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Abstract

The crystallization of potassium aluminum sulfate dodecahydrate (potash alum)
in a fluidized bed crystallizer is studied both with experiments and simulations.
A population balance system with three spatial coordinates and one internal
coordinate (mass) is utilized as our model. The simulations are performed with
a stochastic-deterministic method with novel extensions, where the fluid dy-
namics of the crystallizer (flow field, temperature, concentration) are solved
deterministically and the particles are simulated with a stochastic method. In
experiments of 30 min duration, the average crystal diameter increases by growth
and agglomeration from about 130µm to 210µm. This observation agrees qual-
itatively well with our simulation results. A quantitative difference between
simulation and experiment leaves room for future improvements in modeling.
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1. Introduction

A fluidized bed crystallizer (FBC), also called Oslo crystallizer, is a typical
industrial crystallization device (Beckmann, 2013; Tavare, 1995) used in the
pharmaceutical industry, particularly to grow crystal fractions into larger sizes
of uniform size distribution (Beckmann, 2013; Lewis et al., 2015). In crystal-
lization devices, a crystal size increase is typically achieved by two main mech-
anisms: growth and agglomeration. Both phenomena occur simultaneously at
a certain minimal supersaturation. During agglomeration, supersaturation res-
ults in the formation of bridges between primary crystals. Agglomerates have
a greater surface, higher porosity, smaller mass, and less regular shapes than
primary crystals of a similar size. The main process parameters affecting the
intensity of agglomeration inside the FBC are the temperature, the fluid com-
position, and the fluid velocity. Particles with relative particle velocities may
collide in various angles. The relative particle velocity can be caused by non-
aligned trajectories, inertia for particles of different sizes, and velocity gradients.
A certain percentage of these collisions is ‘effective’ in the sense that an agglom-
erate forms.

Agglomeration was experimentally observed in a fluidized bed for potassium
containing compounds (Lin et al., 2003). In the fluidized bed of Seckler et al.
(1996) growth occurs, but agglomeration is the process of interest for phosphate
removal in a fluidized bed during precipitation. The particle motion in a fluid-
ized bed was investigated by simulations (Garcia-Gutierrez et al., 2017). In the
FBC setup of Binev (2015), segregation occurs as a result of a model includ-
ing gravitation and drag. In their experiments, large crystals and agglomerates
are removed from the system and hence, growth is modeled but agglomeration
is not. Binev (2015) and Hoffmann et al. (1993) demonstrate that particles of
large diameter segregate to lower regions of an FBC while smaller ones segregate
upward. According to Nienow and Naimer (1980), Binev (2015)and Zhang et al.
(2009) argue that sedimentation is determined by the flow regime. According
to Binev (2015), it is mentioned by Howley and Glasser (2002) that a prediction
for the segregation and the particle size distributions in fluidized beds is not
yet available. Kerst et al. (2017) started to close this gap by applying a CFD-
DEM approach to simulate an FBC for a short time period. They observed that
vertical relative velocities increase with particle size.

In the present work, the FBC is used for the crystallization of potash alum
(KAl(SO4)2 · 12H2O). Potash alum has some industrial use nowadays, for ex-
ample, it is used as an astringent in deodorants or in alum blocks applied on
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the skin after shaving. For experiments and simulations, it is used as a model
substance for crystallization since it is inexpensive to purchase, innocuous, sol-
uble in water, it agglomerates easily, and many of its material properties and
its solution kinetics are well known. In particular, it forms regular octahedral
crystals.

The primary goal of the FBC is to obtain particles of a particular size. A derived
goal is to have a height separation of different crystal fractions, i.e., to ‘harvest’
crystal fractions of a certain size from different heights in the FBC vessel. In this
paper, a crystallization device of this kind is studied using experiments as well
as numerical simulations that are based on the model of a population balance
system. The models and numerical algorithms presented by Bartsch et al. (2019)
for a tube crystallizer are extended to an FBC. The numerical approach employs
a deterministic way of solving the system of equations for flow, temperature,
and concentration. A stochastic method is utilized for solving the population
balance equation for the crystals. The models and numerical methods from
Bartsch et al. (2019) have been extended considerably: a turbulence model
had to be included for the flow, collisions of particles with walls had to be
taken into account, and a model for the sedimentation of particles had to be
incorporated. These extensions are presented below in detail. Comparisons
of experimental and numerical results show good qualitative and reasonable
quantitative agreement.

This paper is organized as follows. First, in Section 2, the experimental setup,
crystallization procedures, and operation conditions are introduced. Section 3
provides the population balance system to model the considered process. For
each equation of this model, the numerical methods used to solve the system of
equations are briefly described in Section 4. In Section 5, the numerical results
are presented and comparisons with experimental results are performed. The
paper concludes with an outlook in Section 6.

2. The Experiments

In this section, an example FBC developed in the group ‘Lehrstuhl für System-
verfahrenstechnik’ at OVGU Magdeburg is introduced. It was used for a series
of experiments, details are provided and are the subject of the numerical work
in later sections.

2.1. Design Setup of the Fluidized Bed Crystallizer

The FBC is shown photographically and diagrammatically in Figure 1. The
central unit of the device is an upside-down bottle of 0.5 m height. The vessel is
part of a closed circuit of a streaming suspension that contains the suspension
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Figure 1: Left: The investigated example fluidized bed crystallizer (FBC); Right: Schematic
of the FBC and its peripheral flow equipment: 1 FBC, 2 gear pump, 3 main flow circuit, 4
degasifier, 5 three-way valve, 6 flow-through microscope, 7 peristaltic pump, 8 seed addition
funnel.

necessary to excite the desired crystal growth mechanisms. The crystallization
vessel and the tube periphery are surrounded by a cooling jacket for temperature
control. The flow enters the bottom of the vessel (1 in the diagram in Figure 1.)
and exits through a filter at the top, entering the main flow circuit (3) equipped
with a pump (2) and a degasifier (4). Afterwards, the fluid re-enters the FBC
from below and keeps the crystals in the FBC fluidized. The crystals remain in
the main vessel and do not enter the exterior main flow circuit. The pump (2)
is additionally protected from crystals by a filter for operation outside of the
regime described in this work.

The other external cycle serves as sampling loop for inline imaging of the sus-
pension. A withdrawal tube can be positioned at variable heights in the vessel.
The withdrawn suspension is pumped (7) through a flow-through cell (Lixell,
Sympatec) of a video microscope (Qicpic, Sympatec) (6). One minute of a re-
corded binary video corresponds to 120 frames as shown in Figure 2. The crys-
tal size and shape distribution of the imaged crystal population is determined.
The crystal projections in each frame are evaluated using shape estimation al-
gorithms (Borchert et al., 2014). Projected objects are classified as agglomerates
when their solidity is less than 0.9. The solidity measures the objects’ concavity
and equals 1 for a convex object. The degree of agglomeration is defined as the
ratio of the number of agglomerates to the number of agglomerates plus primary
particles. Primary particles with an eccentricity below 0.3, where a circle has
zero eccentricity, are classified as bubbles and are discarded. For comparison
with the simulation of spherical particles, all experimental results are shown in
terms of the sphere equivalent diameter of primary particles and agglomerates.
The sphere equivalent diameter is calculated from the projected area.
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Figure 2: A snapshot of crystallizer suspension, containing primary and agglomerated potash
alum crystals.

