
Computers & Fluids 66 (2012) 52–62
Contents lists available at SciVerse ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid
Measurement and simulation of a droplet population in a turbulent flow field

Róbert Bordás a,1, Volker John b,c, Ellen Schmeyer b,2, Dominique Thévenin a,⇑
a Lab. of Fluid Dynamics & Technical Flows, University of Magdeburg ‘‘Otto von Guericke’’, Magdeburg, Germany
b Weierstrass Institute for Applied Analysis and Stochastics, Leibniz Institute in Forschungsverbund Berlin e.V., Berlin, Germany
c Department of Mathematics and Computer Science, Free University of Berlin, Berlin, Germany

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 March 2011
Received in revised form 24 April 2012
Accepted 7 May 2012
Available online 30 May 2012

Keywords:
Two-phase turbulent flow
Disperse droplet population
Non-intrusive measurements
Population balance systems
Variational multiscale method
0045-7930/$ - see front matter � 2012 Elsevier Ltd. A
http://dx.doi.org/10.1016/j.compfluid.2012.05.003

⇑ Corresponding author.
E-mail addresses: bordas@ovgu.de (R. Bordás)

(V. John), ellen.schmeyer@wias-berlin.de (E. Sc
(D. Thévenin).

1 The work of R. Bordás was supported by Grant
priority programme 1276 MetStröm: Multiple Sca
Meteorology.

2 The work of E. Schmeyer was supported by Gra
priority programme 1276 MetStröm: Multiple Sca
Meteorology.
The interaction of a disperse droplet population (spray) in a turbulent flow field has been investigated by
combining wind tunnel experiments with simulations based on a population balance system. The behav-
ior of the droplets is modeled numerically by a population balance equation. Velocities of the air and of
the droplets are determined by non-intrusive measurements. A direct discretization of the 4D equation
for the droplet size distribution is used in the simulations. Important components of the numerical algo-
rithm are a variational multiscale method for turbulence modeling, stabilized finite difference schemes
for the 4D equation and a pre-processing approach to evaluate the collision integrals. The simulations
of this system accurately predict the modifications of the droplet size distribution from the inlet to the
outlet of the measurement section. Since the employed configuration is simple and considering that all
measurement data are freely available thanks to an internet-based repository, the considered experiment
is proposed as a benchmark problem for the simulation of disperse two-phase turbulent flows.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper detailed numerical simulations of systematic
experimental studies concerning droplet populations interacting
with a turbulent flow are presented. Such investigations are impor-
tant to characterize modifications in the Droplet Size Distribution
(DSD) resulting from droplet/droplet interactions induced by tur-
bulent structures.

Water droplets with an initial diameter up to 50 lm are in-
jected into a Göttingen-type wind tunnel with a closed test section.
Velocities of both phases (air and droplets) are carefully deter-
mined by means of non-intrusive measurement techniques. In this
way, suitable time-averaged boundary conditions and data are
available to validate corresponding numerical simulations.

All measurement data are collected in an online database acces-
sible at http://www.ovgu.de/isut/lss/metstroem. The raw measure-
ment results are further post-processed, so that all required data
are in a suitable form for comparisons and validation.
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The behavior of the droplet population is modeled by means of
a population balance system, consisting of the Navier–Stokes equa-
tions describing the air flow together with an additional equation
for the DSD. In this last equation, the transport, growth, and coales-
cence of droplets is taken into account. The DSD describes the spa-
tial evolution of the diameter of the droplets, the so-called internal
coordinate, such that the equation for the DSD is finally defined in
a 4D domain.

Population balance systems can be applied for modeling many
processes in engineering and nature, like precipitation and crystal-
lization processes, or rain formation. The development of accurate
and efficient numerical methods for such simulations is an active
field of research. Several suitable approaches have been proposed
in the literature. In particular, moment-based methods like the
quadrature method of moments (QMOM) [34], in which the equa-
tion in the 4D domain is replaced by a system of equations for the
moments defined in the 3D flow domain, appears promising. A
possible extension of QMOM is the direct quadrature method of
moments (DQMOM) [33]. Further, operator splitting techniques
have been studied recently [8], projecting the solution of the 4D
problem onto the solution of a 1D problem followed by the solu-
tion of a 3D problem. Moment-based approaches and operator
splitting schemes are beneficial, since the solution of the 4D equa-
tion is not needed any more. On the other hand, additional errors
are introduced.

In the present paper, a direct discretization of the 4D equation
for the DSD is retained, since the accuracy of the results is here
more important than the numerical efficiency of the simulations.
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Simulations based on the 4D equation can be found rather rarely in
the literature. However, with increasing hardware capabilities and
with modern numerical methods, this is an attractive approach
since it does not require any additional assumptions, e.g., for clos-
ing the system, and it does not introduce an additional modeling
error. In the used method, the turbulent flow field is simulated
fully implicitly. A variational multiscale (VMS) method is applied
for turbulence modeling. Several stabilized finite difference meth-
ods combined with explicit time stepping schemes are used as
temporal discretization for the population balance equation. A
pre-processing approach was applied to compute the collision
integrals. With this numerical approach, it will be shown that the
experimentally observed evolution of the DSD between the inlet
of the flow domain and its outlet can be reproduced accurately.
The sensitivity of the prediction with respect to varying numerical
methods is studied. To our best knowledge, the combination of the
used methods for simulating a population balance system cannot
be found so far in the literature.

