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Abstract

This thesis present a numerical study of the a posteriori error estimators for
steady-state convection-diffusion equations. The study involves the gradient
indicator, which based on the gradient recovery, four residual based error esti-
mators for different norm and also introduces two error estimators defined by
the solution of the local Neumann problems. These estimators’ quality are stud-
ied through two examples with respect to two aspects. One is the accuracy of
the estimated solution with respect to the real solution on the mesh cells, which
is implemented by computation of the efficiency index. Another is comparison
of these estimators with respect to the quality of the adaptive grid refinement.
The computation of the examples is performed using ParMooN [11] [28].

Keywords: Steady-state Convection-diffusion equation, SUPG method, A pos-
teriori error estimators, ParMooN
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1 Introduction

This thesis presents adapative methods for convection-diffusion equations.
The convection–diffusion equation is a combination of the diffusion and convec-
tion (advection) equations, and describes the flow of heat, particles, or other
physical quantities in situations where there is both diffusion and convection or
advection.
The numerical methods for convection-diffusion problems go back to 1955, more
than 60 years ago. In 1969, two significant papers [3] [15] from Russia anal-
ysed new numerical methods for convection-diffusion ordinary differential equa-
tions.In [3], Bakhvalov considered an upwinded difference scheme on a layer-
adapted graded mesh. Such meshes are based on a logarithmic scale, which are
very fine inside the boundary layer and coarse outside. In [15] was used a uni-
form mesh. Angermann [2] gives an example of an exponentially-fitted scheme
that does a remarkable job of capturing an interior layer on a uniform mesh.
In the next 20 years, the Il’in-type schemes were applied for some PDEs by
researchers, see [24] for reference. This doesn’t explicitly contain exponentials,
but it is based on the idea of solving a local problem exactly [9], as is Il’in’s
method [23]. In 1990 the Russian mathematician Grisha Shishkin showed that
in-stead one could use a simpler piecewise uniform mesh. This idea has been
enthusiastically propagated throughout the 1990s by a group of Irish mathe-
maticians: Miller, O’Riordan, Hegarty, Stynes and Farrell. See [8] , [24] and
their bibliographies.
The finite element method obtained its real impetus in the 1960s and 1970s
by the developments of J. H. Argyris (Johann Hadji Argyris (1913-2004)) with
co-workers. A rigorous mathematical basis to the finite element method was
provided in 1973 with the publication by Strang and Fix [25]. The method has
since been generalized for the numerical modeling of physical systems in a wide
variety of engineering disciplines, e.g., electromagnetism, heat transfer, and fluid
dynamics [21], [4]. It is a good choice for analyzing problems over complicated
domains (like cars and oil pipelines), when the domain changes (as during a
solid state reaction with a moving boundary), when the desired precision varies
over the entire domain, or when the solution lacks smoothness.
In the past years, several techniques to stabilize finite element methods have
been proposed for steady-state convection-diffusion equations. And the streamline-
upwind Petrov/Galerkin method (SUPG method) is one of the most popular
one among them. It was introduced by Hughes and co-workers [6]. After that,
the SUPG method has then been improved by addition of the variable multi-
scale method, which was proposed also by Hughes [13]. The developed scheme
result in a reasonable numerical solution and the accuracy is quite good outside
layers [10] [19].
Here we only consider the steady-state convection-diffusion equation and present
the Galerkin method and SUPG method based on the derivative of the weak so-
lution of the equation. After that, the error estimation is presented accordingly
in Section 2. In Section 3, we present a posteriori error estimation based on the
residual and introduce several common a posteriori error estimators including
gradient indicator, Zienkiewicz-Zhu estimator, residual-based error estimators
in different norm and two error estimators based on the solution of local Neu-
mann problems. The main goal of the a posteriori error estimators is to provide
ideally bounds and an estimate to the solution error in a specified norm. For

5



an effective error estimator, there are some characteristics that it should in-
clude [12].The study of the behaviour of the a posteriori error estimators with
respect to the estimation of the global error will be studied through one simple
problem, which shown in the example 1 of Section 4. And the second example
studies the adaptive grid refinement. In Section 5, we summarized the results
of the numerical studies.
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2 Steady-State Convection-Diffusion Equation

In this section, we give the introduction of the class of problems and correspond-
ing mathematical equations we are interested in, derive the strong and weak form
of the equation and the Streamline-Upwind Petrov-Glalerkin(SUPG) method of
the problem, and introduce the notation which will be used.
Generally, we cannot expect that a partial differential equation has a classical
solution. Hence there are many conditions to ensure the existence of a classical
solution of a partial differential equation, such as all parameters have to be suf-
ficiently smooth, the domain has to satisfy certain regularity conditions when
in higher dimensions and so on. All these conditions become barriers when we
require a classical solution for a partial differential equation derived from real-
istic problems.

Definition: Convection-diffusion-reaction equation
A linear convection-diffusion(-reaction) equation with homogeneous Dirichlet
boundary condition (further detail of the Dirichlet boundary condition refer to
Example 4.2.2.1 below) defined on a bounded domain Ω ⊂ Rd, d ∈ 1, 2, 3 and
Lipschitz boundary ∂Ω will be written

−ε∆u+ b · ∇u+ cu = f in Ω

u = 0 on ∂Ω
(1)

where

- −ε∆u is the diffusion term, ε ∈ R, ε > 0.

- b ·∇u is the convection term (advective term, or transport term), b(x) 6≡
0.

- cu is the reaction term.

Here we may call ε, b and c as the diffusion, convection and reaction parameter,
repectively. They reflect the weight of the different parts.
Obviously these equations have the solution, even though it might not satisfy
the smoothness or regularity conditions. Therefore one needs an extension for
the notion of the solution.

2.1 Weak Solution

Denote (·, ·) as the inner product of L2(Ω). Consider problem (1) and multiple
the equation (1) with an appropriate function v(x) satisfying v = 0 on ∂Ω,
intergrate the resulting equation on Ω, and apply integration by parts (applied
with Gaussian Theorem [22]), we have∫

Ω

(−ε∆u+ b · ∇u+ cu)(x)v(x) dx

=

∫
∂Ω

(−ε(∇u · n)v(s)) ds +

∫
Ω

(ε∇u · ∇v + (b · ∇u+ cu)(x) dx

=

∫
Ω

(ε∇u · ∇v + (b · ∇u+ cu)v(x) dx

=

∫
Ω

(f(x)v(x)) dx.
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Here, n is the outward pointing unit normal vecotr on ∂Ω. The highest order
derivative of u(x) has been transferred to v(x).

Definition: Variational or weak formulation
If b, c ∈ L∞(Ω) and f ∈ H−1(Ω), the convection-diffusion-reaction equation (1)
can be written in the variational or weak formulation as: Find u ∈ H1

0 (Ω) such
that for all v ∈ H1

0 (Ω)

ε(∇u,∇v) + (b · ∇u+ cu, v) = (f, v), (2)

a solution of (2) is called variational or weak solution, the space where the solu-
tion searched is called solution or ansatz space, and the functions v(x) are called
test functions and the space from which they come is the test space. For the
definition above, u is the weak solution and the solution space and test space
are both H1

0 (Ω).
Pay attention that for different boundary conditions, the weak formulations are
also different, which will be shown in the following examples.
There are different kind of boundary conditions with respect to different proper-
ties, such as Dirichlet boundary conditions, Neumann boundary conditions and
Robin boundary conditions and so on, see [26]. In this paper, we will mainly
concentrate on Dirichlet boundary conditions and Neumann boundary condi-
tions.

Example 4.2.2.1 Inhomogeneous Dirichlet boundary conditions
Consider inhomogeneous Dirichlet boundary conditions

u(x) = g(x) on ∂Ω, (3)

with g ∈ H 1
2 (∂Ω), which are included into the definition of the ansatz space

Va = {v ∈ H1(Ω) : v|∂Ω = g},

the test space is still V = H1
0 (Ω).

