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The performance of several numerical schemes for discretizing convection-dominated convection–diffu-
sion equations will be investigated with respect to accuracy and efficiency. Accuracy is considered in
measures which are of interest in applications. The study includes an exponentially fitted finite volume
scheme, the Streamline-Upwind Petrov–Galerkin (SUPG) finite element method, a spurious oscillations at
layers diminishing (SOLD) finite element method, a finite element method with continuous interior pen-
alty (CIP) stabilization, a discontinuous Galerkin (DG) finite element method, and a total variation dimin-
ishing finite element method (FEMTVD). A detailed assessment of the schemes based on the Hemker
example will be presented.
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1. Introduction The development and analysis of numerical schemes for solving
Scalar convection–diffusion equations model the transport of
species by diffusion and convection. In many applications,
convection is larger by orders of magnitude than diffusion, which
is challenging from the numerical point of view. Therefore, it is
crucial to identify appropriate methods for the accurate and efficient
numerical solution of convection-dominated convection–diffusion
equations.

Let X � Rd; d 2 f2;3g, be a domain with boundary oX. A stea-
dy-state linear scalar convection–diffusion equation has the form

�eDuþ b � ru ¼ f in X; u ¼ ub on @X; ð1Þ

where e > 0 is the diffusion coefficient and b(x) is the convection
field. For simplicity of presentation, the equation is equipped with
Dirichlet conditions on the whole boundary.

Note that reaction is not included in (1). It is well known that
dominating reaction leads to different instabilities than dominating
diffusion [12,16]. This paper will study only discretizations which
were developed for the convection-dominated regime.
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equations of form (1) in the case of dominant convection have al-
ready a long tradition. Overviews of the state of the art for many
approaches can be found in [33,39]. However, there is still no
method that has been proven to be a universal choice in applica-
tions. This unsatisfactory situation stimulated considerably the re-
search during the last decade, and a number of methods have been
proposed or studied in detail. Several methods possess additional
computational overhead, e.g., due to the solution of non-linear
equations or to the use of extended matrix stencils. Sometimes,
methods combine concepts from different approaches for discret-
izing partial differential equations, like finite volume methods
and finite element methods.

Numerical analysis considers generally the accuracy of discret-
izations with respect to certain norms of vector or function spaces.
However, in practical applications, such norms are often of minor
interest, while other properties, like positivity preservation or
mass conservation, become much more important. If the unknown
quantity is a concentration or a density, then a method that does
not guarantee positiveness, e.g., due to spurious oscillations
(undershoots), is often of little usefulness in practice. If a given pro-
cess conserves mass or if the equation fulfills a maximum princi-
ple, then the choice of a numerical method in applications is
often motivated by the desire that the discrete equation should in-
herit these important properties, or at least, approximate them
well. For linear discretizations, the preservation of qualitative
properties usually restricts the freedom in the choice of the used
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Fig. 1. Snapshot of a boundary conforming Delaunay grid. The boundary is marked
by a bold line. Voronoi boxes are shown around an interior point P_i and a
boundary point P_b. Note that the circumcenters C_1 and C_2 are situated outside
their corresponding triangles T_1 and T_2.
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mesh family, which can pose severe difficulties for mesh genera-
tors. This aspect is one reason to consider also non-linear schemes.
Last but not least, the costs of a numerical scheme are of interest in
applications. Altogether, the wishes on numerical schemes include
high accuracy (with respect to appropriate measures), the presence
of properties from physics in the discrete solution, and reasonable
computational costs.

The current paper studies several discretizations which are
based on the finite volume or the finite element methodology.

As finite volume scheme, an exponentially fitted scheme is con-
sidered [13], which is sometimes called Scharfetter–Gummel
scheme. Based on a Delaunay triangulation, fluxes between control
volumes (Voronoi boxes) are computed by an application of the
one-dimensional Il’in–Allen–Southwell formula [33].

The most popular finite element method for solving (1) is cer-
tainly the Streamline-Upwind Petrov–Galerkin (SUPG) or Stream-
line-Diffusion finite element method (SDFEM), introduced in
[4,18]. This method adds artificial diffusion in streamline direction
by means of a residual-based stabilization term.

Finite element schemes that add to the SUPG scheme another
stabilization term acting in crosswind direction are called shock
capturing or, more precisely, spurious oscillations at layers dimin-
ishing (SOLD) methods. These methods are in general non-linear.
The numerical investigations include one of the best SOLD meth-
ods from recent studies for the P1 and Q1 finite element [21,23],
which was proposed in [29]. This method will be used here also
with higher order finite elements.

An alternative to residual-based stabilizations are continuous
interior penalty (CIP) methods. These methods achieve stability
by penalizing the jumps of the first derivative of the computed
solution across faces of the mesh cells. They have been proposed
in [9] and analyzed in [7].

Discontinuous Galerkin (DG) methods combine ideas from fi-
nite elements (variational formulation, piecewise polynomial solu-
tion) and from finite volumes (discontinuous solution). A
stabilization is introduced in these methods by the localization of
the ansatz and test functions. In the presented numerical studies,
a method which was proposed in [28] will be included.

Last, a total variation diminishing finite element method (FEM-
TVD) proposed in [30] will be studied. Also this scheme combines
ideas from finite element methods (variational formulation, piece-
wise polynomial solution) and from finite volume methods (con-
sideration of fluxes). In contrast to the finite element schemes
mentioned above, the FEMTVD scheme introduces the stabilization
by manipulations at the algebraic level (matrices and vectors) and
not by modifying the bilinear form or the finite element spaces.