The considered configuration corresponds to an experiment
proposed as a benchmark problem for the simulation of population
balance systems, since:

� all data are freely available in the online database at http://
www.ovgu.de/isut/lss/metstroem,
� the considered geometry and setup is simple,
� first numerical studies are already available, supporting the

accuracy of the experimental measurements.

The paper is organized as follows. The experimental setup is
first described in Section 2, followed by the measurements and
the post-processing procedure in Section 3. Section 4 describes
the population balance system used to model the experiments.
The numerical methods employed to simulate this setup are dis-
cussed in Section 5 and the simulation results are presented in Sec-
tion 6. A summary is given at the end of the paper.
2. Experimental setup

A special wind tunnel available at the laboratory of Fluid
Dynamics & Technical Flows has been used for the present exper-
imental investigation of disperse two-phase flows corresponding
to meteorological conditions found in cumulus clouds [4,5]. This
wind tunnel can be used to investigate a variety of two-phase
(air/liquid) flows [12], see Fig. 1. It is a fully computer-controlled,
Göttingen-type wind tunnel. Operation with a closed test section
enables the controlled and reproducible investigation of two-phase
Fig. 1. Left: Göttingen-type two-phase wind tunnel with closed test
mixtures in the test section. The test section is of size
H �W � L = 500 � 600 � 1500 mm. It includes a measurement
section of cross-section 450 � 500 mm whose windows are opti-
cally transparent in the visible spectrum. In this manner non-intru-
sive measurements are possible, which is essential for high-quality
experimental investigations of such flows.

The disperse phase was added to the air flow with the help of an
injection system. The sprays were actuated by means of eccentric
screw pumps. The number of revolutions per minute (rpm) was
set with the help of a frequency regulator to a prescribed value
by means of a Proportional Integral Derivative (PID) regulation
coded in LabView�. In order to investigate rain formation and
cloud droplet interactions a full cone pneumatic atomizing nozzle
was used (Type 166.208.16.12 from the company Lechler GmbH),
relying on the liquid pressure principle and applying an air gauge
pressure of 1.2 bar [3].

Since the influence of the support of the injection system could
be noticed especially in the upper half of the measurement section,
the measurement area was finally restricted to the lower half of
the cross-section, see Fig. 2. The resulting velocity inhomogeneity
of the air flow was then below 5% with a turbulence intensity be-
low 7% (mean value of 2.4%). The selected nozzle shows a typical
six-hole spray pattern caused by the six orifices in the nozzle. In or-
der to reduce the influence of this pattern, the water was injected
in counter-flow direction. In this way, the droplets were more
homogeneously distributed, and the relative velocity difference be-
tween continuous and dispersed flow at the entrance of the mea-
surement section was decreased, suppressing to a large extent
the six-hole pattern.
3. Measurement procedure

The longitudinal coordinate of the beginning of the measure-
ment section is defined as x = 0 mm. Different measurement planes
perpendicular to the main flow direction were investigated, at
x = 0 mm, x = 200 mm, and x = 400 mm, see Fig. 1. The first plane
at x = 0 mm was measured particularly thoroughly, since it pro-
vides the information needed for the boundary condition of the
numerical simulations.

Experimental measurements were systematically carried out by
means of non-intrusive measurement techniques. Therefore, a
small quantity of suitable tracer particles must be added to the
flow. Such particles follow the structures of the continuous phase
much better [1,2] than the considered droplets, allowing an indi-
rect measure of the gas flow properties. For this reason, the veloc-
ities of both phases were measured in two separate steps.
section. Right: test section, with measurement planes colored.
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Fig. 2. Mean axial velocity distribution of the air flow at the inlet (x = 0 mm) of the
measurement section, 630 mm downstream of the spray injection nozzle. The circle
denotes the region with a noticeable influence of the injection mount and the
dashed square the finally selected measurement region.
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The velocity distribution of the air phase at the entrance plane
(x = 0 mm) was measured by means of Laser-Doppler Velocimetry
(LDV). During these measurements in the continuous phase, the
nozzle was operating at the same pressure as in normal (spray)
operation, but only with air and without water. Since the mass
flow rate of air and water entering the nozzle are similar for nor-
mal operation conditions, _ma= _mw ¼ 0:4, only minor flow changes
should be induced by this necessary operation.

In order to define the locations of the measurement points for
the Laser-Doppler Velocimetry and the Phase-Doppler Anemome-
try (PDA) techniques, a measurement grid was generated with
874 (19 in z-direction � 46 in y-direction) measurement points,
with 10 mm distance in each direction between them. LDV and
PDA measurements lead to a high temporal resolution. Thus, the
velocity components measured in the mean flow direction
(Fig. 3) included the temporal fluctuations as well. In this way,
the determination of turbulence intensity was also possible.

The measured mean velocity of the air flow was U = 2.45 m/s.
Based on U and on the hydraulic diameter of the wind tunnel
(DH = 0.5454 m), the Reynolds number of the flow is

Re ¼ U � DH

m
¼ 8:7� 104:

The measured fluctuation of the air flow velocity in main flow direc-
tion was in the average u0 = 0.25 m/s. This leads to a mean turbu-
lence intensity of 10.9%.