Then the weak formulation can be written asFind uVa such that

ε(∇u,∇v) + (b · ∇u+ cu, v) = (f, v) ∀v ∈ V. (4)

Under this kind of description, the test space is still H1
0 (Ω), but the solution

space is Va.

There also exists a different way to express the variational problem by using
an extension ug ∈ H1(Ω) of g(x) to Ω. This kind of weak formulation reads as:
Find u ∈ H1(Ω) such that ũ = u− ug ∈ V and

ε(∇ũ,∇v) + (b · ∇ũ+ cũ, v) = (f̃ , v) ∀v ∈ V. (5)

In this formulation, the solution and test space are same, which is H1
0 (Ω).

Hereby the term (f̃ , v) has the form

(f̃ , v) = (f, v) + ε(∇ug,∇v) + (b · ∇ ug + cug, v). (6)
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Example 4.2.2.2 Neumann boundary conditions
Consider Neumann boundary conditions

ε(∇u · n) = gN on ∂ΩN . (7)

Let ∂Ω = ∂ΩD ∪ ∂ΩN with ∂ΩD ∩ ∂ΩN = ∅, and assume that u(x) = 0 for all
x ∈ ∂ΩD for simplicity.
Let V0 = {v ∈ H1(Ω) : v|∂ΩD = 0}, then the variational formulation reads as:
Find u ∈ V0 such that

ε(∇u,∇v) + (b · ∇u+ cu, v) = (f, v) +

∫
∂ΩN

gN (x)v(s) ds ∀v ∈ V0, (8)

a bilinear form in mathematics on a vector space V is a bilinear map V ×V → K
where K is the field of scalars. In other words, a bilinear form is a function
B : V × V → K that is linear in each argument separately. Therefore we have
following properties.

Property2.2.1 Let (V, ‖·‖V ) be a Banach space. A map s : V × V → R is
called

- Bilinear, if a(·, ·) is linear in both arguments,

- Symmetric, if a(u, v) = a(v, u) for all u, v ∈ V ,

- Positive, if a(v, v) ≥ 0 for all v ∈ V ,

- Strictly positive or coercive or V-elliptic or positive definite if there is a
m > 0 such that a(v, v) ≥ m‖2V for all v ∈ V ,

- Bounded if there is a M > 0 such that

|a(u, v)| ≥M‖u‖V ‖v‖V (9)

for all u, v ∈ V .

Lemma For the bilinear form of the weak formulation of problem (2)
First of all, for the weak formulation of problem (2) we study in this section, it
is

a(u, v) :=

∫
Ω

(ε∇u(x) · ∇v(x) + b(x) · ∇u(x)v(x) + c(x)u(x)v(x)) dx, (10)

a bilinear form in the space V = H1
0 (Ω). Then the conditions of different

properties can be written in the form below:

- Symmetric, if b(x) = 0 for all x ∈ Ω,

- Coercive, if − 1
2 · b(x) + c(x) ≥ 0,

- Bounded, and the corresponding M = ε+CP F ‖b‖L∞(Ω) +CP
2
F ‖c‖L∞(Ω)

such that
|a(u, v)| ≥M‖u‖V ‖v‖V (11)

for all u, v ∈ V .
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Proof: If b(x) = 0 for all x ∈ Ω, then we have

a(u, v) :=

∫
Ω

(ε∇u(x) · ∇v(x) + c(x)u(x)v(x)) dx, (12)

and exchange of the position of u and v won’t change the form of a(u, v). It
is symmetric. Let b ∈ C1(Ω̄) and c ∈ C(Ω̄). By integration by parts and the
product rule, one obtains∫

Ω

(b(x) · ∇v(x)u(x)) dx = −1

2

∫
Ω

(∇ · b(x)v(x)u(x)) dx. (13)

Insert it into a(u, v) and let u(x) = v(x) yields

a(v, v) =

∫
Ω

(ε(∇v(x))2 + (−1

2
∇ · b(x) + c(x))v(x)2 dx. (14)

Hence if − 1
2∇ · b(x) + c(x) ≥ 0, then

a(u, v) ≥
∫

Ω

(ε(∇v(x))2 dx = ε‖∇v(x)‖2L∞(Ω)= ε‖v(x)‖2V , (15)

which means a(u, v) is coercive.
By the Cauchy-Schwarz inequality, Hoelder’s inequality, and the Poincare-Friedrichs
inequality, we have

|a(u, v)| ≤ ε‖∇u‖L2(Ω)‖∇u‖L2(Ω)+‖b‖L∞(Ω)‖∇u‖L2(Ω)‖∇u‖L2(Ω)

+‖c‖L∞(Ω)‖u‖L2(Ω)‖u‖L2(Ω),

≤ ε‖∇u‖L2(Ω)‖∇u‖L2(Ω)+CP F ‖b‖L∞(Ω)‖∇u‖L2(Ω)‖∇u‖L2(Ω)

+CP
2
F ‖c‖L∞(Ω)‖u‖L2(Ω)‖u‖L2(Ω)

= (ε+ CP F ‖b‖+CP 2
F ‖c‖)‖∇u‖L2(Ω)‖∇u‖L2(Ω)

= (ε+ CP F ‖b‖+CP 2
F ‖c‖)∇u‖V ‖∇u‖V ,

where we assume that b, c ∈ L∞(Ω).
According to the Lax-Milgram theorem [20], when the map a(·, ·) is a bounded
and coercive bilinear form on the Hilbert space V , then for each bounded linear
functional f ∈ V ′ , there is exactly one u ∈ V satisfying (cf. e.g. Ciarlet [7] )

a(u, v) = f(v) ∀v ∈ T. (13)

2.2 Finite Element Formulations

2.2.1 The Galerkin Method

Definition:The Galerkin Method
Repacing the space V in weak formulation (2) with a finite-dimensional space

10



V h, we have the standard finite element method, i.e., Galerkin Method: Find
uh ∈ V h, such that for all vh ∈ V h

ε(∇uh,∇uh) + (b∇uh + c∇uh,∇vh) = (f,∇vh), (14)

where V h is a finite-dimensional space.
The method is called conforming if V h ⊂ V .

Cea’s Lemma Let V h ⊂ V and a(·, ·) : V × V → R be a bounded and
coercive bilinear form on the Hilbert space V , then there is a unique solution of
the problem to find uh ∈ V h such that

a(uh, vh) = f(vh) ∀vh ∈ V h (15)

and the error between the original and the Galerkin solution admits the estimate

‖u− uh‖V ≤
M

m
inf

vh∈V h
‖u− vh‖V . (16)

That is to say, the Galerkin solution uh is “the best” approximation of the
original solution u inV h, up to the constant M

m , where m is a positive constant
satisfying a(v, v) ≥ m‖v‖V 2 for all v ∈ V , and M is also a positive constant
such that |a(u, v)| ≤M‖v‖V ‖u‖V for all u, v ∈ V .
The error estimate can be simply proved with the boundedness and ellipticity
of the bilinear form and Galerkin orthogonality.
Proof: Since the subspace of a Hilbert space is also a Hilbert space and the
properties of the bilinear form carry over from V to V h, and based on the
Thorem of Lax-Milgram, we can directly derive the existence of a unique solution
of the discrete problem.
Copmuting the difference of (3) and (5), yield the error estimator

a(u− uh, vh) = 0 ∀vh ∈ V h, (17)

with
m‖v‖2V 2 ≤ a(v, v) (18)

and
|a(u, v)| ≤M‖v‖V ‖u‖V . (19)

It follows for all vh ∈ V h that

‖u− uh‖2V ≤
1

m
a(u− uh, u− vh) ≤ M

m
‖u− uh‖V ‖u− vh‖V . (20)

This equality is equivalent to the statement of the theorem.

Definition:Petrov-Galerkin Method.
Petrov-Galerkin method is a finite element method whose ansatz space and test
space are different.Let Ah and T h be the ansatz and test spaces respectively,
withdim(Ah) = dim(T h). Then the Petrov-Galerkin method reads as follows:
Find uh ∈ Ah such that

a(uh, vh) = f(vh) ∀vh ∈ T h. (21)
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2.2.2 SUPG Method

In this section, we consider a coercive problem (2), which means − 1
2∇ · b(x) +

c(x) ≥ 0 is satisfiey.

