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1 Introduction

Population balances are widely used in different fields of science and engineering, such
as chemical engineering, geophysics, biophysics and the pharmaceutical industry. Their
applications range from crystallization processes to cell growth of biological cultures to
the prediction of smoke particles after a volcanic eruption. All these fields have in com-
mon that particles are dispersed in another phase. But, compared to fluids in continuum
mechanics, particles may undergo new phenomena: they may grow or shrink; they can
be destroyed or created; a collection of particles may be bound together by interparticle
forces and behave like an individual one, referred to as an aggregate or agglomerate. These
phenomena usually depend on other variables in addition to location and time, such as
the particle diameter in crystallization processes or the age of biological cells. One refers
to them as internal coordinates as apposed to external (space) coordinates. The function
sought here is the so-called particle size distribution or number density. Integrating this
number density over some volume gives the number of particles contained in that volume
in dependence of the internal coordinates. Taking all these effects into account one gets
a population balance equation. Consequently, population balances play the same role that
conservation laws play in continuum mechanics and thus are fundamental for the theo-
retical understanding of the underlying processes.

The dependence on internal coordinates as well as the new phenomena pose a great chal-
lenge in several ways. First, the internal variables add more dimensions and therefore
increase the complexity; second, appropriate models describing the additional phenom-
ena have to be found, which can be a very demanding task. Third, many of these models
involve the integration of the particle size distribution such that the type of the equation
is changed to a partial integro-differential equation. This makes the mathematical analy-
sis in a lot of cases unfeasible. From a numerics point of view, both the extra dimensions
and the integral terms require specialized methods: On one hand the computational costs
scale exponentially with the dimension, on the other hand the integral has to be evaluated
in every point in space and time. Furthermore, influences from the fluid have to be taken
into account, so additional equations and constraints regarding the choice of numerical
methods appear. This leads to a population balance system.

So far rather statistical methods have been used for the numerical simulation of popula-
tion balance systems, by which the model is simplified, and, instead of solving the higher
dimensional equation, a system of equations defined only in space and time is solved.
The most widely spread are the quadrature method of moments (see McGraw [22]) and
the direct quadrature method of moments (see Marchisio and Fox [21]), approximating
the first moments of the function sought. Unfortunately, this is an ill-posed problem, see
John et al. [14] and Souza et al. [31] . Following the approach of Hackbusch et al. [10]
and Anker et al. [1], in this work the population balance system is solved directly without
further simplifications. Since there is no analytical solution available, an experiment is
used to validate the numerically obtained solution. In this experiment there are urea
particles dispersed in ethanol, flowing through a tube.

The objective of this thesis is the implementation of a finite volume method solving
the population balance equation for the particle size distribution in the software system
MooNMD at the Weierstrass Institute for Applied Analysis and Stochastics. Finite dif-
ference methods for solving population balance equations are already available. Finite
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volume methods are attractive as they are can be extended to be suitable for complex
geometries and have certain desirable properties like mass conservation.

The thesis is organized as follows: Chapter 2 is concerned with the mathematical mod-
eling of the population balance system and a derivation of the equations is provided.
Subsequently, the equations are nondimensionalized, transformed into an appropriate
coordinate system and summarized for future reference.Chapter 3 presents the finite
volume method applied to different types of equations. As no results concerning analyt-
ical solutions of the resulting population balance system could be found, the numerical
analysis is omitted here. Chapter 4 contains several numerical experiments as well as
the discussion of properties of interest of the obtained solutions. Furthermore the result
of this thesis is presented: The numerical solution of the population balance system. A
brief description of the experiment together with the measured quantity is given as well
as an overview of the numerical methods used to solve the other equations. Chapter 5
summarizes the conclusion and gives a brief outlook.
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2 Mathematical Modeling

This chapter is devoted to the mathematical modeling of natural processes that appear
in this work. First, we start with the hypothesis of the continuum theory since this is
fundamental to the whole thesis and derive a generic conservation equation. Next, we use
that conservation equation to derive all equations concerning the continuous phase such as
the Navier-Stokes equations that govern fluid flow. Lastly, and most importantly, we will
focus on population balances where an introduction will be given because it is usually not
covered in lectures and, therefore, not widely known. At the end of this chapter we will
state the full problem which will be solved numerically and discuss physical and chemical
quantities together with their influence on the system.

Continuum theory as used in continuum mechanics is a physical model where the structure
and spatial distribution of atoms and molecules of media is not taken into account. In-
stead, it is assumed that the media exists continuously and is defined for any point within
the space under consideration. This assumption is justified because not the individual
behavior of each molecule, but rather of the whole system is of interest. Moreover, measur-
ing instruments respond to properties of the fluid within a small neighboring volume; this
volume is small enough to be ‘local’ compared to macroscopic forces like gravity, but still
very large compared to microscopic length scales of molecules. Figure 2.1 illustrates the
density an instrument would measure depending on the size of the neighboring volume.
One can see that the measured density depends neither on the microscopic differences nor
on the spatial distribution of density in a certain range of length (between 10−7 m and
10−3 m, see Schade et al. [28, chapter 1.6]).

Figure 2.1: Effect of size of volume on the density measured by an instrument (Batch-
elor [2, chapter 1.2]).

The fluid is a physical model widely used to describe liquids and gases theoretically. Ev-
ery fluid is defined as being a continuum upon which, when at rest, only pressure can
be applied, but neither shear stresses nor tensile forces. Due to its continuous nature,
calculus may be applied, leading to partial differential equations governing its behavior.
Most of the identities of this chapter are based on a book written by Gurtin et al. [7],
which forms a resource for extensive and thorough derivations of equations in continuum
mechanics. Note that in general we will make no smoothness hypotheses as the focus
in this chapter lies on the modeling and derivation of equations governing natural pro-
cesses. Thus, all appearing functions are assumed to be as often differentiable as necessary.
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Let ψ be a function. Usually it will be some sort of density, for instance, the mass density
ρ. Then, integrated over some volume Ω ⊂ R3, it contains the amount of the physical
entity within that volume, i.e, ∫

Ω

ψ dx.

Consider also the set to be time-dependent: Ω(t). In the literature it is referred to as ma-
terial volume because the region moves with the portions it is made of. The fundamental
concept of conservation laws is based on Reynolds transport theorem, which describes the
rate of change of an entity in the case that both the volume and the function are time-
dependent. Normally it is stated in three dimensions since continuum mechanics typically
deals with bodies that are independent of other variables but the location (and time) or
where such dependencies are neglected. As we will see, population balances require a
generalization to higher dimensions. Therefore, we formulate the theorem accordingly.

Reynolds Transport Theorem
Let ψ(x, t) be a differentiable function over Ω(t) × [0,∞) where it may be scalar, vec-
tor, or tensor valued and Ω(t) ⊂ Rd, d ≥ 2. Furthermore, consider the velocity u =
(dx/dt, dy/dt, dz/dt)T as a differentiable function over the same domain. Then there
holds:

d
dt

∫
Ω(t)

ψ(x, t) dx =

∫
Ω(t)

(∂tψ(x, t) + div(ψ(x, t)u(x, t)) dx. (2.1)

Note that the classic formulation of the theorem
d
dt

∫
Ω(t)

ψ(x, t) dx =

∫
Ω(t)

∂tψ(x, t) dx+

∫
∂Ω(t)

ψ(x, t)u(x, t) · n(x, t) dS(x)

may be recovered if one splits the right-hand side into two integrals and applies Gaussian’s
divergence theorem to the second integral.

Central in the proof of this theorem is the substitution rule and Jacobi’s formula which
gives an equation for the derivative of the determinant of a matrix, see also the book of
Gurtin et al. [7]. In subsequent sections we will make extensive use of this theorem to
derive various conservation and balance laws.

2.1 Navier-Stokes Equations

The Navier-Stokes equations consist of a scalar equation for the conservation of mass and
a vector equation for the momentum balance.

Conservation of mass

In order to obtain the equation for the conservation of mass we choose ψ = ρ, ρ [kg/m3]
being the density of the fluid, and consider an arbitrary subset ω(t) ⊂ Ω(t). Since mass
can neither be destroyed nor created, the mass inside a material volume does not change
with respect to time:

d
dt

∫
ω(t)

ρ(x, t) dx = 0.
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Using Reynolds transport theorem (2.1) yields

d
dt

∫
ω(t)

ρ(x, t) dx =

∫
ω(t)

(∂tρ(x, t) + div(ρ(x, t)u(x, t))) dx.

Since the volume is arbitrary and the integrand continuous, the integral vanishes if and
only if the integrand is zero which leads to the so-called continuity equation:

∂tρ(x, t) + div(ρ(x, t)u(x, t)) = 0.

Rewritten in a more compact manner and omitting the dependencies on location and
time:

∂tρ+ div(ρu) = 0. (2.2)

Thus far we have used kinematic arguments only without any restraints on the material
under consideration. Now we employ the model of an incompressible fluid in which the
density is constant with respect to time and location. Note that this does not exclude
the case where it depends on the temperature (which would be quite realistic). But in
fluid dynamics it is common to neglect this case and assume an isothermal flow as it is
either not significant or it would result in a extremely complicated model which is nearly
unfeasible to solve. This leads to

∂tρ+ div(ρu) = ∂tρ︸︷︷︸
=0

+ ∇ρ︸︷︷︸
=0

·u+ ρdivu = 0

⇔ divu = 0. (2.3)

Therefore, in the case of an incompressible fluid, the continuity equation degenerates to
a constraint on the velocity.

Balance of linear momentum

The derivation in the case of linear momentum proceeds in the same fashion but is some-
what more complicated and is no conservation because the momentum of a material vol-
ume may change with time since it is based on Newton’s second law : the rate of change of
momentum of a material volume equals the sum of the forces acting upon it. In continuum
mechanics there are two different types of forces acting on a material volume: long range
or body forces, which act on the whole volume, and short range or surface forces, which
act only on the surface, such that Newton’s second law reads for an incompressible fluid
as follows:

d
dt

∫
ω(t)

ρu dx =

∫
ω(t)

ρf dx+

∫
∂ω(t)

t dS(x). (2.4)

The body forces are represented by f and the surface forces by t. First we consider
the momentum only and deal with the forces afterwards. We choose ψ = ρu since it
represents a ‘momentum density’, i.e., momentum per volume and again we use Reynolds
transport theorem:

d
dt

∫
ω(t)

ρu dx =

∫
ω(t)

(∂t(ρu) + div(ρu⊗ u)) dx,
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where u⊗u denotes the dyad product resulting in a second order tensor. The divergence
of a second order tensor results in a vector. Stating the tensor in coordinates, computing
the derivatives, and restating it in direct notation one obtains:

div(u⊗ u) = udivu+ u · ∇u.

Making use of the incompressibility of the fluid, namely that ρ is independent of location
and time and divu = 0, one gets

d
dt

∫
ω(t)

ρu dx =

∫
ω(t)

(ρ∂tu+ ρu · ∇u) dx. (2.5)

Now we turn to the forces: f has the dimension of an acceleration [m/s2] and can be con-
sidered as a ‘force density’. For our considerations it will only represent the gravitational
force, i.e., f = g with g = (0, 0,−9.81)T being the gravitational acceleration. t on the
other side has the dimension of pressure or, more general, mechanical stress [N/m2]. We
make use of Cauchy’s fundamental postulate (see Itskov [13], section 1.6) which states that
t is a function of location x, time t, and the outward unit normal vector of the surface n
only where the dependency with respect to n is linear:

t(x, t,n) = σ(x, t)n. (2.6)

The second order tensor σ [N/m2] is called stress tensor. One can show (via an angular
momentum balance) that the stress tensor is symmetrical, i.e., σij = σji, 1 ≤ i, j ≤ 3.
As mentioned above, a fluid does not experience any shear stresses at rest, therefore we
model the stress tensor accordingly:

σ = −pδ + τ , σij = pδij + τij,

where p [N/m2] is the pressure, τ [N/m2] is the so-called viscous stress tensor and is
equal to zero if the fluid is at rest. Note that τ is symmetrical which is inherited from
σ and has zero trace. It is not possible to state a general term for it holding true for all
materials but quite the contrary, as one has to adapt it to every single model. Therefore,
we define our model further and consider from now on a Newtonian fluid: We say that
the viscous stress tensor τ is approximately a linear function of the velocity gradient ∇u.
Since τ as well as ∇u are second order tensors they are linked by a fourth order tensor:

τ = η : ∇u, τij =
3∑

k,l=1

ηijkl∂xkul, (2.7)

where ” : ” represents the double scalar product and η [N s/m2] is called viscous tensor.
This tensor has to be symmetrical in i and j because τ is symmetrical. Moreover, we
assume the medium to be isotropic, that is, when the viscous stress generated in an
element of the fluid by a given velocity gradient is independent of the orientation of the
element. This results in η being isotropic as well. One can show that a general isotropic
fourth order tensor can be represented in the following way:

ηijkl = aδijδkl + bδikδjl + cδilδjk,

with a, b, c ∈ R. (Note that in case the viscosity depends on location or time, the coeffi-
cients would be functions.) Since η is symmetrical in i and j, we require b = c. Renaming
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b and a by µ and µ′, respectively, inserting the relation above into Equation (2.7), and
exploiting the properties of Kronecker delta tensors, we obtain

τij =
3∑

k,l=1

(
µ′δij∂xkuk + µ(∂xiuj + ∂xjui)

)
or in symbolic notation

τ = µ′(divu)δ + µ
(
∇u+ (∇u)T

)
.

From the mass conservation for an incompressible fluid we know that the velocity is
divergence-free, yielding:

τ = µ
(
∇u+ (∇u)T

)
.

With that we arrive at the final model for the stress tensor of a Newtonian fluid:

σ = −pδ + µ
(
∇u+ (∇u)T

)
, (2.8)

where µ is the dynamic viscosity. Inserting this and Equations (2.5) and (2.6) into
Equation (2.4) leads to∫

ω(t)

(ρ∂tu+ ρu · ∇u) dx =

∫
ω(t)

ρg dx+

∫
∂ω(t)

(
−pδ + µ

(
∇u+ (∇u)T

))
· n dS(x).