The energy cascade of a turbulent flow can be estimated by
post-processing PIV measurement results, as discussed for instance
in [4]. Using this technique, the longitudinal integral length scale
L11 = 6.56 cm was derived for the present case.

The properties of the disperse phase (water spray) were then
measured separately in the three vertical planes at x = 0 mm,
Fig. 3. Mean longitudinal velocity distribution of the air phase at x = 0 mm,
measured by means of LDV.
x = 200 mm, and x = 400 mm, of course using the same measure-
ment grid as previously. For a characterization of the considered
two-phase flow, the arithmetic mean diameter (D10) of the water
droplets is particularly important.

Velocities measured by PDA are based on the same principles as
LDV. However, using PDA the simultaneous measurement of the
diameter and the velocity values is possible. This allowed the
investigation of the velocity-diameter correlation, as exemplified
in Fig. 4. The different flow response of the droplets can be noticed
in this scatter plot. Due to noticeably smaller Stokes numbers, the
small droplets follow much more closely the fluctuations of the
turbulent flow and are therefore associated with larger velocity
fluctuations, while larger droplets tend to gather around the mean
velocity value [4]. Calculating the droplet Stokes number St from
the droplet properties, the integral length scale and the RMS veloc-
ity fluctuations, a maximum value of St = 0.07 is found. As a conse-
quence, the influence of random uncorrelated particle motion
(RUM) can be neglected in this configuration [38].

Having the velocity values of both phases, the relative velocity
difference of the droplets can finally be calculated. This was found
to be 0.3 m/s in average at x = 0 mm. This value reduced as ex-
pected to 0.15 m/s as the droplets reached the final measurement
plane x = 400 mm, showing that the droplets are slightly accelerat-
ing on the way from the inlet to the outlet plane. The mean velocity
of the droplets, measured by means of PDA for the planes x = 0 mm,
x = 200 mm and x = 400 mm, is shown in Fig. 5. The data at
x = 0 mm were used, in combination with the turbulent air flow,
to extrapolate the velocity of the droplets udrop from the inlet plane
to the whole domain, see Section 4.

Boundary conditions for the droplet size distribution at
x = 0 mm have to be derived from the measurements in order to
start the companion simulations. At the outlet boundary
(x = 400 mm), experimental data are needed as well for compari-
son purposes. Therefore, a corresponding post-processing of the
PDA measurements is necessary to obtain values for the number
density or droplet concentration n [40,44]. In the present work,
the approach described in [14] was finally applied, improved by
a factor gvi allowing to correct errors due to multiple particles
occurring in the detection volume or to non-validation of particles,
as described in [41]. The droplet size dependent calculation of the
detection volume [41] was applied as well. Thus, the number den-
sity is finally obtained by

n ¼ 1
Tacq

XNsv

i¼1

gvi � tres;i

Vdet
; ð1Þ
Fig. 4. Velocity-diameter correlation of the water droplets at the point x = 0, y = 5,
z = 0.



Fig. 5. Mean droplet velocity distribution in the planes x = 0 mm, x = 200 mm, and
x = 400 mm measured by means of PDA.

Fig. 7. Probability density function of the calculated droplet number density as a
function of the size class, including the measured standard deviation as an error bar.
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where Tacq is the acquisition time at a given measurement position,
Nsv is the number of validated PDA-signals, gvi is the correction fac-
tor described before, tres,i is the residence time of the ith droplet and
Vdet is the size of the PDA detection volume. The PDA detection vol-
ume is droplet size dependent and thus is a function of the droplet
velocity and of the burst duration in the detection volume.

The average mean droplet number density per unit volume was
finally measured to be 2000 no./cm3 at x = 0 mm. The correspond-
ing distribution of the mean values is presented in Fig. 6. Theoret-
ically, with a droplet injection rate of 0.1 l/min and a mean droplet
diameter of 12.5 lm, the corresponding droplet number density
per unit volume should be indeed approximately 2000 no./cm3,
supporting the experimental measurements. This droplet number
density per unit volume is in the range of typical values found in
cumulus clouds [31].

The determination of the probability density function nk(dk) is
the key link between experimental data and numerical simula-
tions. The corresponding post-processing was performed with a
MATLAB� script, using the previously exported measurement
raw data, and allowing both the computation of the probability
density function of the droplet number density (nk(dk)) and its
standard deviation (rn,k). The droplets are divided into classes
(dk) with a diameter resolution of 2 lm. The number density is
computed separately for each size class using Eq. (1). In addition,
the number density was calculated for different time scales by
dividing the whole acquisition time Tacq into time intervals Dt.
In this manner, the standard deviation rn,k can be calculated
with
Fig. 6. Droplet number density per unit volume in no./cm3 at x = 0 mm, post-
processed from the PDA results.
rn;k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Tacq

XTacq=Dt

j¼1
n2

k;j � Dt
� �

� n2
k

s
:

The input data for the simulations are then the droplet concentra-
tion as a function of the droplet diameter, together with the corre-
sponding standard deviation, as shown in Fig. 7 for the entrance
plane (x = 0 mm).

4. Numerical model of the process

The experiment was modeled using a coupled system consisting
of the Navier–Stokes equations for describing the air flow and a
population balance equation modeling the behavior of the droplet
size distribution. Only the lower half of the test section was simu-
lated, in agreement with the experimental approach described pre-
viously, see again Fig. 2.

