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Abstract The droplet size distribution in a turbulent flow field is considered and modeled by means of a popu-
lation balance system. This paper studies different numerical methods for the 4D population balance equation
and their impact on an output of interest, the time-space-averaged droplet size distribution at the outlet, which
is known from experiments. These methods include different interpolations of the experimental data at the
inlet, various discretizations in time and space, and different schemes for computing the coalescence integrals.
It will be shown that noticeable changes in the output of interest might occur. In addition, the computational
efficiency of the studied methods is discussed.

1 Introduction

Population balance systems were derived to model the behavior of particle populations using distributions
instead of considering individual particles. They are widely used for simulating processes in chemical
engineering [1]. Another application, which will be considered in this paper, is the modeling of the behavior
of droplets in flows [2–4], which is of importance, for example, for the simulation of processes in clouds.
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The dominating physical mechanism for the evolution of the droplet size distribution (DSD) in this application
is the coalescence of droplets.

The basic form of a population balance system consists of an equation for the flow field and an equation
for the DSD. Additional equations might be present, which model, for example, energy and mass balances.
The equation for the DSD possesses some properties that make its numerical simulation challenging. First, the
DSD depends not only on time and space, as for example the velocity of the flow field, but also on properties of
the droplets, the so-called internal coordinates. Consequently, this equation is defined in a higher-dimensional
domain than the other equations of the system. Second, the modeling of coalescence leads to integral terms of
convolution type whose efficient numerical evaluation is difficult. And third, the equations are transport-dom-
inated, such that the application of specific discretization techniques is necessary.

There are several ways to treat these difficulties. In order to avoid the increase in dimension, a technique
often employed consists in using methods of moments (MOM), see [5] for the first approach in this direction.
In this technique, only the first moments of the DSD are simulated. This approach usually requires the closure
of the system for the first moments. The currently most popular way is the quadrature MOM (QMOM) [6],
which applies a numerical quadrature whose weights and nodes depend on the moments (of a previous time).
The direct QMOM (DQMOM) [7] simulates the weights and the nodes of the quadrature directly. However,
it is well known that the reconstruction of a DSD from its first moments is a severely ill-posed problem and
only a few reconstruction algorithms are available [8,9].

Another approach consists in addressing directly the equation for the DSD. For the numerical simulation
of this equation, operator-splitting techniques or direct discretizations can be applied. In operator-splitting
techniques, equations defined on the spatial domain and on the domain for the internal coordinates are solved
sequentially. However, this approach introduces a splitting error whose magnitude is unknown. Altogether, we
think that a direct discretization of the equation for the DSD in the higher-dimensional domain possesses the
highest potential for accurate results, compared with moment-based methods and operator-splitting schemes.
This is the main motivation for considering such direct discretizations in this paper. The use of different numer-
ical methods is also possible in the class of direct discretizations. Some investigations of the effect of different
methods in the direct approach for population balance systems on output quantities of interest can be found
already in [10,11]. For instance, it turned out in these studies that in certain situations, different discretizations
of the transport terms might lead to qualitatively different results.

In the numerical studies presented in the present paper, the output quantity of interest is a time-space-aver-
aged DSD at the outlet of the flow domain. This global quantity is less sensitive to numerical and modeling
techniques than the quantities studied in [10,11]. The droplets move in a turbulent flow field, and quantitative
experimental data are available for both the flow field (air) and the DSD (water droplets), see http://www.
ovgu.de/isut/lss/metstroem for the data and [12,13] for the descriptions of the experiments. These experi-
ments were designed such that selected properties of flows in clouds are reproduced, in particular the droplet
number density per unit volume and the liquid water content (2 g/kg). At the same time, other properties,
like gravitational collisions of droplets or the integral scale of turbulence, are not covered by the experiments.
With respect to the numerical methods for the DSD, different approximations of the inlet boundary condition,
different discretizations for the temporal and transport-dominated spatial derivatives, and different methods
for evaluating the coalescence term are studied.

The paper is organized as follows. The model of the considered process is introduced in Sect. 2. Then,
Sect. 3 describes shortly the numerical method for the simulation of the turbulent flow field. The numerical
methods for the equation of the DSD are explained in detail in Sect. 4. Numerical studies are presented in
Sect. 5. Finally, a summary and an outlook are given. Appendix A discusses one of the numerical methods
in more detail at a model problem to provide an explanation of the results obtained with this method in the
simulations of the DSD.

2 The population balance model for the simulation of the DSD

The droplets are considered in a flow field that is modeled by the incompressible Navier–Stokes equations

ρut − 2μ∇ · D(u)+ ρ(u · ∇)u + ∇ p = 0 in (0, te)×�, (1)

∇ · u = 0 in (0, te)×�, (2)

where u (m/s) is the fluid velocity vector, p (Pa) is the pressure, ρ = 1.2041 kg/m3 is the density of air
at 293.15 K, μ = 18.15 · 10−6 kg/(ms) is the dynamic viscosity of air at the same temperature, D(u) =
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Fig. 1 Sketch of the wind tunnel, the computational domain, and the boundary conditions for the flow field

(∇u + (∇u)T )/2 is the velocity deformation tensor, and te denotes the final time. Because of the low Mach
number in the experiments, the density is assumed to be constant. The term describing the gravitational accel-
eration is included into the pressure.

Appropriate boundary conditions and an initial condition are needed to close the Navier–Stokes equations
(1), (2). The experiments were conducted in a wind tunnel, see Fig. 1. The section for the measurements was
of hexahedral shape and it was situated in the lower half of the wind tunnel test section. Because of some
uncertainties concerning the most appropriate boundary conditions at the outlet, the computational domain
� = (0, 0.5) × (−0.225, 0.225) × (−0.18, 0) m3 is chosen to be somewhat longer than the measurement
section, which had a length of 0.4 m. In this way, a slight incorrectness of the applied outlet boundary condition
does not influence the computed values at the plane corresponding to the outlet of the measurement section.
Hence, a possible error source in the comparison of experimental and numerical data was eliminated.