Definition:Residual-based stabilization
Methods that consist of a penalization of the residual if the so-called strong resid-
ual has large value. Given a linear partial differential equation whose Galerkin
finite element discretization is same as (6) in its strong form

Astrustr = f, f ∈ L2(Ω). (22)

Modify Astr as a well-defined for finite element functions with a linear operator

Astr : V h → L2(Ω). (23)

The residual can be defined by

rh(uh) = Astrustr − f ∈ L2(Ω). (24)

Instead of finding the solution of the equations, we look for the minimizer of
the residual, which can be present as

arg min
vh∈V h

‖rh(uh)‖2L2(Ω) = arg min
vh∈V h

(rh(uh), rh(uh)). (25)

From the optimization problem’s necessary condition is vanishing the Gateaux
derivative, we can have a generalization consisting in the minimization problem

arg min
vh∈V h

‖δ1/2rh(uh)‖2L2(Ω) = arg min
vh∈V h

(δhrh(uh), rh(uh)) (26)

with the positive weighting function δ(x). The minimization problem above
can be derivated by using the linearity of Ahstr and the bilinearity of the inner
product in L2(Ω)

0 = lim
ε→0

(rh(uh + εvh), rh(uh + εvh))− (rhuh, rhuh))

ε

= lim
ε→0

(rhuh + εAhstrv
h, rhuh + εAhstrv

h)− (rhuh, rhuh))

ε

= 2(rhuh,hstr v
h) ∀vh ∈ V h. (27)

For the solution of certain problem that possesses structures (such as layers for
convection-diffusion equations) that are important but are not resolved by the
used grid, the Garlerkin method failed. When it comes to sharp layers, which
is generally coarser than the mesh width, the solution is not accurate enough.
Hence we consider combine residual-based stabilizations with the Galerkin dis-
cretization (possessing not sufficient diffusion) and the minimization of the resid-
ual (is over-diffusive),

ah(uh, vh) + (δrh(uh), Ahstrv
h) = (f, vh) ∀vh ∈ V h. (28)

The goal of numerical analysis consists in determining the weighting function δ
optimally in an asymptotic sense.
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Definition:Consistent finite element method
Let u(x) be a sufficiently smooth solution of: Find u ∈ V such that

a(u, v) = f(v) ∀v ∈ V, (29)

where a(·, ·) is an appropriate bilinear form and f(·)an appropriate functional.
A finite element method related to this problem: Find uh ∈ V h such that

ah(uh, vh) = f(vh) ∀vh ∈ V h (30)

is called consistent, if

ah(u, vh) = f(vh) ∀vh ∈ V h. (31)

Hence the consistency of a finite element method means that a sufficiently
smooth solution satisfies also the discrete equation, which is quite different from
the consistency of finite differential operator.
The upwind finite element discretization remove the unneeded oscillations but
the accuracy attained is usually poor since too much introduced numerical dif-
fusion, just like in the finite difference method. Besides, they are not consistent
either, which lead to the accuracy limited to first order. Even worse condition
is that the discrete solution is less accurate than the one produced by Galerkin
method (cf. e.g. Brooks and Hughes [6]for a discussion on shortcomings of
upwind methods).

Definition:Streamline-Upwind Petrov-Galerkin FEM, SUPG method
The Streamline-Upwind Petrov-Diffusion(SUPG) FEM or Streamline-Diffusion
FEM(SDFEM) has the form: Find uh ∈ V h, such that

ah(uh, vh) = f(vh) ∀vh ∈ V h (32)

with
ah(v, w) := a(v, w) (33)

+
∑
K∈T h

∫
K

δK(−ε∆v(x) + b(x) · ∇v(x) + c(x)v(x))(b(x) · ∇w(x)) dx (34)

fh(w) := (f, w) +
∑
K∈T h

∫
K

δKf(x)(b(x) · ∇w(x)) dx. (35)

Here, δK are user-chosen weights, which are called stabilization parameters or
SUPG parameters.

Remarks

- The SUPG method is consistent.
Proof: It can be proved by inserting a sufficient smooth solution of (1) in
the SUPG formulation, which results in a vanishing of the stabilization
term and remains

ah(uh, vh) = f(vh) ∀vh ∈ V h, V h ⊂ V. (36)

13



- The SUPG method introduces artificial diffusion only in the streamline
direction b(x) · ∇w(x).

- The SUPG parameter δK will be chosen as a constant function in prac-
tice. Finite element error estimation’s goal is proposing a good asymptotic
choice of it.

Lemma:Galerkin orthogonality
A consistent finite element method has the property of the Galerkin orthogo-
nality if

ah(u− uh, vh) = 0 ∀vh ∈ V h. (37)

The error is “orthogonal” to the finite element space.
Proof: Through subtracting (1) and (33-35), we can directly deduce it.
Since SUPG method is a consistant finite element method, we know that SUPG
method also satisfies Galerkin orthogonality.

Example: SUPG method for P1 finite elements in one dimension
Consider Ω = (0, 1) and V h = P1 on an equidistant grid with hi = h, i =
1, . . . , N . Assume all coefficients and the SUPG parameter are constant and
c = 0, then the left-hand of the SUPG method reduces to ε((uh)

′
, (vh)

′
) +

b((uh)
′
, vh) + εb2((uh)

′
, (vh)

′
), and the right-hand side is hfi.

Overall, the SUPG method is

−ε(1 + δ
b2

ε
)D+D−ui + bD0ui = fi. (38)

Definition: SUPG norm
Let for almost all x ∈ Ω hold

−1

2
∇ · b(x) + c(x) ≥ ω > 0, (39)

in V h,the SUPG norm is defined by

|‖vh‖|SUPG := (ε|vh|2H1(Ω) + ω‖vh‖2L2(Ω) +
∑
‖δ

1
2

Kb · ∇vh‖2L2(Ω))
1/2. (40)

Theorem: Coercivity of the SUPG bilinear form
Assume that b ∈W 1,∞(Ω), c ∈ L∞(Ω),− 1

2∇ · bx + c(x) ≥ ω > 0, and let

0 < δK ≤
1

2
min

{
h2
K

εC2
inv

, ω
‖c‖2Linf(K)

}
, (41)

where Cinv is a constant that depends only on k, l, p, q, K̂, ˆP (K) with 0 ≤ k ≤ 1
such that

‖Dlvh‖Lq(K) < Cinvh
(k−l)−d(p−1−q−1)
K ‖Dkvh‖Lp(K) ∀vh ∈ V h. (42)

Then the SUPG bilinear form is coercive with respect to the SUPG norm, i.e.,
it is

ah(vh, vh) ≥ 1

2
|‖vh‖|2SUPG ∀vh ∈ V h. (43)

14



Proof: Integration by parts gives,

ah(uh, vh) ≥ 1
2 |‖v

h‖|2SUPG ∀vh ∈ V h. (44)

With the definition of ω, one obtains

ah(uh, vh) = ε|vh|21 +

∫
Ω

(c(x)− ∇·b(x)
2 +c)(vh)2(x)dx+

∑
K∈T h

‖δ
1
2
K(b ·∇vh)‖2L2(K)

(45)

+
∑
K∈T h

∫
K

δK(−ε∆vh(x) + c(x)vh(x))(b(x) · ∇vh(x)) dx (46)

≥ |‖vh‖|SUPG−|
∑
K∈T h

∫
K

δK(−ε∆vh(x)+c(x)vh(x))(b(x) ·∇vh(x)) dx|. (47)

Using (5) and Young’s inequality [5], it is for each K ∈ T h

|
∑
K∈T h

∫
K

δK(−ε∆vh(x) + c(x)vh(x))(b(x) · ∇vh(x)) dx| (48)

≤
∫
K

(δ
1
2
Kε|∆v

h|)(δ
1
2
K |b(x) · ∇vh(x)|) dx

+

∫
K

(δ
1
2
K |c(x)||vh(x)|)(δ

1
2
K |b(x) · ∇vh(x)|) dx (49)

≤ ε
2‖·∇v

h‖2L2(K)+
1
4‖δ

1
2
K(b·∇vh‖2L2(K)+

ω
2 ‖v

h‖2L2(K)+
1
4‖δ

1
2
K(b·∇vh‖2L2(K) (50)

= 1
2 |‖v

h‖|SUPG,K . (51)

Insert it to the obove equation, the proof is finished.