2.2. Operating Conditions, Experimental Procedures, and Parameters

During preparation of an experiment, potash alum (KAl(SO4)2 · 12H2O) seed
crystals (Merck, CAS No. 7784-24-9, purity ≥ 99 %) were sieved with meshes
of 125 µm and 150 µm size. The crystallizer was filled with potash alum and
purified water. The solution was heated to at least 23 ◦C to ensure that all
crystals were dissolved. Following Temmel et al. (2016), the initial equilibrium
saturation temperature of the solution was 17 ◦C to 18 ◦C. Prior to seed addi-
tion, the solution was cooled until the equilibrium supersaturation was 6 % to
8 %. Supersaturation is the main driving force for crystal growth and crystal
agglomeration. An intermediate supersaturation is chosen where growth and
agglomeration rates are relatively small. Before a significant crystal size in-
crease can be observed, long crystal residence times are necessary which implies
long run times.

The FBC volume is 5 l and the periphery volume is about 0.5 l. At positions 2
and 7 in Figure 1 (right), the mass flow was set to 55 kg/h for the main flow
circuit and 53 kg/h for the sampling and seeding circuit.

The mass of seed crystals was 1× 10−4 kg in all experiments. An additional pre-
liminary experiment was carried out for twice this seed mass, i.e., 2× 10−4 kg,
but no qualitative change was observed and the seed mass was not further of in-
terest. For the chosen seed mass of 1× 10−4 kg, the resulting initial suspension
density was 0.02 kg m−3. Two different methods of seed addition were applied
to analyze the importance of the seeding position for the simulations. In the
first method labeled ‘top seeding’, seed crystals were added from the top of the
FBC. In the second method labeled ‘bottom seeding’, seed crystals were ad-
ded through the funnel at position 8 in Figure 1 right and, hence, through the
flow-through cell and entered the FBC from the bottom.
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A total of 12 experiments (labeled A to L) with varying seeding strategies and
withdrawal heights were conducted. Details are given in Table 1, and in Figure 3.

experiment name seed addition position height
A top z = 0 m
B top z = 0 m
C bottom z = 0 m
D top z = 0.1 m
E top z = 0.1 m
F bottom z = 0.1 m
G bottom z = 0.1 m
H bottom z = 0.1 m
I top z = 0.30 m
J top z = 0.17 m
K top z = 0.17 m
L bottom z = 0.17 m

Table 1: Overview of the experiments.

The sampling circuit can withdraw suspension in an adjustable height measured
from the FBC bottom in the range of z = 0 m to 0.5 m. In experiment I at
z = 0.3 m, only a few crystals were observed. Thus, three lower withdrawal
positions were selected. Their distance from the FBC bottom is 0 m, 0.10 m
and 0.17 m. When the crystals observed in experiment I are included in the
averaged results for the highest withdrawal position, the position is marked
with an asterisk as 0.17 m*.

All experimental results were averaged over the same type of experiment re-
garding seeding strategy and withdrawal height. For averaging, the variables of
interest, e.g., the mean diameter, was not calculated for each experiment separ-
ately and averaged afterwards but the diameter of the crystals of all experiments
were averaged. Similar absolute crystal numbers were observed in experiments
of the same type. Thus, a weighting of the experiments was not considered
necessary. The absolute crystal numbers are shown in Figure 3 at the average
time point of all videos. Not in all experiments, a video was taken at each time
point. The videos had a duration of 30 s to 201 s at a frame rate from 10 frames
per second to 20 frames per second. In Figure 3, the crystal number is normed
to 2400 frames as for a typical video of 120 s length and 20 frames.

2.3. Observable Experimental Phenomena

In all experiments, a high number of nuclei was observed. The nuclei showed
a slight increase in the degree of agglomeration but not in the mean equivalent
sphere diameter. The nuclei remained in the size range below 50 µm during the
whole experiment and were thus easy to distinguish from the seed fraction that
was of interest in the simulations. Although the nuclei appear in a high number,
their total mass always remained below 3 % of the mass of all observed crystals.
It is assumed that the nuclei are not influencing the supersaturation and, hence,
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Figure 3: Absolute crystal number normed to 2400 frames of each experiment. Experiments
at different heights z = 0 m (left), z = 0.1 m (middle), and z = 0.17 m∗ (right). Legend shows
seeding type.

the desired seed fraction. Therefore, all observed crystals which are smaller than
50 µm were neglected in Figure 3 and they are neglected in the following for the
calculation of the average diameter and of the degree of agglomeration.

In Figure 3, the absolute number of crystals decreases strongly after the first
video for bottom seeding since initially all seed crystals pass the cuvette. Already
in the second video, the crystal number is very similar for both seeding types.
During the experiment, at the highest position in the FBC, the absolute num-
ber of crystals is very small. After seeding, the crystal number decreases at
the highest and at the intermediate position for all except one experiment. No
clear trend can be observed at the bottom position. A decreasing total crystal
number at increasing crystal size may result from agglomeration. Overall, most
crystals accumulate at the bottom of the FBC.

The optical density was analyzed for each image. It is in average below the max-
imum optical density recommended by the manufacturer for all experiments and
videos but in the first video of some experiments. In this case, the number of
crystals overlapping in an image increases which leads to a higher probability
of primary particles classified wrongly as agglomerates. This slightly raises the
degree of agglomeration in the first video compared to its actual value. The de-
gree of agglomeration was defined in Section 2.1. It measures the proportion of
agglomerates in the vessel. Simultaneously considering the degree of agglomer-
ation and the total crystal number allows to estimate the extent of the different
crystallization phenomena. If agglomeration occurs in the process, the degree
of agglomeration increases over time while the crystal number reduces. Break-
age may decrease the degree of agglomeration and raises the crystal number.
Figure 4 shows that the average degree of agglomeration is between 9 % and
47 %.
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High degrees of agglomeration are observed in the first and partly still in the
second video. For bottom seeding this may be caused by loose agglomeration
or overlapping crystal projections in an image at high suspension densities. For
top seeding this may be caused by a faster sinking of large agglomerates. At
all heights, the degree of agglomeration decreases right after the start. In the
later time of the experiment after around 900 s, the portion of agglomerates
increases slightly at the bottom position. At the lowest position, the degree
of agglomeration of top and bottom seeding is similar. For the other heights,
the degrees of agglomeration for top are lower than for bottom seeding. Most
crystals are located at the bottom and, hence, the average degree of agglom-
eration of all crystals in the FBC is similar for top and bottom seeding. The
seeding type has no or little impact on size distributions of the crystals. The
distribution was slightly shifted to smaller sizes for bottom seeding experiments
but qualitatively the same increase in size was observed over time. Hence, the
two seeding methods are not considered separately in this work but the results
are averaged over both methods. In the following sections of this work, all ob-
served crystals are analyzed, i.e., the primary crystals and agglomerates are not
further distinguished but cumulated.
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Figure 4: Degree of agglomeration of crystals at different heights z = 0 m (left), z = 0.1 m
(middle), and z = 0.17 m∗ (right) for top (solid line) and bottom (dashed line) seeding.
Experiments of the same seeding time and height were averaged for videos of identical frame
rate.