Applying Gaussian’s divergence theorem once more and putting all terms on one side we
obtain

0 =

∫
ω(t)

(
ρ∂tu+ ρu · ∇u− ρg − div

(
−pδ + µ

(
∇u+ (∇u)T

)))
dx

=

∫
ω(t)

(
ρ∂tu+ ρu · ∇u− ρg +∇p− µ

(
∆u+∇ divu︸︷︷︸

=0

))
dx

=

∫
ω(t)

(ρ∂tu+ ρu · ∇u− ρg +∇p− µ∆u) dx.

Because of the continuity of the integrand we conclude that the integrand has to vanish
equally, yielding:

ρ∂tu− µ∆u+ ρu · ∇u+∇p = ρg.

Divided by ρ it forms together with the continuity equation the Navier-Stokes equa-
tions for an incompressible fluid, leading to the final equation:

divu = 0,

∂tu− ν∆u+ u · ∇u+
1

ρ
∇p = g,

(2.9)

where ν = µ/ρ is the kinematic viscosity.
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2.2 The Population Balance Equation

In this section we want to model the behavior of particles dispersed in a fluid. There are
some major differences compared to the model given above. First, since we are dealing
with particles it is not continuous media. Liquids and gases are not continuous either;
we just model them to be continuous. The major difference is that the particles in case
of liquids and gases are molecules with a diameter of about 10−10 to 10−9 m whereas the
particles considered here have a diameter greater than 10−6 m. Moreover, the particle
structure has a great impact on the behavior of the whole system. Second, the particles
may experience phenomena which do not apply to fluids, for instance, growth processes.
Lastly, they may depend not only on location and time, like the fluid, but also on other
entities like their size or shape. We will refer to these dependencies as internal coordinates,
collected in `, where the spatial variables x are called external coordinates. Functions,
like the temperature, describing the fluid phase and depending only on the external co-
ordinates and time are also called phase variables. The approach in this case is not a
conservation equation but a population balance. The identities stated here can give little
insight into the theory of population balances. It is taken from Ramkrishna [24] which
contains a general introduction as well as in-depth material and forms the standard refer-
ence in the literature. For particulate processes, one should also consider Randolph and
Larson [25] .

In this section we will refer to the volume in (physical) space by Ωx ⊂ R3 and introduce
a new set Ω` ⊂ Rr, which represents the ‘volume’ in internal coordinates; r is a natural
number representing the number of dependencies on internal coordinates. Note that we
omitted in the notation the explicit dependency on time, but it should be kept in mind
that all sets and subsets may still evolve with time. We will refer to the set Ωx×Ω` as the
particle state space or simply state space and say that a particle is of a certain state
if (x, `) ∈ Ωx × Ω`. Although r will equal 1 in our final model (and ` the diameter of
a particle), we let it be arbitrary for the derivation since it involves only already known
methods from calculus but reveals some parallels.

We start with introducing the actual number density n(x, `, t): Integrated over some
subsets of Ωx and Ω` it describes the number of particles contained in it. The term
‘actual’ comes from the fact the this density is a random variable if one considers all
possible random behavior of small particles (for instance Brownian motion). We concern
ourselves with a large amount of particles and, as in the case of continuum theory, we are
not interested in the individual but rather the average behavior of the system. Therefore,
the key function here is the expectation of the actual number density, which we will refer
to as the number density or particle size distribution:

f : Ωx × Ω` × [0,∞)→ R, f(x, `, t) := E[n(x, `, t)].

With this definition the (average) total number of particles in the whole system is given
by ∫

Ωx

∫
Ω`

f(x, `, t) d` dx.

We want to quantify the rate of change of that entity given in this system. The internal
coordinates are the reason why Reynolds Transport Theorem has been stated for possibly
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more than three variables. For this section we also introduce the divergence with re-
spect to external and internal coordinates by divx and div`, respectively. Next, influences
from the fluid phase, like pressure or temperature, on the particles have to be considered.
Therefore, we collect all phase variables in one vector function Y (x, t); its dimension
depending on how many influences will be considered in the model. Another important
function is the growth rate G(x, `, t, Y ). In its general definition it may depend on ex-
ternal and internal coordinates as well as the time and the phase variables. Its dimension
is r because it is basically the time derivative of the internal coordinates, i.e., G = d`/dt.
It can be interpreted as an analogue of the fluid velocity, representing an abstract velocity
in the space of internal coordinates. Like the fluid velocity, it is a priori unknown and has
to be either calculated or modeled.

On the left-hand side of a population balance equation one has the rate of change of the
number of particles within a volume and on the right-hand side the birth and death rates
of particles in that volume; more precisely, consider subsets ωx and ω` of Ωx and Ω`,
respectively, then one has:

d
dt

∫
ωx

∫
ω`

f(x, `, t) dx d` =

∫
ωx

∫
ω`

A(x, `, t,Y )[f ] d` dx,

where A(x, `, t,Y )[f ] accounts for birth and death rates of the population. The notation
indicates that A may be a functional and also depend explicitly on the external, internal,
and phase variables and time. It is highly dependent on the process under consideration
and will be modeled later. Now we make use of Reynolds transport theorem (2.1) with
ψ = f . Note that the theorem is formulated for any dimension (greater or equal to 2);
so that the internal coordinates are already incorporated. Neglecting the variables for
clarity leads to

d
dt

∫
ωx

∫
ω`

f dx d` =

∫
ωx

∫
ωl

(∂tf + divx(fu) + div`(fG)) dx d`.

Subtracting the right-hand side yields∫
ωx

∫
ωl

(∂tf + divx(fu) + div`(fG)− A[f ]) dx d` = 0.

Again, because the subsets ωx and ω` are arbitrary, the integral can be zero only if the
integrand vanishes equally. Rewriting A[f ] on the right-hand side results in

∂tf + divx(fu) + div`(fG) = A[f ].

This is the general population balance equation for the particle size distribution and we
are ready to specify our model. We assume that the particles are spherical and choose the
inner variable ` to be the diameter of the particles. Hence, Ω` = (`min, `max) with lower
and upper bounds for the smallest and largest particles, respectively. Thus the dimension
of f is [1/m4] since it is the number density per (physical) volume and (internal) interval,
G has the dimension of a velocity [m/s], and A has the dimension [1/(m4 s)]. Accordingly,
the population balance equation changes to

∂tf + divx(fu) + ∂`(fG) = A[f ]. (2.10)
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The right-hand side A is governed by aggregation, explained and modeled in some detail
subsequently. The fluid velocity u is determined by the Navier-Stokes equations (2.9) and
the model for the growth rate will be given later. Note, that new particles may be formed
also by nucleation, that is, the phenomenon when particles are created in a supersaturated
solution. In an experiment they appear as the smallest particles one can resolve with a
microscope. This will be also incorporated in our model, but not directly in the equation
but as a boundary condition with respect to the internal coordinate.

Aggregation

In our model, the right-hand side A[f ] is determined by aggregation: It describes phenom-
ena in which particles are attracted to each other by interparticle forces to form clusters,
commonly referred to as aggregates or agglomerates, and covers the formation of rain from
a cloud of very fine droplets as well as the clustering of particles in the manufacture of
fine powders. One can think of two particles colliding and merging, even though there
are also situations in which particles are bound together by surface forces only, without
physical contact. Note that three or more particles may be involved to form an aggregate,
but we restrict ourselves to sufficiently dilute systems where these cases are insignificant.
First, we consider the production rate caused by aggregation; the death rate is obtained
by the same approach. Hence, we split the right-hand side: A[f ] = A+[f ] + A−[f ].

In modeling aggregation, the so-called aggregation frequency plays an essential role.
It represents the probability that a particle of state (x, `) and another particle of state
(x′, `′) will aggregate at time t. In very general models it might include dependencies
on physical space, time, or even phase variables. Instead, we consider a model in which
it depends on the internal variable only. The population balance equation is formulated
with ` being the diameter of a particle, but it is convenient to formulate the aggregation
in terms of the volume of a particle, i.e., ` = V and Ω` = (Vmin, Vmax). Accordingly, we
denote the aggregation frequency by K(V, V ′). There are different models for different
contributions, for instance, one for aggregation due to Brownian motion, which is given
by

Kbr(V, V
′) =

2kBT

3µ

(
3
√
V +

3
√
V ′
)( 1

3
√
V

+
1

3
√
V ′

)
,

where kB [J/K] is the Boltzmann constant and T [K] the temperature. Since we are
dealing with a viscous fluid we should incorporate collisions caused by shear stresses as
well, given by:

Ksh(V, V ′) =
1

kV

√
2∇u : ∇u

(
3
√
V +

3
√
V ′
)
,

where kV is the volume shape factor, i.e., kV = π/6 for spherical particles. Hence, we
want to combine both models. Previous work has been done by Hackbusch et al. [10]
where the following combination has been used:

K(V,V ′) = CbrKbr(V, V
′) + Csh(V, V ′)Ksh(V, V ′)

=Cbr
2kBT

3µ

(
3
√
V +

3
√
V ′
)( 1

3
√
V

+
1

3
√
V ′

)
+
Csh

kV

√
2∇u : ∇u

(
3
√
V +

3
√
V ′
)
.

(2.11)

In the paper the constants were calibrated for a pipe with quadratic cross-section by
comparing numerical results with those gained from experiments. This was also done by
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Anker et al. [1] but for a cylindrical pipe. Since the constants vary slightly, we will use
the latter results as in this work also a cylindrical pipe was used:

Cbr = 7 · 103, Csh = 8.5 · 10−5.

These aggregation frequencies were introduced by Smoluchowski [30]. Because their
derivation requires the theory of stochastic differential equations and statistical physics,
which is beyond the scope of the work, we will not derive them here. An alternative
derivation for the Brownian aggregation frequency is also given by Ramkrishna [24].

Next, it is necessary to define the average number of pairs of particles at each instance
of time with specified states. Accordingly, we define the function

f2(x, `;x′, `′, t)

[
1

m8

]
to represent the average number of distinct pairs of particles at time t per unit volumes in
state space located about (x, `) and (x′, `′), respectively. Since the function is unknown
an equation has to be formulated. That would incorporate f3 – the average number of
triples of particles – which is again, unknown. Thus, this approach would lead to an
infinite hierarchy of equations – a problem known as the closure problem. Therefore, a
closure hypothesis is needed; one is given by

f2(x, `;x′, `′, t) = f(x, `, t)f(x′, `′, t). (2.12)

This approximation is rather coarse because it implies that the particles under consider-
ation are statistically uncorrelated. More complex models are stated by Ramkrishna [24]
and analyzed in detail by Sampson and Ramkrishna [27]. Since we chose the volume of a
particle to be the inner variable for the aggregation frequency, but formulated the popu-
lation balance equation with ` being the diameter of a particle, we need a transformation,
given by

fV (x, V, t) = fV (x, kV `
3, t) =

f(x, `, t)

3kV `2

[
1

m6

]
. (2.13)

Combining Equations (2.11), (2.12), and (2.13) yields the production rate caused by
aggregation

A+(V )[fV ] =
1

2

V∫
0

K(V − V ′, V ′)fV (x, V − V ′, t)fV (x, V ′, t) dV ′. (2.14)

The factor 1/2 accounts for redundancies since there are two realizations of the event:
One particle has volume V ′ and the other V − V ′ and vice versa.

Similar considerations lead to the death term caused by aggregation since aggregating
particles vanish to create a new particle; given by:

A−(V )[fV ] = −fV (V )

Vmax∫
0

K(V, V ′)fV (V ′) dV ′. (2.15)
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For the formulation of the population balance equation we need to express the birth and
death rate with respect to the particle diameter:

A+(`)[f ] + A−(`)[f ] = 3kV `
2
(
A+(V )[fV ] + A−(V )[fV ]

)
. (2.16)

Since the right-hand side is determined, the only missing part of the equation is the growth
rate G. It is given by (see Hackbusch et al. [10])

G(c, T ) =

{
kg

(
c−csat(T )
csat(T )

)g
if c > csat(T ),

0 else,
(2.17)

where kg = 10−7 [m/s] is the growth rate constant and g = 0.5 [·] the growth rate power.
The concentration distribution of the urea particles in ethanol is described by c = c(x, t)
and the saturation concentration by csat(T ). The latter is given by (see Hackbusch et al.
[10])

csat(T ) =
35.364 + 1.305(T − 273.15)

mmol

[
mol
m3

]
(2.18)

and represents the condition when no more urea can be solved in ethanol. That means
particles may only grow if the concentration of particles is sufficiently high. Here, T =
T (x, t) [K] represents the temperature distribution of ethanol. Since the temperature
as well as the concentration distribution are not given, they have to be determined.
Depending on the model, it is quite common that additional equations for phase variables
with a population balance have to be formulated and solved in order to predict the
behavior of the overall system. In fact, we already encountered phase variables in the
previous section: the velocity u and the pressure p. The missing equations will be derived
in the next section, but now we are able to state the final population balance equation
for the particle size distribution of urea particles:

∂tf + u · ∇f +G(c, T )∂`f = A+[f ] + A−[f ], (2.19)

where the birth and death rate as well as the growth rate are given by Equations (2.14)
to (2.17).

2.3 Phase Variables

Since the growth rate of urea particles depends on the temperature of the surrounding
fluid and the concentration of particles, corresponding equations are necessary and are
the object of this section. The basic concepts of this section can be found in the extensive
resource for transport phenomena written by Bird et al. [3].

Temperature
For the temperature a balance of thermal energy is suitable. First we need the thermal
energy contained in a volume: ∫

Ω(t)

ρcpT (x, t) dx,

where ρ is the (constant) density of the fluid (which we already encountered when the
Navier-Stokes equations were derived), cp [J/(kg K)] the (constant) heat capacity, and
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T the temperature. The rate of change of thermal energy is equal to the heat flux across
the boundary:

d
dt

∫
Ω(t)

ρcpT dx = −
∫

∂Ω(t)

q · n dS(x)

with the heat flux vector q [J/(m2 s)], representing the local heat flow per unit area. The
negative sign appears because, in case q and n point in the same direction, thermal energy
is leaving the volume, hence reducing the thermal energy contained in that volume. In
order to arrive at a differential equation, we apply once more Reynolds transport theorem
on the left-hand side with ψ = ρcpT and Gaussian’s divergence theorem on the right-hand
side to a subset ω(t) ⊂ Ω(t), which yields

d
dt

∫
ω(t)

ρcpT dx = −
∫

∂ω(t)

q · n dS(x)

⇔
∫
ω(t)

(∂t(ρcpT ) + div(ρcpTu)) dx = −
∫
ω(t)

divq dx.