Corollary:Coercivity of the SUPG bilinear form for P1 finite elements
Based on the theorem above, for piecewise linear finite elements, the SUPG
bilinear form (4) is coercive with respect to the SUPG norm if

0 < δK ≤ ω
‖c‖2

L∞(K)

. (52)

Proof: Based on theorem of SUPG bilinear form’s coercivity, considering that
for piecewise linear finite elements ∆vh(x)|K = 0 for all K ∈ T h. Thus the
corresponding terms do not appear.

If the assumptions of the corollary above valid, then the SUPG FEM has a
unique solution.

Corollary:Stability of the SUPG method.
From the theorem of coercivity of the SUPG bilinear norm and the definition
of stability, we can deduce that an appropriate norm of the solution can be
estimated with the data of the problem. For SUPG method, the norm is the
SUPG norm shown above. The estimation is shown as below:

|‖uh‖|2SUPG ≤ 2ah(uh, uh) = 2fh(uh)
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= 2(f, uh) + 2
∑
K∈T h

∫
K

δK(b(x) · ∇w(x)) dx (53)

CS
≤ 2√

ω
‖f‖L2(Ω)

√
ω‖uh‖L2(Ω) + 2

∑
K∈T h

‖δ1/2
K f‖L2(K)‖δ

1/2
K (b · ∇uh)‖L2(K) (54)

Y oung

≤ C‖f‖L2(Ω) +
1

2
(ω‖uh‖2L2(Ω) +

∑
K∈T h

‖‖δ1/2
K (b · ∇uh)‖2L2(K) (55)

≤ C‖f‖L2(Ω) +
1

2
|‖uh‖|2SUPG. (56)

where constant C depends on ω and the upper bound of δK .
The SUPG method is also stable with respect to the norm ‖·‖ε, because all
vh ∈ V h satisfy

|‖uh‖|SUPG ≥ min {1, ω} ‖vh‖ε. (57)

And the Garlerkin Finite Element Method is also stable with respect to this
norm. But it is not stable with respect to stability of the SUPG norm. Which
means the stability of SUPG method is stronger than the Garlerkin finite ele-
ment method.

2.3 Error Estimate

Theorem: Convergence of the SUPG method.
Let u ∈ H(k + 1)(Ω), k ≥ 1, b ∈ W 1,∞(Ω), c ∈ L∞(Ω), let the assumptions
of the coercivity theorem be satisfied, and consider the SUPG method for Pk
finite elements. Using the following SUPG parameter

δK =

{
C0

h2
K

ε , for hK < ε (covection-dominated)

C0hK , for ε ≤ hK (diffusion-dominated)
(58)

where the constant C0 > 0 is sufficiently small such that (4) is satisfied for k ≥ 2
or (5) for k = 1, respectively. Then the solution of the SUPG method satisfies
the error estimate shown below

|‖u− uh‖|SUPG ≤ C(ε
1
2hk + hk+ 1

2 )|u|HK+1(Ω), (59)

where the constant C is independent of ε and h.
Proof: Let uhI ∈ V h be the Lagrangian interpolant of u(x). One obtains with
the triangle inequality

|‖u− uh‖|SUPG ≤ |‖u− uhI ‖|SUPG + |‖uhI − u‖|SUPG. (60)

The first term on the right-hand side is the interpolant error. Note that for
both regimes it is

δK ≤ C0hK ≤ Ch. (61)

Using this after having applied the interpolation error estimate to each term of
the SUPG norm individually gives

|‖u− uh‖|SUPG ≤ (Cεh2k|u|2Hk+1(Ω) + C2(k+1)|u|2Hk+1(Ω) (62)
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+C
∑
K∈T h

δK‖b‖L∞(K)h
2k
K |u|2Hk+1(Ω))

1/2 (63)

≤ C(εh2k + h2(k+1) + h2k+1)1/2|u|Hk+1(Ω) (64)

≤ C(ε1/2hk + hk+1/2)|u|Hk+1(Ω). (65)

Based on the coercivity and the Galerkin orthogonality, the second term on the
right-hand side yields

1

2
|‖uhI − uh‖|2SUPG ≤ ah(uhI − uh, uhI − uh) = ah(uhI − u, uhI − u). (66)

Therefore, the triangle inequality is applied to ah(uhI − uh, uhI − uh) and each
term is estimated indepentendly. Apply local interpolation error estimate and
let wh = uhI − uh, for the diffusive term, reative term we obtain

|ε(∇(uhI − uh),∇wh)| ≤ Cε 1
2hk|u|HK+1(Ω)|‖wh‖|SUPG. (67)

|(c(uhI − uh), wh)| ≤ Chk+1|u|HK+1(Ω)|‖wh‖|SUPG. (68)

For the rest terms, we consider which come from the SUPG stabilization. And
for both regimes it is

εδK ≤ C0h
2
K , (69)

one gets

|
∑
K∈T h

(−ε∆(uhI − u), δKb · ∇wh)K | (70)

CS
≤

∑
K∈T h

ε1/2‖∆(uhI − u)‖L2(K)‖δ
1/2
K (b · ∇wh)‖L2(K) (71)

CS
≤ C

1/2
0 ε1/2h(

∑
K∈T h

‖∆(uhI−u)‖2L2(K))
1/2×(

∑
K∈T h

‖δ1/2
K (b·∇wh)‖L2(K))

1/2 (72)

≤ Cε1/2hk|u|HK+1(Ω)|‖wh‖|SUPG. (73)

and
|
∑
K∈T h

(b · ∇(uhI − u) + c(uhI − u), δKb · ∇wh)K | (74)

CS
≤

∑
K∈T h

‖b‖L∞(Ω)‖∆(uhI − u)‖L2(K)δ
1/2
K ‖δ

1/2
K (b · ∇wh)‖L2(K) (75)

CS
≤ Ch1/2[(

∑
K∈T h

‖∇(uhI − u)‖2L2(K))
1/2 + (

h∑
K∈T h

I − u‖2L2(K))
1/2] (76)

×(
∑
K∈T h

‖δ1/2
K (b · ∇wh)‖2L2(K))

1/2 (77)

≤ C(hk+ 1
2 + hk+ 3

2 )|u|HK+1(Ω)|‖wh‖|SUPG. (78)
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Next, apply first integration by parts to obtain an optimal estimate for the
convective term

(b · ∇(uhI − u), wh) = (∇(uhI − u),bwh) = −(uhI − u,∇ · (bwh)) (79)

= −(uhI − u, (∇ · b)wh)− (uhI − ub · ∇wh). (80)

In the right-hand side, both terms are estimated seperately. Using same tools
to the other estimates we have

|(uhI − u,∇ · (bwh)| ≤ Chk+1|u|HK+1(Ω)|‖wh‖|SUPG. (81)

In the estimates of the others, we have to distinguish if in the mesh cell K it is
ε ≤ hK . We get

|(uhI − u,∇ · (bwh)| (82)

CS
≤
∑

ε ≤ hKδ−1/2
K ‖uhI − u‖L2(K)‖δ

1/2
K (b · ∇wh)‖L2(K) (83)

+
∑

ε > hK‖b‖L∞(Ω)‖uhI − u‖L2(K)‖∇wh‖L2(K) (84)

C0hK=δK ,ε>hK

≤ C(
∑
ε≤hK

C
−1/2
0 h

−1/2
K hk+1

K |u|
HK+1(K)‖∇b·∇wh‖L2(K)(85)

+
∑
ε>hK

h
k+1/2
K |u|HK+1(K)ε

1/2‖∇wh‖L2(K) (86)

≤ Chk+1|u|HK+1(Ω)|‖wh‖|SUPG. (87)

Overall, the statement of the theorem is proved.