In the following, the findings which are relevant to the simulation setup are
summarized. At the start, the seed addition position influences which crystals
can be seen in which height. During the experiment, the results are independ-
ent of the seeding position. Hence, for the simulations, the location of the
seed addition can be freely chosen but should be kept in mind for comparison.
Nucleation affects the supersaturation just to a very small extent. The nuclei
remain at small sizes and can be separated from the seed fraction by image post-
processing. Therefore, nuclei are neglected in the simulation. Most crystals are
located at the lowest position. Furthermore, there is a considerable portion of
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agglomerates in the crystallizer. The degree of agglomeration increases only
slightly during the experiments. Hence, agglomeration should be considered in
the simulations.

3. The Mathematical Model

Here, the multi-physics model included in the simulation framework for the
FBC described in Section 2 is presented. The equations are defined on a spatial
domain for a time interval, starting from 0 s up to some end time tend, which
depends on the experimental setup. For the FBC, the spatial coordinate space is
a 3d bounded Lipschitz domain denoted by Ωx. The inner coordinate space Ωm

is a 1d continuous property space using particle mass as coordinate. The flow
field in the FBC is governed by the Navier–Stokes equations. For the numerical
simulations, it has to be equipped with a turbulence model, see Section 3.1 for
details. For brevity of presentation, the turbulence model is included in the
(strong form of the) flow equations shown below although this model is actually
mesh-dependent. The temperature and concentration fields are treated with
convection-diffusion equations. Since these equations are convection-dominated,
one needs for them a stabilized discretization. The used stabilization is the
so-called FEM-FCT method, see Section 4.1. Since this method cannot be
expressed by simply adding a single term, the convection-diffusion equations are
given below without indicating the necessary numerical stabilization. The model
equations are presented in the form of a population balance system consisting
of flow, temperature, and concentration equations defined on (0, tend) × Ωx

along with a population balance equation for the mass-based particle population
density defined on (0, tend)× Ωx × Ωm:

∂

∂t
u−∇ · (ν + νSmago‖∇u‖F )∇u + (u · ∇)u +∇p

ρ
= g, (1a)

∇ · u = 0,

∂

∂t
T −DT∆T + u · ∇T = gT Igrowth(c, T, f), (1b)

∂

∂t
c−Dc∆c+ u · ∇c = gcIgrowth(c, T, f), (1c)

∂

∂t
f + u · ∇f = C(f) + G(c, T, f). (1d)

The velocity field is not influenced by the transported quantities and the particle
size distribution (PSD), it is just one-way coupled into the system. Since there
is only one internal coordinate to describe the particles, they are assumed to be
of spherical form.
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The most important variables, physical constants, and function expressions to-
gether with their associated units and values are listed in Table 2. All equations
are equipped with suitable initial and boundary conditions. The boundary of
the FBC consists of an inlet (bottom) Γin, outlet (top) Γout, and the wall(s)
Γwall. In the following, the setup for each equation will be discussed in detail.
For the numerical simulations, the population balance system was appropriately
transformed to a non-dimensional form.

3.1. The Flow Field

The flow field is governed by the Navier–Stokes equations. Since the considered
flows are turbulent, their numerical simulation requires the application of a
turbulence model. This model is the nonlinear viscous term in (1a). The flow in
the FBC is pumped with a mass flow rate between 50 and 200 kg/h, depending
on the experimental setup. Assuming a parabolic inflow profile at the bottom
inlet, the (mid-range value of) mass flow rate ṁ = 93 kg/h translates into a
characteristic average inflow velocity of U ≈ 0.08 m/s. Together with the choice
of a characteristic length L = 0.1 m as a typical inner diameter, the Reynolds
number becomes Re = ρUL

µ = 6000. This number indicates that the flow is

already mildly turbulent. A large eddy simulation (LES) model of Smagorinsky
type is used to model the effects of unresolved flow scales. This model is a
popular and simply to implement turbulence model, which effectively introduces
an artificial, solution-dependent viscosity to the momentum balance equation
(Smagorinsky, 1963), (John, 2016, Ch. 8), see the nonlinear contribution of the
viscous term in (1a).

The fluid is initially considered to be at rest, i.e., u ≡ 0 on Ωx at t = 0.
A parabolic velocity profile is prescribed at the inflow (bottom) and outflow
(top) of the crystallizer. Both inflow and outflow conditions are adapted to the
mass flow rate, such that the flow is divergence-free. For example, for a mass
flow rate of 93 kg/h, the average inflow and outflow velocity is calculated as
Uavg,in ≈ 0.0783 m/s and Uavg,out ≈ 0.0014 m/s. In order to avoid an impulsive
start, both conditions are scaled by the time during the first second. The rest
of the wall boundary is assigned the no-slip boundary condition u ≡ 0.

3.2. The Temperature Field

The temperature field is governed by the convection-diffusion equation (1b).
The source term on the right-hand side of (1b) models temperature sources due
to crystallization, i.e., growth. It consists of a positive scaling parameter gT and
the growth intensity Igrowth(c, T, f), see Table 2.

The experiments were either run at constant temperature or by cooling down
slightly and linearly over the course of an experiment. The tube and pump
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Name Notation Units Value/Function
Velocity u m/s
Pressure p Pa
Temperature T K
Molar concentration c mol/m3

Particle population density f 1/kg·m3

Spatial coordinate x m
Time t s
Gravity g m/s2 (0, 0,−9.81)
Fluid density ρ kg/m3 1050
Dynamic viscosity µ kg/m·s 0.0014
Kinematic viscosity ν m2

/s µ/ρ
Smagorinsky viscosity νSmago

m2
/s CSmagoδ

2

Filter width δ m see Section 5.1
Smagorinsky coefficient CSmago − 5 · 10−4

Frobenius norm of velocity gradient ‖∇u‖F 1/s

Diffusion coefficient (T ) DT
m2
/s

λsusp

ρsuspCsusp

Thermal conductivity λsusp
W/m·K 0.6

Suspension density ρsusp
kg/m3 1050

Suspension specific heat capacity Csusp
J/kg·K 3841

Scaling parameter (T ) gT K·m3
/kg

∆hcryst

ρsuspCsusp

Crystallization enthalpy ∆hcryst
J/kg 89100

Diffusion coefficient (c) Dc
m2
/s 5.4 · 10−10

Scaling parameter (c) gc mol/kg − 1
Mhydrate

Molar mass of hydrate Mhydrate
kg/mol 0.4744

Agglomeration term C(f) 1/kg·m3·s see Section 3.4
Growth term G(c, T, f) 1/kg·m3·s see Section 3.4
Growth rate G(c, T,m) kg/s see Section 3.4
Growth intensity Igrowth(c, T, f, t,x) kg/m3·s

∫
Ωm

G(c, T,m)f(t,x,m) dm

Agglomeration scaling parameter κ − see Section 3.4

Diameter of potash alum crystal d(m) m 3
√

6m/ρcrystπ
Mass of a potash alum crystal m kg
Density of crystals ρcryst

kg/m3 1760
Boltzmann constant kB J/K 1.3806504 · 10−23

Universal gas constant R J/K·mol 8.314

Table 2: Main notations and physical constants.