There are even more proposals of stabilized methods, see [33]
for an overview, which are not included in the studies presented
in this paper. Among these methods are Galerkin least squares
methods, residual-free bubble finite element methods, local pro-
jection stabilization schemes, and methods whose construction re-
quires extensive a priori knowledge about the solution. Schemes
from the last class, like the tailored finite point method [15] or
layer-adapted schemes with Shishkin or Bakhvalov meshes, are
from our point of view unsuitable to be used in applications. How-
ever, in our opinion, the considered schemes include most of the
important finite volume and finite element approaches for solving
steady-state convection-dominated scalar equations.

The considered schemes were studied at a number of examples
and a large amount of data was collected. Of course, the assess-
ment of a multitude of different discretizations with respect to
the properties given above cannot be done comprehensively in a
single paper of reasonable length. Some characteristic results had
to be selected for presentation. Instead of discussing several exam-
ples shortly, we decided to present the assessment of the methods
at one example in detail. This example, the so-called Hemker
problem [17], allows the physical interpretation of a heat flux from
a circular body in the direction of the convection. It possesses sev-
eral features which are often present in applications, like non-
straight boundaries, a boundary layer, and interior layers. During
the evaluation of the results, it turned out that the advantages
and drawbacks of the considered discretizations can be highlighted
quite well with this example. References to numerical studies at
other examples will be provided in the description of the methods.

The paper is organized as follows. Section 2 will introduce the
considered discretizations. The numerical studies are presented
in Section 3 and a summary is given in Section 4.

2. The studied stabilized discretizations

2.1. An exponentially fitted Voronoi box finite volume method

Consider a boundary conforming Delaunay triangulation [38] of
X into simplices. The vertices of this triangulation are denoted by
fxigN

i¼1. For the studied finite volume discretization, a secondary
grid of control volumes fVigN

i¼1 is constructed. The control volume
Vi around the vertex xi, also called the Voronoi box, is defined by

Vi ¼ x 2 X : jx� xij < jx� xjj; 1 6 j 6 N; j – i
� �

;

where j�j denotes the Euclidean norm of a vector. The boundary con-
forming Delaunay property of the triangulation allows the explicit
construction of Vi. If xi is situated in the interior of X, it suffices
to connect the circumcenters of the triangles adjacent to xi, see
Fig. 1. If xi is situated at the boundary, the lines connecting xi with
the adjacent edge midpoints, and the lines connecting these edge
midpoints with the circumcenters of the adjacent triangles are used
to describe the part of @Vi which belongs to oX, see Fig. 1. Note that
the property of the triangulation of being boundary conforming Del-
aunay is weaker than the condition to be weakly acute.

As the circumcenter of a triangle is the intersection point of its
mid-perpendiculars, one obtains that the edge connecting two
neighboring points xi and xj of the triangulation is orthogonal to
the corresponding part of boundary of the Voronoi box. This fact al-
lows to identify the normal direction of this boundary with the
direction of the line connecting xi and xj.

To define the discrete formulation, Eq. (1) is rewritten in diver-
gence form

r � ð�eruþ buÞ þ ~cu ¼ f in X; u ¼ ub on @X: ð2Þ

Clearly, (2) and (1) are identical for ~c ¼ �r � b.
The considered finite volume method (FVM) approximates the

solution of (2) by a piecewise constant function, whose degrees
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of freedom are assigned to the vertices fxigN
i¼1. Integrating (2) on X

givesZ
X
ðr � ð�eruþ buÞ þ ~cuÞdx ¼

Z
X

f dx;

XN

i¼1

Z
Vi

ðr � ð�eruþ buÞ þ ~cuÞdx ¼
XN

i¼1

Z
Vi

f dx;

XN

i¼1

Z
@Vi

ð�eruþ buÞ � ni dcþ
XN

i¼1

Z
Vi

~cudx ¼
XN

i¼1

Z
Vi

f dx: ð3Þ

The volume integrals in (3) are approximated by a simple quadra-
ture ruleZ

Vi

~cudx � ~cðxiÞuðxiÞjVij;
Z

Vi

f dx � f ðxiÞjVij;

with jVij being the measure of Vi. Denote by cij the planar part of the
boundary of the control volume between xi and its neighbor xj. By
construction, cij is perpendicular to hij = xj � xi. Hence, a unit nor-
mal on cij is given by nij = hij/jhijj. The intersection of hij and cij is
called xij. In a first step, the integrals on the boundaries of the con-
trol volumes in (3) are approximated by a simple quadrature ruleZ
@Vi

ð�eruþbuÞ �ni dc¼
XNi

j¼1

Z
cij

ð�eruþbuÞ �nij dc

�
XNi

j¼1

�e
jcijj
jhijj
ðuðxjÞ�uðxiÞÞþ

jcijj
jhijj
ðbuÞðxijÞ �hij:

In a second step, (bu)(xij) � hij has to be approximated by a numer-
ical flux. This approximation is essentially a one-dimensional prob-
lem defined on hij. The considered exponentially fitted scheme
treats convection and diffusion together. It is obtained with the help
of the Bernoulli function B(f) = f/(exp (f) � 1). The approximation
reads as follows

eðuðxjÞ � uðxiÞÞ þ ðbuÞðxijÞ � hij � eðBð�2PeðxijÞÞuðxiÞ
� Bð2PeðxijÞÞuðxjÞÞ;

where

PeðxÞ ¼ bijjhijj
2e

is the signed local Péclet number and

bij ¼
1
jcijj

Z
cij

b � nij dc

is the average normal flux of b through cij.
This scheme can be derived from the solution of a two point

boundary value problem involving convection and diffusion terms
projected on the grid edge joining xi and xj, see [10]. It corresponds
in one dimension to the Il’in–Allen–Southwell finite difference
scheme [1,20,33], also called, within the community of semicon-
ductor device simulations, Scharfetter–Gummel scheme [34].