Subtracting the right-hand side gives us

⇔
∫
ω(t)

(∂t(ρcpT ) + div(ρcpTu) + divq) dx = 0.

Since the subset ω(t) was chosen to be arbitrary (and the integrand as smooth as neces-
sary), the integrand vanishes altogether:

⇔ ∂t(ρcpT ) + div(ρcpTu) + divq = 0.

Since we are dealing with an incompressible fluid, ρ is constant and there holds divu = 0.
Together with the heat capacity being constant as well, this leads to

ρcp(∂tT + u · ∇T ) + divq = 0.

The heat flux is determined by heat conduction, that is, thermal energy moves from
regions with a higher temperature to regions with a lower temperature and is described
by Fourier’s law:

q = −λ∇T. (2.20)

The constant of proportionality λ is the thermal conductivity and has the dimension
[J/(K m s)]. Thus, we obtain the heat equation with convection:

ρcp(∂tT + u · ∇T )− div(λ∇T ) = 0

⇔ ρcp(∂tT + u · ∇T )− λ∆T = 0.

Although we will not use it here, one can divide by ρcp, yielding

∂tT − α∆T + u · ∇T = 0 (2.21)

with the thermal diffusivity α = λ/(ρcp). This is the most common representation
of the heat equation (with convection) and the formulation that will be used later in
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the numerical examples for convection-diffusion equations. Due to the presence of urea
particles in the fluid, this equation has to be extended by two terms, leading to its final
form (see Hackbusch et al. [10] and Anker et al. [1]):

−λ∆T + ρcp(∂tT + u · ∇T ) + ∆hcrystH` = ∆hcrystF`, (2.22)

where

H` = 3ρdkVG(c, T )

`max∫
`min

`2f d` and F` = −ρdkV `3
minBnuc. (2.23)

The first additional term, ∆hcrystH`, models the decrease of energy due to growth of
particles. The second additional term, ∆hcrystF`, describes the decrease of energy due to
nucleation.

Concentration
Now we turn to the equation for the concentration. We start with the amount of substance
in a given volume: ∫

Ω(t)

c(x, t) dx,

where c(x, t) is the concentration of urea particles dispersed in ethanol with the dimension
[mol/m3]. The equation is obtained in the same manner as the heat equation: (i) Equating
the rate of change of the amount of substance in an arbitrary volume and the mass flux
across its boundary; (ii) applying Reynolds transport theorem and Gaussian’s divergence
theorem; (iii) making use of the arbitrariness of the subset and the incompressibility of
ethanol, leading to the following differential equation:

∂tc+ u · ∇c+ divj = 0,

where j [mol/(s m2)] describes the mass flux, that is, the local mass flow per unit
area. The underlying process is called diffusion in which, analogue to the case of heat
conduction, mass is flowing from regions with a higher concentration to regions with a
lower one. Mathematically it is represented by Fick’s law:

j = −D∇c

with the diffusion coefficient D which has the dimension [m2/s]. This leads to the
convection-diffusion equation

∂tc−D∆c+ u · ∇c = 0.

Much like in the case of the heat equation, it has to be extended because of the presence
of the urea particles to the following equation (see Hackbusch et al. [10] and Anker et al.
[1]):

∂tc−D∆c+ u · ∇c+
H`

mmol
= − F`

mmol
, (2.24)

where the additional terms already appeared in the heat equation and are given by Equa-
tion (2.23). The new terms have an analogous meaning compared to the heat equation:
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one models the decrease of the concentration (of dissolved urea) due to particle growth
since it is used to enlarge the particles. The other also decreases the concentration but in
the case of nucleation new particles have been formed out of dissolved urea and therefore
is not longer dissolved.

Now the whole system of equations is complete: Namely the Navier-Stokes equations
(2.9), the population balance equation (2.19), the extended heat equation (2.22), and the
extended diffusion equation (2.24).

2.4 Population Balance System

In this section we want to summarize all equations, state their initial and boundary con-
ditions, and specify the geometry. Lastly, all appearing functions and physical constants,
together with dimensions and numerical value or equation reference, are collected in Table
1.

The flow domain is a tubular pipe. The area is denoted by B 1
2
where the subscript

describes the radius. The domain of the internal variable is an open interval bounded by
the minimal and maximal diameter of particles. Hence, we have

Ω := Ωx = (0, 210)×B 1
2

[cm3], Ω` = (`min, `max) [cm].

The boundary Γ of Ω consists of a union of the inlet boundary Γin, the outlet boundary
Γout, and the walls Γwall and are defined as follows

Γin = {0} ×B 1
2
, Γout = 210×B 1

2
, Γwall = Γ \ (Γin ∪ Γout).

First, we derived the Navier-Stokes equations:

divu = 0

ρ∂tu− µ∆u+ ρu · ∇u+∇p = ρg

The boundary condition on the outlet is the so-called do-nothing condition

(µ∇u− pδ) · n = 0, on Γout, (2.25)

which is a common choice in numerical simulations. A boundary condition at the outlet is
not known from experiments and it is unclear how well this unknown boundary condition
corresponds to the one given above. Because of that, the length of the computational
domain was chosen larger than the length of the pipe used in the experiments (210 cm
instead of 200 cm) such that a possible slight incorrectness of the chosen outflow boundary
condition does not alter the computational results in the region corresponding to the outlet
of the pipe. Since we are dealing with a viscous fluid we employ the no-slip boundary
condition at the wall:

u(x) = 0 on Γwall. (2.26)

Next, we derived the population balance equation:

∂tf + u · ∇f +G(c, T )∂`f =
3kV `

2

2

V∫
0

K(V − V ′, V ′)fV (V − V ′)fV (V ′) dV ′

− 3kV `
2fV (V )

Vmax∫
0

K(V, V ′)fV (V ′) dV ′.
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The initial condition is given by

f(x, `, 0) = 0, x ∈ Ω, ` ∈ (`min, `max),

meaning that at first there are no particles in the flow domain. The idea of a one-
dimensional domain where a fluid flows from left to right can be adopted to the interval
(`min, `max): As the internal variable ` increases, particles get larger; they grow. That
means that particle growth can be viewed as ‘flow’ in the abstract space of the internal
coordinate. Similarly, as fluid may enter the flow domain, particles may enter the abstract
domain. This is exactly the case of nucleation: New particles are created at the ‘inlet’
` = `min if the concentration is sufficiently large. This is given by

f(x, `min, t) =
Bnuc

G(c, T )
, x ∈ Ω, t ∈ [0, tend), if G(c, T ) > 0, (2.27)

with the nucleation rate Bnuc being defined by (see Anker et al. [1])

Bnuc =

αnuc exp

(
−βnuc

ln2(c/csat(T ))

)
, if c > csat(T ),

0, else,

where αnuc = 108 is the nucleation constant and βnuc = 1.666667 · 10−4 a model constant.
The inlet condition for the particle inflow has the following form

f(x, `, t) =

{
fin(`), if t ≤ tinj,x ∈ Γin,

0, if t > tinj,x ∈ Γin.
(2.28)

It is based on a space-time-averaged inlet condition from experiments pursued by Borchert
and Sundmacher [4] while the derivation follows Hackbusch et al. [10]. In the experiments,
the particles were injected within a time interval [0, tinj] into the flow domain with a flow
rate V̇ [m/s]. The distribution of the number of particles per diameter fseed(`) [1/m]
was measured, which represents the number of all particles with a specific length and
can be understood as the particle size distribution integrated with respect to the spatial
coordinates. One can show the following relationship (see Hackbusch et al. [10]):

fin(`) =
6 · 107

tinjV̇
fseed(`),

where the injection time tinj was set to 5 s. Following the work of Anker et al. [1], we use
a continuous entering of particles into the domain where finally a steady-state is reached.
Accordingly, tinj is set to 300:

fin(`) =
6 · 107

300 V̇
fseed(`). (2.29)

In the population balance equation two additional phase variables appear. One of them
is the temperature, for which we have the following equation:

−λ∆T + ρcp(∂tT + u · ∇T ) + 3∆hcrystρ
dkVG(c, T )

`max∫
`min

`2f d` = −∆hcrystρ
dkV `

3
minBnuc.

The initial and boundary conditions are known from the experiments:
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T (x, t) = Tin x ∈ Γin, t ∈ [0, tend),
∇T (x, t) · n= 0 x ∈ Γout, t ∈ [0, tend),

T (x, t) = Twall x ∈ Γwall, t ∈ [0, tend),
T (x, 0) = Tin x ∈ Ω,

with Tin = 301.15 K and Twall = 291.15 K. The initial condition is prescribed by solving the
stationary equation without the coupling term to the PSD. Lastly, we have the equation
for the concentration or urea in ethanol

∂tc−D∆c+ u · ∇c+
3ρdkVG(c, T )

mmol

`max∫
`min

`2f d` = −ρ
dkV `

3
minBnuc

mmol
.

The corresponding initial and boundary conditions are

c(x, t) = csat(Tin) x ∈ Γin, t ∈ [0, tend),
∇c(x, t) · n= 0 x ∈ Γout ∪ Γwall, t ∈ [0, tend),

c(x, 0) = csat(Tin) x ∈ Ω.

Table 1: All appearing variables and constants in the system

entity dimension description value/equation reference
u(x, t) m/s velocity Equation (2.9)
ρ kg/m3 density of ethanol 789
p(x, t) N/m2 pressure Equation (2.9)
µ kg/(m s) dynamic viscosity of ethanol 1.074 · 10−3

f(x, `, t) 1/m4 average number density Equation (2.19)
` m diameter of urea particle (inner variable) –
G(c, T ) m/s growth rate Equation (2.17)
K(V, V ′) 1/m12 aggregation kernel Equation (2.11)
kV 1 volume shape factor π/6
`min m minimal particle diameter 2.5 · 10−6

`max m maximal particle diameter 5 · 10−3

fin 1/m4 number density at the inlet Equation (2.29)

T (x, t) K temperature Equation (2.22)
λ W/(K m) thermal conductivity 0.167
cp J/(kg K) heat capacity 2441.3
∆hcryst J/kg enthalpy change of solution 2.1645 · 105

ρd kg/m3 density of urea 1323
Bnuc 1/(m3 s) nucleation rate 108

mmol kg/mol molar mass 60.06 · 10−3

Tin K temperature at the inlet 301.15
Twall K temperature of the wall 291.15

c(x, t) mol/m3 concentration Equation (2.24)
D m2/s diffusion coefficient of urea in ethanol 1.35 · 10−9

csat mol/m3 saturation concentration Equation (2.18)
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2.5 Nondimensionalization

Nondimensionalization is used for several reasons.
The first being to identify characteristic variables of the system under consideration. With
their aid systems which may differ in size can be compared when these variables coincide.
This quality is used, for instance, in wind tunnels: The models of cars and airplanes
are much smaller (and therefore much cheaper) than actual ones, but the experiments
will have the same Reynolds numbers (to be defined subsequently), that flows around
real cars and planes have. Thus, results from wind tunnel experiments can be used to
judge car design. Another reason is to reduce the number of entities necessary to describe
the system. Since the variables are linked with one another, one can describe important
features of the system with lesser variables than the formulation in dimensional variables.
More information can be found, for instance, in Howison [11], Chapter 3. Another reason
is the necessity for numerical computations. To this end reference values are defined, see
Table 2.

Table 2: Reference values for the nondimensionalization.

reference variable value, dimension description
X∞ 0.01 m reference length of the spatial domain
`∞ 5 · 10−3 m reference length of the particle diameter
U∞ 0.01 m/s reference velocity
c∞ 103 mol/m3 reference concentration
T∞ 1 K reference temperature
f∞ 1013 1/m4 reference number density
t∞ X∞/U∞ = 1 s reference time
p∞ ρU2

∞ reference pressure
g∞ U2

∞/X∞ = 0.01m2/s reference acceleration

With these reference values we define the following dimensionless variables in which the
variables with a prime represent the dimensionless entity and the ones without represent
the entities already known.

x′ =
x

X∞
, `′ =

`

`∞
, t′ =

t

t∞
, `′min =

`min

`∞
, `′max =

`max

`∞
,

u′ =
u

U∞
, T ′ =

T

T∞
, c′ =

c

c∞
, f ′ =

f

f∞
, p′ =

p

p∞
,

Re =
X∞U∞
ν

, Pec =
X∞U∞
Dc

, PeT =
X∞U∞cpρ

λ
.


(2.30)

The last three variables are the Reynolds number and the Péclet number for diffu-
sion and heat conduction, respectively. The Reynolds number, Re, is defined as the ratio
of inertial forces to viscous forces, the Péclet number, Pec, as the ratio of convective to
diffusive transport of particles, and the Péclet number, PeT , as the ratio of convective
to diffusive heat transfer. Hence, these variables show which of the physical phenomena
dominate.

Any function can be expressed in terms of dimensional variables or nondimensional vari-
ables. Consequently, there are two types of derivatives, e.g., for the partial derivative
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with respect to time:

∂f(t)

∂t
,

∂f(t′)

∂t′
.

Using the chain rule we can link both types of derivatives:

∂tf(t′) =
∂

∂t
f(t′) =

∂f(t′)

∂t′
dt′

dt
=
∂f(t′)

∂t′
1

t∞
=

1

t∞
∂t′f(t′).

Analogously we get

∇f(x′) =
1

X∞
∇′f(x′), ∆f(x′) =

1

X2
∞

∆′f(x′), ∂`f(`′) =
1

`∞
∂`′f(`′),

where ∇′ and ∆′ represent the gradient and Laplacian with respect to x′. Next, we
replace the dimensional variables and derivatives by the nondimensional ones and insert
the definitions of U∞, p∞, and g∞. For instance, the second equation of the Navier-Stokes
equations (2.9) transforms to:

U2
∞

X∞
∂t′u

′ − νU∞
X2
∞

∆′u′ +
U2
∞

X∞
u′ · ∇′u′ + U2

∞
X∞
∇′p′ = U2

∞
X∞

g′.