A fully developed flow field, which was computed in a preprocessing step, is used as initial condition. The
boundary conditions at the inflow boundary �in = {0} × (−225, 225)× (−180, 0) are based on experimental
data. To model time-dependent inflows, a time-averaged experimental velocity uair,exp(0, y, z) is disturbed
with white noise

u(t, 0, y, z) = uair,exp(0, y, z)+ randnormal(t, 0, y, z)σ air,exp(0, y, z) on (0, te)× �in,

where σ air,exp(0, y, z) is the corresponding standard deviation, which is also known from the experiments, and
randnormal(t, 0, y, z) denotes a normally distributed random number. The computation of the random number
is performed with the Box–Muller scheme. Additional values at the inlet can be computed using bilinear
interpolation. The second and third component of the inlet velocity are set to be zero.

Experimental data at the outlet of the computational domain �out = {0.5} × (−225, 225)× (−180, 0) are
not available. In all numerical simulations, the so-called do-nothing condition

(2νD(u)− pI) · n = 0 on (0, te)× �out

is used. From the location of the measurement section, it follows that the top plane �top = (0, 0.5) ×
(−0.225, 0.225)× {0} is a symmetry plane. The symmetry condition is given by

u · n = 0 on (0, te)× �top,

nT (2νD(u)− pI) τ k = 0 on (0, te)× �top, k = 1, 2,

where n denotes the unit normal vector on the boundary in outer direction and τ i , i ∈ 1, 2, are two tangen-
tial vectors on the boundary. This condition describes free slip without penetration. On all other boundaries
� = ∂� \ (

�in ∪ �out ∪ �top
)
, a free slip with penetration condition is used

nT (2νD(u)− pI) n = 0 on (0, te)× �,

nT (2νD(u)− pI) τ k = 0 on (0, te)× �, k = 1, 2.

Author's personal copy



256 R. Bordás et al.

Fig. 2 Sketch of the mechanisms acting on the droplets along internal (d) and external (x) coordinates

The Reynolds number of the flow, based on the kinematic viscosity ν = μ/ρ = 1.5073 × 10−5 m2/s, the
hydraulic diameter of the wind tunnel L = 0.5454 m, and the integral mean value of the velocity at the inlet
of the computational domain U = 2.4491 m/s is Re = 88, 618.

The DSD is modeled by a population balance equation, which includes the transport of the droplets along
the pathlines, their growth in supersaturated air, and the coalescence of droplets

∂ f

∂t
+ ∇ · ( f udrop)+ ∂

∂d

(a

d
f
)

= C+ + C− in (0, te)×�× (dmin, dmax), (3)

see Fig. 2 for a schematic sketch of the process. In (3), f (no./m4) is the DSD, d (m) is the droplet diameter
with d ∈ [dmin, dmax], udrop (m/s) is the velocity of the droplets, a (m2/s) is the growth rate, C+ is the source
of coalescence, and C− is the coalescence sink. The growth constant is given by 5.0613×10−10 m2/s, see [13]
for the derivation of this value. In all simulations, a supersaturation of 1% is assumed. Hence, the growth rate,
which is the product of the growth constant and the supersaturation, is given by a = 5.0613 × 10−12 m2/s.

The experimental data for the air velocity and for the droplet velocity at the plane x = 0 m are extrapolated
constantly into �, for example, udrop,exp(x, y, z) = udrop,exp(0, y, z) for all x ∈ [0, 0.5] m. The same proce-
dure is applied to the experimental data for the air flow uair,exp(x, y, z) = uair,exp(0, y, z) for all x ∈ [0, 0.5] m.
Then, the first component of the droplet velocity is defined by

(udrop)1(t, x, y, z) := (
udrop,exp − uair,exp

)
(x, y, z)+ (uair,sim)1(t, x, y, z),

where (uair,sim)1 is the first component of the computed velocity field from (1), (2). The other components of
the droplet velocity are set to be the velocity components coming from the solution of (1), (2).

The model for the coalescence is explained best by considering the volume of the droplets, see [5,14].
Let fV be the DSD and C+,V , C−,V be source and sink, all with respect to the volume of the droplets. Then,
the source term describes the amount of droplets of volume V , which are created by the coalescence of two
droplets with volume V ′ and V − V ′, V ′ ∈ (0, V ). There are two realizations of this event, namely the first
droplet is of volume V ′ and the second one has volume V − V ′, and vice versa. Hence, the model has the form

C+,V = 1

2

V∫

0

κcol(V − V ′, V ′) fV (V − V ′) fV (V
′) dV ′. (4)

The sink term models the amount of droplets of volume V that disappear because they merge with other
droplets of volume V ′ ∈ (0, Vmax)

C−,V = −
Vmax∫

0

κcol(V, V ′) fV (V ) fV (V
′) dV ′ = − fV (V )

Vmax∫

0

κcol(V, V ′) fV (V
′) dV ′. (5)

Consequently, (C+,V + C−,V ) models the change of droplets of volume V due to the coalescence. In (4) and
(5), the term κcol (m3/s) is the collision kernel.
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It is also possible to define the coalescence integrals in terms of the diameter, see [14],

C+ = d2

2

d∫

dmin

κcol

((
d3 − (d ′)3

)1/3
, d ′

)

(d3 − d ′3)2/3
f
((

d3 − (d ′)3
)1/3

)
f (d ′) dd ′, (6)

C− = − f (d)

dmax∫

dmin

κcol(d, d ′) f (d ′) dd ′. (7)

Collisions of droplets can occur because

• very small droplets bump against each other due to Brownian motion,
• droplets are pushed to other droplets moving in a slower fluid layer (shear-induced),
• or faster moving droplets overtake slower droplets.

The last mechanism is particularly important for the simulation of real clouds [15]. It has been modeled by
gravitational kernels, like the Hall kernel [16] or, in the presence of turbulence, the Ayala kernel [17,18].
A gravitational collision kernel is not considered here, since its effect compared with that of the turbulent
collision kernel is negligible in case of strong turbulence with large dissipation rate [19,20], as found in the
present experiment [12].