system were well isolated, a cooling hull surrounding the main crystallization
vessel was used to control the temperature profile. Since the temperature pro-
file varied very slowly over time, Dirichlet boundary conditions were applied
everywhere. The Dirichlet value is a linear interpolation (in time) of the initial
temperature and the final temperature.
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Closely connected to the temperature is the solubility of the solvent in the solute,
in our case potash alum in water. We used a fitted, fourth-order solubility
model from Temmel et al. (2016). It is formulated in terms of mass potash
alum dodecahydrate per mass added water, i.e., a type of mass loading. At
temperature T̃ [°C], the hydrate-per-added-water mass loading in equilibrium is

weq
hyd,H2O+(T̃ ) = a1 + a2T̃ + a3T̃

2 + a4T̃
3 + a5T̃

4

[
kg hydrate

kg added water

]
, (2)

with coefficients a1 = 0.0506, a2 = 0.0023, a3 = 7.76 · 10−5, a4 = −2.43 · 10−6,
and a5 = 4.86·10−8. This solubility model is assured to be valid in a temperature
range between 10 °C and 60 °C, and therefore it is valid for the temperature at
which the crystallizer was operated (around 15 °C). It enters the growth model
in Section 3.4 via the supersaturation, since supersaturation is the driving force
behind growth.

3.3. The Concentration Equation of the Dissolved Potash Alum

The concentration balance equation of dissolved aluminum potassium sulfate is
described in (1c). The source term is the product of the growth intensity scaling
parameter gc and the growth intensity Igrowth (see Table 2). Potassium alum is
a (dodeca)hydrate, i.e., its crystal structure incorporates 12 water molecules per
unit cell. If it is dissolved, the crystal structure is destroyed and the formerly
bonded water molecules merge into the solvent water. Therefore, the dissolved
substance is an anhydrate and not a hydrate anymore, a difference that will
be encountered again when the growth model is discussed in Section 3.4. In
the concentration equation, the loss of free water molecules due to bonding in
the hydrate crystal structure is disregarded. This assumption follows from the
primary assumption of constant density.

Homogeneous Neumann boundary conditions are applied at the wall and outflow
of the FBC:

Dc
∂c

∂n
= 0 on Γwall ∪ Γout,

where n is the outward pointing unit normal vector. The Neumann condition
implies that there is no change of concentration across the wall and outflow
boundary. Cyclic Dirichlet boundary conditions are applied on the inlet Γin.
The FBC is a closed system. However, the tubes, fittings, and pumps forming
the closed circuit are disregarded except for the concentration balance. For the
FBC, tcyc = n∆t = 60s is the time for the fluid to travel round the entire FBC
circuit, where ∆t is a constant time step and the n is the number of time steps re-
quired to complete a cycle. A list of inlet concentrations cin,i = (cin,0, ..., cin,n−1),
where i = 0, ..., n− 1, is initialized for every cycle. Crystal growth reduces the
amount of dissolved species and this amount is reflected in the inlet concentra-
tions, see the detailed formulation in Bartsch (2018, Chapter 7). The starting
value is derived from the experimental data and is described in detail by Borch-
ert et al. (2014).
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3.4. The Population Balance of the Potash Alum Crystals

The population balance equation for the mass-based particle population density
has the form described in (1d). The collision-dominant agglomeration term has
the form

C(f, T, t,x,m) =
1

2

∫
Ωm

KBrownian(T,m− µ, µ)f(t,x,m− µ)f(t,x, µ) dµ

−
∫

Ωm

KBrownian(T,m, µ)f(t,x,m)f(t,x, µ) dµ.

where m is the internal coordinate, i.e., agglomeration is modeled with an in-
tegral term as known from the Smoluchowski equation for agglomeration. The
Brownian kernel reads as

KBrownian(T,m1,m2) = κ
2TkB

3µ

(
1

d(m1)
+

1

d(m2)

)
(d(m1) + d(m2))

[
m3
/s
]
.

Choosing the kernel is always a delicate issue in modeling agglomeration pro-
cesses. We decided to use the Brownian kernel here since it is well understood,
we had good experience with it in other models, e.g., Anker et al. (2015), and
finally, we obtained qualitatively correct results, see Section 5. The scaling
parameter κ must, as usual, be fitted by means of numerical studies.

Given a fixed mass growth increment γ, [kg], the growth term is modeled by

G(c, T, f,m) =
G(c, T,m− γ)

γ
f(m− γ)− G(C, T,m)

γ
f(m),

a form that is well suited for stochastic particle simulation algorithms. In the
considered temperature regime, relative supersaturation and thus the growth
rate are relatively low, agglomeration dominates (both in terms of computational
effort and in terms of effect on the system) in the simulations. For G(.), an
experimentally validated growth model from Temmel et al. (2016) is considered.
It is based on a diameter-based one-dimensional Arrhenius-type model of the
form

Gd =

√
2

π
1
3

kG1 exp

(
−kG2

RT

)
(Shyd,H2O+ − 1)

kG3 [m/s] . (3)

The model is used for a diameter-based 1d particle description with fitted para-
meters kG1

= 5 ·107 m/s, kG2
= 75 ·103 J/mol, kG3

= 1.4. The factor
√

2/π
1
3 is due

to conversion from an octahedral to a spherical particle model. The growth rate
Gd is only computed for Shyd,H2O+ > 1, otherwise, it is set to 0. The quantity
Shyd,H2O+ [kg/kg] is the relative supersaturation of the solution. In the original
reference, the mass of dissolved hydrate per added solvent (water) is used as a
measure of the mass loading. In order to use it in the simulations, conversions
have to be made. Let whyd,H2O+ [kg/kg] be the current mass loading in that
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measure and weq
hyd,H2O+(T ) [kg/kg] be the mass loading in equilibrium, then the

current supersaturation is

Shyd,H2O+ =
whyd,H2O+

weq
hyd,H2O+(T )

. (4)

While the equilibrium mass loading is given by the solubility curve (2), the
current mass loading whyd,H2O+ must be gained by conversion from the molar
concentration c, which is in units moles anhydrate per m3 solution. First, one
writes whyd,H2O+ as a function of the mass loading wanhyd,H2O [kg/kg] (mass
anhydrate per total mass water):

whyd,H2O+ =
wanhyd,H2O

wanhyd,hyd − wanhyd,H2O
. (5)

Here, wanhyd,hyd = Manhydrate/Mhydrate is the constant mass fraction of anhydrate
in the dodecahydrate crystal. Proceeding with

wanhyd,H2O =
c Manhydrate

ρ
, (6)

inserting (6) in (5), and the result in (4) gives a growth rate term in dependence
on T and c, which is in accordance to our formulation of the model system.
Finally, the diameter-based growth rate has to be converted into a mass-based
growth rate, see Bartsch et al. (2019) for details.

A stochastic scheme is used to compute the agglomeration and growth term,
which is described in detail in Bartsch (2018) and Bartsch et al. (2019).