Boundary conditions for the flow field have to be prescribed at
the whole boundary of the domain used in the simulations. It is not
clear if the used outflow boundary condition, associated with zero
normal stresses, introduces a noticeable modeling error. For this
reason, the domain for the simulations was chosen to be somewhat
longer than the real measurement domain, so that the outflow
boundary condition did not influence the computational results
at the locations where comparisons are possible. The computa-
tional domain was set to be X = (0,500) � (�225,225) �
(�180,0) mm3 for x, y and z, respectively, with z corresponding to
standard elevation.

The incompressible Navier–Stokes equations have the form

qut � 2lr �DðuÞ þ qðu � rÞuþrp ¼ 0 inð0; teÞ �X;

r � u ¼ 0 inð0; teÞ �X;
ð2Þ

where u (m/s) is the fluid velocity vector, p (Pa) is the pressure,
q = 1.2041 kg/m3, assumed to be constant due to the extremely
low Mach number considered here, is the density of air at
293.15 K, l = 18.15 � 10�6 kg/(m s) is the dynamic viscosity of air
at the same temperature, DðuÞ ¼ ðruþ ðruÞTÞ=2 is the velocity
deformation tensor, and te denotes the final time. The gravitational
acceleration term was included into the pressure.

The Navier–Stokes equations, Eq. (2) have to be equipped with
boundary conditions and an initial condition. The inlet condition at
Cin = {0} � (�225, 225) � (�180, 0) was directly prescribed using
the time-averaged experimental velocity uexp(0, y, z) and standard
deviation rexp(0, y, z):
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uðt;0; y; zÞ ¼ uexpð0; y; zÞ
þ randðt;0; y; zÞrexpð0; y; zÞe1 on ð0; teÞ � Cin; ð3Þ

where e1 is the Cartesian unit vector in x direction and rand (t, 0, y,
z) is a normally distributed random number. The computation of
the random number was finally performed with the method pro-
posed in [32], where the random number in a node is correlated
to the random numbers of a prescribed number of neighbor nodes
and to the local random numbers used at some previous discrete
times. The second and third component of the inlet velocity were
set to be zero. At the outlet Cout = {500} � (�225, 225) � (�180,
0), outflow boundary conditions

2mDðuÞ � pIð Þ � n ¼ 0 on ð0; teÞ � Cout;

were used. Here, n denotes the outward pointing normal vector on
the boundary. Along the top boundary Ctop = {0,500} � (�225,
225) � {0}[m3], a free slip boundary condition without penetration
was implemented

u � n ¼ 0 on ð0; teÞ � Ctop;

nTð2mDðuÞ � pIÞsk ¼ 0 on ð0; teÞ � Ctop; k ¼ 1;2;

where (n, s1, s2) is an orthonormal system of vectors. This boundary
condition models a symmetry plane. On all other boundaries
C = @Xn(Cin [ Cout [ Ctop), free slip with penetration conditions
were used

nTð2mDðuÞ � pIÞn ¼ 0 on ð0; teÞ � C;

nTð2mDðuÞ � pIÞsk ¼ 0 on ð0; teÞ � C; k ¼ 1;2:

These boundary conditions model the case that there are fluctua-
tions on C which are directed inside and outside the domain. This
corresponds to the experimental setup since the boundaries of the
measured volume are slightly away from the walls of the wind tun-
nel. To obtain an initial condition, the flow was simulated until it
was fully developed. An instantaneous flow field was then saved
and used as initial flow field in all simulations.

The DSD was modeled by a population balance equation. This
model includes transport, growth, and coalescence of droplets. It
has the form

@f
@t
þ @

@d
a
d

f
� �

þr � ðf udropÞ

¼ d2

2

Z d

dmin

jcolððd3 � ðd0Þ3Þ1=3;d0Þ
ðd3 � d03Þ2=3 f ð�; ðd3 � ðd0Þ3Þ1=3Þf ð�;d0Þ dd0

� f ð�;dÞ
Z dmax

dmin

jcolðd;d0Þf ð�;d0Þ dd0 in ð0; teÞ �X� ðdmin;dmaxÞ;

ð4Þ

where f (m4) is the droplet size distribution, d (m) is the diameter of
the droplets with d 2 [dmin, dmax], udrop (m/s) is the velocity of the
droplets, a (m2/s) is the growth rate, and jcol (m3/s) is the collision
kernel. The transport due to random uncorrelated motion (RUM) is
not taken into account in Eq. (4), since it is negligible in the present
case, as discussed previously.

The experimental data for the air velocity and for the droplet
velocity at the plane x = 0 m were extrapolated constantly into X,
e.g., udrop,exp(x, y, z) = udrop,exp(0, y, z) for all x 2 [0, 0.5] m. These val-
ues were subtracted from the experimental data of the time-aver-
aged velocity of air, giving a time-averaged velocity difference
between continuous (air) and the disperse (water droplets) phases.
This difference was subtracted from the first component of the
velocity of air computed by the Navier–Stokes equations, Eqs. (2)
to define the first (longitudinal) component of the droplet velocity
udrop

ðudropÞ1 :¼ extrapolðudrop;expÞ þ ðuair;simÞ1 � extrapolðuair;expÞ:
The other components of the droplet velocity were just prescribed
as the velocity components coming from the solution of Eq. (2).
With the described approach, the turbulent character of the flow
field computed with Eq. (2) can be carried over to udrop.