Remarks
Therefore we can deduce that in the convection-dominated regime ε � h, the
order of convergence in the SUPG norm is k+1/2 and in the diffusion-dominated
case it is k. For obtaining an estimate with a constant C, which is independent
of ε, the term (

∑
K ∈ T h‖b · ∇wh‖2L2(Ω))

1/2 is part of the norm.
When taking the polynomial degree k of the finite element into account, the
stabilization parameter is proposed

δK =

{
C0

hK

‖b‖L∞(K)
for PeK ≥ 1,

C0
H2

k

ε else
(88)

with

PeK =
‖b‖L∞(K)hK

2pε
. (89)

For linear and bilinear finite elements in practice, one takes the parameter

δK =
hK

2‖b‖L∞(K)
(coth(PeK)− 1

PeK
), (90)

PeK =
‖b‖L∞(K)hK

2ε
. (91)

Where PeK is the local Peclet number.

18



3 A Posterori Error Estimators and Conditions

3.1 Residual A Posteriori Error Estimation

Remark:Goal
There are mainly two goals for a posteriori error estimators.
Firstly, they should provide computable estimates of the error between a com-
puted solution uh and the unknown solution u of the continuous problem (1).
The errors are measured usually in norm of Sobolev spaces defined on Ω, hence
we have the form of an upper bound of the estimates of global error

‖u− uh‖Ω ≤ Cη, (92)

where η can be computed with the information gained from the numerical so-
lution process and C is a positive constant that is generally independent of h
(mesh width) and u (the solution).
Secondly, controlling an adaptive mesh refinement is another task. When the
local error is larger in certain subregions, then these subregions can be refined
and hence the error can be reduced at least significantly. Thus, a lower estimate
of local error has the form

ηK ≤ ‖u− uh‖ω(K), (93)

where ω(K) denotes a small neighborhood of a mesh cell K and ηK is the local
error estimator.
Consider the stationary convection-diffusion-reaction equations we concentrat-
ing in this paper of the form

−ε∆u+ b · ∇u+ cu = f inΩ, u = 0 on Ω,

u = 0 on ΓD,

ε
du

dn
= gN on ΓN ,

(94)

where Ω is a polygonal domain in Rd, d ≥ 2, with Lipschitz boundary Γ satis-
fying Γ = ΓD + ΓN and ΓD ∩ΓN = ∅. ΓD is the Dirichlet part of the boundary
which has a positive (d-1)-dimensional Lebesgue measure and ∂Ω−, where Ω−

is the inflow boundary of Ω. And there will also be some assumptions: 0 < ε,
b ∈W 1,∞(Ω)c ∈ L∞(Ω), f2(Ω) and the equations above will be scaled such that
0 < ε� 1, ‖b‖L∞(Ω) = ‖c‖L∞(Ω) = O(1). And in order to satisfy the condition
to use SUPG method, we assume here that the following condition is fulfilled:

c(x)− 1

2
div(b(x)) = µ(x) ≥ µ0 > 0 ∀x ∈ Ω. (95)

Then, it will be deduced that the equation (94) has a unique weak solution
u ∈ H1

D(Ω) = v ∈ H1(Ω) : v|ΓD
= 0 that satisfies

ε(∇u,∇v) + (b · ∇u, v) + (cu, v) = (f, v) + (g, v)ΓN
∀v ∈ H1

D(Ω). (96)

The corresponding SUPG finite element method reads as follows: Find uh ∈
V h ⊂ V such that

aSUPG(uh, vh) = (f, vh) + (g, vh)ΓN
+
∑
K∈T h

δK(f,b · ∇vh)K ∀vh ∈ Hh
V . (97)
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Hypothesis: Assumed that several norms of the interpolation error u − Ihu
can be bounded by norms of the error u− uh:∑

K∈T h

δ−1
K ‖u− I

hu‖2L2(K) ≤ 2|‖u− uh‖|2SUPG, (98)

∑
K∈T h

δK‖b · ∇(u− Ihu)‖2L2(K) ≤ 2|‖u− uh‖|2SUPG, (99)

∑
E∈Eh

δKbL∞(K)‖u− Ihu‖2L2(K) ≤ 2|‖u− uh‖|2SUPG, (100)

where Eh is the set of all faces of the triangulation.

Theorem: Residual a posteriori error estimate
Let e = u − uh, u ∈ H2(Ω) being the solution of (15) and uh its SUPG ap-
proximation computed bu solving (16). Chose the SUPG parameters satisfying

δK ≤ h2
K

8C2
invε

, K ≤ ω
2‖c‖2

L2(K)
C2

inv
, which means the SUPG bilinear form with the

error as argument is coercive, and under the hypothesis from the remark above,
one gets the following global upper bound

|‖u−uh‖|SUPG ≤ η2
1 +η2

2 +η2
3 +

∑
K∈T h

16δKh
−2
K ε2C2

inv‖∇(u−Ihu)‖2L2(K) (101)

+
∑
K∈T h

8δKε
2‖∆(u− Ihu)‖2L2(K), (102)

where

η2
1 =

∑
K∈T h

min

{
C

ω
,C

h2
K

ω
, 24δK

}
‖ RK(uh)‖2L2(K), (103)

η2
2 =

∑
K∈T h

24δK‖ RK(uh)‖2L2(K), (104)

η2
3 =

∑
E∈Eh

min

{
24

‖b‖L∞(E)
, C

hE
ω
,

c

ε1/2ω1/2

}
‖ RE(uh)‖2L2(E), (105)

where the mesh cell and the face residuals are defined by

RK(uh) := f − ε∇uh − b · uh − cuh|K , (106)

RE(uh) =


−ε[|∂nE

uh|]E if E ∈ EhΩ,
g − ε∂nE

uh if E ∈ EhN ,
0 if E ∈ EhD,

(107)

with
EhΩ − set of all interior faces, (108)

EhN − set of all faces on the Neumann boundary, (109)

EhD − set of all faces on the Dirichlet boundary. (110)
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Proof: Following the proof of coercivity of the SUPG bilinear form, and based
on the conditions and suitable chosen of the SUPG parameters above, we can
similarly deduce that

aSUPG(e, e) ≥ 1

2
|‖e‖|2SUPG −

∑
K∈T h

4δKh
−2
K ε2C2

inv‖∇(u− Ihu)‖2L2(K) (111)

−
∑
K∈T h

2δKε
2‖∆(u− Ihu)‖2L2(K). (112)

Using the Galerkin orthogonality (37), the weak form of the equation (96), and
integration by parts gives for all v ∈ H1

D(Ω)

aSUPG(u− uh, v) =
∑
K∈T h

(RK(uh), v − Ihv)K

+
∑
K∈T h

δK(RK(uh),b · ∇(v − Ihv))K

+
∑
E∈Eh

(RE(uh), v − Ihv)E .

Setting v = u− uh, observing that v − Ihv = (u− uh)− Ih(u− uh) = u− Ihu
and Ihuh = uh, and together with (17) we can deduce that

1

2
|‖u− uh‖| ≤

∑
K∈T h

(RK(uh), u− Ihu)K +
∑
K∈T h

δK(RK(uh),b · ∇(u− Ihu))K

+
∑
E∈Eh

(RE(uh), u− Ihu)E +
∑
K∈T h

4δKh
−2
K ε2C2

inv‖∇(u− Ihu)‖2L2(K).

For illustration, only the estimate for the first term of above is presented. In
the first step of the estimate, the Cauchy-Schwarz inequality, stability of the
Lagrangian interpolant in L2(Ω) and Young’s inequality lead to∑

K∈T h

(RK(uh), u− Ihu)K ≤
∑
K∈T h

C‖RK(uh)‖L2(K)‖u− uh‖L2(K)

≤
∑
K∈T h

c

ω
‖RK(uh)‖L2(K) +

1

12
‖µ1/2u− uh‖2L2(K).