4. Numerical Algorithms

This section starts with a brief description of the software and the discretiza-
tions used for performing the simulations. Then, those aspects of the numerical
algorithms are explained in detail that are extensions in comparison to the al-
gorithms used in Bartsch et al. (2019): the simulation of particle-wall collisions
and of the sedimentation of particles.

4.1. Software and Discretizations

The in-house code ParMoon (Ganesan et al., 2016; Wilbrandt et al., 2017)
is employed for the deterministic simulation of the flow field, the temperature,
and the concentration. The population balance equation (1d) for the potash
alum dodecahydrate crystals is solved with the stochastic particle simulation
(SPS) in-house software Brush (Patterson et al., 2011). In theory, the model is
mass based, whereas in ParMoon, the model is based on the number of hydrate
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Figure 5: Geometry (in mm) and mesh used in the simulations. The inlet is cut off, the
domain Ωx is regularly decomposed into 10752 tetrahedra of almost the same height, minimal
diameter 15.0 mm, maximal diameter 38.9 mm. Left: Front view with measures in mm. Right:
Top and bottom view.

molecules per particle. The conversion between both representations is done via
Avogadro’s constant NA and the molar mass of potash alum dodecahydrate.

The technical configuration for the FBC is shown in Figure 5. The compu-
tational domain is simplified to take the form of a cylinder and a bottom-up
truncated cone to represent the inner part of the crystallization vessel as shown
in Figure 5 (right). It ignores the cylindrical pipe extensions/nozzles in the do-
main to enforce convexity of the domain, because the particle location algorithm
from Tetgen relies on the assumption of convex domains. The spatial domain
is then defined by

Ωx =
{

(x, y, z) ∈ R3 :
√
x2 + y2 ≤ 0.075, 0.3 ≤ z ≤ 0.45

}
∪
{

(x, y, z) ∈ R3 :
√
x2 + y2 ≤ 0.01 + z · 0.065

0.3
, 0 ≤ z ≤ 0.3

}
⊂ R3,

where the lengths are given in m. In particular, the diameter of the inlet is
0.02 m.

For discretizing the flow equations (1a) in space, the popular Taylor–Hood pair
of finite element spaces was utilized, i.e., the velocity is approximated by a
continuous piecewise quadratic function and the pressure by a continuous piece-
wise linear function. On the grid depicted in Figure 5, one gets 51768 degrees
of freedom (49419 for the velocity and 2349 for the pressure).

A Crank–Nicolson time discretization combined with a Picard iteration is ap-
plied to solve the flow equations (1a). A constant time step of ∆t = 0.05 s turned
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out to be suitable for performing stable simulations. As a solver for the linear
problem in each step of the Picard iteration, a flexible GMRES method (Saad,
1993) preconditioned with the Least Squares Commutator Preconditioner with
iterative solver (BiCGstab with SSOR preconditioner) for the velocity subprob-
lem is used, see Ahmed et al. (2018) for a detailed description. This solver
proved to be a good choice for time-dependent saddle point problems in Ahmed
et al. (2018). The Picard iteration is forced to reduce the summed residual of
momentum and continuity equation below 5 · 10−9. This criterion was usually
achieved after one or two iterations.

The temperature and concentration equations are discretized in time with the
Crank–Nicholson approach and in space using P1 finite elements on the tetrahed-
ral discretization (2349 degrees of freedom for each equation). As stabilization,
the linear FEM-FCT method (Kuzmin, 2009) is used, which has been proved to
be a good compromise between accuracy and efficiency in John and Novo (2012);
John and Schmeyer (2008) and which was used already within the simulation of
other population balance systems, e.g., in Anker et al. (2015). This scheme is
based on computing fluxes between the degrees of freedom of the finite element
space and limiting them appropriately. It gives physically consistent results be-
cause it does not lead to spurious oscillations in the numerical solution. Since
the resulting linear systems in every time step are relatively small, the sparse
direct solver UMFPACK (Davis, 2004) is used for their solution.

In the SPS, particle transport and particle interaction are separated by a split-
ting scheme. Note that the SPS considers computational particles that approx-
imate the particle population in each mesh cell, see Bartsch (2018); Bartsch
et al. (2019) for details. A second order Strang splitting scheme, see Celnik
et al. (2007), is used. The path of the computational particles is determined
by the macroscopic velocity field, i.e., by the velocity field computed with the
Smagorinsky LES model, and the sedimentation. To reduce the model complex-
ity, we neglect the interaction of small particles with the unresolved scales in
the flow; on this topic see e.g. Park et al. (2017). So-called ‘turbulent diffusion’
of physical particles would be captured numerically by adding appropriately
weighted Gaussian noise to the particle trajectories simulated in the SPS.

In particular, a search routine for particle tracking is necessary, in order to
determine the cell which contains a computational particle at a given time. The
directed search algorithm from the in-house code Tetgen (Si, 2015) is utilized.
In addition to determining the cell index, the algorithm also detects when a
computational particle would leave the computational domain.

4.2. Particle-Wall Collisions

In the case that a computational particle hits a wall, it is important to distin-
guish the boundary through which the particle would leave. Particles leaving
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through the inflow boundary are measured and removed from the simulation. In
the case of wall or outflow filter (also a wall for a particle) boundary, a particle
reflection routine was implemented such that the particle was repositioned inside
the domain.

The reflection conditions that mimic particle-wall collisions are implemented in
Brush as follows. A particle is repositioned inside the domain when it hits
a solid boundary wall using two different reflection mechanisms, i.e., perfect
reflection and random reflection, biased towards the inside of the domain. Both
mechanisms model elastic wall collisions, i.e., no kinetic energy is absorbed in
the collision. It should be noted that in practice elastic collisions, particle-wall
and particle-particle, lead to a loss of energy, e.g., see Russell et al. (2014);
Boettcher et al. (2017). This phenomenon is not included in our model. Perfect
reflection is performed when the start point xold of the particle movement is
well inside the domain (distance from the hull intersection point is greater than
some positive value ε). Then, the new position x̃end of the particle is computed
in a two stage process. The reflection direction e is

e = (xhull − xold)− 2 ((xhull − xold) · n)n,

where n is the outward pointing unit normal of that tetrahedra face where xhull

is located, and the norm of the reflection vector is set to be

‖x̃new − xhull‖ = ‖xnew − xhull‖.

Random reflection is performed whenever either the starting point of a reflection
is very close to the wall, or in case a double reflection would occur. Both cases are
very prone to robustness errors, therefore we decided to handle them in this more
stable manner. Random reflection is performed with an acceptance-rejection
scheme. Directions e on the “inward” half sphere of radius r := ‖xnew − xhull‖
are created by drawing two random numbers u1, u2 ∼ U [0, 1] and setting

e = r
(√

1− z2 cos (θ) ,
√

1− z2 sin (θ) , z
)
, θ = 2πu1, z = −1 + 2u2.

If the scalar product e · n is positive, the direction e is inverted, in order to
point inwards. Further, a check is performed whether xhull + e is inside the
domain. If so, that value is accepted and the particle moved there, otherwise e
is rejected and another random reflection direction is generated.