A model for the growth rate was derived in [39] by considering
individual droplets

a ¼ 4ðS� 1Þ
L

RmT � 1
� �

LqL
KT þ

qLRmT
DesðTÞ

h i ;

where S is the saturation, L = 2.453 � 106 J/kg the latent heat,
Rm = 461.5 J/(kg K) is the gas constant for water vapor, T = 293.15 K
is the temperature, qL = 998.21 kg/m3 is the density of water,
K = 2.55 � 10�2J/(ms K) is the thermal conductivity of air at the con-
sidered temperature [39], D = 2.52 � 10�5 m2/s is the diffusion coef-
ficient of water vapor in air at T = 293.15 K and 100 kPa [39], and
es(T) = 2338.54 Pa is the equilibrium vapor pressure at 293.15 K.
The factor 4 occurs in the previous equation because the diameter
of the droplets was considered instead of the radius, as in [39]. In
all present simulations, a super saturation of 1% (S = 1.01) was as-
sumed, which is a typical value for clouds (see Chapter 13 in [36])
and corresponds to an estimation of the maximum value found in
the wind tunnel experiments, leading to

a ¼ 5:0613 � 10�12 m2=s:

The model employed for the coalescence follows [17,35]. The first
term models the production of droplets of diameter d due to the
coalescence of smaller droplets. The second term in the model ac-
counts for the disappearance of droplets of diameter d because of
their coalescence with other droplets. For the collision kernel j
(m3/s), the two main physical processes (Brownian motion and
shear) were combined, leading to the sum of two contributions

jcolðd;d0Þ ¼ Cbrown
2kBT
3l
ðdþ d0Þ 1

d
þ 1

d0

� �
þ Cshear

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rudrop : rudrop

q
ðdþ d0Þ3: ð5Þ

Here, kB = 1.3806510�23 J/K is the Boltzmann constant. The two
dimensionless model parameters, Cbrown and Cshear, will be later cal-
ibrated by fitting the numerical results to experimental data.

The experimental data obtained for the droplet number density
n (in no./cm3), see Eq. (1), had to be converted first to a droplet size
distribution f (in no./m4). This was achieved in the following way.
For each class, the number of drops ni (in no./cm3) was experimen-
tally given as well as its standard deviation rn,i (in no./cm3). Fol-
lowing for instance [39] (Eq. 2.3.2), the total number of drops per
unit volume of physical space is given by

ntotðt; xÞ ¼
Z dmax

dmin

f ðt; x; dÞ dd:

For the time–averaged values at the inlet, it is

ntot;inðxÞ ¼
Z dmax

dmin

fin;expðx;dÞ dd ¼
Xnd

i¼0

ni: ð6Þ

Assuming fin,exp(x, d) to be for each (x, d) a continuous function, the
composite midpoint rule of numerical quadrature gives

Z dmax

dmin

fin;expðx;dÞ dd ¼
Xnd

i¼0

Z diþ1

di

fin;expðx; dÞ dd

�
Xnd

i¼0

ðdiþ1 � diÞfin;expðx; diþ1=2Þ: ð7Þ
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From Eqs. (6) and (7) it follows that

fin;expðx;diþ1=2Þ �
ni

diþ1 � di

no:
lm cm3

� �
¼ 1012 ni

diþ1 � di

no:
m4

h i
: ð8Þ

For the conversion of the experimental number density to the drop-
let size distribution, equality in the first step of relation Eq. (8) was
assumed and the droplet size distribution was linearly interpolated.
The standard deviation was scaled the same way, i.e.,

rf ;iðx; diþ1=2Þ ¼ 1012 rn;i

diþ1 � di

no:
m4

h i
:

The initial condition was given by

f ð0;x;dÞ ¼ 0 in X� ðdmin; dmaxÞ;

i.e. there were no droplets in the flow domain.
Due to the boundary conditions for the flow field at the bound-

ary C, which allow fluctuations on C to be directed outside the do-
main, droplets might leave the computational domain. The
transport of droplets through the lateral walls because of fluctua-
tions which are directed into the domain was not taken into ac-
count since no experimental data were available for this process.
In all numerical studies, it turned out that the loss of droplets
due to the outflow through the lateral boundaries was negligible.
In addition, because of the positive growth rate, a boundary condi-
tion for the smallest droplet size dmin is necessary, as a simple
model for the nucleation of droplets. For this issue, experimental
data were not available. To circumvent this difficulty, an artificial
smallest diameter of the droplets was introduced, dmin, art = 0 m,
and the boundary condition for the inlet was finally set to be

f ðt;x; dÞ ¼
fin;expð0;x; dÞ þ randðt;xÞrf ðx; dÞ; x ¼ ð0; y; zÞ 2 Cin;

0; at d ¼ dmin;art;

	
t 2 ð0; teÞ;

where white noise was used for computing rand (t, x). Here, the
computation of the random number was performed with the Box–
Muller scheme. The boundary condition of the DSD at the inlet
was thus defined as a normally distributed perturbation of the
time-averaged experimental data which was linearly interpolated.
In [dmin,art, dmin), the DSD was set to be f(d) = 0. Values of the DSD
for such small parameters are needed in the production term of
the collision integral since (d3 � (d0)3)1/3 tends to zero for d0 ? d.
This definition prevents the kernel and the terms in the integrals
from being singular.