Dirichlet boundary values are set directly in the vertices at the
boundary. In the case of homogeneous Neumann boundary condi-
tions, this approach yields a linear system of equations with a ma-
trix A which has column sum zero, non-positive off-diagonal
entries, and non-negative main diagonal entries, and whose graph
is connected. Setting at least one Dirichlet boundary condition
makes this matrix diagonally dominant, finally resulting in the
M-matrix property. Furthermore, if b is divergence-free in all inte-
rior nodes, all rows of the matrix have sum zero such that a local
maximum principle holds [13].

The foundations of a general convergence theory for finite
volume methods for elliptic problems, including the method
considered here, were laid in [11]. A short survey of literature,
information on orders of convergence, and numerical experiments
can be found in [14]. Here, it should be only mentioned that in gen-
eral, for H2 regular problems, the exponentially fitted scheme is
second order convergent on square meshes in the discrete L2 norm.
Experimental evidence [14] shows that for a number of cases on
triangular meshes, the exponentially fitted scheme is second order
convergent as well.

2.2. The SUPG finite element method

Finite element methods are based on the variational form of the
underlying equation. Consider a convection–diffusion equation of
form (1) and let ~ub 2 H1ðXÞ be an extension of the boundary condi-
tion ub. Multiplying (1) with a test function v 2 V ¼ H1

0ðXÞ, inte-
grating on X, and applying integration by parts to the diffusive
term lead to the variational problem: Find u 2 H1(X) such that
u� ~ub 2 V and

aðu;vÞ ¼ ðf ;vÞ 8v 2 V ð4Þ

with

aðu;vÞ ¼ eðru;rvÞ þ ðb � ru;vÞ:

The Galerkin finite element discretization is obtained from (4) by
replacing the space V by a finite element subspace Vh and by
approximating ~ub by a finite element interpolant ~ubh. Consider for
simplicity a conforming finite element method, i.e. Vh � V. Then,
the Galerkin finite element method reads: Find uh 2 H1(X) such that
uh � ~ubh 2 Vh and

aðuh;vhÞ ¼ ðf ;vhÞ 8vh 2 Vh:

It is well known that in the convection-dominated regime the
Galerkin finite element method often leads to solutions that are
globally polluted with spurious oscillations. A stabilization of this
method is necessary.

The SUPG method [4,18] is one of the most popular stabilized
finite element methods. Basically, this method adds diffusion in
the direction of the streamlines to the Galerkin finite element
method. It reads as follows: Find uh 2 H1(X) such that
uh � ~ubh 2 Vh and

aðuh;vhÞ þ
X
K2T h

ðRhðuhÞ; dK b � rvhÞK ¼ ðf ;vhÞ 8vh 2 Vh; ð5Þ

where T h denotes the triangulation of X, {K} are the mesh cells,

RhðuhÞ ¼ �eDhuh þ b � rhuh � f

is the residual of the strong form of the equation, the index h at the
differential operators denotes their restriction to a mesh cell K, dK

are the stabilization parameters, and (�, �)K denotes the L2(K) inner
product. Obviously, the SUPG method is a consistent, residual-based
stabilization.

Results concerning the numerical analysis of the SUPG method
are summarized in [33]. The analysis gives guidelines for the
choice of the stabilization parameters dK. Several possible choices
that can be used in practice were discussed in detail in [21]. In
the numerical studies presented in Section 3, the same type of sta-
bilization parameter is used as in [21]

dKðxÞ ¼
�hK

2pjbðxÞjnðPeKðxÞÞ; PeKðxÞ ¼
jbðxÞj�hK

2pe
; nðaÞ ¼ cotha� 1

a
;

where �hK is an approximation of the length of the mesh cell K in the
direction of the convection, see [21] for details, PeK is the local mesh
cell Péclet number, and p is the degree of the local finite element
space.

The properties of solutions computed with the SUPG method are
well known: the computed layers are quite sharp, but non-negligible
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spurious oscillations (under- and overshoots) appear in a vicinity of
the layers. In particular, positivity is not preserved which is some-
times a severe drawback of this method in the simulation of prob-
lems arising in physics or chemistry, see, e.g., [27].

2.3. SOLD methods

Because of the observation that solutions computed with the
SUPG method often possess spurious oscillations in a vicinity of
layers, a number of spurious oscillations at layers diminishing
(SOLD) methods have been developed, starting with [19]. One
can distinguish between isotropic and anisotropic SOLD methods.
The main idea of these methods consists in adding a stabilization
term to the SUPG method (5) that introduces also diffusion orthog-
onal to the streamlines, so-called crosswind diffusion. Generally,
this term is non-linear. A critical survey of these methods and a
number of numerical studies for the P1 and Q1 finite element can
be found in [21–23]. These studies showed that many SOLD meth-
ods, on the one hand, improve the accuracy of the solutions, com-
pared with the SUPG solution. But, on the other hand, none of the
proposed SOLD methods could universally compute solutions
without the undesirable features of SUPG solutions. The numerical
studies presented here will include one of the anisotropic SOLD
methods that has been proven to be among the best SOLD methods
in [21–23].

This method, proposed in [29] and modified in [21] (method
KLR02_3 in [21], C93 in [22]), adds a non-linear crosswind diffu-
sion to the SUPG method (5). It has the form: Find uh 2 H1(X) such
that uh � ~ubh 2 Vh and

aðuh;vhÞþ
X
K2T h

ðRhðuhÞ;dKb �rvhÞK þð~eDruh;rvhÞ¼ ðf ;vhÞ 8vh 2Vh;

with

D ¼
I � b�b

jbj2
if b – 0;

0 if b ¼ 0:

(
I being the identity tensor, and

~e ¼max 0;rsold
diamðKÞjRhðuhÞj

2jruhj
� e

� �
:

The parameter rsold has to be chosen by the user. Large values of
rsold introduce a rather large amount of crosswind diffusion and in-
crease the non-linearity of the discrete equation. In this case,
numerical studies in [23] showed that iterative schemes for solving
the non-linear equation need more iterations (or even fail to con-
verge) and the computational overhead increases. Moreover, it
was shown in [23] that a constant choice of rsold is in general not
optimal. Approaches for choosing the parameter appropriately in
a non-constant way are just under development [24]. To our best
knowledge, comprehensive numerical studies with this SOLD meth-
od and higher order finite elements cannot be found so far in the
literature.