In fact, there are more cases of non-robustness, and several of them are just
handled by relocating particles to cell centers. In each simulation, the occur-
rence of such cases is counted, and it turned out that around one in every 107

reflections fell into that category. Therefore, this issue is negligible for the over-
all results. The particle reflection algorithm is illustrated in Figure 6 and more
details can be found in Bartsch (2018).
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Start reflection algorithm if
xold ∈ Ωx and xnew /∈ Ωx

znew < 0
Remove particle

from the simulation

Compute hull intersection point xhull

‖xold − xhull‖ < ε

Compute random inside reflection
starting at xhull to obtain x̃new

Compute perfect reflection
starting at xhull to obtain x̃new

x̃new ∈ Ωx

Reposition particle to x̃new

Yes

No

Yes

No

No

Yes

Figure 6: The particle reflection algorithm that was implemented in Brush. The former
position of the particle is xold, the new (outside) position is xnew, with z-component znew.
A small ε > 0 is given as wall vicinity tolerance.

4.3. Sedimentation

One of the desired effects of the FBC is a height separation of different crystal
size fractions. To reflect such a behavior in simulations, sedimentation has to be
taken into account. For the simulations presented in Section 5, a sedimentation
model for spherical particles was implemented in Brush, whose derivation and
formulation can be found in Berg (1983, pp. 58). Since in the actual experiments,
the particles deviate from a spherical form, we found it necessary to modify this
model for our purposes.

Sedimentation of particles is modeled via a sedimentation rate, which results
in a downward sinking velocity of particles and differs for different particle
sizes. In order to apply the sedimentation rate that was proposed by Berg
(1983), two assumptions must be made: the particles are spherical and the fluid
velocity around the particles is so low that Stokes’ law is a sufficiently good
approximation for the inverse particle mobility (frictional drag coefficient). Its
derivation starts from a formula for the sinking velocity us of a particle which
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is surrounded by moving fluid molecules:

us =
Fdown

fd
. (7)

Here, Fdown [N] is the force acting downwards and fd [kg/s] is the frictional
drag coefficient, which relates force and velocity. The frictional drag coeffi-
cient is related to the particle mobility µES of the Einstein–Smoluchowski rela-
tion by µES = 1/fd. Specifying the forces acting downwards in (7), those are
‖Fdown‖ = (m− V ρ)g. In this equation, m is the particle mass, V the particle
volume, ρ is the density of the displaced fluid, and the gravity g = 9.81 m/s2.
The force depends linearly on the mass difference of particle and displaced
fluid. Other forces that might occur in swirling flows, so-called dynamic pres-
sure gradient forces, are neglected by expecting that the hydrostatic pressure
gradient dominates. It remains to find a model for fd. Here is where Stokes’
law for spherical particles in a viscous fluid at low velocity comes into play, and
thus the two assumptions made above. According to that model, see Berg (1983,
pp. 58) for its detailed derivation, fd can be approximated as fd = 3πµd, with d
being the diameter of the spherical particle, and µ the dynamic fluid viscosity.

Applying the sedimentation model derived in this way in our simulations, we
encountered severe difficulties. The larger particles entering through the inlet
with slower velocities were unable to counteract the gravitational force. Depend-
ing on the boundary conditions (particle removal/reflection) at and around the
inlet, the model could result with excessive agglomeration or significant loss of
particles. The two assumptions from above are satisfied probably only to some
extent. To mitigate these difficulties, we decided to modify the sedimentation
model from the literature by introducing a scaling factor σ ∈ [0, 1]. Then, in-
serting everything in (7) and replacing m = V ρcryst, one finally obtains the
following equation for the additional, downwards directed velocity component:

uz = σd2 · (ρcryst − ρ)g

18µ
, σ ∈ [0, 1],

or equivalently in the mass-based formulation:

uz = σ

(
6
ρπ

) 2
3

(ρcryst − ρ)g

18µ
m

2
3 , σ ∈ [0, 1]. (8)

An appropriate value for σ was found by numerical simulations, see Section 5.2.

5. Computational Results and Their Validation Against Experiments

The crystallization device, described in Section 2, is virtually configured and
discretized. In this section, results of the numerical simulation using the models
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and algorithms, as described in Section 3 and 4, will be discussed. The simu-
lation time is tend = 1800 s = 30 min. The macroscopic values of density and
viscosity are kept constant during the course of the simulations since the tem-
perature varies only slightly (±1 K), and the crystal load is almost negligible.
The flow field is developed in the first 30 s and the particles are inserted there-
after in the interval [30 s, 40 s]. In the experiments, the particles are funneled
into the device all at once, however, in the simulations, the particles enter the
domain over a short time interval, since the SPS works better with a relatively
uniform spatial distribution of particles.

For the initial investigation of numerical parameters, the seed mass of 1× 10−4 kg
is divided equally between two fractions of particles, one for particles of diameter
75 µm and one for particles of diameter 125 µm. The fractions are represented
by either a monodisperse or a log-normal distribution with 25 µm standard de-
viation. The model is described in terms of particle mass, however, for better
understanding of computational results and its comparison against experiments,
the particle sphere equivalent diameter in µm is used.

A typical run took around 35 hours computing time on a single core, where the
majority of the time (around 75 %) was spent for the flow simulation.

5.1. Flow Field Simulations

For the simulations, the mass flow rates of ṁ = 56 kg/h and ṁ = 93 kg/h are
considered. The filter width δ of the Smagorinsky LES model, see Table 2,
was chosen to be 2hK , where hK is the shortest edge of the tetrahedron K.
Parameter studies showed that the value CSmago = 5 ·10−4 for the Smagorinsky
coefficient is appropriate. With this value, the LES model does not add too
much artificial viscosity. Simulations of the velocity field were performed on
grids with different levels of refinement. All of them gave the same principal
flow pattern, see Bartsch (2018) for details. Instantaneous cross-sectional flow
fields for mass flow rates of 56 kg/h and 93 kg/h are illustrated in Figure 7. The
principal form of the flow field, with the dominating jet in the center, is the
same for the whole time interval. Due to the dominating jet, the evolution of
the flow structures away from the center is hard to visualize.

Fluidized beds are applied when impellers and breakage shall be avoided, since
the fluid velocities and turbulence intensity are low. Stirred crystallizers lead to
better mixing and even stronger mixing in small regions can be achieved by jet
crystallizers. Figure 7 shows a jet like behavior at the inlet of the device. The
remaining part of the crystallizer is characterized by small velocity magnitudes
and it therefore resembles a fluidized bed in these areas.

We performed flow simulations also on finer grids than used for the population
balance system (1a)–(1d), see (Bartsch, 2018, Chapter 7.2). These finer grids
were obtained by refining the grid presented in Figure 5 once or twice. While
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Figure 7: Instantaneous flow field (norm of the velocity in m/s) in a vertical cut plane after
200 s; left: inflow 56 kg/h, right: inflow 93 kg/h.

more details of the flow field could be resolved on the finer grids, the main
features of the flow, i.e., the central jet and the vortices near the filter, could
be observed on all grids. Since the library for the stochastic particle simulation
is not yet parallelized, we had to perform the simulations for the population
balance system in a sequential way. Thus, for the reason of computing time, we
could not afford to perform simulations of the population balance system on the
finer grids, see above for information on the computing time on the grid from
Figure 5.