⇔ ∂t′u
′ − ν

X∞U∞
∆′u′ + u′ · ∇′u′ +∇′p′ = g′.

Recalling the definition of the Reynolds number, Re, one gets

⇔ ∂t′u
′ − 1

Re
∆′u′ + u′ · ∇′u′ +∇′p′ = g′.

In fluid mechanics, the Reynolds number is of great importance because it indicates
whether a flow is laminar or turbulent. For pipes in general, flows with a Reynolds num-
ber less than 2300 are considered to be laminar, see Schade et al. [28, chapter 5.1] . The
Reynolds number used in the Navier-Stokes equations above is defined by the dimension-
less reference values, but a better impression of the flow is given if one incorporates the
actual fluid velocity at the inlet of the pipe. For the flow considered in this work we have
approximately Re = 331 and, therefore, we are dealing with a laminar flow, which will
eventually reach a steady state. Hence, it is justified to assume a fully developed flow
field, especially since this was the case in the experiments. This leads to the stationary
Navier-Stokes equations in nondimensional form:

divu = 0,

− 1

Re
∆u+ u · ∇u+∇p = g,

(2.31)

where we, following common practice after nondimensionalization, dropped the primes of
the nondimensionalized variables and derivatives. The no-slip boundary condition does
not change its form after nondimensionalization since the (nondimensionalized) velocity
has to equal zero on the wall. For the boundary condition (2.25) we get(

µU∞
X∞
∇u− ρU∞pδ

)
· n = 0, on Γout.
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Adopting this methodology to the other equations yields

∂tf + u · f +
X∞
U∞`∞

G(c, T )∂`f =
X∞
U∞f∞

(
A+[f ] + A−[f ]

)
, (2.32)

∂tT −
1

PeT
∆T + u · ∇T +HT

` = fT` , (2.33)

∂tc−
1

Pec
∆c+ u · ∇c+Hc

l = f c` , (2.34)

with

Hc
` =

X∞`
3
∞f∞

U∞c∞
· 3ρdkV
mmol

G(c, T )

`max∫
`min

`2f d`, f c` = −X∞`
3
∞

U∞c∞
· ρ

dkV `
3
minBnuc

mmol
,

HT
` =

X∞`
3
∞f∞

U∞T∞
· 3ρdkV ∆hcryst

cpρ
G(c, T )

`max∫
`min

`2f d`, fT` = −X∞`
3
∞

U∞T∞
· ρ

dkV `
3
minBnuc∆hcryst

cpρ
.

(2.35)

Note that some of the constants are still dimensional, namely A, ρd, mmol, G(c, T ), Bnuc,
cp, ρ, ∆hcryst. One could define corresponding reference values for any of these constants
and proceed as done above. However, all the equations are already in dimensionless form
and furthermore, one would express the new reference values by means of the old ones
and arrive at a similar result. It is a little inconsistent since primed variables were in-
troduced to distinguish those that are dimensional from those that are nondimensional,
but the detailed derivation does not differ much from the one used for the Navier-Stokes
equations. The initial and boundary conditions are gained in the same manner. In view
of the next section, we omit them here and state them at the end of the chapter in their
final formulation.

2.6 Cylindrical coordinates

So far we modeled all processes, collected the resulting partial differential equations in
a population balance system and nondimensionalized them, leading to equations (2.31) -
(2.34). In this last section we want to exploit certain properties of the geometrical domain,
namely a pipe, or in other words, a cylinder. Hence cylindrical coordinates seem to be
more appropriate to describe the system. They are given by the following transformation

Ψ : Ωc := (0, 0.5)× (0, 2ϕ)× (0, 210)→ B 1
2
× (0, 210) =: Ωx,

(r, ϕ, z) 7→ (x, y, z) = (r cos(ϕ), r sin(ϕ), z),

where Ωx and Ωc describe the same physical domain, namely the pipe, but are expressed in
different coordinates. The transformation from the Cartesian to the cylindrical coordinate
system is performed by means of integration by substitution for multiple variables. For a
scalar function f there holds (see Königsberger [19, chapter 9] for a precise definition)∫

Ωx

f(x, y, z) d(x, y, z) =

∫
Ωc

f(Ψ(r, ϕ, z))| detDΨ(r, ϕ, z)| d(r, ϕ, z)

=

∫
Ωc

f̃(r, ϕ, z)r d(r, ϕ, z).

(2.36)
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The notation d(x, y, z) and d(r, ϕ, z) implies that the integration is performed in the corre-
sponding three-dimensional domain (as opposed to three iterated integrals) and f̃ = f ◦Ψ
is the function expressed in cylindrical coordinates. Furthermore, DΨ is the Jacobian
matrix of the transformation and | detDΨ(r, ϕ, z)| the absolute value of its determinant.
A simple calculation yields | detDΨ(r, ϕ, z)| = r.

Moreover, the derivatives have to be transformed as well. To this end we use the basis
vectors of both coordinate systems, namely (ex, ey, ez) and (er, eϕ, ez):

ex =

1
0
0

 , ey =

0
1
0

 , ez =

0
0
1

 , er =

cos(ϕ)
sin(ϕ)

0

 , eϕ =

− sin(ϕ)
cos(ϕ)

0

 , ez =

0
0
1

 .

With these relations one can transform the basis vectors from one system into the other.
Hence, we get

ex = cos(ϕ)er − sin(ϕ)eϕ,

ey = sin(ϕ)er + cos(ϕ)eϕ.

One can show that the partial derivatives transform in the following way:

∂x = cos(ϕ)∂r −
sin(ϕ)

r
∂ϕ,

∂y = sin(ϕ)∂r +
cos(ϕ)

r
∂ϕ.

The partial derivative with respect to z does not change since this coordinate is the same
in both coordinate systems. Note that not all basis vectors of the cylindrical coordinate
system are constant; the dependency on ϕ has to be considered in order to transform the
differential operators correctly. It holds

∂ϕer = eϕ, ∂ϕeϕ = −er. (2.37)

Now we are able to transform the gradient by using its representation as a vector:

∇ =ex∂x + ey∂y + ez∂z

=(cos(ϕ)er − sin(ϕ)eϕ)

(
cos(ϕ)∂r −

sin(ϕ)

r
∂ϕ

)
+ (sin(ϕ)er + cos(ϕ)eϕ)

(
sin(ϕ)∂r +

cos(ϕ)

r
∂ϕ

)
+ ez∂z.

Multiplying out and using elementary relations of trigonometrical functions yields the
gradient in cylindrical coordinates

∇ =er∂r +
1

r
eϕ∂ϕ + ez∂z. (2.38)

With this identity one can also express the divergence in cylindrical coordinates if ones
uses its notation as a scalar product of the gradient vector and a vector field ũ = urer +
uϕeϕ + uzez:

divũ = ∇ · u = (er∂r +
1

r
eϕ∂ϕ + ez∂z) · (urer + uϕeϕ + uzez).
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With Equation (2.37) and the orthonormality of the basis one arrives at

divũ = ∂rur +
1

r
ur +

1

r
∂ϕuϕ + ∂zuz.

The Laplacian is then given by

∆ = ∇ · ∇

∆ = (er∂r +
1

r
eϕ∂ϕ + ez∂z) · (er∂r +

1

r
eϕ∂ϕ + ez∂z)

∆ = ∂2
r +

1

r
∂r +

1

r2
∂2
ϕ + ∂2

z . (2.39)

Now we are able to transform a scalar equation like Equation (2.33) for the temperature.
First we integrate it over the domain of the pipe and apply the transformation (2.36)

0 =

∫
B 1

2
×(0,210)

(
∂tT −

1

PeT
∆T + u · ∇T +HT

` − fT`
)

d(x, y, z)

=

∫
(0, 1

2
)×(0,2π)×(0,210)

(
∂tT̃ −

1

PeT
∆T̃ + ũ · ∇T̃ + H̃T

` − f̃T`
)
r d(r, ϕ, z),

where the tildes indicate functions expressed in cylindrical coordinates. Note that, for
instance, H̃T

` , defined in Equation (2.35), depends on c, T , and f , but as there is no
differential operator involved it can be easily transformed. Even the integration of f with
respect to the internal coordinate does not change that because the integration takes place
in a different domain than is being transformed here. With equations (2.38) and (2.39)
we get

0 =

∫
(0, 1

2
)×(0,2π)×(0,210)

(
∂tT̃ −

1

PeT

(
∂2
r T̃ +

1

r
∂rT̃ +

1

r2
∂2
ϕT̃ + ∂2

z T̃

)

+ ur∂rT̃ +
uϕ
r
∂ϕT̃ + uz∂zT̃ + H̃T

` − f̃T`
)
r d(r, ϕ, z).

Then we split the integral into three iterated integrals by Fubini’s theorem (see Königs-
berger [19, chapter 8.5]):

0 =

∫
(0, 1

2
)

∫
(0,2π)

∫
(0,210)

(
∂tT̃ −

1

PeT

(
∂2
r T̃ +

1

r
∂rT̃ +

1

r2
∂2
ϕT̃ + ∂2

z T̃

)

+ ur∂rT̃ +
uϕ
r
∂ϕT̃ + uz∂zT̃ + H̃T

` − f̃T`
)
r dz dϕ dr.

Now we want to make the following assumption with far-reaching consequences: Any
function is independent of ϕ and the ϕ-component of any vector field is identically zero.
This assumption is justified because the domain is a cylinder and therefore, has rotational
symmetry about the z-axis; the flow has a preferred direction and is laminar as we con-
cluded in the previous section. The immediate consequence is ∂ϕT̃ = ∂2

ϕ = uϕ = 0. This
simplifies the integral considerably because it reduces the dimension by 1:

0 = 2π

∫
(0, 1

2
)

∫
(0,210)

(
∂tT̃ −

1

PeT

(
∂2
r T̃ +

1

r
∂rT̃ + ∂2

z T̃

)
+ ur∂rT̃ + uz∂zT̃ + H̃T

` − f̃T`
)
r dz dr.
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Now we argue again that the integrand has to vanish equally if the integral is zero and
the integrand continuous, leading to

∂tT̃ −
1

PeT

(
∂2
r T̃ +

1

r
∂rT̃ + ∂2

z T̃

)
+ ur∂rT̃ + uz∂zT̃ + H̃T

` = f̃T` .

Applying the same procedure to equations (2.32) and (2.34) yields analogous results and
will be given at the end of the section. The transformation of the Navier-Stokes equations
is somewhat more complicated. It requires the formulas for the gradient and Laplacian of
a vector field whose derivation is quite lengthy and can be found, also for general curvi-
linear coordinates, in Müller [23]. The (stationary) Navier-Stokes equations in cylindrical
coordinates are (see Schade et al. [28, chapter 8.3] and Müller [23, chapter 7.4])

∂rur +
ur
r

+
1

ur
∂ϕuϕ + ∂zuz = 0,

− 1

Re

(
∂2
rur +

1

r
∂rur −

ur
r2

+
1

r2
∂2
ϕur + ∂2

zur −
2

r2
∂ϕuϕ

)
+ur∂rur +

uϕ
r
∂ϕur + uz∂zur −

u2
ϕ

r
+ ∂rp̃ = gr,

− 1

Re

(
∂2
ruϕ +

1

r
∂ruϕ −

uϕ
r2

+
1

r2
∂2
ϕuϕ + ∂2

zuϕ +
2

r2
∂ϕur

)
+ur∂ruϕ +

uϕ
r
∂ϕuϕ + uz∂zuϕ +

uruϕ
r

+
1

r
∂ϕp̃ = gϕ,

− 1

Re

(
∂2
ruz +

1

r
∂ruz +

1

r2
∂2
ϕuz + ∂2

zuz

)
+ur∂ruz +

uϕ
r
∂ϕuz + uz∂zuz + ∂zp̃ = gz.

(2.40)

Here the consequences of the assumption made above are even greater: The second equa-
tion of the impulse balance vanishes completely. If one sets all summands containing uϕ
or the partial derivative with respect to ϕ to zero, one obtains for the remaining equations

∂rur +
ur
r

+ ∂zuz = 0,

− 1

Re

(
∂2
rur +

1

r
∂rur −

ur
r2

+ ∂2
zur

)
+ ur∂rur + uz∂zur + ∂rp̃ = gr,

− 1

Re

(
∂2
ruz +

1

r
∂ruz + ∂2

zuz

)
+ ur∂ruz + uz∂zuz + ∂zp̃ = gz.

Following Schade et al. [28, chapter 8.4], we make further assumptions based on empirical
insights. From a fluid mechanics point of view, it is clear that laminar flow in a pipe
is caused by an external, axial pressure gradient. As a result, the fluid flows in axial
direction, i.e., in z-direction, but there is no reason why it should have an azimuthal
component, i.e., rotation around the z-axis, or a radial component. Consequently, we
assume, additionally to uϕ being zero, that also ur is equal to 0. As a result, the first
equation of the impulse balance is fulfilled identically. Similarly, there is no ‘special’
height z, such that the remaining third component of the velocity is independent of it,
leading to

ũ(r, ϕ, z) = ur(r, ϕ, z)er + uϕ(r, ϕ, z)eϕ + uz(r, ϕ, z)ez

= uz(r)ez.
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These simplifications are due to the specific case we encounter: there are no bends or
kinks in the pipe, i.e. it is completely straight. Moreover, it is located horizontally such
that the gravitational force plays a comparably small role and will be neglected from
now on. The considerations made so far apply also to the pressure gradient: The partial
derivatives of the pressure with respect to r and ϕ are zero and the z-component of the
pressure gradient is independent of ϕ and z, leading to the ansatz:

∂rp̃ = 0, ∂ϕp̃ = 0, ∂zp̃ = (∂zp̃)(r),

where the notation indicates that the partial derivative with respect to z is a function
that depends only on r. According to the first equation, p̃ does not depend on the radius
r. Consequently, the partial derivative of p̃ with respect to z must be independent of r as
well such that the pressure is constant:

dp̃
dz

= const.

Altogether, the continuity equation and the first two equations of the impulse balance are
fulfilled identically, leaving only one equation to solve:

1

Re

(
d2uz
dr2

+
1

r

duz
dr

)
=

dp̃
dz

= const.