The collision kernel, which will be described in terms of volume, is the product of two factors κcol(V, V ′) =
pcol(V, V ′)peff(V, V ′). The first factor models the probability of the collision of two droplets with volume V
and V ′. The efficiency of the collisions, which means the amount of collisions actually leading to a coalescence
of droplets, is modeled by the second factor. This factor is chosen to be constant since other models are not
available. The constant can be included into scaling factors for the individual terms of the following kernel,
see [21,22],

κcol(V, V ′) = Cbrown
2kB T

3μ

(
3
√

V + 3
√

V ′
)(

1
3
√

V
+ 1

3
√

V ′

)

+Cshear
√

2∇udrop : ∇udrop

(
3
√

V + 3
√

V ′
)3
, (8)

where kB = 1.38×10−23 J/K is the Boltzmann constant. The first part in (8) is Brownian motion generated. It
is of importance if small droplets are involved in the collision since in this case, the last factor becomes large.
The second term is shear-induced [23] and it is important if both droplets are large. The identification of the
model parameters Cbrown and Cshear was the main topic of the studies performed in [13]. Using one of the meth-
ods described below for simulating the population balance system, see Sect. 5, the values Cbrown � 1.5 × 106

and Cshear � 0.1 were obtained.
The boundary condition for the droplets at the inlet is based on experimental data. Measurements were

taken at a grid of nodes at the inlet. A detailed description of the conversion of the experimental data to values
for the DSD in these nodes, denoted by fin,exp(x, d), and the corresponding standard deviation σ f (x, d) can
be found in [13]. The values in the nodes are extrapolated to the inlet boundary and the boundary condition
reads as follows

f (t, x, d) =
{

fin,exp(x, d)+ randnormal(t, x)σ f (x, d), for d ∈ [dmin, dmax],
0, for d ∈ [dmin,art, dmin)

with x = (0, y, z) ∈ �in, t ∈ [(0, te]. Here, dmin,art = 0 m is an artificial smallest diameter for the droplets,
which is introduced to define the necessary boundary conditions because of the positive growth rate, see [13]
for a discussion of this topic. The initial condition is given by f (0, x, d) = 0 in �× (dmin,art, dmax).

The general solution strategy for the population balance system is as follows. In each discrete time, first
the Navier–Stokes equations (1), (2) are solved and the flow field is computed. Then, the equation for the DSD
(3) is solved, where the coalescence terms are always treated explicitly with respect to the DSD. With this
approach, the problem in 4D becomes linear.
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3 A finite element variational multiscale (FEVMS) method for the simulation of turbulent flows

The turbulent flow field is simulated with a projection-based FEVMS method. VMS methods try to control
the influence of the turbulence model in a better way than other approaches for the simulation of turbulent
flows. To this end, so-called small resolved scales are defined to which the direct influence of the turbu-
lence model is restricted. In the projection-based FEVMS method, standard finite element spaces are used to
model all resolved scales. An additional finite element space is necessary to perform the decomposition of
the resolved scales. The large scales are defined by a variational projection into this large-scale space, which
is given explicitly as an additional equation in the considered method. Together with the unresolved scales, a
three-scale decomposition of the flow field is defined.

VMS methods are based on a variational formulation of the underlying equation. Let V h × Qh be the pair
of inf-sup stable, conforming finite element spaces for the velocity and the pressure. The additional large-scale
finite element space is a space of symmetric 3 × 3 tensor-valued functions L H ⊂ {L ∈ (L2(�))3×3,LT = L}.
The semi-discrete (continuous in time) projection-based FEVMS method reads as follows: Find uh : [0, te] →
V h, ph : (0, te] → Qh , and G

H : [0, te] → L H such that

(uh
t , vh)+ (2νD(uh), D(vh))+ ((uh · ∇)uh, vh)

−(ph, ∇ · vh)+ (νT (D(uh)− G
H ), D(vh)) = (f, vh), ∀vh ∈ V h,

(qh, ∇ · uh) = 0, ∀qh ∈ Qh, (9)

(D(uh)− G
H , L

H ) = 0, ∀L
H ∈ L H .

The parameter νT ≥ 0 in (9) is the so-called turbulent viscosity. By definition, the large scales of D(uh) are
defined by G

H , the L2-projection of D(uh) into L H . Consequently, the resolved small scales are given by
D(uh)− G

H . Thus, the additional viscous term (νT (D(uh)− G
H ), D(vh)) in the momentum equation of (9)

acts directly only on the small resolved scales.
The first parameter in (9) is the turbulent viscosity. In the simulations presented below, the static Smagorin-

sky model [24] νT = CSδ
2 ‖D (ū)‖F is applied. The second parameter is the large-scale space L H . This space

must be in some sense a coarser space than the finite element space for the velocity V h , which represents all
resolved scales. Provided that V h is a higher-order space, L H can be chosen on the same grid as V h , see [25]
for a discussion of this topic. Numerical studies [26–29] revealed that the choice of L H possesses a significant
influence on the computed results. For efficiency reasons, L H must be a discontinuous finite element space,
see [26]. The first implementations of the projection-based FEVMS method used a space L H with the same
polynomial degree on all mesh cells. Recently, in [30,31], an approach for an adaptive, a posteriori choice of
L H was presented, which allows to use different polynomial degrees in different mesh cells K . The aim of
this approach consists in adjusting the local influence of the turbulence model according to the local turbulent
character of the flow by an appropriate local scale separation.

An inf-sup stable pair of velocity–pressure finite element spaces is used, namely the pair Q2/Pdisc
1 . This

pair is a popular choice [32] as it combines high accuracy and the possibility of solving the arising saddle point
problems efficiently [33,34]. The adaptive FEVMS uses the following measure of the small resolved scales as
indicator of the amount of local turbulence

ηK = ‖G
H − D(uh)‖L2(K )

‖1‖L2(K )
= ‖G

H − D(uh)‖L2(K )

|K |1/2 , K ∈ T h,

where {K } is the set of mesh cells of the triangulation T h . This indicator assumes that in regions with high
turbulence, where the size of the unresolved scales is large, also the size of the adjacent class of scales (the
small resolved scales) is large. The local contributions ηK are compared with the arithmetic mean η of the
local indicators in order to decide which local space L H (K ) is chosen: given 0 ≤ C1 ≤ C2 ≤ C3, define
η := ηK /η, then

1. for cells K with η ≤ C1: L H (K ) = Pdisc
2 (K ), νT (K ) = 0,

2. for cells K with C1 < η ≤ C2: L H (K ) = Pdisc
1 (K ),

3. for cells K with C2 < η ≤ C3: L H (K ) = P0(K ),
4. for cells K with C3 < η: L H (K ) = P00(K ).

