

Since μ and μ−1 appear on the right-hand side of (106), one finds again that μ = O(1) is
the appropriate asymptotic choice.

For estimating the errors in the pressure, denote Pn−1/2
h = e−αtn−1/2 P̃n−1/2

h and π
n−1/2
h =

e−αtn−1/2 π̃
n−1/2
h . Some of the terms that have been ignored on the left-hand side in (103) are

those arising from (97) and (98), together with one half of the sum of those in (91) and (96). If
they are included in the previous computation, after dividing by (1+βτ 2), one gets also that

α∗

4(1 + βτ 2)
τ

n∑

j=1

(
‖e jh + e j−1

h ‖20 + ‖e jh − e j−1
h ‖20

)

+ ρ2 τ

4

n∑

j=1

(
ν‖∇(e jh − e j−1

h )‖20 + μ‖∇ · (e jh − e j−1
h )‖20

) ≤ R, (107)

where R is the right-hand side of (105) and ρ is defined in (95). Multiplying (83) by γ n from
(90) and using the inf-sup condition (7) yields with a straightforward calculation

β0τ‖Pn−1/2
h − π

n−1/2
h ‖0 ≤

∥
∥
∥
∥
∥
γn

ẽnh − ẽn−1
h

τ

∥
∥
∥
∥
∥−1

+ R0, (108)

where

R0 = ν

∥
∥
∥
∥
∥
γn∇ ẽnh + ẽn−1

h

2

∥
∥
∥
∥
∥
0

+ C ‖b‖∞

∥
∥
∥
∥
∥
γn

ẽnh + ẽn−1
h

2

∥
∥
∥
∥
∥
0

+ μ

∥
∥
∥
∥
∥
γn∇ · ẽ

n
h + ẽn−1

h

2

∥
∥
∥
∥
∥
0

+ ‖γn rn−1/2
123 ‖−1 + ‖γnrn−1/2

45 ‖0. (109)
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Since ẽnh−ẽn−1
h ∈ V div

h , the first termon the right-hand side of (108) can be bounded, applying

the same arguments as in (33) and (10), byC‖A−1/2
h γn(ẽ

n
h−ẽn−1

h )/τ‖0. Taking v = enh−en−1
h

in (83), applying the same estimates that led to (108), and applying Poincaré’s inequality it
is easy to show that the first term on the right-hand side of (108) is bounded by CR0, so that

τ‖Pn−1/2
h − π

n−1/2
h ‖0 ≤β−1

0 CR0.

Squaring both sides of this inequality, dividing by τ , and using (89) to express the first three
terms on the right-hand side of (109) in terms of enh and en−1

h gives with a direct calculation

τ‖Pn−1/2
h − π

n−1/2
h ‖20 ≤ C

{
τ(1 + βτ 2)2

(
ν2‖∇(enh + en−1

h )‖20
+‖b‖2∞ ‖enh + en−1

h ‖20 + μ2‖∇ · (enh + en−1
h )‖20

)

+τ
(
‖e−αtn−1/2 rn−1/2

123 ‖20 + ‖e−αtn−1/2rn−1/2
45 ‖20

)

+τ 3(α∗)2
(
ν2‖∇(enh − en−1

h )‖20 + ‖b‖2∞ ‖enh − en−1
h ‖20

+μ2‖∇ · (enh − en−1
h )‖20

)}
, (110)

where ‖·‖−1‖ ≤ C ‖·‖0 has been used. Terms of the same form as on the right-hand side
of (110) were estimated in (104), (105), and (107). Applying these estimates and summing
from 1 to n gives

τ

n∑

j=1

‖P j−1/2
h − π

j−1/2
h ‖20 = O(h2k + τ 4).

Using the triangle inequality and the estimate for the L2 projection leads to the following
theorem.

Theorem 8 Let the assumptions of Theorem 7 hold. Then, there exists a constant C > 0
such that the following bound holds for the approximation to the pressure computed with the
Crank–Nicolson method (81)

τ

n∑

j=1

∥
∥
∥P̃ j−1/2

h − p̃(t j−1/2)

∥
∥
∥
2

0
≤ Ch2k

⎧
⎨

⎩
τ

n∑

j=1

‖ p̃(t j−1/2)‖2k + (1 + μ)2τ 2‖ũ0‖2k+1

+ T (1 + μ)‖∂t ũ‖2L2(0,tn ,Hk )
+ (μ−1 + μ)τ

n∑

j=0

‖ p̃ j‖2k

+ [
T (1 + μ)3 + (μ−1 + μ)(1 + μ2)

]
τ

n∑

j=0

‖ũ j‖2k+1

⎫
⎬

⎭

+ Cτ 4(1+μ)
{
T ‖∂t t t ũ‖2L2(0,tn ,L2)

+μ−1 ‖∂t t p̃‖2L2(0,tn ,L2)

}
.