Restating the velocity derivatives as
1

r

d
dr

(
r
duz
dr

)
and integrating twice leads to

duz
dr

=
Re
2

dp̃
dz
r.

Integrating over (r, R) with 0 < r < R and R being the (nondimensional) radius of the
tube yields

Re
4

dp̃
dz

(R2 − r2) = uz(R)︸ ︷︷ ︸
=0

−uz(r).

That the velocity at the boundary of the tube is zero may be explained in two ways:
Firstly, mathematically, a function cannot attain more than one value for one argument.
Therefore, the velocity of the fluid located directly at the tube wall and the tube wall
itself must have the same value: zero. Secondly, physically, it reflects adhesion, i.e. the
process of attachment of a substance to the surface of another substance. This fact enters
computational fluid dynamics as the so-called no-slip boundary condition that we already
encountered in chapter 2.4, see Equation (2.26). This yields

uz(r) =
Re ·R2

4

(
−dp̃
dz

)[
1−

( r
R

)2
]
,

with a constant, negative pressure gradient. This velocity distribution is known as the
Hagen-Poiseuille flow, for which the following relationship between the flow rate V̇ and
the pressure gradient holds, see Schade et al. [28, chapter 5.1]:

V̇ =
πR4

8µ

(
−dp̃
dz

)
.
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We point out that this equation is formulated entirely with dimensional entities as we use it
to determine at first the pressure gradient and then the fluid velocity. The nondimensional
formulation involves the Reynolds number, which in turn, is based on the fluid velocity.
Accordingly, we also need the Hagen-Poiseuille equation in its dimensional form:

uz(r) =
R2

4µ

(
−dp
dx

)[
1−

( r
R

)2
]

Note that the last factor (in brackets) is dimensionless, so that the rest must have the
dimension of a velocity. Adopting the definition of dimensionless variables, see Equation
(2.30), we set r′ = r/X∞ and R′ = R/X∞ = 0.005m/0.01m = 0.5. Using this and
dividing the whole term by the reference velocity U∞ m/s we obtain:

u′z(r
′) =

1

U∞

R2

4µ

(
−dp
dx

)[
1−

(
0.01r′

0.01 · 0.5

)2
]

⇔ u′z(r
′) = 5.09296

(
1

4
− r′

)
. (2.41)

Now our model is complete: In the case of a tube with certain assumptions the Navier-
Stokes equations simplified greatly such that an analytic solution could be obtained,
Equation (2.41). The spatial dimension of the population balance equation for the parti-
cle size distribution, as well as the balance laws for the temperature and the concentration
were reduced by 1. The computational domain has to be adjusted to the cylindrical co-
ordinate system. Accordingly, we define

(r, z) =: x ∈ Ωcyl := (0, 0.5)× (0, 210), Ω` = (`min, `max) = (5 · 10−4, 1),

Γin := [0, 0.5]× {0}, Γout := [0, 0.5]× {210}, Γwall := {0.5} × [0, 210].
(2.42)

The population balance system in its final formulation is given below and is the basis
for computational experiments where, much like in the case of nondimensionalization, we
drop the tildes for convenience.

∂tf + ur∂rf + uz∂zf +
X∞
U∞`∞

G(c, T )∂`f

=
X∞
U∞f∞

(
A+[f ] + A−[f ]

)
, x ∈ Ωcyl, ` ∈ Ω`, t ∈ (0, tend),

f(x, `, t) =
6 · 107

f∞tendVr
fseed(`), x ∈ Γin, ` ∈ Ω`, t ∈ [0, tend)

f(x, `min, t) =
Bnuc

f∞G(c, T )
, x ∈ Ωcyl, t ∈ (0, tend), if G(c, T ) > 0,

f(x, `, 0) = 0, x ∈ Ωcyl, ` ∈ Ω`.


(2.43)
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∂tT −
1

PeT

(
∂2
rT +

1

r
∂rT + ∂2

zT

)
+ur∂rT + uz∂zT +HT

` = fT` , x ∈ Ωcyl, t ∈ (0, tend),

T (x, t) =
Tin

T∞
, x ∈ Γin, t ∈ [0, tend),

∇T (x, t) · n = 0, x ∈ Γout, t ∈ [0, tend),

T (x, t) =
Twall

T∞
, x ∈ (0, 210), t ∈ [0, tend),

T (x, 0) =
Tin

T∞
, x ∈ Ωcyl,



(2.44)

∂tc−
1

Pec

(
∂2
r c+

1

r
∂rc+ ∂2

zc

)
+ur∂rc+ uz∂zc+Hc

` = f c` , x ∈ Ωcyl, t ∈ (0, tend),

c(x, t) =
csat(Tin)

c∞
, x ∈ Γin, t ∈ [0, tend),

c(x, t) = 0, x ∈ Γout ∪ Γwall, t ∈ [0, tend),

c(x, 0) =
csat(Tin)

c∞
x ∈ Ω.


(2.45)
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3 The Finite Volume Method
The finite volume method (FVM), like the finite difference method (FDM) and the finite
element method (FEM), is a popular method used to solve partial differential equations.
The FDM works directly with the differential representation of conservation or balance
laws whereas the FEM uses a variational principle to obtain a weak solution. In the
derivation of the balance laws one arrives initially at an integral equation and obtains the
differential equation only after using the fact that if an integral equals zero, the integrand
equals zero almost everywhere inside the domain. Even though the derivation of the finite
volume method will start with the differential representation of the balance laws as well,
one can think of applying the balance laws directly to a finite volume and, that way, the
method has more physical basis and interpretation.

3.1 Preliminaries

The derivation of the finite volume method is taken from [1]. The definitions and theo-
rems are given. For proofs and more details, the reader may refer to this paper.

We start the construction of the finite volume method with an open, bounded, connected,
and polygonal domain Ω. Let {xi}i∈N ⊂ Ω be a finite set of points, denoted as dis-
cretization points, nodes, or vertices. To each node we associate a convex polygonal
domain ωi, called finite volume, containing xi in its closure.

Definition 3.1. The set V = {(xi, ωi)}i∈N of pairs of discretization vertices and finite
volumes is called a finite volume partition of Ω if⋃

i∈N

ωi = Ωi and ωi ∩ ωj = ∅ ∀ i, j ∈ N .

The intersection face is defined by γij = ωi ∩ ωj. If an intersection face consists of
more than one point, the corresponding nodes are called adjacent and we introduce
the discretization edge hij = xj − xi. For a given point xi we call the set nb(i) of
adjacent nodes neighborhood. The sets H and E denote all discretization edges and all
intersection faces of a finite volume partition, respectively, i.e.,

H =
⋃
i∈N

⋃
j∈nb(i)

hij, E =
⋃
i∈N

⋃
j∈nb(i)

γij.

Since all finite volumes are polygonal, all intersection faces between neighbors are flat
hyperplanes, and the boundary of a finite volume may be represented as a disjoint union
of a finite number of intersection faces:

∂ωi =
⋃

j∈nb(i)

γij.

A discretization point xi is called a tentative boundary discretization point if the
intersection of the closure of its finite volume ωi and the boundary of the domain ∂Ω
consists of more than one point. Again, because of the simple geometry of the finite
volumes, this set can be represented as a finite, disjoint union of hyperplanes:

ωi ∩ ∂Ω =
⋃

o∈B(i)

γo,

where B(i) denotes all intersection faces of node xi lying on the boundary.
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Definition 3.2. A finite volume partition is called admissible if it fulfills the following
conditions:

(i) For two adjacent nodes xi and xj the intersection face γij is orthogonal to the edge
hij.

(ii) Each tentative boundary discretization point is located at the boundary ∂Ω.

3.2 An introductory example: The Heat Equation

After the definitions are made, we are now able to discretize partial differential equations.
Before we deal with the population balance equation for the particle size distribution, the
foregoing shall be illustrated first by the discretization of the heat equation and then by
a linear, scalar convection-diffusion-reaction equation.

The heat equation is defined as follows:

∂tu+ div(−α∇u) =0 in Ω× (0, tend), (3.1)
∇u · n =0 on ΓN × (0, tend],

u(·, 0) =u0 in Ω,

where α is the thermal diffusivity, u0 the initial condition, ΓN the Neumann boundary
and we set ∂Ω = ΓN . Note that this problem is only solvable up to a constant since there
are only Neumann boundary conditions given. The aim is, however, to provide an easy
access to the discretization techniques, since it may be rather technical later on.

Let xi ∈ Ω be an arbitrary node in the domain and let the time interval [0, tend] be
partitioned in times 0 = t0 < t1 < · · · < tM = tend with time steps τn = [tn, tn+1].
Assume an admissible finite volume partition and denote uni = u(xi, t

n). We start with
the integration of (3.1) over ωi and τn and split the sum into two terms:

0 =

∫
τn

∫
ωi

∂tu dx dt+

∫
τn

∫
ωi

div(−α∇u) dx dt.

In the first term, we switch the order of integration by Fubini’s theorem and use the
fundamental theorem of calculus. In the second term, we apply the Gaussian divergence
theorem and obtain

=

∫
ωi

(un+1 − un) dx+

∫
τn

∫
∂ωi

−α∇u · ni dS(x) dt.

Note that no integrals over the Neumann boundary appear since there is only a homo-
geneous Neumann boundary condition prescribed. As stated above, the boundary of a
finite volume can be represented as a finite disjoint union of flat hyperplanes. Hence, the
boundary integral can be written as a sum over these hyperplanes:

=

∫
ωi

(un+1 − un) dx+

∫
τn

∑
j∈nb(i)

∫
γij

−α∇u · nij︸ ︷︷ ︸
= ∂u

∂nij

dS(x) dt. (3.2)
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We use the midpoint rule to approximate the first integral where only the value of the
function at point xi is being used. In the second term the directional derivative is ap-
proximated with a central finite difference in the direction of the normal, that is, in the
direction of neighbor xj. That leads to

≈ |ωi|(un+1 − un) +

∫
τn

∑
j∈nb(i)

∫
γij

−α
(
uj − ui
hij

)
dS(x) dt.

The remaining integrand does not depend on the location, so it is a constant with respect
to the boundary integral. In order to obtain a fully implicit scheme (with respect to time)
the functions only at the next time are used. This yields the final discretization:

0 = |ωi|(un+1
i − uni ) + |τn|k

∑
j∈nb(i)

|γij|
hij

(un+1
i − un+1

j ). (3.3)

Before we proceed with the discretization of the more complex equations, let us take a look
at the resulting system of linear equations. The diagonal entries of the stiffness matrix
A = (aij)

N
i,j=1 are determined by the coefficients of un+1

i ; the off-diagonal entries by the
coefficients of un+1

j . Since this depends on the location of the neighbors in the mesh, one
cannot write down the whole matrix, but only the entries, which are given below:

aij =


|ωi|+

∑
l∈nb(i) |τn|α

|γil|
hil

if i = j,

−|τn|α |γij|
hij

if i 6= j,hij ∈ H,

0 else.

(3.4)

The matrix B = (bij)
N
i,j=1 contains the coefficients of uni and is a diagonal matrix:

bij =

{
|ωi| if i = j,

0 else.
(3.5)

With these matrices the dicretized system can be written in the following way

Aun+1 −Bun = 0. (3.6)

To analyze the solvability of the resulting linear system, it is convenient to rewrite it with
the matrix A′ := A−B as such:

(A′ +B)un+1 −Bun = 0

⇔ B−1(A′ +B)un+1 = un

⇔ (B−1A′ + I)un+1 = un.

By the definitions of A and B, Equations (3.4) and (3.5) respectively, it follows that the
sum of each row of A′ is zero (as well as of B−1A′), such that the matrix B−1A′ + I is
strictly diagonally dominant, which implies the unique solvability of the system.

3.3 The convection-diffusion-reaction equation

Now we want to discretize a linear, scalar convection-diffusion-reaction equation. We
also assume an inhomogeneous right-hand side as well as inhomogeneous Neumann and
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Dirichlet boundary conditions. The problem is defined in detail as follows:

∂tu+ div(−α∇u+ bu) + cu = f in Ω× (0, tend),

∇u · n = g on ΓN × (0, tend],

u = uD on ΓD × (0, tend],

u(·, 0) = u0 in Ω,
N

where ΓN is the Neumann boundary, ΓD is the Dirichlet boundary, ΓN ∪ ΓD = ∂Ω, u0

is the initial condition. The inhomogeneity f describes sorce and sink terms, α is the
diffusivity, b the fluid velocity and the term cu accounts for the reaction. The functions
uD and g are given functions on the corresponding domains. The coefficients are assumed
be constant.

We start with the same step as above: Integrating over a finite volume ωi and a time
step τn where we assume that the corresponding node is located either on the Neumann
boundary or inside the domain, that is, xi ∈ Ω ∪ ΓN . The Dirichlet condition will be
incorporated later in a different way.

∫
τn

∫
ωi

f dx dt =

∫
τn

∫
ωi

(∂tu+ div(−α∇u+ bu) + cu) dx dt

=

∫
ωi

∫
τn

∂tu dt dx+

∫
τn

∫
ωi

div(−α∇u+ bu) dx dt+

∫
τn

∫
ωi

cu dx dt.

Applying the same theorems as we did above and making use of the simple geometry of
a finite volume yields

=

∫
ωi

(un+1 − un) dx+

∫
τn

∑
j∈nb(i)

∫
γij

(−α∇u+ bu) · nij dS(x) dt

+

∫
τn

∑
o∈B(i)

∫
γo

(−α∇u+ bu) · no dS(x) dt+

∫
τn

∫
ωi

cu dx dt.

Here we have to consider the Neumann boundary, because on one hand the boundary
condition is not homogeneous but states ∇u · no = g(x, t), and on the other hand the
convective part would not vanish as it is. This gives us

=

∫
ωi

(un+1 − un) dx+

∫
τn

∑
j∈nb(i)

∫
γij

(−α∇u · nij + bu · nij) dS(x) dt

+

∫
τn

∑
o∈B(i)

∫
γo

(ub · no − αg) dS(x) dt+

∫
τn

∫
ωi

cu dx dt.