One can apply interpolation estimate and obtain∑
K∈T h

(RK(uh), u− Ihu)K ≤
∑
K∈T h

‖RK(uh)‖L2(K)hK‖∇(u− uh)‖L2(K)

≤
∑
K∈T h

Ch2
K

ω
‖RK(uh)‖2L2(K) +

ε

12
‖L2(K)hK‖∇(u− uh)‖2L2(K).

Eventually, the term with streamline derivative can be used for the bound.
Young’s ineuqality yields∑
K∈T h

(RK(uh), u− Ihu)K ≤ 6
∑
K∈T h

‖RK(uh)‖2L2(K) +
1

24
δ−1
K ‖u− I

hu‖2L2(K).

(113)
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Collecting the three estimates (98)-(100) in the hypothesis above leads to∑
K∈T h

(RK(uh), u− Ihu)K

≤
∑
K∈T h

min

{
C

ω
,C

h2
K

ω
, 24δK

}
‖ ‖RK(uh)‖2L2(K) +

1

12
|‖u− Ihu‖|2SUPG.

For the reminding proof, it is refer to [18].

3.2 A Posteriori Error Estimators

In the numerical solution of convection-diffusion equations, an A posteriori error
estimator is quite useful as it can not only estimate the global error but it
can obtain information for adaptive mesh-refinement techniques. Some of the
a posteriori error estimators studied in this paper will be presented as below
Table 1 ( [16])

Figure 1: Table 1.

According to the Remark of Goal above, we can deduce that the comparison
in these a posterior error estimators contains two parts. First, the accuracy of
the approximated global error. Second, the adaptively refined grids used for
computation of solutions with sharp layer. And we can compare the adaptive
meshes generated by these error estimators by comparing the accuracy of the
solutions computed on these meshes.

Definition: The gradient indicator ηgradind
To control the adaptive grid refinement in software packages, the gradient in-
dicator is useful since it is simple. The definition of it on the mesh cell K is
written as below

ηgradind,K := ‖∇uh‖L2(K). (114)

As it can be deduced from the definition that if the L2-norm of ∇uh is large,
the indicator will be large. Then the corresponding mesh cells will be refined
to reduce the indicator. So this indicator is easy to use and independent of the
problems’ class. However, with this indicator’s use, it is not possible to estimate
the global error.Therefore we can not analysis its quality about the accuracy of
the estimated error with respect to the computed one through computing the
efficient index.

Definition: The Zienkiewicz-Zhu estimator ηZZ−H1
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Different from the gradient indicator, the Zienkiewicz-Zhu estimator’s aim is
to estimate not ‖∇u‖L2 but ‖u − ∇uh‖(L2(K)). In order to achieve that, a

higher-order recovery Ru of ∇u will be constructed with only uh, i.e.

‖∇u−Ru‖L2(K) ≤ c‖∇u−∇uh‖L2(K), c < 1. (115)

Therefore, we have

1

c+ 1
‖Ru−∇u‖L2(K) ≤ ‖∇u−∇uh‖L2(K) ≤

1

1− c
‖Ru−∇uh‖L2(K). (116)

Then the Zienkiewicz-Zhu estimator on the mesh cell K can be written as

ηZZ−H1,K := ‖Ru−∇u‖L2(K), (117)

which is an estimator for the H1-semi norm. This estimator is also independent
of the problems’ class as the gradient indicator.

Generally, we can construct Ru by defining the function at a point to be the
average is the average of the gradient of uh in a neighborhood of that point.
Assume that the recovery of ∇u is totally defined by its values in triangles’ ver-
tices. Hence Ru can be identified by a piecewise linear and continuous function
in each component. Ru can be defined as

Ru(N) =
∑
K∈UN

|K|
|UN |

∇uh|K , (118)

where N is a node of the mesh, UN is the union of all mesh cells containing
node N , |K| is the area of K and |UN | the area of UN . It shows that Ru(N) is
the weighted average of the gradients of uh of all mesh cells in UN with node
N .
For convection-diffusion problems, residual-based a residual-based error estima-
tors has the general form

η∗,K := αK‖fh + ε∆uh − bh · ∇uh − chuh‖20,K

+
∑

E⊂∂K,E 6⊂∂ΩN

βE
2
‖
[
|ε∇uh · nE |

]
E
‖20,K

+
∑

E⊂∂K,E⊂∂ΩN

βE‖ε∇uh · nE − ghN‖20,K .

To ensure the restriction to each mesh cell K of fh + ε∆uh − bh · ∇uh − chuh
and the restriction of gNh to each edge E ⊂ ∂ΩN are polynomials of some fixed
degree k, fh, bh, ch, and gNh are approximations of f , b, c, and gN , respectively.
Verfürch present the traditional approach to derive the residual-based error es-
timators detailed in [27]. We take care only how the weights depend on the
local mesh width and gets the error estimators as shown below.

Definition: A residual-based error estimator in the H1-semi norm ηres−H1

The a sposteriori error estimator ηres−H1 for the H1-semi norm is obtained by
picking αK = h2

k and βE = hE

‖∇(u−uh)‖20 ≤ C(
∑
K∈T h

h2
k‖RK(uh)‖20,K+

∑
E∈Eh

hE‖RE(uh)‖20,E)+h.o.t. (119)
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Due to constants C in the estimates depend on the Peclet number, ηres−H1 is
not robust, cf. the study in [16]. Only in the diffusion dominates case, it be-
comes robust. And the higher order terms represent only data approximation
errors instead of another term of the forms (101)-(102).

Definition: A residual-based error estimator in the L2-norm ηres−L2

Picking αK = h4
K and βE = h2

E , we obtain the residual-based a posteriori error
estimator ηres−L2).

‖(u− uh)‖20 ≤ C(
∑
K∈T h

h4
k‖RK(uh)‖20,K +

∑
E∈Eh

h2
E‖RE(uh)‖20,E) + h.o.t. (120)

Same as the residual-based error estimator in the H1 norm. It is also only robust
in the diffusion dominates case.

Definition: A residual-based error estimator in the energy norm plus a dual
norm ηres−eng
A non-robust residual-based error estimator in the energy norm was derived
in [?]. And later it was refined to a robust error estimator through plus a dual
norm to the energy norm in [27], which is showing bellowing:

‖(u− uh)‖2en + sup
v∈H1

D(Ω)

〈
b · ∇(u− uh), v

〉
‖v‖2en

≤ C(
∑
K∈T h

min

{
1

µ0
,
h2
k

ε

}
‖RK(Uh)‖20,K

+
∑
E∈Eh

min

{
hE
ε
,

1

ε1/2µ
1/2
0

}
‖RE(uh)‖20,E)

+h.o.t..

It is robust under the condition of small mesh Peclet numbers; while it may be
not robust when the constants in the estimates depend on the coefficients of the
problem in the case of large mesh Peclet numbers.Note that the weights in front
of ‖RE(uh)‖20,E appear also in (103)-(105).

Definition: A residual-based error estimator in the SUPG norm ηres−supg
In the case of the diffusion-dominated regime, one obtains

‖(u− uh)‖2SUPG ≤ C(
∑
K∈T h

h2
K

ε
‖RK(uh)‖20,K +

∑
E∈Eh

hE
ε
‖RE(uh)‖20,E)

+h.o.t..

Both hK and hE are effective and the weights in ηres−H1 divided by and are
recovered. In the case of the diffusion-dominated regime i.e., PeK � 1, the
minimum achieves at these values of the weights, one gets a residual-based a
posteriori error estimator for the SUPG norm ηres−supg

‖(u− uh)‖2SUPG ≤ C(
∑
K∈T h

hK
‖b‖∞,K

‖RK(uh)‖20,K +
∑
E∈Eh

1

‖b‖∞,E
‖RE(uh)‖20,E)

+h.o.t..
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Which also means, the dividing by ε residual-based error estimator in the H1-
semi norm ηres−H1 ’s weights are recovered. The norm of ‖·‖SUPG and ‖·‖eng
are equivalent also in this case. Therefore, the error bounds for the energy norm
can be applied replacing the SUPG norm.
The approach for error estimation with the solution of local Neumann problems
defined on a single mesh cell K is called element residual method.
We consider a mesh cell K with edges Ei, i = 1, 2, 3. And Ei’s barycentric
coordinates can be written as λEi

. Define a space VK on K as

VK = span {BK , BE1
, BE2

, BE3
} , (121)

where
BEi

= 4λE(i+1)modulo3
λE(i+2)modulo3

, i = 1, 2, 3 (122)

BK = 27λE1
λE2

λE3
. (123)

BEi represents the edge bubble functions defined in K and BK represents the
element bubble function defined in K. Then an approximation of the solution
of the global error residual problem is computed in the space

∑
K∈T h VK .