2.4. A continuous interior penalty method

Continuous interior penalty (CIP) methods have been studied in
detail during the last decade for several types of equations, e.g., see
[5,7]. The basic idea of these methods consists in the penalization
of discontinuities across faces of the first derivative of the com-
puted solution.

The formulation of the considered CIP method reads as follows:
Find uh 2 H1(X) such that uh � ~ubh 2 Vh and

aðuh;vhÞþ
X
E2Eh

rciph2
Eðb � ½ruh�E;b � ½rvh�EÞE¼ðf ;vhÞ 8vh 2Vh; ð6Þ
where Eh is the set of all interior faces, hE is a measure of face E
(length of edge E in 2D), rcip is a user-chosen parameter, [�]E denotes
the jump of a function across E in the direction of the unit normal nE

½w�EðxÞ :¼ lim
s!0
ðwðxþ snEÞ �wðx� snEÞÞ; x 2 E;

and (�, �)E denotes the L2(E) inner product. Note that the definition of
the jump is not unique as there are two unit normals that differ in
their sign. However, it can be seen in (6) that the concrete choice of
nE does not play any role in the CIP method. The considered CIP
method (6) is the method abbreviated by ES in the numerical stud-
ies of [7].

Compared with the SUPG method, the formulation (6) possesses
two advantages: it does not introduce new non-symmetric terms
and it does not require the computation of second order deriva-
tives. However, the stabilization term establishes connections be-
tween all degrees of freedom on neighboring mesh cells. Hence,
the matrix stencil is denser compared with the SUPG method.
Extensive studies on the impact of the parameter rcip and compar-
isons with the SUPG method on a number of examples have been
carried out in [40].

Similarly to the SUPG method, a non-linear term of SOLD-type
can be added to the CIP method, as proposed in [6]. A main diffi-
culty in the application of this approach is that it contains two
user-chosen parameters rcip and rsold. We performed numerical
studies with the combination of the CIP method (6) and the SOLD
term ð~eDruh;rvhÞ introduced in Section 2.3. This SOLD term was
chosen because the term proposed in [6] was not among the best
approaches in [21]. It turned out that the results of the CIP-SOLD
method were generally worse than the results of the SOLD method
from Section 2.3. Thus, for the sake of brevity, the CIP-SOLD ap-
proach is not included in the numerical studies presented below.

2.5. Discontinuous Galerkin finite element methods, interior penalty
methods

Discontinuous Galerkin (DG) finite element methods approxi-
mate the solution with piecewise polynomial but discontinuous
functions. The coupling of the discontinuous functions occurs in
the bilinear form by means of integrals across the faces. To some
extent, these methods can be considered as a combination of ideas
from finite volume methods (discontinuous approximations) and
finite element methods (the basis is a variational formulation).

The presented numerical studies consider a DG finite element
method from [28]. For a discontinuous finite element space Vh, it
reads as follows: Find uh 2 Vh such that for all vh 2 VhX
K2T h

eðruh;rvhÞK þ ðb � ruh;vhÞK

� e
X
E2Eh

cð½uh�E; hrvh � nEiEÞE þ ðhruh � nEiE; ½vh�EÞE
� �

�
X
K2T h

b � n@KbuhcK ;vþh
� 	

@�Kn@X þ rDG

X
E2Eh

ð½uh�E; ½vh�EÞE

� e
X
E2@X

cðuh;rvh � nEÞE þ ðruh � nE; vhÞE
� �

�
X
K2T h

b � n@K uþh ;v
þ
h

� 	
@�K\@X þ 2rDG

X
E2@X
ðuh;vhÞE

¼
X
K2T h

ðf ; vhÞK � e
X
E2@X
ðubh;rvh � nEÞE

�
X
K2T h

b � n@K ubh;vþh
� 	

@�K\@X þ 2rDG

X
E2@X
ðubh;vhÞE: ð7Þ

Here, h�iE denotes the arithmetic mean of a function at the face E

hwiEðxÞ ¼
1
2
ðwj@K\EðxÞ þwj@K 0\EðxÞÞ; x 2 E;
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where E is the face between the mesh cells K and K0. The inflow
boundary of a mesh cell K is denoted by @�K

@�K ¼ x 2 @K : bðxÞ � n@K < 0f g:

The jump of a function in the direction of the convection is defined
by

bwcKðxÞ ¼wþ �w� ¼ lim
s!0;s>0

wðxþ sbÞ � lim
s!0;s>0

wðx� sbÞ; x 2 @K:

Note that the sign of this jump on an edge E might change on this
edge, depending on the sign of b � n@K. For c = 1, the method is called
symmetric interior penalty method (SIP), for c = �1 non-symmetric
interior penalty method (NIP), and for c = 0 incomplete interior pen-
alty method. For the sake of brevity, only the SIP method is consid-
ered in the numerical studies presented below. Note that the
parameter c is always scaled with e such that in the convection-
dominated regime the choice of c possesses only little impact on
the obtained results.

The nodal functionals of the degrees of freedom in DG finite ele-
ment methods are defined as integrals on the mesh cells. Hence,
Dirichlet boundary conditions have to be imposed weakly, as it is
done in (7), because there is no degree of freedom whose nodal
functional is a point value on the faces at the boundary. Analo-
gously to the CIP method, the integrals on the faces of the mesh
cells couple all degrees of freedom on neighboring mesh cells. In
addition, a DG method possesses more degrees of freedom on the
same grid than a continuous finite element method, like the SUPG
method, of the same order.