(111)

5 Numerical Studies

This section will present a few numerical results which support the error estimates from
Sect. 4. Comparisons of numerical results with and without grad-div stabilization can be
already found in the literature, e.g., see [10], and will be omitted here for the sake of brevity.
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Fig. 1 Backward Euler scheme, error reduction of the errors from estimates (56) and (59), several parameters

To this end, the Oseen problem (2) was considered in � = (0, 1)2 and in the time interval
[0, 5] with different parameters ν and α and with the prescribed solution

u = cos(t)

(
sin(πx − 0.7) sin(πy + 0.2)
cos(πx − 0.7) cos(πy + 0.2)

)
,

p = cos(t)(sin(x) cos(y) + (cos(1) − 1) sin(1)).

The right-hand side, the Dirichlet boundary condition, and the initial condition were chosen
in accordance to the prescribed solution.

For all simulations, the Taylor–Hood pair of finite elements P2/P1 on uniform grids was
used (triangles with diagonals from bottom left to top right). The coarsest grid in space
(level 3) consisted of 128 mesh cells (578 velocity degrees of freedom, 81 pressure degrees
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Fig. 2 BDF2, error reduction of the errors from estimates (78) and (80), several parameters

of freedom). On this grid, the length of the time step τ0 was used. Refining the spatial grid
once uniformly, the length of the time step was reduced by the factor of four for the backward
Euler scheme and the factor of two for BDF2 and the Crank–Nicolson scheme. With this
approach, one expects second order convergence for the terms on the left-hand side of the
error estimates (56), (59), (78), (80), (106), and (111). Results will be presented for τ0 = 0.05
for the backward Euler scheme and τ0 = 0.5 for BDF2 and theCrank–Nicolsonmethod.With
these choices two situations are illustrated: in the results of the backward Euler scheme the
spatial error is dominant and in the results of the other schemes, the temporal error is of more
importance. Qualitatively the same results were obtained for all schemes in the respective
other situation.

Numerical studies concerning the choice of the grad-div stabilization parameter for the
steady-state Oseen equations and the Taylor–Hood element Q2/Q1 can be found in [20]. In
all studies, the best choice of this parameter was below 1, approximately one order. Because
of these results and also based on our own experience, the value of the stabilization parameter
was set to be μ = 0.25 in the simulations. All simulations were performed with the code
MooNMD [18].

Results for the backward Euler scheme are presented in Fig. 1. The second order conver-
gence can be seen for all errors but ν1/2‖∇(u − uh)‖L2(0,5;L2) in the case ν = 10−6 and
α = 0, where the order of error reduction increases with increasing level but it is not yet two.
Note that the error bound (56) is for the linear combination of three errors for the velocity.
For small ν, this combination is dominated by μ1/2‖∇ · (u − uh)‖L2(0,5;L2) such that this
linear combination converges with the predicted order. The independence of the error of the
divergence and the pressure on ν can be observed very well.
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Fig. 3 Crank–Nicolson, error reduction of the errors from estimates (106) and (111), several parameters

Numerical results for the BDF2 scheme can be seen in Fig. 2. The behavior for α > 0
compared with α = 0 is very similar to the backward Euler scheme such that the presentation
of the corresponding results is omitted. To illustrate the behavior for small ν, results for
ν = 10−5, α = 0 are presented here. One can observe clearly the reduced order convergence
of ν1/2‖∇(u − uh)‖L2(0,5;L2) on coarser grids and the tendency to become second order on
finer grids. All other errors converge at least of second order already on coarser grids. Again,
the pressure error and the error of the divergence are independent of ν.

For the results obtained with the Crank–Nicolson scheme, see Fig. 3, the same comments
apply as for the results computed with BDF2.

6 Conclusions and Future Research

This paper studied the effect of grad-div stabilization added to the Galerkin method for the
transient Oseen equations. The error analysis was performed for the continuous-in-time case
and several fully discrete cases (backward Euler method, BDF2 formula, Crank–Nicolson
schemes). Optimal convergence of the L2 norms of the divergence of the velocity and the
pressure were proved for sufficiently smooth solutions with error constants independent of
the viscosity.

A change of variable allowed to transform the original equations into new ones having a
non-vanishing reaction term. Thanks to this change, the analysis could be performed equally
well for dissipative methods, such as the backward Euler method and BDF2, and for the
non-dissipative Crank–Nicolson scheme.
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Discontinuous pressure approximations are covered by the analysis. In particular, the
analysis is valid for the case of inf-sup stable divergence-free mixed finite elements.

The extension of the analysis of this paper to the Navier–Stokes equations is part of the
current research of the authors [11].
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