5. Numerical methods

The numerical studies presented below were based on non-
dimensional equations using the following reference values

l1 ¼ 1 m; u1 ¼ 1 m=s; t1 ¼
l1
u1

s; p1 ¼ qu2
1 Pa;

f1 ¼ 1012 1=m4; d1 ¼ dmax ¼ 1:71� 10�4 m:

The minimal diameter of the droplets was taken from the experi-
mental data to be dmin = 10�6 m.

The domain X was triangulated with a 50 � 45 � 18 hexahedral
grid, equi-distant in each direction. With this grid, the positions of
the measurement points were located at nodes. In addition, the
mesh for the internal coordinate was chosen in such a way that a
direct fitting of the experimental data was possible. Since the data
were given for equi-distributed diameters, the grid for the internal
coordinate was defined in the same way. Only the interval (0, dmin)
had a different length.

An implicit time stepping scheme and an inf-sup stable finite
element method formed the basis of the discretization of the Na-
vier–Stokes Eq. (2). As time stepping scheme, the Crank–Nicolson
method was applied. This scheme is widely used since it leads to
a good compromise between accuracy and efficiency [26]. The
length of the equi-distant time step was set to be Dt = 0.001 s or
alternatively Dt = 0.0005 s with a final time te = 1 s.

After having applied the Crank–Nicolson scheme and a fixed
point iteration as linearization, the equations were discretized in
each discrete time with the Q2=Pdisc

1 finite element method. Hence,
the velocity was approximated with continuous piecewise second-
order polynomials and the pressure with discontinuous piecewise
linear functions. This pair of finite element spaces has been identi-
fied as one of the best performing finite element approaches for the
simulation of incompressible Navier–Stokes equations in numer-
ous studies [11,18,20]. On the used grid, this finite element discret-
ization leads to 1020201 degrees of freedom for the velocity and to
162000 degrees of freedom for the pressure. The implementation
of the slip and penetration boundary conditions in the framework
of finite element methods is described in [19].

Since the flow is turbulent, numerical simulations require the
application of a turbulence model. In the simulation presented in
Section 6, a finite element variational multiscale (VMS) method
was applied [6,7]. In VMS methods, the scale separation is obtained
by projections into appropriate function spaces. In this way, re-
solved large scales P�u, resolved small scales ðI � PÞ�u, and unre-
solved scales u0 are defined, where u ¼ P�uþ ðI � PÞ�uþ u0, P is an
L2–projector, and I is the identity operator. The resolved scales �u
will be simulated. The idea of scale separation in resolved and
unresolved scales is like in traditional large eddy simulation
(LES). However, the application of a projection for defining the
scale separation is a fundamental difference to LES, as in LES the
large scales are defined by spatial averaging. There are meanwhile
a number of realizations of VMS methods, see [9,28] for overviews.
A number of studies show that the VMS approach is competitive
with LES methods and that it leads often even to better results
[10,16,37].

In the simulations presented below, the method from [22] was
applied, together with the extension of choosing the projection
space adaptively which was introduced in [24]. The VMS methods
from [22,24] require the definition of a tensor-valued projection
space and the use of an eddy viscosity model. In the method from
[22], the local projection space is the same in the whole domain.
Usually, piecewise constant tensors (VMS-P0) or discontinuous
piecewise linear tensors are applied. Experience shows that the
constant tensors should be preferred [23,28]. An a posteriori and
locally adaptive choice of the projection space was proposed in
[24]. This choice is based on an indicator for the local turbulence
intensity. In the simulations presented in Section 6, the same
parameters in the adaption process were used as suggested in [24].

A main feature of the projection–based VMS methods is that the
eddy viscosity model acts directly only on the resolved small
scales. This is another fundamental difference to LES methods,
where the eddy viscosity model acts on all resolved scales. In a
number of studies, it was observed that rather simple eddy viscos-
ity models applied within the framework of VMS methods often
lead to good results [10,15]. In the simulations presented below,
the static Smagorinsky model CSd

2kDð�uÞk from [43], was used,
with CS = 0.005 and d being the length of the shortest edge of a
mesh cell.

The number of grid points for discretizing the equation for the
DSD was 3 967 086. In [29,30], it was shown that different discret-
izations for this equation might lead to different results for quan-
tities of interest. Considering that the residence time of the
droplets in the domain is rather short (such that only small differ-
ences of the results obtained with different discretizations can be
expected), that finite element methods are quite expensive in high
dimensions (in particular stabilized methods and variational mul-



Fig. 8. Instantaneous velocity field obtained from a simulation: magnitude of the velocity vector (left) and Q-criterion (right). The inflow boundary of the measurement
section (x = 0 mm) is on the left hand side (front part of the picture). The symmetry plane lies on top of the graphical representation.

Fig. 9. Calibration of the model parameters Cbrown and Cshear, with VMS-ADAP, RK-ENO, and Dt = 0.001. The green curves are the averaged experimental data at the outlet of
the measurement volume.