5.2. Coupled Simulation of Temperature, Concentration, and Population Bal-
ance of Potash Alum Crystals

Here, we will present results for the coupled simulations. The parameters for
each of the equations are also described.

For the temperature field computations using equation (1b), we use DT =
1.5 · 10−7 m2

/s and gT = 0.0221 K·m3
/kg, utilizing the function expression and

constants in Table 2. The Dirichlet boundary values for the temperature over
time are linearly interpolated over the initial temperature at t = 0 min, i.e.,
Tstart = 288.95 K (15.8°C), and the temperature at the end of the experiment
after t = 30 min, i.e., Tend = 288.35 K (15.2°C).

The diffusion constant Dc in the concentration equation (1c) is given in Table 2
and for Mhydrate the value for potash alum is taken, see also Table 2. In the
simulations, the initial condition cstart = 207 mol/m3 was chosen. This value
corresponds to the saturation concentration at 17 °C.

Storage for a maximum of 256 computational particles was assigned to each
mesh cell of Ωx. The conversion from computational particle count in the SPS
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to physical particle concentration is linearly proportional to the physical particle
concentration which a full ensemble represents. In preliminary simulations,
5.0×108 # physical particles/m3 was found to be an appropriate upper bound for the
physical particle concentration in the majority of the systems and the conversion
factor chosen so that this corresponded to a full ensemble of 256 computational
particles. This conversion factor was used throughout the domain except close
to the bottom of the device where physical particle concentration was higher
due to sedimentation. To numerically capture these higher concentrations the
conversion factor was increased by a factor of 10 below 0.1 m and by a factor
of 100 below 0.05 m. The choice of conversion factor is a purely numerical
matter, it influences computational cost and numerical precision, but apart
from this has no effect on the results for physical quantities. This setup led
to a total of roughly 150000 computational particles in the simulation domain
after completion of the insertion at 40 s. That number is typically reduced by
around 50% at the end of a simulation, see Bartsch et al. (2019); Patterson et al.
(2011) for a detailed discussion of the simulation steps and how they affect the
computational particle count.

Determining an Appropriate Sedimentation Coefficient

Numerical results, shown in Figure 8, suggested that the sedimentation was
overly dominant using σ ≥ 0.5 in the sedimentation model (8). In some test
simulations, up to 80 % of the total crystal mass was lost over time that way.
In the actual experiment, the octahedral shape and agglomerate nature of the
potash alum crystals led to a greater particle surface and porosity, which sug-
gests that the actual sedimentation velocity was less than for spherical particles.
The sedimentation of particles could be effectively downscaled using σ < 0.5.
From the numerical results shown in Figure 8, one can conclude that σ = 0.1 is
an appropriate choice.

For this sedimentation coefficient, according to Equation (8), the sedimentation
velocity for a particle of 100 µm diameter becomes −0.0003 m/s. At the outlet at
the top of the crystallizer and near the vessel walls, the fluid velocity approaches
zero as well. Hence, the relative particle velocity is small. The particle does not
leave the vessel at the top. Instead, it sinks down near the vessel walls.

Determining an Appropriate Agglomeration Parameter

With the sedimentation parameter fixed to σ = 0.1, simulations with different
agglomeration parameters were performed, comparing the development of the
PSD. The main goal was to examine the dependence of the PSD on the height
in the device, where the particle sampling was performed. Simulation data
was gained by saving snapshots of all computational particles present in the
simulation domain every 10 seconds. This interval was large enough to ensure
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Figure 8: Total crystal mass in the system during agglomeration-only simulations with dif-
ferent sedimentation parameters σ. Significant mass loss occurs for σ = 0.5. For σ = 0.1,
there is almost no mass loss. Start mass was 77 mg, mass flow rate 56 kg/h, agglomeration
parameter κ = 500.

a complete exchange of particles in each ensemble, thus reducing stochastic
dependence, and allowing for averaging over multiple of these snapshots without
too much redundancy. This way, between 2 and 3 GB of data were collected
per simulation. Additionally, all particles that left the device through the inflow
were logged.

Figures 9 and 10 show spatially summed, resp. averaged, quantities. In Figure 9,
the development of the total particle mass is shown for both flow setups. A gain
due to growth is visible, followed at later times by mass loss through the inlet.
The latter is the more pronounced for larger agglomeration parameters, since
larger particles sediment faster and carry more mass out of the domain upon exit.
Note also that mass gain due to particle growth is higher in the slower flowing
setup. From Figure 10, one observes that the difference in the development of
the spatial average particle diameter is less distinct between the two flow setups.
The average increase in particle size in the setup with low flow rate of 53 kg/h

is only slightly larger than in the setup with higher flow rate of 93 kg/h. The
flow rate affects the supersaturation and, hence, the growth and agglomeration
rate only to a small extent. As was expected, a higher agglomeration parameter
results in larger particles in total.

From the comparisons with experimental results, we concluded that κ = 5000
is an appropriate parameter. This parameter is of the same order of magnitude
as in Anker et al. (2015).
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Figure 9: Development of the total crystal mass, depending on agglomeration scaling para-
meter κ. Higher agglomeration rates result in larger particles, which are more likely to slip
out through the inlet due to sedimentation. Left: 56 kg/h mass flow setup. Right: 93 kg/h
mass flow setup.
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Figure 10: Temporal development of the spatially averaged particle diameter in the crystallizer
device, depending on agglomeration scaling parameter κ. Left: 56 kg/h mass flow setup. Right:
93 kg/h mass flow setup.

5.3. Simulations versus Experiments

In the experiments, 1× 10−4 kg of crystalline seeds were used and their experi-
mentally measured distribution is shown in Figure 11.

For the simulations, the distribution was approximated as two lognormal dis-
tributions with the help of fitdistrplus package in R language, see Delignette-
Muller and Dutang (2015). A call to the fitdist function with the arguments
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Figure 11: Initial crystal size distribution in the first 60 s of experiment C. Distributions are
normed by their sum and the size class width. Left: Number density distribution; Right:
Mass density distribution.

Main particle fraction Dust particle fraction
m̄diam in µm 129.2 9.5
sddiam in µm 26.2 7.9
µdiam 4.8 2.0
σdiam 0.2 0.7
µN 35.4 26.8
σN 0.6 2.2

Table 3: Data of the artificial initial distribution, a sum of the two lognormal distributions
‘main’ and ‘dust’. Mean value m̄diam and standard deviation sddiam of the diameter, para-
meters of the lognormal distributions in terms of the diameter (µdiam, σdiam) and in terms of
number of potash alum molecules (µN, σN).

‘ lnorm’ and ‘mme’ evoked a moment matching estimation algorithm, which
returned parameters of a lognormal distribution which had the same first and
second moments as the input data. Those parameters are listed in Table 3,
along with their equivalents in terms of numbers of molecules, which were used
as input data for the simulations.