Comprehensive numerical studies with respect to the parameter
rDG and comparisons with the SUPG method can be found in [3].

2.6. A total variation diminishing finite element method

The total variation diminishing finite element method (FEM-
TVD), which also combines ideas from finite element and finite vol-
ume schemes, works on the algebraic level, see [30]. It starts by
discretizing (1) with a high order discretization, like the Galerkin
finite element method. Then, the resulting matrices and vectors
are modified at the algebraic level in two steps. Firstly, the matri-
ces are changed in order to obtain a positivity preserving, but still
too diffusive, scheme. Secondly, the diffusion is locally removed
where it is not needed. This is done by an appropriate anti-diffu-
sive contribution on the right hand side.

The Galerkin finite element method applied to (1) leads to an
algebraic equation of the form

Au ¼ f ; A 2 RN�N ; u; f 2 RN : ð8Þ

Define the matrix D ¼ ðdijÞ 2 RN�N by

dij ¼
�maxf0; aij; ajig for i – j;

�
PN

j¼1;j–i
dij otherwise:

8><>:
This symmetric matrix is a discrete diffusion operator. Its row and
column sums are zero. By construction, the matrix eA ¼ Aþ D does
not possess positive off-diagonals and it holds ~aii P aii > 0;
i ¼ 1; . . . ;N. These are two properties that are necessary for eA being
an M-matrix. Moreover, since the amount of mass obtained by node
i is subtracted from node j and vice versa, adding D to A does not
change the original mass conservation properties, [31].

Now, observe that the ith row of D can be decomposed as
follows

ðDuÞi ¼
XN

j¼1

dijuj ¼
XN

j¼1;j–i

dijuj �
XN

j¼1;j–i

dijui ¼
XN

j¼1;j–i

dijðuj � uiÞ ¼
XN

j¼1

/ij;
where /ij = dij(uj � ui) = �/ji are the so-called internodal fluxes. This
representation leads to an equivalent formulation of the Galerkin
scheme (8)

Au ¼ f () eAu ¼ f þ Du ¼ f þ
XN

j¼1

/ij

 !N

i¼1

: ð9Þ

The FEMTVD scheme considers, instead of the Galerkin scheme (9),
the following discrete system

eAu ¼ f þ
XN

j¼1

aij/ij

 !N

i¼1

; 0 6 aij 6 1:

Clearly, the Galerkin finite element method is recovered by aij = 1, i,
j = 1, . . . ,N. The goal of the FEMTVD method consists in defining the
corrections aij such that, on the one hand, positivity is preserved
and, on the other hand, the amount of artificial diffusion is reduced
significantly where artificial diffusion is not needed.

The numerical studies presented in Section 3 use the following
algorithm, proposed in [30], for constructing the correction factors.
For each pair of neighboring nodes i and j with ~aji 6 ~aij 6 0:

(1) compute the sum of the anti-diffusive fluxes
Pþi :¼ Pþi þmaxf0;/ijg; P�i :¼ P�i þminf0;/ijg;
(2) compute upper and lower bounds for the anti-diffusive
fluxes
Qþi :¼ Qþi þmaxf0;�/ijg; Qþj :¼ Qþj þmaxf0;/ijg;
Q�i :¼ Q�i þminf0;�/ijg; Q�j :¼ Q�j þminf0;/ijg;
(3) compute the correction factors
R	i ¼minf1;Q	i =P	i g; aij ¼
Rþi if /ij > 0;
R�i else:

(

Since the internodal fluxes /ij are based on a current solution,
the FEMTVD scheme is non-linear. To our best knowledge, error
estimates are not known for this method.
3. Numerical studies

For the assessment of the methods presented in Section 2,
appropriate test examples are necessary. It turned out that the def-
inition of such examples is rather difficult for convection-domi-
nated convection–diffusion equations. The use of prescribed
smooth solutions is not helpful since these solutions do not possess
layers, which is the characteristic feature of solutions of convec-
tion-dominated equations. In our experience, even the Galerkin fi-
nite element method gives reasonably good results if the solution
is smooth, independently of the size of the diffusion. There are pro-
posals of analytically known solutions with layers, e.g., in [26].
However, the diffusion coefficient enters in the definition of the
right hand side f(x) of these examples in such a way that f(x) pos-
sesses layers. For small diffusion, the quadrature error of the right
hand side dominates the results even for high order quadrature
rules. For this reason, the examples from [26] are appropriate only
for moderately small diffusion. Last, there are those examples
whose solution possesses layers but for which an analytical
expression of the solution is not known.

Numerical studies were performed at different examples and at
all kinds of problems mentioned above. Of course, the presentation
of the whole set of results is infeasible. Instead of showing short
studies for several examples, it is, in our opinion, more interesting
to present a comprehensive study of one example which, on the
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one hand, possesses characteristics of problems arising in applica-
tions and, on the other hand, reveals typical features of the numer-
ical methods. We selected the so-called Hemker problem, which
was proposed in [17]. References to further numerical studies of
other examples were given already in the presentation of the indi-
vidual methods.

