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Abstract

Partial differential equations with stochastic data are used to model insecurities and
insufficient knowledge of the properties in the physical domain. In this thesis, the
stationary Darcy equation is used as an example as it is only feasible to measure
the subsurface domain properties in a limited amount of locations. As such the
permeability coefficient is assumed to be stochastic. Sampling methods constitute a
major class of algorithms to numerically approximate the solution of such models as
they integrate well into existing discrete finite element frameworks and theoretical
results can be achieved without regard to the underlying spacial discretization.

Furthermore, the main advantage of the Monte Carlo method is the stochastic
dimension independent convergence rate of 1/2 with respect to the number of
samples. This fundamental result from the central limit theorem cannot be improved
upon so the computational cost of the samples needs to be reduced. A recent
approach is the multilevel Monte Carlo method, which computes the majority of
samples on coarser grids in some mesh hierarchy and thus reducing their cost.

We propose mesh adaptive algorithms similar to those in the deterministic setting
to further reduce the cost of individual samples. We propose solutions to emerging
problems in the determination of optimal control parameters in the Monte Carlo and
multilevel Monte Carlo method when used with non uniform meshes in the form
of heuristical a posteriori approximations. Additionally, bounds are presented that
control the error with a prescribed probability.

For a fully dimension independent approach for higher-dimensional physical domains
with rough random input fields we explore an approach using a model representation
with some stochastic ordinary equation. Adaptive methods are presented that allow
for independent stochastic and spatial adaptivity together with heuristics for optimal
control parameters.
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I propose we leave math to the
machines and go play outside.

Calvin
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1 Introduction

1.1 Motivation

One of the main reasons to develop mathematical and numerical tools is the prediction
of physical phenomena in various sciences and engineering such as ground water flow,
electrical engineering and so forth. For this work, we will consider the Darcy Equation
which was conceived experimentally by the French engineer Henry Philibert Gas-
pard Darcy (1803 – 1858). It describes the flow of fluids through porous media and
finds frequent application in the prediction of groundwater flow through aquifers. A
modern derivation of Darcy’s law is achieved by homogenization of the Navier–Stokes
equations.

The general approach in mathematical predictions is to measure real world data
which is then processed to generate input data for the model at hand. Numerical
evaluation of this model leads to an approximate solution which in turn is used
to draw conclusions and initiate necessary actions (Figure 1.1). Inevitably, each

Measurement

Input Data Model Simulation

Prediction

Figure 1.1: From measurement to prediction

of these steps introduces errors. The measurements are inaccurate by definition
and often insufficient to provide all necessary input data. As an example, the input
data for ground water flow simulations include material properties of the whole
three-dimensional domain. Measurements in this area are usually very expensive
and only feasible in a few selected spots. As a result, the model input data is only
interpolated and thus a rough approximation of the true information. The model
itself is by definition a simplified representation of the physical system. Only the
most relevant properties and principles are rendered. The missing details result in
inaccuracies of the model and, hence, introduce some defect. Further errors are
introduced by the numerical simulation of the model and in the post-processing of
the simulation result.

In order to obtain reliable results, it is a major challenge to model, control and
quantify the errors in this chain. Major advancements in computational power now
provide the tools to apply stochastic approaches to several physical phenomena
where this has been deemed impossible so far. In the ground water flow example this
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1 Introduction

includes random fields as model inputs for the material properties of the domain in
order to represent the lack of information thereof.

Two new challenges arise in this context. First, the random field needs to be modeled
and discrete representations need to be constructed. Then, numerical methods need
to be developed or adapted from deterministic models for the computation of the
desired quantities. In practice, measurements are taken and Kriging, also known as
Gaussian process regression or Wiener–Kolmogorov prediction, is used to approximate
the model parameters of the random field such as its mean and correlation function.

These two parameters suffice to characterize a Gaussian random field [Fel68]. As the
oscillations in a physical domain are usually much stronger, a log-normal random field
is often used as the model. This is a random field of which the logarithm behaves
like a Gaussian random field and thus can be characterized as above.