Fig. 10. Impact of the growth term in Eq. (4) on the DSD, simulations with VMS-
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tiscale methods), and that the DSD is defined in a 4D tensor-prod-
uct domain, we applied finite difference methods for the discreti-
zation of (4): simple upwinding with forward Euler time-
stepping (FWE–UPW), simple upwinding with the backward Euler
scheme (BWE–UPW), and an essentially non-oscillatory (ENO)
scheme of order three with an optimal, explicit, third order, total
variation diminishing (TVD) Runge–Kutta method (RK-ENO). The
last scheme has been shown to deliver a good ratio between accu-
racy and efficiency in recent studies [27]. It was preferably used in
the numerical simulations presented below. For the temporal dis-
cretization of (4), the same time steps were applied as they were
used in the temporal discretization of the Navier–Stokes equations.

The evaluation of the collision integrals on the right hand side of
Eq. (4) was based on a pre-processing step. This step will now be
described exemplarily for the second term in Eq. (4). In this discus-
sion, the dependency of the DSD on time and space will be
neglected.

Let 0 = d0 < d1 = dmin < � � � < dN = dmax be the grid points with re-
spect to the internal coordinate. As explained above, f(d) vanishes
in (d0, d1). Otherwise, the DSD was assumed to be continuous.
ADAP, RK-ENO, Cshear = 0.1, and Dt = 0.001.1



Fig. 11. Sensitivity of the space–time averaged DSD. Upper left: with respect to Dt, with VMS-ADAP, RK-ENO. Upper right: with respect to the turbulence model, with RK-ENO
and Dt = 0.001. Bottom: with respect to the discretization of the equation for the DSD, with VMS-ADAP and Dt = 0.001. Note that some curves are hardly visible since they lay
on top of each other.
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Then, the integral for the second term in Eq. (4) at the diameter dj,
j 2 {1, . . . , N}, was approximated by

f ðdjÞ
Z dmax

dmin

jcolðdj; dÞf ðd0Þ dd0 ¼ f ðdjÞ
XN�1

i¼1

Z diþ1

di

jcolðdj; d
0Þf ðd0Þ dd0

� f ðdjÞ
XN�1

i¼1

f ðdiþ1Þ þ f ðdiÞ
2

�
Z diþ1

di

jcolðdj;d
0Þ dd0:

The remaining integrals depend only on the kernel and the grid for
the internal coordinate
Z diþ1

di

jcolðdj;d
0Þ dd0 ¼ Cbrown

2kBT
3l

Z diþ1

di

ðdþ d0Þ 1
d
þ 1

d0

� �
dd0

þ Cshear

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rudrop : rudrop

q Z diþ1

di

ðdþ d0Þ3 dd0;
i = 1, . . . , N � 1. Since the grid is given, the integrals on the right
hand side can be computed in a pre-processing step. A similar ap-
proach can be performed for the first integral in Eq. (4). For the eval-
uation of the integrals, the package MAPLE was used, since it was
not possible to evaluate all integrals analytically. The numerical
computation of the integrals in MAPLE was performed with the op-
tion to be exact for 14 digits.

Each step of the fixed point iteration for the implicitly discret-
ized Navier–Stokes equations requires the solution of a linear sad-
dle point problem. These problems were solved iteratively with a
preconditioned flexible GMRES method [42]. As preconditioner,
the multiplicative Vanka method [45], which is a block Gauss–Sei-
del scheme, was applied. A similar approach, where the Vanka
method was embedded as smoother in a multigrid method, has
been proved to be an efficient solver for inf-sup stable finite ele-
ment discretizations of incompressible Navier–Stokes equations,
see [21] and the references therein. Note that in the present exam-
ple the construction of the grid, such that the nodes correspond to
the measurement points, prevented the use of a multigrid method
since coarse grids are not available.



Fig. 12. Experimental results at outlet: peak value of the DSD in no./m4 (left) and corresponding droplet diameter for which this value is attained (right). Same scales as
Fig. 13.
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Using the backward Euler scheme for the temporal discretiza-
tion of the equation for the DSD (4) likewise requires the solution
of a linear system of equations in each discrete time. These systems
were also solved iteratively with the BiCGStab method [42] and the
SSOR method as preconditioner. Generally, only few iterations
were necessary since the solution from the previous discrete time
constituted a good initial iterate for the short time steps employed
during integration.

6. Numerical studies

The purposes of the numerical studies were twofold. On the one
hand, several features of the employed models will be investigated,
like appropriate values for the model constants of the collision ker-
nel. Additionally, the impact of the different numerical methods
from Section 5 on the computed results will be studied. Such inves-
tigations are useful to quantify the sensitivity of the results with
respect to the numerical schemes.

All simulations were performed with the code MooNMD [25] on
a HP BL680c computer with 2400 MHz Xeon processors. The used
code is an academic research code including many finite element
Fig. 13. Simulated results at outlet: peak value of the DSD in no./m4 (left) and correspo
UPW; middle: using BWE-UPW; bottom: using RK-ENO. All simulations with VMS-ADA
methods and applicable to several classes of problems. Hence it
is not specifically optimized for the considered application. In addi-
tion, parallelization has not been completed yet. The simulation of
one time step required between 130 and 250 s, depending on the
method.

Fig. 8 presents an instantaneous view of the computed velocity
field together with the Q-criterion [13] applied to the velocity field.
It can be clearly seen that the flow in the center of the channel is
slower due to the nozzle mount placed upstream of the measure-
ment section. The residence time of a droplet in the measurement
volume is typically below 0.5 s.