All simulations with the finite volume method were performed
with the code PDELIB2 [32] and the simulations with the finite ele-
ment methods with the code MOONMD [25]. Delaunay triangulations
with triangular mesh cells were generated with TRIANGLE [37]. The
linear systems were solved with the sparse direct solvers PARDISO
[35,36] (in PDELIB2) and UMFPACK [8] (in MOONMD). Non-linear
problems for the SOLD scheme and the FEMTVD scheme were
solved by a fixed point iteration with Anderson acceleration
[2,41]. The Anderson acceleration keeps vectors from previous iter-
ations and computes with their help second order information.
There is a close relation of this technique to quasi-Newton (secant
updating) methods. To be precise, a standard fixed point iteration
was applied in the first m steps. Then, the Anderson acceleration
was used with the vectors from the previous m iterations. In the
numerical studies presented below, m = 5 was used. This approach
was often twice or even more faster than the fixed point iteration
with automatic damping as described in [23]. The starting iterate
for the non-linear schemes was the solution of the SUPG method
and the iterations were stopped if the Euclidean norm of the resid-
ual vector was below 10�12 times the square root of the number of
degrees of freedom.

The Hemker problem is defined in X = {[�3,9] � [�3,3]}n
{(x,y) :x2 + y2 < 1}, the coefficients are b = (1,0)T and f = 0, and the
boundary conditions are given by

uðx; yÞ ¼
0; for x ¼ �3;
1; for x2 þ y2 ¼ 1;
eru � n ¼ 0; else:

8><>:
The presented numerical studies consider the diffusion e = 10�4. For
this value, we were able to solve problem (1) on a very fine grid
with the Galerkin finite element method (Q1,48 252 416 d.o.f.)
and we could obtain in this way reference curves for cuts of the
solution. This numerical solution is presented in Fig. 2. Its values
are contained in [0,1].

The Hemker problem can be thought of as a model of a hot
column (circle) with normalized temperature T = 1, where the heat
is transported in the direction of the convection. In this setting, a
Fig. 2. Solution of the Hemker problem for e = 10�4.

Fig. 3. Hemker problem, initial aligned trian
boundary layer appears in the upwind direction at the circle,
reaching from the bottom (0,�1) to the top (0,1) of the circle. On
the bottom and the top of the circle, interior layers start which
spread in the direction of the convection.

Computations on triangular and quadrilateral grids will be pre-
sented. For the quadrilateral grids, meshes of higher refinement le-
vel were obtained by red refinement of an initial grid, thereby
increasing the quality of the approximation of the circle. The trian-
gular grids were generated all with TRIANGLE such that the number of
mesh cells increased by a factor of about four from level to level.

The alignment of grids is in our opinion an admissible and rea-
sonable approach if the convection is known. However, in applica-
tions it might occur that the convection is the computed solution of
another equation and it is a priori unknown. Then, aligned grids
cannot be constructed and for this reason, results for an unstruc-
tured triangular grid will be presented, too.

3.1. Aligned triangular and quadrilateral grids

Fig. 3 shows the initial grids (level 0). The coarsest quadrilateral
grid consists of 184 mesh cells and the coarsest aligned triangular
grid of 259 mesh cells. Numbers of degrees of freedom for different
refinement levels, including Dirichlet nodes, are given in Table 1. It
can be seen that the considered grids were not very coarse, but also
not too fine, such that, on the one hand, reasonable results can be
expected and, on the other hand, the impact of the stabilizations is
essential. For the higher order discretizations, isoparametric finite
elements were used at the circle. For shortness of presentation,
only results up to second order elements will be given in detail.
The results obtained for third order finite elements (used in the
SUPG, SOLD, CIP, and DG method) were very similar to those of
the second order finite elements.

As already discussed in the introduction, the accuracy of the
discretizations will be assessed with measures which are of impor-
tance in applications.

Under- and overshoots of the computed solutions are studied in
some detail in Figs. 4 and 5. The values for the undershoots are de-
fined by the minimal value of the discrete solution and for the
overshoots by the maximal value subtracted by one. For the finite
volume method, the values of the projection into the space P1 were
considered. It was observed in [24] that the critical points with re-
spect to the undershoots are the transition points from the bound-
ary layer to the interior layers on bottom and top of the circle. The
finite volume scheme and the FEMTVD scheme led always to solu-
tions with values in [0,1]. They are clearly the best schemes with
respect to the criterion of under- and overshoots. The SOLD scheme
reduced the under- and overshoots of the SUPG method. If the
SOLD parameter was sufficiently large, then the under- and over-
shoots were often almost suppressed. However, note that for
parameters larger than the ones presented in Figs. 4 and 5, the
iteration for solving the non-linear problem did not converge.
The solutions obtained with the CIP scheme showed often smaller
undershoots for first order elements than for second order
gular and quadrilateral grids (level 0).



Fig. 4. Hemker problem, over- and undershoots on the triangular grids; P1 (top, including the finite volume scheme), P2 (bottom). The lines of FVM and FEMTVD (upper plots)
are on top of each other. Variations of the stabilization parameter r are relevant only for SOLD, CIP, and DG.

Table 1
Hemker problem, degrees of freedom for the grids corresponding to the coarsest grids from Fig. 3.

Level P1 P2 Q1 Q2

Others DG Others DG Others DG Others DG

0 151 777 561 1554 219 736 806 1656
3 9271 54,132 36,586 108,264 12,056 47,104 47,664 105,984
4 36,148 214,011 – – 47,664 188,416 189,536 423,936
5 – – – – 189,536 753,664 – –
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elements. But in all cases, these undershoots were not negligible.
For the DG finite element method, always large undershoots could
be observed. They were often outside the range of the diagrams.

Cuts of the computed solutions at x = 4 were used to study the
smearing of the interior layers and the accuracy of the solutions
away from the circle, see Fig. 6. For the computation of the cut line
at x = 4, 10,001 equally distributed points in y 2 [�3,3], and for the
cut line at y = 1, 20,001 equally distributed points in x 2 [�2,8]
were used. With respect to all further evaluations of the simula-
tions, one of the parameters of the parameter-dependent methods
(SOLD, CIP, DG) was chosen for each finite element which led to
solutions with comparable small under- and overshoots, since un-
der- and overshoots of numerical solutions are often considered to
be particularly undesired features in applications. For the results
obtained with the DG finite element method, the average values
of the solutions were taken on the edges.