Note that by the use of the Neumann boundary condition the term is no longer containing
the unknown function u. Hence, we subtract it and treat it together with the right-hand
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side. This leads to the following equation:∫
τn

∫
ωi

f dx dt+

∫
τn

∑
o∈B(i)

∫
γo

αg dS(x) dt =

∫
ωi

(un+1 − un) dx+

∫
τn

∑
j∈nb(i)

∫
γij

(−α∇u · nij + bu · nij) dS(x) dt

+

∫
τn

∑
o∈B(i)

∫
γo

ub · no dS(x) dt+

∫
τn

∫
ωi

cu dx dt.

(3.7)

For the sake of clarity we treat each summand individually. The first term we approximate
by the midpoint rule: ∫

ωi

(un+1 − un) dx ≈ |ωi|(un+1 − un). (3.8)

For the convective part of the second term we use a simple upwind scheme. This is
employed by a function that, based on the sign of the argument, lets us choose either the
node xi or its neighbor xj. More precisely, we define ξ as follows

ξ(a) =

{
a if a < 0,

0 else

and use the following approximation:

ub · nij ≈
1

hij

(
ξ(b · hij)uj − ξ(−b · hij)ui

)
. (3.9)

This way, it is assured that only the node xi or its neighbor upstream is chosen but
never its downstream neighbor. This is done because the information of the solution
originates upstream. If one would use, for instance, a central difference scheme, uncertain
information from the downstream direction would be incorporated and leads to strong
stability problems, see Roos et al. [26, chapter 2] for a detailed treatment. Hence, we
choose a difference scheme in the direction where the information comes from. Using that
together with a finite difference scheme for the diffusive term and a fully implicit time
scheme for the second term of equation (3.7) leads to:∫

τn

∑
j∈nb(i)

∫
γij

(−α∇u · nij + bu · nij) dS(x) dt

≈|τn|
∑

j∈nb(i)

|γij|
hij

((
ξ(b · hij)− α

)
un+1
j +

(
α− ξ(−b · hij)

)
un+1
i

)
.

(3.10)

The third term is simply approximated by a fully implicit time scheme and a midpoint
rule in space since in an admissible finite volume partition the tentative boundary dis-
cretization points are located at the boundary. This gives us:∫

τn

∑
o∈B(i)

∫
γo

ub · no dS(x) dt ≈ |τn|
∑
o∈B(i)

|γo|(b · no)un+1
i . (3.11)
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For the last term we use again a fully implicit time scheme and the midpoint rule for the
integral in space: ∫

τn

∫
ωi

cu dx dt ≈ |τn||ωi|cun+1
i . (3.12)

Lastly, the right-hand side has to be approximated which is done with a fully implicit
time scheme and the midpoint rule for both the finite volume and the intersection face.
Adopting the notation of u for f and g, i.e., fni = f(xi, t

n) and gni = g(xi, t
n), yields:∫

τn

∫
ωi

f dx dt+

∫
τn

∑
o∈B(i)

∫
γo

αg dS(x) dt ≈ |τn||ωi|fn+1
i + |τn|

∑
o∈B(i)

|γo|αgn+1
i . (3.13)

Inserting all approximations, namely Equations (3.8), (3.10), (3.11), (3.12), and (3.13),
into Equation (3.7) leads to the final discretization of a scalar, linear convection-diffusion-
reaction equation:

|τn||ωi|fn+1
i + |τn|

∑
o∈B(i)

|γo|αgn+1
i = |ωi|(un+1 − un)

+ |τn|
∑

j∈nb(i)

|γij|
hij

((
ξ(b · hij)− α

)
un+1
j +

(
α− ξ(−b · hij)

)
un+1
i

)
+ |τn|

∑
o∈B(i)

|γo|(b · no)un+1
i + |τn||ωi|cun+1

i .

(3.14)

Again, this can be summarized in a linear system, Aun+1 −Bun = D, with the following
entries:

aij =



|ωi|+ |τn|
( ∑
l∈nb(i)

|γil|
hil

(
α− ξ(−b · hij)

)
+ |ωi|c

)
if i = j, xi ∈ Ω̊,

|ωi|+ |τn|
( ∑
l∈nb(i)

|γil|
hil

(
α− ξ(−b · hij)

)
+
∑
o∈B(i)

|γo|
(
b · no

)
+ |ωi|c

)
if i = j,xi ∈ ΓN ,

|τn| |γij|
hij

(
ξ(b · hij)− α

)
if i 6= j, hij ∈ H,

1 if i = j,xi ∈ ΓD,

0 else,

bij =

{
|ωi| if i = j,

0 else,

di =



|τn||ωi|fn+1
i if xi ∈ Ω

|τn|
(
|ωi|fn+1

i +
∑
o∈B(i)

|γo|αgn+1
i

)
if xi ∈ ΓN ,

uD(xi, t
n) if xi ∈ ΓD,

0 else.

Remark 3.3. In practical applications one should keep in mind the following:

(i) For the right-hand side f as well as for the inhomogeneous Neumann boundary
condition g there was used only the midpoint rule to approximate the integrals.
Since these functions are known one could use a higher order method, for instance,
Gaussian quadrature.
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(ii) The convective term was discretized with a simple upwind scheme. For reasons of
stability and accuracy, a higher order scheme should be used also here. In scope of
the work an exponentially fitted upwind scheme will be implemented.

(iii) The Dirichlet boundary condition was implemented only algebraically by means
of setting the corresponding entries of the right-hand side equal to the Dirichlet
condition and the ones of the in the diagonal of the stiffness matrix equal to 1.

(iv) For the discretization a fully implicit time scheme was chosen. To achieve a higher
order one could use, for example, a Crank-Nicholson scheme.

(v) The resulting linear system is strictly diagonally dominant and, hence, there exists
a uniquely defined solution.

3.4 The exponentially fitted upwind scheme

The convection from one discretization node to another across the boundary can be viewed
as a one-dimensional problem. Since in finite volume methods finite differences are even-
tually used to approximate derivatives, we formulate the problem as a finite difference. So
we consider a stationary two-point boundary value problem without the reaction term and
with homogeneous right-hand side because these terms do not matter in the derivation of
the scheme. We also want to assume that the convection velocity is positive b > 0, as one
can decide for each vertex whether to use a forward finite difference or a backward finite
difference. The problem and the simple upwind finite difference scheme read then

−αu′′ + bu = 0, −αD+D−ui + bD−ui = 0,

where D+u := (ui+1 − ui)/h and D−u := (ui − ui−1)/h are the forward and backward
finite difference, respectively. For simplicity, the mesh width h is chosen to be constant
but is no constraint on the method.

The simple upwind scheme is known to be stable but it is only of first order convergence
outside (boundary) layers. Inside layers, one can show that the scheme does not converge,
see Roos et al. [26, chapter 2.1], where most of the identities of this section come from.
Hence, we seek a uniform, and possibly higher, convergence rate in the whole domain. To
this end, the scheme is reformulated:

−
(
α +

bh

2

)
D+D−ui + bD0ui = 0,

where D0u := (ui+1−ui−1)/2h is the central finite difference. This is the central difference
scheme applied to an equation with −(α+bh/2) being the diffusion coefficient. This means
the simple upwind scheme can be understood as a central difference scheme applied to
a modified problem; in the literature commonly referred to as a scheme with artificial
diffusion. The idea is now to add the right amount of artificial diffusion to get the desired
properties because if too much diffusion is added the layer gets smeared. A generalization
is given by

−ασ(q(xi))D
+D−ui + biD

0ui = 0
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with the so-called fitting factor σ and q(x) := bh/(2α). The simple upwind scheme can be
recovered by setting σ(q) = 1+q. A careful investigation of the analysis of the convection-
dominated equation and of the numerical analysis of the schemes considered so far lead
to the choice (see Roos et al. [26, chapter 2.1] for details)

σ(q(x)) = q(x) coth(q(x)).

Note that there holds limq→∞ coth(q) = 1 and limq→−∞ coth(q) = −1. As a consequence,
for α→ 0 this scheme turns into the simple upwind scheme.

Starting with the regular formulation of the simple upwind scheme but by already adding
a fitting factor σ∗ for the diffusion term, one can derive the condition to be

σ∗(q) = B(2q(x)),

with the Bernoulli function B(z) := z/(ez − 1). This is also the formulation used in
finite volume methods, see Fuhrmann and Langmach [6]. Also common for finite volume
methods is treating the convection and diffusion terms together. Introducing the function

ζ(a) :=
1

2
|a| − 1

2
a+ 1 =

{
1− a, a ≤ 0,

1, a > 0,

and setting a := (b · hij)/α, we can make the approximation∫
γij

(−α∇u+ bu) · nij dS(x) ≈
∑

j∈nb(i)

α
|γij|
hij

(
ζ

(
−b · hij

α

)
un+1
i − ζ

(
b · hij
α

)
un+1
j

)
.

By replacing ζ(a) by the Bernoulli function we obtain the exponentially-fitted finite volume
discretization for a scalar convection-diffusion-reaction equation:

|τn||ωi|fn+1
i + |τn|

∑
o∈B(i)

|γo|αgn+1
i = |ωi|(un+1 − un)

+ |τn|α
∑

j∈nb(i)

|γij|
hij

(
B

(
−b · hij

α

)
un+1
i −B

(
b · hij
α

)
un+1
j

)
+ |τn|

∑
o∈B(i)

|γo|(b · no)un+1
i + |τn||ωi|cun+1

i .

3.5 The population balance equation

In this section we treat the population balance equation for the particle size distribu-
tion, Equation (2.43). The right-hand side is a functional and hence changes the type
of the equation to a partial integro-differential equation as not only partial derivatives
are involved, but the function is also integrated. This makes the mathematical analysis
extremely difficult. Currently there is a lack of theorems available concerning the exis-
tence of analytical solutions for this equation. Consequently, numerical methods cannot
be judged by numerical analysis but rather only validated by comparison with experimen-
tal data. The experimental setup will be discussed together with the numerical results.
In the context of the finite volume method, the functional will be treated as a regular
function. This is because for specific values of x, `, and t the functional will be evaluated
and enters the discretized equation as a number. The method to evaluate the functional
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will be presented briefly subsequently but it is quite expensive so that only the midpoint
rule (and no higher order scheme) will be applied.

First, we recall the population balance equation for the number density, Equation (2.43),

∂tf + ur∂rf+uz∂zf +
X∞
U∞`∞

G(c, T )∂`f

=
X∞
U∞f∞

(
A+[f ] + A−[f ]

)
, x ∈ Ωcyl, t ∈ (0, tend),

f(x, `, t) =
6 · 107

f∞tendVr
fseed(`), x ∈ Γin, t ∈ [0, tend)

f(x, `min, t) =
Bnuc

f∞G(c, T )
, x ∈ Ωcyl, t ∈ (0, tend), if G(c, T ) > 0,

f(x, `, 0) = 0, x ∈ Ωcyl, ` ∈ (`min, `max).

with Ωcyl and Ω` as defined in Equation (2.42).

Analogous to the previous cases, we assume an admissible finite volume partition of Ωcyl.
Following the notation of the finite volume method, we define xi = (ri, zi) and denote the
finite volumes of Ωcyl by ωi. The time interval is partitioned in time steps τn. Similarly,
Ω` is partitioned in lengths `min = `0 < `1 < · · · < `r = `max. In a consistent treatment
one would define also finite volumes for the internal space Ω` by λm = (`m−1/2, `m+1/2),
0 < m < r, but this would lead to an unstable scheme. The following necessary correction
would result in the same scheme we get directly by a finite difference approximation. In
regard of the two-dimensional case, recalling that the fluid velocity is divergence-free, the
convective part can be rewritten in the following way:

ur∂rf + uz∂zf = u · ∇f = div(uf).

If not stated otherwise, u will denote from now on the velocity as used in this equation;
same holds for all differential operators like ∇ and div. Note also that Ωcyl is a tensor
product of intervals and therefore can be treated like a Cartesian domain.

We start the discretization with the integration over some volume ωi and some time
interval τn: ∫

τn

∫
ωi

X∞
U∞f∞

(
A+[f ] + A−[f ]

)
dx dt

=

∫
τn

∫
ωi

(
∂tf + div(uf) +

X∞
U∞`∞

G(c, T )∂`f

)
dx dt

=

∫
ωi

∫
τn

∂tf dt dx+

∫
τn

∫
ωi

div(uf) dx dt

+

∫
τn

∫
ωi

X∞
U∞`∞

G(c, T )∂`f dx dt

Here we changed the order of integration by Fubini’s rule and define analogue to the
previous cases fni,m = f(xi, `m, t

n). Applying the fundamental theorem of calculus in the
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first term and Gaussian’s divergence theorem in the second leads to

=

∫
ωi

(fn+1 − fn) dx+

∫
τn

 ∑
j∈nb(i)

∫
γij

fu · nij dS(x)

 dt

+

∫
τn

∫
ωi

X∞
U∞`∞

G(c, T )∂`f dx dt.

Much like before the first term is approximated by the midpoint rule:∫
ωi

(fn+1 − fn) dx ≈ |ωi|(fn+1
i,m − fni,m). (3.15)

In the second term we apply the simple upwind scheme for the convective part and employ
an implicit time scheme for the m-th internal coordinate:

∫
τn

 ∑
j∈nb(i)

∫
γij

fu · nij dS(x)

 dt

≈
∫
τn

 ∑
j∈nb(i)

|γij|
hij

ξ(uγij · hij)fj − ξ(−uγij · hij)fi

 dt

≈ |τn|

 ∑
j∈nb(i)

|γij|
hij

ξ(uγij · hij)fn+1
j,m − ξ(−uγij · hij)fn+1

i,m

 .