The space P00(K ) consists only of the zero tensor. In this case, the turbulence model is applied locally to
all resolved scales. In the simulations presented below, the space L H is updated at each discrete time. The
parameters in the adaptive choice of the large-scale space are chosen to be C1 = 0.3, C2 = 1, and C3 = 2.
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Fig. 3 Log-normal interpolation of the DSD (left) and of its standard deviation (right) at the inlet

A finite element error analysis for local projection methods of type (9) in bounded domains is available in
cases where the projection spaces do not change in time, for example, in [35,36], but there is no analysis so
far for the adaptive FEVMS.

4 Numerical methods for DSD equation (3)

4.1 Obtaining an inlet boundary condition

Measurements were taken in the nodes of a grid with the y-z coordinates (−0.225,−0.215, . . . , 0.225) m ×
(−0.18,−0.17, . . . , 0) m at the plane x = 0 m for obtaining boundary conditions at the inlet and at the plane
x = 0.4 m for the comparison of experimental data and numerical results. Experimental data for the droplets
and for the standard deviation, both in (no./cm3), are available for the diameters 1, 3, . . . , 171 µm. In [13],
a way is described for converting the experimental data in values for the DSD at the grid points in (no./m4).
This way is used in the numerical simulations presented below.

An interpolation of the DSD at the inlet is necessary if a grid for the internal coordinate is used whose
nodes do not coincide with the measurement points with respect to the internal coordinate. In the simulations
presented below, two kinds of interpolations are used. The first one is the continuous piecewise linear interpo-
lation between the given values at the diameters for which measurement data are available, both for the DSD
and the standard deviation.

A second way is the use of a prescribed form of the DSD that obeys a certain function. The experimental
data suggest a log-normal interpolation of the form

fin,exp(x, d; σ,μ, c f ) = c f

dσ
√

2π
e− (ln d−μ)2

σ2 , d > 0, (10)

with the parameters σ,μ, and c f . Exemplarily, Fig. 3 shows a representative result for the approximation in
some grid point at the inlet plane. The computation of the parameters in (10) was performed with a damped
Gauss–Newton method for each grid point at the inlet in a preprocessing step. In the simulations presented
below, all values for diameters larger or equal than 125 μm are set to be zero. This approach prevents the
creation of nonphysically large droplets, which else would arise in the evaluation of the coalescence terms.
The standard deviation at the inlet is also approximated with the ansatz (10).

4.2 Discretization of the differential operator

Several types of discretization techniques for the differential operator are studied. In the considered example,
the tensor product form of the 4D domain allows an easy application of finite difference methods. One method
of this type is studied, in combination with an explicit time-stepping scheme. However, finite element methods
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are much more flexible with respect to the form of the domain and therefore they are of great interest for many
applications. A finite element method in combination with an implicit time-stepping scheme will be consid-
ered, which has been proved to be among the best performing finite element methods for transport-dominated
equations in recent studies. For this method, a standard realization and a more efficient nonstandard realization
are included in the studies presented below. This section describes the methods in some detail. The current
discrete time is denoted by tn , the length of the time step by �t , and functions at tn possess the subscript n.

A crucial requirement for all methods is that the computed solutions are (nearly) free of spurious oscilla-
tions, see [37] for a competitive study of such methods.

4.2.1 A total variation diminishing essentially non-oscillatory (TVD-ENO) finite difference method

In the numerical studies presented below, the combination of a third-order TVD Runge–Kutta scheme and a
third-order ENO scheme is included. The appearance of spurious oscillations cannot be excluded with this
method. But if such oscillations appear, they are generally small.

Write Eq. (3) in the generic form ∂ f/∂t = F(t, f ). Then, an optimal third-order TVD Runge–Kutta
method has the form [38]

k1 = F(tn, fn),

k2 = F(tn +�t, fn +�tk1),

k3 = F

(
tn + �t

2
, fn + �t

4
k1 + �t

4
k2

)
,

fn+1 = fn +�t

(
k1

6
+ k2

6
+ 4k3

6

)
.

(11)

The first-order derivatives on the right-hand side of (11) are approximated by finite differences. The basic
idea of ENO schemes consists in constructing several interpolation polynomials of a certain order and using
as approximation the smoothest polynomial.

Consider for simplicity of notation a one-dimensional situation. For a third-order ENO scheme, the seven
nodes xi−3 < xi−2 < · · · < xi+3 are used. Let P1(x) be the polynomial that interpolates the function f at the
nodes {xi , xi+1, xi+2, xi+3}, P2(x) be the polynomial based on the nodes {xi−1, xi , xi+1, xi+2}, P3(x) be the
polynomial based on the nodes {xi−2, xi−1, xi , xi+1}, and finally P4(x) be the polynomial based on the nodes
{xi−3, xi−2, xi−1, xi }. If necessary, Dirichlet boundary conditions are extended off the domain to define values
for the interpolations. Then, fx (tn, xi ) will be approximated by one of the values (Pj )x (xi ), j = 1, . . . , 4.
Depending on the direction of the convection at xi , one of the polynomials P1(x) and P4(x) is not needed.
Hence, this scheme has a stencil with the six nodes {xi−3, . . . , xi+2} or {xi−2, . . . , xi+3}.

Let the convection at xi be nonnegative. The ENO strategy tries to find the smoothest approximation. As
first smoothness indicator, a quantity is compared, which is proportional to the absolute value of the second
derivative of the second-order polynomials through the nodes {xi−2, xi−1, xi }, and {xi−1, xi , xi+1}, respec-
tively. Let the interpolation polynomial through {xi−1, xi , xi+1} be the smoother one. Then, in the second
step, a quantity is compared, which is proportional to the absolute value of the third derivative at xi of the
polynomials P2(x) and P3(x). The smaller value gives the index j , which defines the approximation (Pj )x (xi )
of fx (tn, xi ). All other cases are treated in the same way, see [37] for a detailed algorithm.

4.2.2 A linear Crank–Nicolson finite element flux-corrected transport (CN-FCT) method

A linear finite element FCT scheme in combination with the Crank–Nicolson scheme has been shown to
deliver the best ratio of accuracy and efficiency in numerical studies of stabilized finite element methods for
transport-dominated problems in [39,40]. For this reason, two variants of this method will be included in the
numerical studies. This section describes the basic ideas of this method and a standard realization.