Fig. 5. Hemker problem, over- and undershoots on the quadrilateral grids; Q1 (top), Q2 (bottom). Variations of the stabilization parameter r are relevant only for SOLD, CIP,
and DG.

Fig. 6. Hemker problem, cut lines of the reference solution.
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Fig. 7. Hemker problem, layer width at x = 4 and y = 1; P1 (including the finite volume scheme), Q1, P2, Q2 (left to right, top to bottom).

Fig. 8. Hemker problem, errors to the reference cut lines at y = 1 and x = 4, P1 (including the finite volume scheme) on level 4.
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Fig. 7 presents the width of the computed interior layers, where
for symmetry reasons only the interior layer at y = 1 was consid-
ered. For these pictures, the width of the interior layer is defined
to be the length of the interval ylayer,num = y1 � y0 in which the solu-
tion falls from u(4,y0) = 0.9 to u(4,y1) = 0.1. For the reference solu-
tion, there is yref

layer;num ¼ 0:0723. The SUPG method led to solutions
with comparatively sharp layers, which is also well known from
other examples. The same can be observed for the DG finite ele-
ment method. A strong smearing of the layers can be observed
for the FVM on coarse grids. The situation becomes better on the
finer grids. The CIP method computed solutions with strongly
smeared layers for parameters that led to comparatively small un-
der- and overshoots. Also the contrary could be observed in the
studies. There are parameters for the CIP method where the solu-
tion had much sharper layers, but then the under- and overshoots
were considerably larger then for the parameters from Fig. 7.
Strongly smeared layers can be seen in the solutions obtained with
Fig. 9. Hemker problem, errors to the referenc

Fig. 10. Hemker problem, errors to the referenc
the SOLD method. This supports the observations from [21,23]. The
results of the FEMTVD method showed a very large smearing on
the triangular grid. Thus, one can say that the suppression of the
over- and undershoots by the FVM (on coarser grids), the SOLD
method, and the FEMTVD scheme is paid by a notable increase of
the smearing of the interior layers.

Differences to the cut lines at y = 1 and x = 4 were used to assess
the quality of the solutions at the layers, see Figs. 8–11. The differ-
ences to the reference cut lines were computed in each point, giv-
ing a vector of errors e. In Figs. 8–11, the errors are given in the
maximum norm kek1 and the averaged Euclidean norm
kek2 :¼ ðn�1Pn

i¼1e2
i Þ

1=2.
The results in Fig. 8 show that the solution obtained with the

FVM matched the cut lines worse than the solutions computed
with the other methods. This is because the interior layers were
not computed at the correct positions. They were situated some-
what too close to the walls. For the FEMTVD scheme, it can be well
e cut lines at y = 1 and x = 4, Q1 on level 5.

e cut lines at y = 1 and x = 4, P2 on level 3.



Fig. 11. Hemker problem, errors to the reference cut lines at y = 1 and x = 4, Q2 on level 4.

Fig. 12. Hemker problem, CPU times vs. quality measures, P1, levels 1–4.
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observed that the produced solutions possess small wiggles along
y = 1. Thus, although this method led to solutions without under-
and overshoots, it is not oscillation-free and a local maximum prin-
ciple does not hold. The errors to the cut line at y = 1 were compar-
atively small on the triangular grid but the errors to the cut line at
x = 4 are very large. On this grid, the smallest errors with respect to
the cut line at y = 1 were obtained with the DG method. Note that
this method has more degrees of freedom on the grids than the
other methods. The solution computed with the SUPG method pos-
sessed rather large errors at y = 1. But with respect to the cut line at
x = 4, it was among the best solutions on the triangular grid.

On the quadrilateral grid, Fig. 9, the cut lines were matched of-
ten better by most of the methods than on the triangular grid. The
most accurate results were obtained by the SUPG method and the
DG method.

Similarly, concerning the second order finite elements, Figs. 10
and 11, the best agreement to the reference cut lines can be ob-
served in general by the solutions computed with the SUPG meth-
od and with the DG method.

The solutions computed with the SOLD method and with the
CIP method were generally not among the best results with respect
to the profiles of the cuts.
Fig. 13. Hemker problem, CPU times vs
Altogether, the solutions obtained with the DG method pos-
sessed in general small errors to the reference curves. Apart from
the cut line at y = 1 on the triangular grid, the results computed
with the SUPG method were likewise good. An incorrect position
of the interior layer is the reason for the large errors of the solu-
tions computed by FVM. Despite the suppression of global under-
and overshoots, solutions obtained with the FEMTVD scheme pos-
sessed wiggles at the layers. Large differences to the reference
curves could be observed often for the solutions obtained with
the SOLD method and the CIP method.

From the point of view of applications, an important aspect is
the efficiency of the different methods. The most relevant measure
of efficiency is computing (CPU) time. This is a particularly fair
measure if all simulations were performed with the same code,
because the actual computing times depend on details of the
implementation. Since the FVM results were obtained with a
different code than the other results, the computing times for this
discretization could not be compared directly. In view of the
similar overhead of the FVM discretization and the SUPG method
(linear method, comparatively sparse matrix), the computing times
of the SUPG method were used as reference for FVM, too. The other
linear methods, CIP and DG, possess denser matrices than SUPG.
. quality measures, Q1, levels 1–5.
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DG has even considerably more degrees of freedom than the other
methods on the same grid. The SOLD method and FEMTVD are non-
linear schemes.

Figs. 12 and 13 present plots of the different quality criteria of
the numerical solutions versus CPU times. For the sake of brevity,
only the results for P1 and Q1 are shown. These finite elements
are certainly the most important ones in applications. The best re-
sults in the diagrams in Figs. 12 and 13 are those in the lower left
corner, since they are accurate and they were obtained in a short
computing time.