(3.16)

In the third term we use a simple upwind scheme, where we want to exploit the special
structure of the growth rate, which plays an analogous role that the fluid velocity plays
in the convective part. The growth rate is non-negative, i.e., either it is positive and we
use the smaller neighbor or it is zero and does not contribute at all. In the finite volume
context one would have used the fundamental theorem of calculus which would incorporate
f at the midpoints `m−1/2 and `m+1/2 which, in turn, is not part of the approximating
vector (fni,m)i,m,n. Hence, one would approximate these values by the neighboring values
and obtain a central difference scheme. This scheme is known to be unstable, see the
discussion of the simple upwind scheme on page 36. Therefore, we approximate the
derivative by a simple upwind scheme directly:∫

τn

∫
ωi

X∞
U∞`∞

G(c, T )
(
f,m+ 1

2
− f,m− 1

2

)
dx dt

≈
∫
τn

∫
ωi

X∞
U∞`∞

G(c, T )
f,m − f,m−1

`m − `m−1

dx dt

≈ |τn||ωi|λ
X∞
U∞`∞

G(cn+1
i , T n+1

i )
fn+1
i,m − fn+1

i,m−1

`m − `m−1

.

The right-hand side is approximated by a mid point rule for both the integral over ωi and
λm; as in all other terms of the equation an implicit time scheme is employed:∫
τn

∫
λm

∫
ωi

X∞
U∞f∞

(
A+[f ] + A−[f ]

)
dx d` dt ≈ |τn||λm||ωi|

X∞
U∞f∞

(
A+[fn+1

i,m ] + A−[fn+1
i,m ]

)
.

41



Collecting all four approximations, we obtain the finite volume discretization of the pop-
ulation balance equation:

|ωi||λm|
(
fn+1
i,m −+fni,m

)
+ |τn||ωi|

X∞
U∞`∞

G(cn+1
i , T n+1

i )
fn+1
i,m − fn+1

i,m−1

`m − `m−1

+ |τn||λm|

( ∑
j∈nb(i)

|γij|
hij

ξ(uγij · hij)fn+1
j,m − ξ(−uγij · hij)fn+1

i,m

)

= |λm||ωi||τn|
X∞
U∞f∞

(
A+[fn+1

i,m ] + A−[fn+1
i,m ]

)
.

(3.17)

Note that as there is no Neumann boundary this is not treated here. Much like in
the case of convection-diffusion-reaction equations the Dirichlet boundary condition is
incorporated algebraically.

3.6 Evaluation of the Aggregation Functional

The right-hand side of the population balance equation is a functional, meaning integrals
have to be evaluated for every time step and spatial grid-point. In view of the computa-
tional cost, it is essential to have a fast algorithm for this task. The right-hand side of
the population balance equation is given by (see Equations (2.43), (2.16), (2.14), (2.15),
and (2.11))

A+(V )[fV ] + A−(V )[fV ]

with

A+(V )[fV ] =

V∫
0

K(V − V ′, V ′)fV (V − V ′)fV (V ′) dV ′,

A−(V )[fV ] = −fV (V )

Vmax∫
0

K(V, V ′)fV (V ′) dV ′,

and

K(V, V ′) =
(

3
√
V +

3
√
V ′
)( 1

3
√
V

+
1

3
√
V ′

)
+
√

2∇u : ∇u
(

3
√
V +

3
√
V ′
)
.

For convenience, all constants and factors are replaced by 1 and the explicit dependency
on x and t is omitted because none of that is significant for the basic understanding of the
algorithm described here. The function f will be approximated by a piecewise constant
ansatz function with, say, n being the degrees of freedom. Usually one would divide each
integral in O(n) subintervals where fV (V − V ′)fV (V ′) is constant. This approach leads
to at least O(n2) arithmetical operations, where this has to be performed for every time
step and every spatial grid point. This results either in a too expensive or inaccurate
method. The method described briefly here represents a considerable improvement. It is
taken from the works of Hackbusch [8] and [9] where it is explained in detail and further
references can be found. Compared with the evaluation of A+(V )[fV ], the cost of evalu-
ating A−(V )[fV ] is rather small and the same method used for the birth term A+ can be
applied to the sink term A−. Hence, it will not be treated here.
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Two features are essential for the algorithm: First, the aggregation kernel is separable
and second, the grid is chosen to be locally equidistant. By saying the aggregation kernel
is separable, we mean that there is a natural number k (the separation rank) such that
the kernel can be written in the following form:

K(V, V ′) =
k∑
i=1

αi(V )βi(V
′).

For instance, the Brownian aggregation kernel (first summand) is separable with separa-
tion rank 3: α1 = β1 =

√
2, α2 = 1/ 3

√
V , β2 = 3

√
V ′, α3 = 3

√
V , β3 = 1/ 3

√
V ′. Thus, the

birth rate caused by aggregation can be expressed as

A+(V )[fV ] =

V∫
0

(
k∑
i=1

αi(V − V ′)βi(V ′)

)
fV (V − V ′)fV (V ′) dV ′.

Now we combine αi(V − V ′) and fV (V − V ′) on one hand and βi(V ′) and fV (V ′) on the
other hand; denoted by ϕi(V − V ′) and ψi(V

′) respectively. Then the integral can be
restated as a sum of convolutions:

A+(V )[fV ] =

V∫
0

(
k∑
i=1

ϕi(V − V ′)ψi(V ′)

)
dV ′ =

k∑
i=1

V∫
0

ϕi(V − V ′)ψi(V ′) dV ′

=
k∑
i=1

(ϕi ∗ ψi)(V )︸ ︷︷ ︸
=:ωi(V )

.

For now we consider only one summand ω(V ) = (ϕ ∗ ψ)(V ) and an equidistant grid:
Vj = jh, 1 ≤ j ≤ n, h = 1

n
. Piecewise constant functions are used to approximate ϕ

and ψ (or a projection there of), such that they are given by their values ϕj, ψj on the
intervals (Vj−1, Vj) (1 ≤ j ≤ n). Hence, ω is a piecewise linear function and completely
known if it is evaluated at all points Vj. This leads to the representation of ω(Vj) as a
sum:

ω(Vj) = h

j∑
m=1

ϕmψj−m+1, (1 ≤ j ≤ n).

In essence, for solving this problem three fast Fourier transforms are necessary. These
can be performed with complexity O(n log n). Since this has to be done for all k sums
this leads to O(kn log n).

In the pipe there are much more small particles contained than large particles such that
the fine scales are not needed for larger particles. This leads to the idea of refining the
grid towards zero and the second important feature. With locally equidistant we mean
that the grid may be decomposed in several grids where each grid is equidistant. An
illustration of such a grid is given in Figure 3.1.

On each level of the hierarchical grid a basis consisting of piecewise constant and paiwise
orthormal functions was chosen (orthogonality with respect to the L2 inner product). The
idea is now to apply the method described above on each of the levels. The complexity is
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Vmin Vmax

Level 0
Level 1
Level 2
Level 3

Figure 3.1: Illustration of the graded grid.

roughly the same, but more grid points towards zero can be chosen and attain a better
accuracy. See Hackbusch [8] and [9] for an extension to higher order polynomials and
implementation details. Also important to note is that the method is implemented in a
way that ensures mass conversation which is the main concern of the latter referenced
work.
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4 Numerical Experiments

In this section we want to test the method described above. First, there are some simple
examples to assure that the program works properly. After that there are some experi-
ments with cases which are commonly used to analyze certain properties of algorithms in
the context of convection-dominated convection-diffusion problems.

Most examples are defined on Ω = (0, 1)2 with boundary Γ := ∂Ω. For convenience, each
part of the boundary is assigned as follows:

Γ1

Γ2

Γ3

Γ4 Ω = (0, 1)2

Γ1 = [0, 1]× {0},
Γ2 = {1} × [0, 1],
Γ3 = [0, 1]× {1},
Γ4 = {0} × [0, 1].

Figure 4.1: Illustration of the computational domain for the test cases.

The grid was chosen to consist of uniform quadrangles as illustrated below. It starts with
a unit square with four nodes at the corners as can be seen in Figure 4.1. One uniform
refinement leads to four squares with nine nodes, another refinement to 16 squares and 25
nodes, see Figures 4.2 and 4.3. For each node a finite volume is constructed: Determine
the orthogonal lines to the discretization edges and then the intersections of the perpen-
diculars. These intersections, also referred to as grid corners, are the corners of the finite
volumes. The orthogonality can be observed in Figures 4.2 and 4.3.

Figure 4.2: Illustration of the finite volume grid after one refinements. Left: vertices
with discretization edges; right: vertices with finite volumes.
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Figure 4.3: Illustration of the finite volume grid after two refinement. Left: vertices
with discretization edges; right: vertices with finite volumes.

4.1 Linear Solution

The first example is defined as follows:

HH ∂tu− α∆u = 0 in Ω× [0, T ],
u = 0 on Γ1 × [0, T ],

∇u · n = 0 on Γ2 × [0, T ],
u = 1 on Γ3 × [0, T ],
u = y on Γ4 × [0, T ],

u(·, 0) = 0 in Ω,


Example 4.1

with exact solution u(x, y) = y. This case is chosen because its analytical solution can be
represented exactly by a combination of linear functions, such that the obtained solution
should converge to the exact solution up to machine precision. Although the solution is
stationary, the instationary equation was chosen, in order to observe convergence with
respect to time. The parameters are α = 0.01, ∆t = 0.1 s, N = 128, and the error
tolerance was set to 10−14.

Figure 4.4: Computed solution of Example 4.1 after 322 s simulation time with error
tolerance 10−14.

As one might expect, the solution in Figure 4.4 looks just like the exact solution u(x, y) = y
and for this setting of the coefficients and parameters the error tolerance of 10−14 was
reached after 322 s, even though it started to oscillate after 290 s with an error of 1.3·10−14.

46



Since this example works fine we can go on to more complex problems.

4.2 Quadratic Solution

This problem serves to analyze the convergence rate of the method with respect to the
mesh width and to compare the simple upwind scheme with the exponentially fitted up-
wind scheme. The problem is defined as follows:

HH −α∆u+ b · ∇u+ cu = f in Ω× [0, T ],
u = x2 on Γ1 × [0, T ],
u = y2 + 1 on Γ2 × [0, T ],
u = x2 + 1 on Γ3 × [0, T ],
u = y2 on Γ4 × [0, T ],

u(·, 0) = 0 in Ω .


Example 4.2

The problem is constructed so that the solution is given by

u(x, y) = x2 + y2

resulting in

f(x, y) = −4α + 2bxx+ 2byy + c(x2 + y2).

The solution is shown in Figure 4.5. We also want to investigate the influence of the

Figure 4.5: Solution to Example 4.2

diffusion constant α, the convection, and the reaction. Figure 4.6 shows the L2-error of
the pure diffusive case, i.e., b = (0, 0)T and c = 0, and the corresponding L2-errors of
convection-diffusion-reaction cases with α ∈ {10−3, 10−6}, b = (1, 1)T , c = 1, solved with
both the simple and the exponentially fitted upwind scheme.

It can be easily observed that the pure diffusive case has a constant convergence rate and
outperforms the other cases. Determined by this log-log plot, the convergence rate for the
pure diffusive case is 2. That means when the mesh width is halved, the error decreases
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10−3 10−2 10−1
10−7

10−6

10−5

10−4

10−3

10−2

10−1

mesh width

||u
−

u so
l|| L2 (Ω

)

 

 

Diffusion

CDR (simpleUpwind), α=10−3

CDR (expoUpwind), α=10−3

CDR (simpleUpwind), α=10−6

CDR (expoUpwind), α=10−6

Figure 4.6: The convection-diffusion-reaction case in comparison with the pure dif-
fusion case.

by a factor of 4. This is the same result one would obtain with classic finite elements or
finite differences. Next, all other cases seem to have the same behavior in the beginning,
but in the end the error for the case with α = 10−3 solved by the exponentially fitted
upwind scheme decreases more rapidly. There the convergence rate is between the first
two grids approximately 0.69 and between the last two grids 1.93. The remaining three
cases seem to have the same values. In fact, figure 4.7 shows a close up of them: Their
values differ only little. The convergence rate in all these three cases is between the first
two grids approximately 0.68 and between the last two grids 1.
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Figure 4.7: L2-error for the convection-diffusion-reaction cases with (i) α = 10−6,
simple upwind scheme; (ii) α = 10−6, exponentially fitted upwind scheme; (iii) α =
10−3, simple upwind scheme (from top to bottom).

That means that the exponentially fitted upwind scheme has a better performance only
if the diffusive constant is not to small compared to convection and/or reaction. Cases
without reaction term have been also considered and they turn out to have the same
behavior. Figure 4.8 shows all cases for this problem that have been solved with the
exponentially fitted upwind scheme. Interestingly, the reaction term appears to ’simplify’
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the problem since the corresponding errors are somewhat smaller than the ones of the
convection-diffusion case.
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Figure 4.8: L2-error of all cases solved with the exponentially fitted upwind scheme.
Impact of the diffusion constant on the convergence rate.

4.3 Heat equation with multiple Fourier series

This example is concerned with the solution of the heat equation by means of multiple
Fourier series. It is based on an exercise stated by Coleman [5] and reads as follows:

HH
∂tu− α∆u= 13π2α sin(2πx) sin(3πy) in Ω× (0, T )

u= 0 on Γ× [0, T ]
u(x, y, 0) = sin(4πx) sin(7πy) in Ω

Example 4.3

Using separation of variables, we make the following ansatz

u(x, y, t) =
∞∑

n,m=1

Tn,m(t) sin(nπx) sin(mπy).

Inserting into the heat equation, making use of {sin(nπx) sin(mπy)|n,m ∈ N} being an
orthonormal basis of {f ∈ L((0, 1)2)| f |∂Ω = 0}, and inserting the initial condition leads
to the analytic solution:

u(x, y, t) =
∞∑

n,m=1

(1− e−13απ2t) sin(2πx) sin(3πy) + e−65απ2t sin(4πx) sin(7πy).

The second summand accounts for the initial condition. Note that the absolute value
of the exponent of the second summand is larger than the one of the first one. Thus
one can observe to some extend that at first the initial condition subsides and then the
stationary solution develops. (If the constants were switched then the stationary solution
would develop more rapidly then the initial condition would subside.) Since both terms
with negative exponents tend to 0 as time evolves, the stationary solution is given by

ustat = sin(2πx) sin(3πy).

In figure 4.8 the evolution of the L2-error of all grids with time step size τ = 0.1 is rep-
resented. One can see the convergence on every level. Also in the beginning on finer
grids the error increases and then decreases eventually. A solution is considered to be
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Table 3: Time τ∗ when the relative change of the solution from one time step to the
next one is less than 10−6 depending on the mesh width h; the final error compared
with the exact solution; τ = 0.1.