Consider a continuous 4-linear finite element space Q1 with the basis {ϕi }N
i=1. The starting point of CN-FCT

is the discretization of (3) with the Crank-Nicolson scheme in time and the Galerkin finite element method in
space. This step leads to an algebraic equation of the form

(
MC + �t

2
A

)
fn+1 =

(
MC − �t

2
A

)
fn + �t

2
(cn + cn+1). (12)
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Here, (MC )i j = (ϕ j , ϕi )
N
i, j=1 is the consistent mass matrix and A is the matrix of the Galerkin discret-

ization of the transport terms in (3). In our implementation, A is assembled with udrop,n+1. The DSD is
a Q1 finite element function and fn = ( f1,n, . . . , fN ,n)

T denotes the vector of nodal unknowns, that is,
f (tn, x, d) = ∑N

j=1 f j,nϕ j (x, d). The values for the coalescence integrals are computed in the vertices of the
mesh cells. For this reason, the term of the coalescence integrals can be interpreted as a Q1 finite element
function. That means, there is a representation of the form C+,n + C−,n = ∑N

j=1 c̃ j,nϕ j (x, d). With this
representation, the finite element right-hand side becomes

(C+,n + C−,n, ϕi )
N
i=1 =

⎛

⎝
N∑

j=1

c̃ j,n(ϕ j , ϕi )

⎞

⎠

N

i=1

=: cn .

Discretization (12) is instable for transport-dominated problems. The FCT methodology changes in the
first step the matrix to a stable matrix. This step introduces a large amount of diffusion. In the second step, this
diffusion is removed where it is not needed by modifying the right-hand side of (12). For the definition of the
stable matrix, let

L = A + D,

D =
{− max{0, ai j , a ji } = min{0,−ai j ,−a ji } for i �= j,

− ∑N
j=1, j �=i di j , for i = j,

ML = diag(mi ), mi =
N∑

j=1

mi j .

The diagonal matrix ML is called lumped mass matrix. The over-diffusive discretization after the first step has
the form

(
ML + �t

2
L

)
fn+1 =

(
ML − �t

2
L

)
fn + �t

2
(cn + cn+1). (13)

The system matrix possesses properties of an M-matrix.
The linear FCT scheme adds to the right-hand side of (13) an anti-diffusive contribution c∗(fn). This term

is defined with the help of the residual vector, which is the difference of (13) and (12). A straightforward
calculation leads to the following representation of this vector

r = (ML − MC ) (fn+1 − fn)+ �t

2
D(fn+1 + fn).

Then, the modification of the right-hand side of (13) is given by

c∗(fn) =
⎛

⎝
N∑

j=1

αi j ri j

⎞

⎠

N

i=1

, (14)

with the weights αi j ∈ [0, 1]. FCT methods determine these weights in such a way that they become close
to one in smooth regions (this recovers the Galerkin finite element method) and that they are close to zero at
layers (this recovers the stable low-order scheme). The so-called fluxes are defined by a decomposition of the
residual vector ri = ∑N

j=1 ri j with

ri j =
[

mi j
[
( fn+1,i − fn+1, j )− ( fn,i − fn, j )

]

− �t

2
di j

[
( fn+1,i − fn+1, j )+ ( fn,i − fn, j )

]
]

= 2mi j
[
( fn+1/2,i − fn,i )− ( fn+1/2, j − fn, j )

] −�tdi j
[
( fn+1/2,i − fn+1/2, j )

]
, (15)

where fn+1/2 = (fn+1 + fn)/2.
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The linear finite element FCT scheme, which will be used, is a special case of one of the schemes presented
in [41]. In this scheme, the vector fn+1/2 in the flux ri j is replaced by an approximation that is computed with
an explicit scheme. To this end, the forward Euler scheme with the length of the time step�t/2 is used, which
is applied in combination with the low-order method (13). The result obtained with this scheme is inserted
into (15). Note that this predictor step is performed with an explicit method such that a CFL condition applies,
see [41].

The computation of the weights uses Zalesak’s algorithm [42]. This algorithm is described and discussed
also in [43]. In the simulations presented below, the version of Zalesak’s algorithm is used, which is given
in [37].

The linear system (13) with the modification (14) of the right-hand side is solved with a BiCGSTAB method
with an SSOR preconditioner [44]. Very few iterations were always necessary for decreasing the Euclidean
norm of the residual vector below 10−12.

The matrix A depends on the time-dependent velocity field udrop. Hence, a new matrix is needed in every
discrete time. The standard approach consists in assembling this matrix over and over again using the bilinear
form

4∑

k=1

N∑

j=1

(
vk∂kϕ j , ϕi

)
(16)

for the matrix entry (i, j). Here, vk stands for the convection, that is, for udrop or for the growth. For the form
(16), the divergence of udrop is assumed to be small. In fact, in the simulations, udrop is the sum of interpolations
of experimental data and a finite element approximation of a turbulent flow field. Because the interpolations
of the experimental data are constant in �, they are divergence-free. The computed flow field is discretely
divergence-free, but not pointwise. Hence, the divergence-free constraint will be violated somewhat but it can
be assumed that this violation is small.

In our implementation, a two-point Gaussian quadrature rule in each dimension is used to keep the quad-
rature errors for (16) sufficiently small. This quadrature rule possesses 16 quadrature points in each 4D mesh
cell. In the simulations, it turned out that the assembling of A took much longer than all other operations that
were performed in the simulation of the DSD.

4.2.3 A linear Crank–Nicolson group finite element FCT (CN-GFCT) method

The most serious drawback of CN-FCT is the computational cost that arises in the assembling of the matrices.
This section presents an alternative approach to obtain the matrices, which is much more economical and
which leads to very similar results. It is called group finite element method and it was proposed, for example,
in [45]. The group finite element method was applied in combination with FCT schemes already, for example,
in [41,43].

Let

∇ · (udrop f )+ ∂

∂d

(a

d
f
)

= ∇ · (v f ), (17)

where for simplicity of notation the fourth component of v is the growth rate a/d and the divergence is defined
in four dimensions. The velocity udrop is considered to be divergence-free, see above for a discussion of this
point.