For the numerical computation, a couple of different approaches exist which vary
greatly in their performance depending on the characteristics of the problem at hand.
An overview of the different methods and their advantages as well as drawbacks are
given in [Kee04] and [LK10].

Series expansions can be used to discretize the stochastic domain. Orthogonal
decompositions lead to the polynomial chaos methods [GS90, XK02, XK03] using
polynomials, like Hermite or Lagrangian, proper orthogonal decompositions or similar
approaches. The stochastic Galerkin method [GS93, BTZ04, Kee04, MK05] employs
the finite element idea to the stochastic domain. However, Piecewise polynomial
ansatz functions result in an exponential dependence on the number of stochastic
dimensions represented in the discretization. Sparse or global basis functions might
mitigate this problem. The polynomial chaos methods do not exhibit this behavior
but still have a polynomial dependence.

On the other hand, direct integration methods for the stochastic dimensions are insen-
sitive to the number of dimensions. Monte Carlo methods use a set of randomly drawn
samples to reduce the variance in the desired quantity of interest and thus, compute a
discrete approximation. Multilevel Monte Carlo methods [CGST11, TSGU13, CST13]
aim to reduce the cost for the computation of these samples through the usage of
mesh hierarchies. An introduction in great detail is given in [Tec13].

Another way to control and improve the convergence of these methods is to choose
the integration points in a deterministic pseudo random manner such as in the
Quasi-Monte Carlo method. Finally, sparse integration methods aim for optimal
integration points with the help of projection techniques [XH05, BNT07].
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1 Introduction

In this work, the focus lays on the multilevel Monte Carlo method as the random
fields in the examples are constructed to resemble rough real world applications with
short correlation lengths and high variances with strong oscillations. This setting
asks for a high number of dimensions in the discretization of the stochastic space
and thus, the direct integration methods are most suited for the task.

All direct integration methods have in common that samples need to be generated for
the random field. Various methods exist with different computational complexity. As
the sampling of random fields is not the focus of this thesis, only some are presented
later on.

This thesis consists of six chapters. The rest of Chapter 1 concerns special notations
with respect to the stochastic setting followed by a description of the model problem
which is used to illustrate the ideas and methods in the remaining chapters.

The direct integration methods considered in this thesis are introduced in Chapter 2.
It concludes with an overview of some random field construction procedures of which
some are used in the numerical simulations.

Upper and lower bounds for the control of the error in the numerical computations
in the deterministic as well as the stochastic setting are presented in Chapter 3. It
also includes adaptive algorithms for the reduction of the computational costs and
heuristics for the approximation of optimal parameters in the methods.

An alternative approach for the discretization of the physical domain and the prob-
ability space is given in Chapter 4. There, a fully stochastic representation of the
stochastic problem is presented together with an adaptive interpolation algorithm
and parameter heuristic therefor.

In Chapter 5 numerical simulations confirm the effectiveness of the discussed methods
and the stability of the heuristics. Chapter 6 gives an outlook on future improvements,
achievements and challenges.

1.2 Notation

Before we can continue with the problem definition, it is necessary to introduce basic
stochastic terminology. In order to clarify the notation, mathematical objects from
the stochastic domain are usually written in sans-serif-style like P and p whereas
otherwise serif font is used like P and p. A notable exception is the sample space

4



1 Introduction

Ω which in this work does not represent the spacial domain D as is customary in
works with a solely deterministic setting. Furthermore, stochastic operators such
as the moments defined below are rendered in bold sans serif fonts such as E[ · ]
and Var[ · ]. This convention is extended to the approximating estimators of those
operators depicted as EM

N [ · ] and VarMN [ · ].