Figure 12 shows the development of the particle size over time at various sample
heights (z-coordinate) in the crystallizer for the simulations and experiments.
In Figure 12 (left), the value at coordinate z comprises all computational par-
ticles in the interval [z − 0.025, z + 0.025] of 5 cm width. The computational
results show that the difference in average particle size is the most distinct at
the bottom of the crystallizer. There is hardly a difference between the curves
for heights greater than 0.17 m. This could be explained by the fact that the
particles have a longer residence time in the vicinity of the filter, where they get
reflected repeatedly and travel slowly to the sides of the device. This large resid-
ence time could lead to more agglomerations taking place in those cells close to
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Figure 12: Temporal development of the (averaged) crystal diameter in different heights in
the crystallizer device for 56 kg/h mass flow setup. The height z is given in m above the
inlet. Left: Simulation results with agglomeration parameter κ = 5000 and sedimentation
parameter σ = 0.1. Right: Experimental observations.

the top boundary. Finally, it can be observed that the experimental and compu-
tational results are qualitatively the same: there is a consistent increase in the
particle size at all heights over time. Quantitatively there are some differences.
In the experiments, the relationship between average diameter and time is ap-
proximately linear while it seems to be sub linear in the simulations. Although,
the average diameter is within the same range for all heights, it increased by
about 60 µm in the simulations and around 80 µm in the experiments. The
observed difference in Figure 12 may be related to experimental and model-
ing issues, see a discussion of the latter ones towards the end of this section.
Concerning the experiments, one issue might be the sampling of crystals within
the measurement loop. Crystals are withdrawn for the optical observation at a
specific height but also due to technical limitations at a specific distance from
the center of the FBC. For the simulation results, we count and evaluate all
particles in the same height range from center to the vessel wall. As this will
include more and therefore also more smaller crystals, the average crystal size
may be smaller in comparison to the experiments. At the same time, a larger
size separation by the crystallizer height was observed in the simulations but
not in the experiments. The specific withdrawal point in our experiment can
also influence the size separation effect. The observed difference between ex-
perimental and simulated data calls for more detailed analysis in the future.
Whether this effect is helpful for a selective product removal is an interesting
and open question when implementing the FBC in a real application.

Figure 13 shows the PSD for different heights at 15 and 30 min for the simu-
lations and experiments. The sample heights were chosen in accordance with
Figure 12. In Figure 13 (left), the computational particles were organized in
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Figure 13: Snapshots of the PSD at different points in time and in different heights in the
crystallizer. All figures were obtained with agglomeration parameter κ = 5000 and sediment-
ation parameter σ = 0.1. The initial distribution is the sum of two log-normal distributions.
Left: Simulations. Right: Experiments.

bins according to their diameter, where the height of the bar is the probability
of a random physical particle to fall into the bin. The histograms represent
particle populations at the given particular point in time. A perceptible shift in
the PSD is observed. In Figure 13 (left), it can be seen that a relatively wide-
spread population of large particle agglomerates are formed near the inlet. At
heights 0.1 m and 0.17 m, smaller particles were present that had experienced
possibly less collision and surface growth events. Comparing the distributions
with the initial distribution in Figure 11, the height of the peak reduces, the dis-
tribution widens and it moves to larger sizes for all heights, for both experiments
and simulations. The initial peak is at 130 µm and after 30 min the peak is at
about 190 µm and 210 µm for the simulations and experiments, respectively.
This suggests a considerable increase in crystal size.

A reason for the increase in the distribution width and the tailing towards larger
sizes is certainly agglomeration. In the experiments, the degree of agglomeration
stayed constant or increased only slightly, which does not mean that agglomer-
ation cannot occur. The event of an agglomerate agglomerating again reduces
the degree of agglomeration in terms of number which could be equalized by
the agglomeration of primary crystals. This assumption is supported by a slight
decrease in the total crystal number in the intermediate position in Figure 3.
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Since the total crystal number decreases during the process, breakage seems to
be unlikely. Breakage and agglomeration may be in equilibrium and would then
not have an observable effect in the experiments. This is also improbable since
there are no new crystals appearing in Figure 13 at the lower end of the seed
size range during the experiments. Hence, it seems to be justified that breakage
can be neglected in our model.

In our opinion, the main reason for the quantitative differences of experimental
and numerical results is the modeling of the particles by just one internal co-
ordinate (mass). As already mentioned, the potash alum crystals are of oc-
tahedral shape. Thus, given the mass of a particle, it is not possible to fully
determine its shape and size. The stochastic particle simulation method is a
natural framework for modeling particles in a more complex way than with
one internal coordinate (Sander et al., 2011; Shekar et al., 2012). Developing
a particle model that is more realistic in this respect will be a topic of future
research and should be combined with a consideration of the interaction of the
particles with the unresolved flow scales. Further modeling aspects whose im-
provement should be studied in future are the agglomeration kernel and the
sedimentation model. Future work includes also the MPI parallelization of the
library for the SPS. Then, since the code for the CFD is already MPI parallel-
ized, it will be possible to perform simulations of the population balance system
on much finer grids in affordable times on clusters with many processors. Be-
sides the general expectation of computing more accurate results on finer grids,
in particular more flow scales can be resolved.

Because of the differences of experimental and numerical results, we also took
into consideration whether the withdrawal flow in the experiments may have
influenced the flow, induced turbulence, and disturbed the size separation. Ad-
ditional simulations at the higher mass flow rate of 93 kg/h contradict this idea
since the resulting distributions look similar to the distributions in Figure 13.
One might tend to think that the withdrawal to the sampling loop is not isokin-
etic. The size distribution of the crystals in the first or second minute after seed
addition are slightly smaller for the bottom seeding method, where the seeds
enter the system through the cuvette, compared to top seeding, where the crys-
tals are sampled at the withdrawal tube. Hence, the withdrawal might slightly
overselect large crystals. The difference between the seeding methods is only
in the range of a few µm. Hence, the withdrawal is nearly isokinetic and the
explanation can be invalidated.

6. Summary and Outlook

This paper presented an investigation of a crystallization process in an FBC,
both by experiments as well as by numerical simulations based on a population
balance model. A stochastic-deterministic method with novel extensions was
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used for performing the simulations. Comparisons of experimental and numer-
ical results showed a good qualitative and a reasonable quantitative agreement.
Possible reasons for the quantitative differences were discussed in Section 5.3.

We think that future experiments could focus on a better fluidization of the
crystals for fractionation. This might be reached either by decreasing the seed
crystal size, by increasing the inflow velocity, by changing the crystallizer geo-
metry, or by modifying the crystallizer inlet. In the experiments, the absolute
number of crystals at a height of 0.17 m and 0.30 m becomes negligible. A
separation in height by crystal size might be difficult close to the inlet. In this
respect, we think that an increased flow rate in the main circuit may increase
the fluidization of the crystals. In the simulations, an upward fluid flow was
mainly observed at the axis of the FBC. In the work of Kerst et al. (2017), a
slim FBC was considered and higher vertical particle velocities with lower dis-
tance from the vertical crystallizer axis were measured. Their fluid velocities
were qualitatively similar to those in the present paper.

Among the several ways that were used to simplify the model, the modeling
of the potash alum crystals with just one property coordinate was considered
to be one of the main reasons for the quantitative differences of the results.
The stochastic particle simulation method provides a natural framework for the
simulation of particles that are modeled in a more complex way than with one
property. Thus, the implementation of a multi-property particle model for the
crystallizer is one of the most important next steps for the simulations.
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