The basic idea of the group finite element method consists in not only using f as variable in (3) but to use for
(17) the group (v f ) as finite element variable (v f )h = ∑N

j=1(v j f j )ϕ j , where v j are the degrees of freedom
of the convection and f j are the unknown degrees of freedom of the DSD. Inserting this ansatz in (17) gives

(v f ) ≈ (v f )h =
4∑

k=1

⎛

⎝
N∑

j=1

(∂kϕ j , ϕi )(v j )k f j

⎞

⎠ . (18)

The matrices Bk = (∂kϕ j , ϕi )
N
i, j=1, k = 1, . . . , 4 have to be assembled only once. To obtain the approximation

of the transport matrices from (18), Bk has to be multiplied with the k-th component of the convection.
Instead of applying numerical quadrature, an approximation of the transport matrices is obtained by some

multiplications of pre-computed matrices and the current convection vectors in the group finite element method.
Comparing (16) with (18), one can see that in the group finite element method, the value of the convection at
the node j is used instead of the values at the quadrature points around the node j in the standard approach.
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4.3 Computation of the coalescence term

Let 0 = d0 < d1 = dmin < · · · < dM = dmax be the grid points with respect to the internal coordinate. As
explained above, the grid point d0 is introduced for the application of boundary conditions with respect to the
internal coordinate and f (d) vanishes in (d0, d1). The DSD is assumed to be continuous within each interval.

4.3.1 Standard numerical quadrature

The simplest approach consists in using quadrature formulas for the evaluation of the integrals (4)–(7). In our
simulations, Gaussian quadrature formulas are used with three, four, or five quadrature points for each interval
[di , di+1]. The results were always rather similar.

The use of standard quadrature formulas possesses disadvantages. The source term is of convolution type
and the application of a time-consuming double loop over the intervals of the internal coordinates is necessary.
If the diameter formulation (6) is used, then the term in the integral is almost singular for d ′ close to d . Because
the DSD f is set to zero for diameters smaller than dmin, it is prevented that the term in the integral becomes
in fact singular.

4.3.2 Pre-computation of certain integrals

The basic idea of this approximation of the integrals consists in approximating the DSD within each interval
[di , di+1] by a single value. Then, this value of the DSD can be written outside the integrals and integration
of only the kernel is necessary. Since the kernel is known, these integrals can be computed in a preprocessing
step.

This approach will be illustrated exemplarily for the sink term (7) where the dependency of the DSD on
time and space is neglected for simplicity of presentation. The sink term at the diameter d j , j ∈ {1, . . . ,M},
is approximated as follows

f (d j )

dmax∫

dmin

κcol(d j , d) f (d ′) dd ′ = f (d j )

M−1∑

i=1

di+1∫

di

κcol(d j , d ′) f (d ′) dd ′

≈ f (d j )

M−1∑

i=1

f (di+1)+ f (di )

2

di+1∫

di

κcol(d j , d ′) dd ′.

For the integral of the kernel holds

di+1∫

di

κcol(d j , d ′) dd ′ = Cbrown
2kB T

3μ

di+1∫

di

(
d + d ′)

(
1

d
+ 1

d ′

)
dd ′

+Cshear
√

2∇udrop : ∇udrop

di+1∫

di

(
d + d ′)3

dd ′,

i = 1, . . . ,M −1. Since the grid with respect to the internal coordinate is given, the integrals on the right-hand
side can be computed in a preprocessing step. A similar approach can be performed for the source term.

For the pre-computation of the integrals, the package MAPLE was used because it was not possible to
evaluate all integrals analytically. The numerical computation of the integrals in MAPLE was performed with
the option to be exact for 14 digits.

4.3.3 A mass-conserving method for computing convolution integrals

The method, which was developed in [46–48], will be applied to the volume formulations of the coalescence
terms (4) and (5). One of its main properties is the conservation of mass. For this feature, the use of special
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grids with respect to the internal coordinate is necessary. This method was used in the simulations of the urea
synthesis in [49].

In the studied situations, much more small droplets are contained in the flow than large droplets. For this
reason, it might be advantageous to use a grid for the DSD, which is refined toward the smallest droplets.
The requirement of the used method is that this grid is locally uniform with respect to the internal coordi-
nate, which is here the volume of the droplets. A grid with the following property fulfills this requirement:
|Vi+1 − Vi |/|Vi − Vi−1| = l, l ∈ {1, 2}, i = 1, . . . ,M − 1, where | · | denotes the length of an interval. On
such a grid, a piecewise linear ansatz space S for the DSD is chosen.

A property of the kernel, which is exploited in the method, is its separability, that is, the collision kernel
can be written in the form κcol(V, V ′) = ∑k

i=1 ai (V )bi (V ′). Then, the coalescence term becomes

C(V ) = C+(V )+ C−(V )

= 1

2

V∫

0

κcol(V − V ′, V ′) fV (V − V ′) fV (V
′) dV ′ − fV (V )

Vmax∫

0

κcol(V, V ′) fV (V
′) dV ′

=
k∑

i=1

⎡

⎣1

2

V∫

0

ai (V − V ′)bi (V
′) fV (V − V ′) fV (V

′)dV ′

− fV (V )ai (V )

Vmax∫

0

bi (V
′) fV (V

′) dV ′
⎤

⎦ .

The difficult part is the evaluation of the source term since it is the sum of convolutions ϕi ∗ψi , where ϕi = ai f
and ψi = bi f . The functions ai (V ) and bi (V ) are approximated by piecewise constants on the same grid as
fV (V ). Legendre polynomials are used as an orthonormal basis of S. Special properties of these polynomials
allow the computation of the convolution with the complexity O(M log M). Essentially, some discrete convo-
lutions with the fast Fourier transform have to be computed. For details of the rather involved algorithm, see
[46–48].

The exact convolution ωexact = ∑M
i=1 ϕi ∗ψi does not belong to the space S. In the simulations presented

below, the L2 projection ωcomp of ωexact into the ansatz space is used. Since ωexact − ωcomp is L2 orthogonal
to all piecewise linear functions, one gets for all intervals [Vi , Vi+1]

massi (ωexact) =
Vi+1∫

Vi

V ′ωexact(V
′) dV ′ =

Vi+1∫

Vi

V ′ωcomp(V
′) dV ′ = massi (ωcomp),

that is, the mass (volume) is locally preserved. However, a change in total mass might occur from the fact
that the support of the convolution is larger than the support of the convolved functions. In the case of coa-
lescence, only nonnegative contributions will be neglected by not considering the complete support of the
convolution such that the mass will always decrease. To avoid the decrease in mass, the following correction
to the coalescence term is applied

C(V ) := C(V )− mass(C(V ))
2

V 2
max − V 2

min

.