Definition 1.1 A probability space is a triplet (Ω,F ,P) where

1. the sample space Ω is a non-empty set,
2. the set of events F ⊆ P(Ω) is a sigma algebra with

a) Ω ∈ F ,
b) F is closed under complements (A ∈ F =⇒ Ω\A ∈ F),
c) F is closed under countable unions, (Ai ∈ F for i ∈ N⇒ ⋃

i∈NAi ∈ F),
3. the probability measure P : F → [0, 1] is a function with

a) P(Ω) = 1,
b) P is countably additive, (Ai ∈ F for i ∈ N, Ai ∩ Aj = ∅ for i 6= j

=⇒ P(⋃̇i∈NAi) = ∑
i∈N P(Ai)).

Definition 1.2 Consider the probability space (Ω,F ,P). Now, X : Ω → E is
called a random variable if X is measurable with respect to P for some measurable
space E. Usually it is E = Rd for d > 0. For E 6= R the function X is also called a
random element.

Definition 1.3 For some random variable X and its probability space (Ω,F ,P)
the expected value or mean E[X] is defined as

E[X] =
ˆ

Ω
X dP =

ˆ
Ω
X(ω) P(dω) =

ˆ
Ω
X(ω)P(ω) dω.

It is also known as the first raw moment. The second central moment of X is called
the variance and is defined as

Var[X] = E
[
(X − E[X])2

]
which can be expanded to Var[X] = E[X2]− E[X]2.

Definition 1.4 Consider some stochastic operator E[X] for the random variables
X : Ω→ E defined in the probability space (Ω,F ,P). An estimator EM

N [ · ] for this
operator is a measurable function EM

N [ · ] : F → E. By definition, every estimator is
itself a random variable. An estimator is called convergent if there exists a sequence

5



1 Introduction

(Ni)i∈N such that for all ε > 0

lim
i→∞

P
[∣∣∣EM

Ni
[X]− E[X]

∣∣∣ < ε
]

= 1.

Such a sequence is called consistent. It is strongly consistent, if it converges almost
surely to the true value E[X].

Definition 1.5 Let X be a random variable over (Ω,F ,P). The bias of a stochas-
tic estimator EM

N [X] of the true value E[X] is defined as

β := E
[
EM
N [X]

]
− E[X] .

The estimator is called unbiased if β = 0.

1.3 The Darcy Model Problem

Steady-state subsurface flow in saturated conditions is described by the continuity
equation as well as Darcy’s law for flows in porous media. For some domain D in R2

or R3 these are

div p = f mass conservation,
p = −κ∇u Darcy law

with appropriate boundary conditions. The right-hand side f ∈ L2(D) describes
sinks and wells in the domain, κ with κmin < κ < κmax for 0 < κmin, κmax < ∞
gives the permeability in every point of the domain. In general, the latter might be a
tensor but for the purpose of simplicity it is assumed to be isotropic from here on. In
this work, we set homogeneous Dirichlet boundary conditions in order to simplify the
notation later on. Inhomogeneous Dirichlet and Neumann boundaries will alter the
spaces in the variational formulations and introduce additional boundary integrals as
well as some higher order terms in some of the inequalities. The combination of the
above equations leads to the Darcy model problem

div(−κ∇u) = f in D,
u = 0 on ∂D.

(1.1)
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1 Introduction

The corresponding weak formulation seeks the solution u ∈ H1
0 (D) =: V with

b(u, v) = F (v) for all v ∈ V where

b(u, v) =
ˆ
D

κ∇u · ∇v dx,

F (v) =
ˆ
D

fv dx.
(1.2)

The Hilbert space H1
0 (D) contains all v ∈ H1(D) with tr(v) ≡ 0. As the bilinear

form b is continuous and weakly coercive for κ satisfying the above conditions, the
Babuška–Lax–Milgram theorem [Bab71] states solvability and uniqueness of the
solution, the so called Riesz representation.