HH

h τ∗ ‖u(τ∗)− usol(τ∗)‖L2(Ω)

1/8 90.4 3.6678 · 10−2

1/16 97.7 8.96501 · 10−3

1/32 97.5 2.22873 · 10−3

1/64 105.1 5.56395 · 10−4

1/128 104.3 1.39103 · 10−4

1/256 122.9 3.47621 · 10−5

stationary when the relative change of the error from one time step to the next one is
smaller then 10−6. Table 3 shows when these values were reached and which values were
attained.
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Figure 4.9: L2-error on all grids with time step size τ = 0.1 s.

Further, figure 4.10 shows the impact of the time step size. Even though neither it effects
stability nor the final error, it does alter the point of time when the solution becomes
stationary and the error beforehand. This is also shown in table 4.

As one can see, a smaller time step size increases the accuracy before the final approxi-
mation on the corresponding grid is reached. Finally, figure 4.11 shows the convergence
exemplarily for the time step size τ = 0.1. As in the pure diffusive case considered in
previous example the convergence rate is 2.
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Table 4: Time τ∗ when the relative change of the solution from one time step to the
next one is less than 10−6 depending on the time step size τ ; the final error compared
with the exact solution; dof = 66049.

HH

τ τ∗ ‖u(τ∗)− usol(τ∗)‖L2(Ω)

0.4 147.6 3.47563 · 10−5

0.2 135 3.47582 · 10−5

0.1 122.9 3.47621 · 10−5

0.05 110.75 3.47706 · 10−5
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Figure 4.10: Evolution of the error for different choices of the time step size τ ; dof
= 66049.
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Figure 4.11: Convergence rate with respect to the mesh width; τ = 0.1.

4.4 Sharp layers

In this example we want to investigate the behavior of the method in the presence of sharp
layers. They occur because the diffusion coefficient (respectively the kinematic viscosity
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or thermal diffusivity) is usually much smaller than the convection velocity. This example
was proposed by Hughes et al. [12] and, for instance, also used by John et al. [18]. The
problem reads as follows:

HH −α∆u+ b · ∇u = 0 in Ω
u = 0 on Γ

with b = (cos(−π/3), sin(−π/3)) and α ∈ {10−3, 10−6}. The solution features an interior
as well as a (exponential) boundary layer due to the choice of the boundary conditions
and the convection velocity. Figures 4.12 and 4.13 show the solutions on level 5 and 10,
respectively. In the 2D-color plot it is easy to observe the thickness of the interior layer
whereas the boundary layer looks not properly represented in the first case and simply
not visible in the latter. In a close up, as represented in figure 4.14, one can see that the
complete transition from 0 to 1 takes place within one cell column.

Figure 4.12: Solution to Example 3.4: α = 10−4, dof = 1089

Figure 4.13: Solution to Example 3.4: α = 10−4, dof = 1050625

Since no analytical solution for that problem is known, only a qualitative analysis is
possible. Nonetheless, it shows important features of the method. The most important
qualities that all solutions share are:

• There are no over- or undershoots: There holds 0 ≤ u(x, y) ≤ 1 ∀(x, y) ∈ Ω.

• There are no spurious oscillations.
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Figure 4.14: Close up of solution to Example 3.4: α = 10−4, dof = 1050625.

• The thickness of the boundary layer is exactly one cell width

The second point is a major drawback of finite element methods in the context of convection-
dominated convection-diffusion equations as they lead to unphysical values like negative
concentrations. The work of John et al. [18] is concerned with this issue and how it may
be overcome, see there for further references.
Next we want to compare the simple upwind scheme with the exponentially fitted upwind
scheme. Since they show the same behavior at the boundary layer we will focus on the
interior layer. Figure 4.15 shows the solutions obtained with both methods. They seem

Figure 4.15: Interior layer of solution to Example 3.4: α = 10−4, dof = 1050625,
solved with the simple upwind scheme (above) and the exponentially fitted upwind
scheme (below).

to differ little and, in fact, they do, but if one zooms, one can see that the interior layer
obtained with the exponentially fitted upwind scheme is somewhat thinner than the one
obtained with the simple upwind scheme, see figure 4.16.
This problem was also analyzed with α = 10−6 and α = 10−3. Briefly, in the latter case
the difference in thickness was more visible; in the first one no difference could be ob-
served. Indeed, it appears that the solution obtained with the exponentially fitted upwind
scheme for both α = 10−4 and α = 10−6 is the same and that the solution of the simple
upwind scheme ’converges’ towards the other solution with decreasing α.
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Figure 4.16: Interior layer of solutions to Example 3.4: α = 10−4, dof = 1050625,
solved with the simple upwind scheme (above) and the exponentially fitted upwind
scheme (below).

4.5 Numerical Solution of the Population Balance System

This section is concerned with the solution of the population balance system, but first
the experiment will be presented briefly and the entity used to validate the algorithm
discussed. Furthermore, it contains the solution of the conservation equations for the
temperature and the concentration.

The experiment was conducted by Borchert and Sundmacher [4] with the aim of investi-
gating aggregation with the help of image analysis. Urea crystals suspended in saturated
ethanol solution flowing through a tube was the center of attention. The main compo-
nents of the experiment are illustrated in Figure 4.17 and consisted of a vessel with crystal
slurry (1), a seed crystal intake (2), an aggregation tube (3), and a flow cell microscope
with imaging sensor (4). The experiment was basically pursued as follows: The vessel was
filled with a crystal suspension and clear solution was pumped out of the vessel through
the tube and the microscope’s flow cell back into the vessel. Eventually seed crystals were
injected into the solution, see Borchert and Sundmacher [4] for more details.

The experiments provide space-time-averaged data at the inlet, which was incorporated in
the inlet condition, see Equation (2.29), and at the outlet, which was used to validate the
method presented in this thesis. More precisely, the space-time-averaged volume fraction
was determined, defined as

q3(r, z, `, t) =
`3f(r, z, `, t)∫ `max

`min
`3(r, z, `, t) d`

.

In the algorithm, a steady state solution after 1000 s could be observed such that the
solution at this time was used as a basis to compute the volume fraction. Since in the
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Figure 4.17: The experimental setup (Borchert and Sundmacher [4]).

experiments the data at the outlet was used to determine q3, this was also done in the
computations, namely at z = 200. For every particle diameter `m, the numerical solution
f(r, 200, `m, 1000) was then averaged with respect to r.

The population balance system is given by the population balance equation for the particle
size distribution, Equation (2.43), accompanied by convection-diffusion-reaction equations
for the temperature and concentration, Equations (2.44) and (2.45) respectively, and the
Hagen-Poiseuille flow, Equation (2.41). They form a coupled system as the particle growth
rate depends on the concentration and temperature and is involved in all three equations;
the particle size distribution appears in the reaction term of both phase variables. The
solution strategy follows the approach pursued by Hackbusch et al. [10] and Anker et al.
[1] and will be presented briefly.

This system was solved with the research code MooNMD, created by John and Matthies
[15] and developed at the Weierstrass Institute for Applied Analysis and Stochastics. For
the conservation equations available methods were used. For the whole system an im-
plicit time scheme was chosen, so consider the time tn+1. First, the population balance
equation was decoupled from the two conservation equations by using the particle size
distribution from the previous time fn. The temperature and the concentration, still
coupled, were solved iteratively by first computing the temperature with cn and fn and
then the concentration with cn+1 and fn. Since these equations are convection-dominated
appropriate methods have to be used. Therefore, the linear finite element flux-corrected
transport (FEM-FCT) scheme was used, see Kuzmin [20]. John and Schmeyer [16] and
[17] show that this method belongs to the best performing ones for transient convection-
dominated scalar equations. The population balance equation was solved with the finite
volume method presented in this thesis using the current solutions for temperature T n+1

and concentration cn+1 .
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For the discretization a structured grid was used, consisting of rectangles in the case of the
conservation equations and cuboids in the case of the population balance equation. The
spatial grid on the first level was made of 67× 13 discretization points and was uniformly
refined, see Table ?? for the number of degrees of freedom on different levels. The grid
with respect to the internal grid was always made of 94 discretization points and chosen
to be equidistant for the left-hand side. For the right-hand side the grid was transformed
to meet certain properties required by the algorithm used to evaluate the aggregation
functional, see chapter 3.6 and Hackbusch [8], [9].

In Figure 4.18 the space-time averaged volume fractions obtained by the experiment and
by numerical simulation are shown. The immediate observation is, unfortunately, they do
not coincide. More precisely, the curve based on the numerical solution is to steep in the
beginning and, therefore, attains its maximum to early. Also, the right part of the curve
does not match the experimental data; the slope is not steep enough such that the whole
curve is too wide in general. Furthermore, since both curves are normed, one cannot see
if they have the same order of magnitude. Also in this regard the result is not satisfying
as the difference is of three orders of magnitude. This means, quantitatively, that in the
numerical simulation far too many particles appear and, qualitatively, especially the ratio
of the very small particles to the number overall is too large.

Although various possible causes were pursued, none led to resolving the error. The mesh
size as well as the time step size (0,1 s and 1 s) did not influence the result significantly.
At the end, the question for this behavior must be left open.

Figure 4.18: Normed space-time averaged volume fractions of the experiment and
the numerical solution.
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5 Conclusions and Outlook
In this thesis a population balance system (PBS) was considered. At first, it consisted
of the Navier-Stokes equations, non-linear convection-diffusion-reaction equations for the
temperature and the concentration, and a population balance equation (PBE) for the par-
ticle size distribution (PSD). These were derived and subsequently simplified by choosing
appropriate coordinates, reducing the spatial dimension by one and resulting in an ana-
lytic solution for the fluid flow. The main goal of this work was the numerical solution of
the PBE by means of a finite volume method. Since no analytic solution for this problem
is known, experimental data was used to validate the algorithm. In the end, the ap-
proximation proved to be rather coarse and in need of improvement, although the results
for convection-dominated convection-diffusion-reaction equations were good. In fact, an
exponentially-fitted upwind scheme was employed and exemplarily it was shown that, if
the diffusion coefficient is not too small, it leads to a higher convergence rate compared
with the simple upwind scheme. For vanishing diffusion both schemes yield the same
results.

Besides the improvement of the algorithm, there are other courses which can be taken in
future research. First, the method can be extended to a three-dimensional spatial version
which can be also used to verify whether the model error caused by the assumptions
made in this thesis are negligible. Similarly, more internal coordinates can be of interest to
obtain a more representative model for particulate flows. Also, in this work a laminar flow
was considered which opens the question for turbulent flows. Research in this direction
has already been done, for instance, by Schmeyer [29]. From a more applied point of view,
the application in other fields like meteorology or biological cultures could be of interest.
The finite volume method can also be extended to be applicable to complex geometries.
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Zusammenfassung
In dieser Arbeit geht es um die numerische Simulation einer Rohrströmung, wobei das
Medium eine Dispersion/Suspension bestehend aus Ethanol (fluide Phase) und Urea-
Partikeln ist. Dabei werden die Phänomene Partikelwachstum, Nukleation und Aggre-
gation berücksichtigt, wobei die Aggregation den größten Einfluss hat. In einem Exper-
iment wurden detaillierte Untersuchungen dazu unternommen und dienen als Basis zur
Validierung der numerischen Ergebnisse.

Mathematisch wird diese Rohrströmung durch sieben Gleichungen beschrieben, die zusam-
men ein Populationsbilanzsystem bilden, nämlich den Navier-Stokes-Gleichungen (drei
Gleichungen für die Geschwindigkeiten und die Kontinuitätsgleichung), je einer nicht-
linearen Konvektions-Diffusions-Reaktionsgleichung für die Temperatur und die Konzen-
tration und einer Populationsbilanzgleichung für die Partikelverteilungsdichte. Dabei
entspricht die Partikelverteilungsdichte einer Zähldichte, die, abgesehen von Ort und Zeit,
auch von einer zusätzlichen inneren Variablen abhängt.

Zu Beginn der Arbeit werden die einzelnen Gleichungen zunächst hergeleitet und an-
schließend durch eine problemangepasste Wahl der Koordinaten vereinfacht. Dadurch
verringert sich die Raumdimension aller Gleichungen um eins und man erhält eine an-
alytische Lösung für das Strömungsfeld. Schließlich bleiben zwei nicht-lineare, konvek-
tionsdominante partielle Differentialgleichungen für die Temperatur und Konzentration
übrig. Die Partikelverteilungsdichte wird durch eine partielle Integro-Differentialgleichung
beschrieben, da die Aggregation durch ein Funktional modelliert wird.

Das Hauptziel der Arbeit ist die numerische Lösung der Populationsbilanzgleichung,
wofür eine finite Volumenmethode (FVM) implementiert wurde. Dies erfolgte in dem
Forschungsprogramm MooNMD, welches an dem Weierstraß Institut für Angewandte
Analysis und Stochastik entwickelt wird. Zur Lösung der anderen beiden Gleichungen
wurden zugeschnittene Verfahren verwendet die bereits implementiert waren. Ein ef-
fizientes Verfahren zur Auswertung des Aggregationsintegrals war ebenfalls vorhanden.

Die finite Volumenmethode wird nach deren Beschreibung an konvektionsdominanten
Konvektions-Diffusions-Reaktionsgleichungen verifiziert. Dabei wurde ein exponentiell
angepasstes Aufwindverfahren implementiert, welches exemplarisch eine bessere Konver-
genzordnung erzielt als ein einfaches Aufwindverfahren. Schließlich wird die numerische
Lösung des Populationsbilanzsystems diskutiert. Da eine analytische Lösung nicht ex-
istiert, werden experimentelle Ergebnisse zur Validierung verwendet. Es stellt sich her-
aus, dass die numerisch erzielte Approximation die experimentellen Ergebnisse nicht genau
genug wiedergibt, wobei die Ursache nicht festgestellt werden konnte. Dennoch kann es als
Basis für weitere Untersuchungen dienen, da die Konvektions-Diffusionsgleichungen erfol-
greich damit simuliert wurden. So kann z. B. eine Erweiterung zu drei Raumdimensionen
vorgenommen werden sowie eine Anpassung an komplexe Geometrien.
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