Then, although local mass conservation is violated, the total mass of the computed coalescence term is zero,
which is in accordance with the physics. Other forms of corrections to obtain mass conservation are possible.
But the presented way turned out to be the best in our studies, see also the discussion of this topic in [49].

5 Numerical studies

The numerical studies presented below were performed with the code MooNMD [50]. They are based on
non-dimensional equations using the following reference values

l∞ = 1 m, u∞ = 1 m/s, t∞ = l∞
u∞

s, p∞ = ρu2∞ Pa, f∞ = 1012 no./m4.
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Fig. 4 Snapshot of the stream-wise component of the velocity field. The mean profile of the velocity field is due to the experimental
setup, see [13]

The minimal diameter of the droplets is set to be dmin = 10−6 m, which corresponds to the smallest droplets
in the experiments.

A hexahedral grid consisting of 51 × 46 × 19 nodes, which is equi-distant in each direction, is used for
the triangulation of �. With this grid, the positions of the measurement points are located at nodes. Since the
computational domain is away from the walls of the wind tunnel, the boundary layers at these walls are outside
the computational domain. For this reason, an equi-distant grid can be used. For the internal coordinate, two
types of grids are considered. The first one is essentially uniform with the 89 nodes at (0, 1, 3, 5, . . . , 175) µm.
Hence, the nodes coincide with the diameters for which experimental data are available. The number of nodes
of the 4D grid for the DSD is 3,967,086, which corresponds to the number of degrees of freedom for the
Q1 finite element method. For this grid, the value d∞ = dmax = 175 × 10−6 m is used. The second grid is
refined toward small diameters. It consists of 94 nodes and the local refinement is performed as described in
the presentation of the mass-conserving integration scheme. Because quite long intervals are used for large
particles, the simulations are performed on a somewhat larger domain with respect to the internal coordinate
using d∞ = dmax = 249 × 10−6 m. With the used grid, [124.5 × 10−6, 249 × 10−6] m is just covered with
three intervals. This grid possesses 4,189,956 nodes.

All simulations are performed in the time interval [0, 1] s and the data are averaged in [0.5, 1] s. The length
of the time step is set to be �t = 10−3 s.

A snapshot of the flow field is presented in Fig. 4. The Q2/Pdisc
1 leads to 1,020,201 velocity degrees of

freedom and to 162,000 pressure degrees of freedom. The number of degrees of freedom for the projection
space changes during the adaption process. It was around 125,000 for each component of the symmetric tensor.
Because of the imposed stochastic perturbation at the inlet �in, the temporal variation of the minimal and max-
imal value of the stream-wise velocity is quite large. From the mean value of the stream-wise velocity, it can
be deduced that the average residence time of a droplet in the measurement section is less than 0.25 s. Hence,
a fully developed process is obtained in the time interval for computing the averaged data. It can be seen that
the flow is basically unidirectional in x-direction. It follows that the droplets are transported essentially from
the inlet to the outlet. In addition, it was already observed in [13] that different turbulence models possess
only a small impact on the computed quantities of interest. We think that the unidirectionality of the flow is
an essential reason for this behavior.

Results for different discretizations for the temporal derivative and the spatial derivative of the transport
terms in Eq. (3) for the DSD are presented in Fig. 5 and Table 1. The curve for the finite difference scheme
TVD-ENO fits very well to the time-space-averaged experimental data. This is not surprising since the fit of
the model parameters Cbrown and Cshear in the kernel (8) was performed with TVD-ENO in [13]. The results
of CN-FCT and CN-GFCT are similar, but too few small droplets are predicted. This effect can be explained
by the smearing, which is introduced by CN-FCT and CN-GFCT if the convection is aligned with the grid, see
Appendix A for more details. If the fitting of the model parameters is done with CN-FCT or CN-GFCT, we
could observe that then Cbrown = 1 × 106, instead of Cbrown = 1.5 × 106, would lead to a better agreement of
experimental data and numerical results. This observation demonstrates the influence of numerical methods on
the calibration of model parameters. The parameters were fitted with a trial-and-error strategy. An automatic
parameter design requires the embedding of the population balance system in an optimization problem. To the
best of our knowledge, this approach is not yet studied in the literature so far.

Figure 6 and Table 2 present the effect on the time-space-averaged data of using a log-normal interpo-
lation of the inlet boundary condition for the DSD in each measurement point. A shift of the peak toward

Author's personal copy



266 R. Bordás et al.

Fig. 5 Comparison of discretizations for temporal and transport-dominated spatial derivatives, uniform grid for DSD, pre-com-
puted integrals for coalescence

Table 1 Mode (value where maximum is taken), maximum, and computing time per time step for different discretizations of the
temporal and spatial derivatives, uniform grid for DSD, pre-computed integrals for coalescence

Method Mode (m) Maximum (no./m4) Comp. time (s)

Experimental data outlet 9 × 10−6 9.0987 × 1013

TVD-ENO 9 × 10−6 9.0006 × 1013 140
CN-FCT 9 × 10−6 8.7379 × 1013 995
CN-GFCT 9 × 10−6 8.6794 × 1013 322

Fig. 6 Time-space-averaged inlet condition for the DSD

smaller droplets can be observed. This shift is still present in the computed results at the outlet, see Fig. 7. The
approximations of the DSD for droplets with diameter in [10, 25] µm is considerably worse for the log-normal
interpolation compared with using the data and nodes of the experiment directly. Also in this case, we could
observe that it is possible to obtain results for the log-normal interpolation that are closer to the experiments
by using different model parameters Cbrown and Cshear.

The effect of applying different methods for computing the coalescence integrals is studied in Figs. 8,
9, and in Tables 3, 4. It can be seen that the choice of this method possesses only little influence on the
time-space-averaged DSD at the outlet.