Definition: An error estimator based on the solution of local Neumann prob-
lems, Galerkin discretization, ηNeumGa−H1

In the space
∑
K∈T h VK , the functions are discontinuous, therefore the solution

of the global equation can be separated into solutions of Neumann problems
defined in a single mesh cell K: Find uK ∈ VK such that ∀vK ∈ VK

a(uK , vK) + b(uK , vK) + c(uK , vK)

= (f + ε∆uh − b · ∇uh, vh)K −
1

2

∑
E,E⊂∂K,E 6⊂∂Ω

([|ε∇uh · nE |]E , vE)E

+
∑

E,E⊂∂K,E⊂∂Ω

(g − ε∇uh · nE)E .

Therefore we can derive the corresponding error estimator

ηNeumGa−H1,K : = |uK |1,K . (124)

Note that the solution uK might have oscillations because Garlerkin discretiza-
tion is not stable.

Definition: An error estimator based on the solution of local Neumann prob-
lems, SDFEM discretization, ηNeumSD−H1

Adding a stabilization in the definition of the local Neumann problems will solve
the non-stable discretization above:
Find uK ∈ VK such that ∀vK ∈ VK

a(uK , vK) + b(uK , vK) + c(uK , vK) + δK(b · ∇uK + cuK ,b · ∇vK)K

= (f + ε∆uh − b · ∇uh, vh + δKb · ∇vK)K

−1

2

∑
E,E⊂∂K,E 6⊂∂Ω

([|ε∇uh · nE |]E , vE)E +
∑

E,E⊂∂K,E⊂∂Ω

(g − ε∇uh · nE)E .

Therefore we can derive the corresponding error estimator

ηNeumSD−H1,K : = |uK |1,K . (125)
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Algorithm
For the numerical solution of the problem, the program flow shown in Figure 2 is
applied.The program is applied by using ParMooN. First of all, a level on which
the adaptive grid refinement should start (refinement max n adaptive steps)
must be chosen appropriate, which in general can be found through numerical
tests. The uniform grid refinement will be applied up to refinement max n -
adaptive steps. And the main and most important feature of the solution of the
problem should be recognized well on the refinement max n adaptive steps.
Secondly, the error estimator type also should be chosen. Then the computa-
tion of the error estimator will compute a number η∗,K for each mesh cell K to
make the decision of if the mesh cell K should be refined or coarsened. In the
past experiences [16], the coarsening of cells is not important for the stationary
problems and refinement max n adaptive steps. A sufficient increase of the
number of degrees of freedom after an adaptive refinement step is important to
obtain an efficient adaptive algorithm for the stationary problems’ solutions.
To compare different a posteriori error estimators fairly, the same number of
degrees of freedom should be possessed approximately by different adaptive
meshes. Hence the computation will stop after the first mesh on which the sum
of degrees of freedom and Dirichlet nodes exceeded 100 000.

Figure 2: Algorithm for adaptive mesh refinement
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4 Numerical Study

In this section, we present the results of two numerical tests to compare the
quantity of a posteriori error estimators introduced in Section 3. And the numer-
ical analysis of the behavior of these a posteriori error estimators with respect
to the estimated global error η starts from two aspects. One is the efficiency of
the error estimators, which means the ability of the a posteriori error estimators
estimate the error in a certain norm, i.e., the accuracy of the estimated solution
with respect to the real solution on the mesh cells. The measurement is usually
made by computation of the efficiency index Ieff

Ieff :=
η

‖u− uh‖
(126)

where η is the estimated error and the ‖u − uh‖ is the computed error in the
corresponding norm ‖·‖ the estimator is designed for.
For the results from using different estimators in this section, the estimated
global error η is

η = (η2
1 + η2

2 + η2
3)1/2, (127)

where η2
1 , η2

2 , η2
3 are given in (116)-(118). And the constant C is chosen to be

1, since one can gets same weights as in the error estimator on the energy norm
plus a dual norm.
On the other hand, a posteriori error estimators should also be compared with
respect to the quality of the adaptive grid refinement. In other words, one
should consider if the error estimator control an adaptive grid refinement well.
In the examples of this section, the SUPG stabilization parameter ηK is chosen
same as in [17], where a comprehensive discussion about the possible choices of
the SUPG stabilization parameter has been done.

ηK =
h̃K

2r|b|
ξ( ˜PeK) (128)

with

ξ(α) = coth α− 1

α
, P̃ eK =

|b|h̃K
2rε

, (129)

where |b| is the Euclidean norm of the convection vector b. And δK is the cell
diameter in the direction of b. All simulations were performed with the code
ParMooN [11] [28].
The results are obtained through the adaptive mesh refinement in Algorithm 1,
which was introduced in Section 3.

Example 4.1 (A known two dimensional solution with a boundary layer) This
example was proposed in [1] and we solve (103)-(105) for different values of ε,
b = (2, 1)T , c = 1, uD = 0, and Ω = (0, 1)2. The right-hand side f and the
boundary conditions are chosen such that the exact solution is given by

u(x, y) = y(1− y)(x− e−
(1−x)

ε − e− 1
ε

1− e− 1
ε

). (130)

The derivatives of the solution u(x, y) depend on ε. This example is typical for
solutions of convection-diffusion equations. The initial mesh for this case is the

27



square Ω divided into two triangles by the straight line y = x. we will study
the results obtained for the a posteriori error estimators we studied above. And
both the accuracy of the results and the adaptively refined grids are analysed
in this example. Notice that the computation process will stop after having
computed the solution on the first grid with more than 105 degree of freedoms.

(a) Efficiency index,ηres−H1

(b) Efficiency index,ηres−L2

Figure 3: Efficiency indices, ηres−H1(left) and ηres−L2 (right), Example 4.1.
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(a) Efficiency index,ηres−eng

(b) Efficiency index,ηres−supg

Figure 4: Efficiency indices, ηres−eng (left) and ηres−supg (right), Example 4.1.

From Figure 3, we can notice that the efficiency indices of ηres−H1 and ηL2 are
both smaller than 1, which shows that these two estimators both underestimate
the error in this example. Whereas from estimator ηres−eng gives reliable error
estimates based on the provided grids with the boundary layers is sufficiently
fine for relatively large value of ε (under the condition of ε = 10−2), as one
can observe from Figure 4 (left). And strongly overestimated the error when ε
gets smaller. The reason is that the constants in this estimate depend on the
problem’s parameters. And due to small value of ε, this estimator is not robust
in the case of large mesh Peclet numbers, which is described in the definition
of ηres−eng in Section 3. Therefore the smaller ε, the stronger overestimation
the estimator will perform, which can also be found in the Figure 4 (left). The
estimator ηres−supg’s efficiency indices for different diffusion parameters ε are all
in the interval [3, 4]. For the three a posteriori error estimators ηres−H1,ηres−L2

and ηres−supg, the efficiency indices are same with respect to different ε. The
reason might be that this example is quite simple and the appropriate property
cannot be presented well. As we described earlier in Section 3, neither ηH1 nor
ηL2 is robust, and therefore the efficiency index should vary following the change
of value of ε accordingly. Notice that for the gradient indicator, the estimated
global value is unknown, and the efficiency index is incalculable.
The final adaptively refined grids of different values of ε (the value differs from
10−2, 10−4 to 10−6) of the a posteriori error estimators are presented in Figure 5-
9. It can be seen that the grids generated by ηgradind looks quite differently from
the others. It does not refine all the boundary very well but only the steepest
region of the layer. And one can also observe that error estimator ηres−L2 tends
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to refine large mesh cells earlier than ηres−H1 and ηres−eng by comparing the
left side of Figure 6-8. Which can also be derived from the weights αK and βE
in the error estimator form in ηres−H1 , ηres−L2 and ηres−eng. We can also find
a broad refinement for the estimator ηres−L2 . It is caused by its weights and
is good for refinement [18]. As for the estimator ηres−supg, the refined grids is
similar to ηres−H1 and ηres−H1 , which is also depicted the boundary well.
This example shows that there still some error estimators have problems to
generate appropriate adaptively refined grids even for the solution of a quite
simple problem, which possesses only one layer.
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(a) Mesh with ηgradind, ε = 10−2 (b) Solution of ηgradind, ε = 10−2