The large computational costs of the non-linear schemes are
clearly visible in these diagrams, since the corresponding curves
are always on the right hand side of the pictures. Apart from the
sum of under- and overshoots, the results obtained with these
schemes were not particularly good. Excellent results with respect
to the sum of under- and overshoots were obtained with the FVM
discretization in a much shorter time. Altogether, the SOLD scheme
and FEMTVD can be considered to be too inefficient. Although a
considerable gain in efficiency could be obtained by applying the
Anderson acceleration in addition to the fixed point iteration, a fur-
ther substantial improvement of the non-linear iteration scheme is
necessary to make these methods competitive.

Considering the diagrams with respect to smearing and with re-
spect to the differences to the cut lines, the curves of the SUPG meth-
od are in general closest to the lower left corner, save for the error to
the cut line at y = 1 on the triangular grid. These results indicate that
this method possesses the best ratio of quality (with respect to these
criteria) and CPU times among the studied methods. For these crite-
ria, also the curves of DG are rather close to the lower left corner of
Fig. 15. Hemker problem, over- and undershoots on the unstructured triangular grid
Variations of the stabilization parameter r are relevant only for SOLD, CIP, and DG.

Fig. 14. Hemker problem, unstructured triangular grid (level 0).
the diagrams. However, with respect to the under- and overshoots,
the DG method was by far the most inaccurate scheme.

For the second order finite elements, essentially the same
behavior of the studied methods with respect to errors versus
CPU times could be observed.

3.2. Unstructured triangular grids

Some results will be presented which were obtained on
unstructured triangular grids of the type presented in Fig. 14.
The coarsest grid possesses 293 mesh cells. The grid of level 4
has 74,475 mesh cells which leads to 37,693 degrees of freedom
for the continuous P1 finite element space and to 223,425 degrees
of freedom for the P1 discontinuous finite element space.

For the sake of brevity, only results for linear finite elements
and the finite volume method are presented in Figs. 15 and 16
since these methods are the most important ones in applications.
The under- and overshoots on level 4 are shown in the left picture
of Fig. 15. This picture is rather similar to the corresponding results
in Fig. 4. The undershoots of the SUPG method are somewhat larger
on the unstructured grid and the overshoots of DG are smaller.
Again, FVM and FEMTVD do not possess under- and overshoots
and the reduction of the under- and overshoots of SUPG by adding
the SOLD term is clearly visible.

For the methods with user-chosen parameter, again such param-
eters were used in the further assessment of the results which led to
solutions with comparatively small under- and overshoots. The
choice of such a parameter is not so clear for CIP and DG since various
parameters of different size gave similar results. For this reason, we
decided to show results for parameters of different magnitude than
for the aligned grid, that means for a large parameter used in the CIP
method and for a small parameter used in the DG method. One can
observe that there is only little influence of the parameter in the
DG method on the results. In contrast, an extremely smeared solu-
tion was obtained with the large parameter in the CIP method.

The layer width of the interior layer at x = 4 and y = 1 is pre-
sented in the right picture of Fig. 15. For all methods, the layer is
smeared more than in the case of the aligned grid, Fig. 7. The best
results were obtained again with DG, followed by SUPG. Extremely
smeared are the layers for the solutions computed with FVM and
with the CIP method with the large user-chosen parameter.
(left) and layer width at x = 4 and y = 1; P1 (including the finite volume scheme).



Fig. 16. Hemker problem, errors to the reference cut lines on the unstructured triangular grid at y = 1 and x = 4, P1 (including the finite volume scheme) on level 4.
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Evaluations of the cut lines are presented in Fig. 16. It can be
seen that the cut lines at y = 1 for FVM and SUPG were computed
better than on the aligned grid. A possible reason is that there is
no grid line of the aligned grid which matches exactly the position
of the interior layer. This fact might lead to an adjustment of the
computed layer to the grid line and consequently to a somewhat
wrong position. For the cut line at y = 1, the results obtained with
SUPG is best, followed by SOLD and DG (in the averaged Euclidean
norm). The errors of the cut lines at x = 4 show clearly the extre-
mely smeared solutions computed with FVM and CIP. With respect
to this cut line, DG gave the best results, closely followed by SUPG.

In summary, the numerical studies on the unstructured grid led
to a very similar assessment of the methods like the studies on the
aligned grid.

4. Summary

Discretizations for convection-dominated convection–diffusion
equations which are based on finite volume and finite element
ideas were studied numerically. The study of a particular example,
the Hemker problem, highlighted advantages and drawbacks of the
different approaches. Many of the considered schemes show non-
negligible spurious oscillations. Those schemes, which lead to
(nearly) oscillation-free solutions, showed deficits with respect to
other aspects, like large smearing of layers, incorrect position of
layers, or computing time. A favored method could not be identi-
fied. Advice can be given only for some special situations:


 if it is necessary to compute solutions without spurious oscilla-
tions: use FVM, taking care on the construction of an appropri-
ate grid might be essential for reducing the smearing of the
layers,

 if sharpness and position of layers are important and spurious

oscillations can be tolerated: often the SUPG method is a good
choice.

Both of these classical schemes are also very efficient. From the
more modern approaches which were included in this study, FEM-
TVD stands out somewhat by suppressing under- and overshoots,
but it is quite inefficient. The DG method showed small errors with
respect to reference cut lines. However, the solutions possessed
very large under- and overshoots. In summary, the use of the mod-
ern approaches (SOLD, CIP, DG, FEMTVD) was, considering all as-
pects, seldom beneficial compared with the classical FVM and
SUPG method. Consequently, there is still the urgent need to con-
struct better methods for discretizing convection-dominated equa-
tions than those which are currently available.
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