Computing times per time step for different methods are given in Tables 1, 3, and 4. The simulation of the
flow field takes around 100 s. As expected, the finite difference method with explicit time-stepping scheme is
faster than the finite element methods with implicit temporal discretization. CN-GFCT takes more than twice
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Table 2 Mode and maximum for different approximations of the space-averaged inlet boundary condition for the DSD

Method Mode (m) Maximum (no./m4)

Experimental data inlet 7 × 10−6 1.1560 × 1014

Log-normal interpolation, adaptive grid 6.0688 × 10−6 1.1767 × 1014

Fig. 7 Comparison of different approximations of the inlet boundary condition for the DSD with TVD-ENO (left) and CN-GFCT
(right), pre-computed integrals

Fig. 8 Comparison of Gaussian quadrature methods for computing the coalescence of droplets, with TVD-ENO (left) and CN-
GFCT (right), adaptive grid with log-normal interpolation for DSD

as long as TVD-ENO. The by far slowest scheme is CN-FCT, whose simulation time is three times longer than
CN-GFCT. With respect to the method for computing the coalescence, it can be seen that Gaussian quadrature
is the least efficient approach. The application of the method with pre-computed integrals is fastest.

6 Summary and outlook

The numerical studies presented in Sect. 5 reveal that the use of different numerical methods for solving Eq. (3)
for the DSD might possess a non-negligible impact on the computed time-space-averaged DSD at the outlet.
Unlike [10,11], where more sensitive outputs of interest were studied, the changes are rather quantitative than
qualitative. For the considered problem, the interpolation of the inlet boundary condition and the discretization
of the temporal and transport-dominated first-order spatial derivatives have the most significant influence on the
numerical results. Different choices of the method for computing the coalescence integrals lead to very similar
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Fig. 9 Comparison of different methods for computing the coalescence of droplets, with TVD-ENO (left) and CN-GFCT (right),
adaptive grid with log-normal interpolation for DSD

Table 3 Mode, maximum, and computing time per time step for different methods for computing the coalescence integrals,
TVD-ENO, log-normal interpolation

Method Mode (m) Maximum (no./m4) Comp. time (s)

Gauss3 7.0697 × 10−6 8.6010 × 1013 271
Gauss4 7.0697 × 10−6 8.5887 × 1013 309
Gauss5 7.0697 × 10−6 8.6096 × 1013 338
Pre-computed integrals 7.0697 × 10−6 8.5981 × 1013 174
Mass-conserving method 7.0697 × 10−6 8.5434 × 1013 215

Table 4 Mode, maximum, and computing time per time step for different methods for computing the coalescence integrals,
CN-GFCT, log-normal interpolation

Method Mode (m) Maximum (no./m4) Comp. time (s)

Gauss3 7.4425 × 10−6 8.6318 × 1013 376
Gauss4 7.4425 × 10−6 8.6165 × 1013 414
Gauss5 7.4425 × 10−6 8.6285 × 1013 442
Pre-computed integrals 7.4425 × 10−6 8.6196 × 1013 276
Mass-conserving method 7.4425 × 10−6 8.5768 × 1013 303

results. However, this situation might change if long-term simulations are performed where, for example, the
loss of mass in some methods might become crucial.

This paper studied a situation where the DSD is defined in a 4D tensor product domain and where the grid
could be easily aligned with the main flow direction. For this situation, the use of TVD-ENO together with the
mass-conserving quadrature method for the coalescence integrals can be recommended as numerical method
for solving the equation for the DSD.

An interesting extension of the studies is the consideration of more sensitive outputs of interest. It can
be expected that in such situations, larger differences can be observed if different methods are used. The
difficulty consists in assessing the computational results, see also [10,11], since it will be hard to obtain
experimental data for such outputs. Another important topic is the inclusion of moment-based methods and
operator-splitting schemes into the studies to quantify the differences in accuracy. Finally, the consideration
of more complicated flow domains is of interest. Such domains lead to non-tensor product domains for the
DSD such that the application of finite difference schemes becomes harder. These topics will be pursued next
in our future work.
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Fig. 10 Three-dimensional convection–diffusion problem with log-normal profile at the inlet; left picture: TVD-ENO, right
picture: CN-GFCT; solution after a complete transport of the inlet condition to the outlet; left plane: inlet (x = 0), center plane:
x = 0.5, right plane: outlet x = 1

Appendix A: On the smoothing introduced by the FCT schemes on aligned grids

In the comparative study of discretizations for evolutionary convection–diffusion equations [37], a rather
pathological two-dimensional example was presented were the FCT schemes computed extremely smeared
solutions. In this example, an impulse was transported along a grid line. The explanation for this behavior is
that the example is essentially one-dimensional but the FCT approach is multi-dimensional. A dimensional
splitting of the FCT approach would lead to better solutions.

This appendix shows that a strong smearing of solutions computed with the FCT schemes occurs also in
situations that are similar to the setup of the DSD Eq. (3). To this end, consider an evolutionary convection–
diffusion equation with the diffusion 10−6, the convection (1, 0, 0)T , and the right-hand side equal to zero in
(0, 1)3. On the inflow boundary x = 0, a Dirichlet boundary condition with a log-normal profile

f (z) =
⎧
⎨

⎩

2√
2πσ z

exp

(
− ln2(z)

2σ 2

)
with σ = 2, z ∈ (10−6, 1]

0 else

is prescribed for all times. For z = 0, homogeneous Dirichlet boundary conditions and on all other boundaries,
homogeneous Neumann conditions are used. At the initial time, the solution is prescribed to fulfill the Dirichlet
boundary condition and it is set to zero elsewhere in the domain.

With this setup, the inlet boundary condition should be transported from the inlet to the outlet within one
time unit and with very little smearing. The grid is chosen to consist of 32 × 32 × 32 cubes. Thus, it is aligned
to the convection. This situation is very desirable in flow simulations.

The inlet condition and the results at the outlet for the different methods are presented in Fig. 10. It can
be clearly seen that the TVD-ENO scheme works well but the CN-FCT scheme gives a considerably smeared
solution. The construction of this example is similar to the setup of the DSD equation (without coalescence)
and one can see a similar smearing of the solution as in Fig. 5.

Altogether, the FEM-FCT schemes do not work well if convection and grid are aligned. Probably, one
can improve the situation in the way described above. However, this raises the question how to detect the
subregions where the dimensional splitting should be used and where not.
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