(c) Mesh with ηgradind, ε = 10−4 (d) Solution of ηgradind, ε = 10−4

(e) Mesh with ηgradind, ε = 10−6 (f) Solution of ηgradind, ε = 10−6

Figure 5: Mesh (left) and solution (right) with ηgradind for different values of ε,
Example 4.1.
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(a) Mesh with ηres−H1 , ε = 10−2 (b) Solution of ηres−H1 , ε = 10−2

(c) Mesh with ηres−H1 , ε = 10−4 (d) Solution of ηres−H1 , ε = 10−4

(e) Mesh with ηres−H1 , ε = 10−6 (f) Solution of ηH1 , ε = 10−6

Figure 6: Mesh (left) and solution (right) with ηres−H1 for different values of ε,
Example 4.1.

32



(a) Mesh with ηres−L2 , ε = 10−2 (b) Solution of ηres−L2 , ε = 10−2

(c) Mesh with ηres−L2 , ε = 10−4 (d) Solution of ηres−L2 , ε = 10−4

(e) Mesh with ηres−L2 , ε = 10−6 (f) Solution of ηres−L2 , ε = 10−6

Figure 7: Mesh (left) and solution (right) with ηres−L2 for different value of ε,
Example 4.1.
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(a) Mesh with ηres−eng , ε = 10−2 (b) Solution of ηres−eng , ε = 10−2

(c) Mesh with ηres−eng , ε = 10−4 (d) Solution of ηres−eng , ε = 10−4

(e) Mesh with ηeng , ε = 10−6 (f) Solution of ηres−eng , ε = 10−6

Figure 8: Mesh (left) and solution (right) with ηres−eng for different value of ε,
Example 4.1.
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(a) Mesh with ηres−supg , ε = 10−2 (b) Solution of ηres−supg , ε = 10−2

(c) Mesh with ηres−supg , ε = 10−4 (d) Solution of ηres−supg , ε = 10−4

(e) Mesh with ηres−supg , ε = 10−6 (f) Solution of ηres−supg , ε = 10−6

Figure 9: Mesh (left) and solution (right) with ηres−supg for different value of
ε, Example 4.1.

Example 4.2 (Unknown solution with inner layer and exponential boundary
layer)
The convection-diffusion equation (103)-(105) is considered in Ω = (0, 1)2, with
the data ε = 10−6, b = (cos(−π3 ), sin(−π3 ))T , c = 0, Ω = (0, 1)2 and

uD(x, y) =

{
0, for x = 1 or y ≤ 0.7

1, else.
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This example was defined and used in [14]. The exponential layers are devel-
oped on the boundary x = 1 and the right part of the boundary y = 0. The
computation were implemented on the regular Grid 1, see Figure 10. Since we
do not know the analytical solution of this problem, the efficient index cannot
be computed. Hence we study the adaptive grids generated by the investigated
error estimators and the graphical representations of the computed solutions
here, which are presented in Figure 11-15. We use the sharpness of the inner
layer and the boundary layer as the criteria for the comparison of the quality
between different a posteriori error estimators.

1.png

Figure 10: Grid 1, Example 4.2.

Figure 11: Mesh (left) and Solution (right) obtained with ε = 10−6 for ηgradind,
Example 4.2.

From the left side of Figure 11, the adaptive refined grids generated by the
gradient indicator ηgradind failed to depict the exponential layer on the right
part of the boundary y = 0 and the inner layer. Which failure occurred similar
in the example 4.1. The grids did not refine all the layers but only the steepest
region of the layers in this probelm.
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Figure 12: Mesh (left) and Solution (right) obtained with ε = 10−6 for ηres−H1 ,
Example 4.2.

Compare the final refined grids of ηres−H1 ,ηres−L2 ,ηres−eng and ηres−supg, it
can be seen that for ε = 10−6, ηres−H1 and ηres−eng produce meshes which are
well refined within all layers. The layers on the final adaptively refined grids is
sharp, Which can be observe from Figure 12 and Figure 14. From the left side
of Figure 15, for error estimator ηres−supg, the generated adaptive grid only
refine the layers on the boundary well, but it does not refine the inner layer
sufficiently, which can be derived from width of the inner layer presented on the
left side of Figure 15 is wider than Figure 12 and Figure 14. The corresponding
discrete solutions are unsatisfactory. And compare Figure 12 and Figure 14, we
can observe that ηres−supg refined the grids even worse.

Figure 13: Mesh (left) and Solution (right) obtained with ε = 10−6 for ηres−L2 ,
Example 4.2.
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Figure 14: Mesh (left) and Solution (right) obtained with ε = 10−6 for ηres−eng,
Example 4.2.

Figure 15: Mesh (left) and Solution (right) obtained with ε = 10−6 for ηres−supg,
Example 4.2.

This example shows again that gradient indicator ηgradind has problems
to generate appropriate adaptively refined grids even in the relatively simple
situation.
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5 Summary

Overall, for the behaviour of the a posteriori error estimator with respect to
the generated adaptively refined grids to solve the two examples in Section 4,
the gradient indicator ηgradind worked unsatisfactorily in both of the two ex-
amples in Section 4. Wheareeas the other four residual-based error estimators
worked acceptable. The estimator ηres−L2 worked good in the both examples
in Section 4. While in Example 4.1, ηres−H1 and ηres−eng generated the bet-
ter adaptively refined grids. It means for the solution of different steady-state
convection-diffusion problems, there is no one determined optimal a posteriori
error estimator to apply.

For study of the behaviour of the a posteriori error estimator with respect to
the estimation of the global error, the estimator ηres−eng estimated the global
error most accurate in the case of small Peclet Number. The residual-based
estimators ηres−H1 and ηres−L2 underestimated the error in the Example 4.1.
While ηres−eng slightly overestimated the error. As for the estimator ηSUPG, it
gave good efficiency indices independent of the Peclet number.
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[12] Thomas Grätsch and Klaus-Jürgen Bathe. A posteriori error estimation
techniques in practical finite element analysis. Computers and Structures,
pages 235–265, 2005.

[13] Thomas Hughes. Multiscale phenomena: Green’s functions, the dirichlet-
to-neumann formulation, subgrid scale models, bubbles and the origins of
stabilized methods. Computer Methods in Applied Mechanics and Engi-
neering, 127:387–401, 11 1995.

40



[14] Thomas J.R. Hughes, Michel Mallet, and Mizukami Akira. A new finite
element formulation for computational fluid dynamics: Ii. beyond supg.
Computer Methods in Applied Mechanics and Engineering, 58:305–328, 03
1986.

[15] A. Il’in. A difference scheme for a differential equation with a small param-
eter affecting the highest derivative. Mat. Zametki, 6:596–602, 01 1969.

[16] Volker John. Numerical study of a posteriori error estimators for
convection-diffusion equations. Computer Methods in Applied Mechanics
and Engineering, 190:757–781, 11 2000.

[17] Volker John and Petr Knobloch. On spurious oscillations at layers dimin-
ishing (sold) methods for convection-diffusion equations: Part ia review.
Computer Methods in Applied Mechanics and Engineering, 196:2197–2215,
03 2007.

[18] Volker John and Julia Novo. A robust supg norm a posteriori error esti-
mator for stationary convection–diffusion equations. Computer Methods in
Applied Mechanics and Engineering, 255:289–305, 03 2013.
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