The first purpose of the numerical studies was the calibration of
the unknown parameters Cbrown and Cshear in the collision kernel,
Eq. (5). The calibration was performed by fitting the computed
DSD to the experimental data. From the experiments, the DSD
was available at each measurement point of the outlet plane
(x = 400 mm). Due to the turbulent character of the flow, the exper-
imental data, which are already time-averaged, differ notably at
measurement points. For this reason, an averaging in space was ap-
plied to the data, leading to one space–time-averaged curve to
compare with. The same space–time-averaging was applied to
nding droplet diameter for which this value is attained (right). On top: using FWE-
P, Cbrown = 1.5 � 106, Cshear = 0.1, and Dt = 0.001. Same scales as Fig. 12.
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the computational results as well, with a time-averaging per-
formed in the interval [0.5,1] s.

Fig. 9 presents results for the calibration of the parameters
Cbrown and Cshear. After a manual trial and error procedure, it has
been found that for appropriately chosen parameters, i.e.,
Cbrown ’ 1.5 � 106 and Cshear ’ 0.1, the change of the droplet size
distribution observed in the experiments from the inlet to the out-
let is very well reproduced by the numerical simulations. Consider-
ing the order of magnitude difference between Cbrown and Cshear,
one should keep in mind that the term of the collision kernel refer-
ring to Brownian motion contains as well the extremely small fac-
tor kB, see Eq.(5). For small droplets, the last factor in this term
becomes large so that in this case the collision associated to
Brownian motion dominates, as expected from the physics. On
the other hand, for larger droplets (typically for d J 7 lm),
shear-induced collision and hence the parameter Cshear becomes
essential to fit the experimental data correctly. It should be noted
that the used model for the DSD possesses only one direction,
namely that larger droplets are created from smaller ones, by coa-
lescence or by growth. Hence, a good prediction of the small drop-
lets is a necessary basis for a good prediction of the large droplets.

A second aspect of the investigated model is the importance of
growth and coalescence. From the setup of the experiments, it can
be expected that coalescence is the dominating mechanism. This
dominance was numerically verified by comparing results without
the growth term in Eq. (4) and with including this term using a
realistic value for the supersaturation. Fig. 10 shows that the im-
pact of the growth term on the simulated DSDs is in fact negligible.

Last, studies will be presented on the impact of using different
numerical methods on outputs of interest. The sensitivity of the
computed space–time-averaged DSD with respect to the various
numerical methods is illustrated in Fig. 11. It can be seen that nei-
ther the length of the time step, nor the turbulence model, nor the
discretization of the equation for the DSD lead to noticeable differ-
ences in the results. Hence, the computational results for the
space–time-averaged DSD at the outlet are rather insensitive with
respect to the applied numerical methods.

More details of the computed DSDs can be studied by consider-
ing for instance the time-average of the DSDs at the outlet plane
(x = 400 mm). Figs. 12 and 13 present a comparison between
experimental and numerical data obtained for this quantity of
interest. The main experimental features (peak of the DSD for lar-
ger droplets at the outlet, while peak values become smaller) cor-
respond well to the space–time-averaged curves presented in
Figs. 9–11.

The results obtained with different numerical methods for dis-
cretizing the DSD are compared in Fig. 13. All results are physically
correct: the maximal values of the DSDs decrease and the corre-
sponding diameters increase. However, slight differences appear
depending on the method when comparing to the experimental
data. One reason might be that the random perturbation at the in-
let is only an approximation of the physical phenomena occurring
in the experiments. Furthermore, the experimental measurements
are associated as well with some level of uncertainty. As a whole,
there are only little differences between the numerical results ob-
tained with FWE–UPW and BWE–UPW. Using RK-ENO, slightly
higher peak values are obtained. This result is due to the property
that the ENO discretization is less diffusive than the upwind meth-
od [27].
7. Summary

The properties of a turbulent two-phase flow (air with a spray of
water droplets smaller than 50 lm in diameter) has been experi-
mentally investigated in a dedicated wind tunnel. The velocity of
both phases have been measured as well as the Droplet Size
Distribution for different positions within the test section. The
droplet diameters measured as a function of time have been con-
verted into a droplet number density as a function of different size
classes using a post-processing method. The velocity of the air
flow, including its temporal change is used as boundary condition
for the continuous phase at the inlet, which is modeled by the Na-
vier–Stokes equations. The turbulent flow field is simulated by a fi-
nite element variational multiscale (VMS) method.

The measured droplet size distribution (in the form of number
density) and velocity information are used in the simulations both
as inflow boundary condition for the disperse phase and for a
quantitative comparison between experiments and numerical pre-
dictions at the outlet. The evolution of the droplet population is
modeled by an equation for the DSD, including transport, growth,
and coalescence of droplets. The equation for the DSD is defined di-
rectly in a 4D domain, including the diameter of the droplets, to be
able to perform accurate simulations.

After calibrating the unknown parameters of the collision ker-
nel by fitting the computed DSD to experimental data, the resulting
comparison between experiments and simulations is very promis-
ing. With appropriately chosen parameters, only small differences
could be observed for the space–time-averaged DSDs at the outlet
computed with different numerical schemes.

The developed computational procedure will now be used to
investigate in more detail similar issues of increasing complexity,
first considering the interaction between two sprays with different
initial Droplet Size Distributions, in order to quantify the observed
modifications concerning droplet collisions. The influence of the
saturation parameter will also be investigated, in parallel to corre-
sponding experiments in the same setup.
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