In order to compute the solution numerically, the infinite-dimensional space V needs
to be restricted to some finite-dimensional subspace Vh ⊂ V . For that purpose, the
domain D is subdivided by some triangulation Th. Now, we seek the discrete solution
uh in the subspace

Vh = Pk(Th) ∩ C0(D)

where Pk(Th) denotes the space of piecewise polynomial functions of maximal degree
k > 0, that is for each v ∈ Pk(Th) it is v|T ∈ Pk(T ) for all T ∈ Th. Nodal hat
functions form a basis for the P1 space. These elements are also called Lagrange or
Courant elements. Additionally, we will also consider nonconforming Crouzeix–Raviart
elements, in the sense that these form a basis spanning a space VCR which is not a
subspace of V . The Crouzeix–Raviart approximation space is defined as the piecewise
linear functions that are continuous across the midpoints of all edges E(Th) of the
triangulation, that is

VCR(Th) = {vh | vh|T ∈ P1(T ) for all T ∈ T ,
vh is continuous in the midpoint of all faces}.

Figure 1.2 shows illustrative depictions of a P1 and a CR basis function. The functions
in VCR are not continuous in general. Indeed, functions can be discontinuous at the
nodes N (Th). The space VCR is called a nonconforming finite element space as it
holds VCR 6⊆ V .

The introduction of the intermediate variable p := κ∇u and integration by parts of
Problem (1.1) leads to the mixed formulation of the weak Problem (1.2) which allows
to focus computational power onto the gradient of the solution and, additionally, can
be used for a posteriori error control. It seeks the solution (u, p) ∈ L2(D)×H(div, D)

7
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xy

N

0

1

xy

mid(E)

E−1

1

Figure 1.2: The P1 hat basis function vN : D → [0, 1] in Vh for node N of some
mesh Th (left) and the CR basis function vE : D → [−1, 1] for edge
E in VCR (right).

with a
(
(u, p), (µ, ρ)

)
= L

(
(µ, ρ)

)
for all (µ, ρ) ∈ L2(D)×H(div, D) where

a
(
(u, p), (µ, ρ)

)
:=
ˆ
D

u div ρ dx+
ˆ
D

κ−1p · ρ dx+
ˆ
D

div pµ dx,

L
(
(µ, ρ)

)
:= −
ˆ
D

fµ dx.
(1.3)

Here, it is H(div, D) = {v ∈ L2(D;R2) | div v ∈ L2(D)}. The discrete subspace
VRT is spanned by Raviart–Thomas basis functions spanning a subspace of L2(D)×
H(div, D) as follows

VRT = {v ∈ H(div, D) | ∀T∈Th∃αT∈R2,βT∈R : v|T (x) = αT + βTx} .

The condition v ∈ H(div, D) for v ∈ VRT needs to be enforced either through the
choice of the basis or during the solution process. [BC05] gives an overview of three
different approaches.

Usually, the focus of interest is on some property of the solution which a post
processing operator Q : L2 → R derives from the solution. In this work, these
operators are assumed to be linear. Then, it can be characterized by some function
g : D → R as

Q(v) =
ˆ
D

gv dx for v ∈ L2(D) (1.4)

and leads to the dual problem b(u, v) = Q(v) for all v ∈ V . Similar to Problem (1.3),
a mixed dual problem can be defined which leads to the dual mixed solution q.

In practical applications, problems arise with this model. The input data κ and f
can only be measured in a rather limited number of discrete points in the domain.
Thus, they are mostly unknown. The simulation on the other hand needs functions

8
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with supports spanning the whole domain D, that is for each x ∈ D, a value for κ
and f should be available. Therefore, the measured data needs to be interpolated
in some way, for example using the weighted interpolation Kriging methods. The
resulting uncertainty might then be described with stochastic means. Modeling the
probabilities is a whole topic on its own and far beyond the scope of this thesis.

Hence, for the numerical simulations we assume a log-normal random field, which
exhibits large local spikes and assumes a great range of values. This resembles the
behavior observed in the real world and thus, allows testing the algorithms for their
practical applicability. Log-normal random fields are defined such that taking its
logarithm results in a Gaussian random field. In other words, they can be constructed
by characterizing a normal field through its mean and covariance function [Fel68]
and then applying the natural exponential function.

For the sake of clarity, we assume the permeability tensor κ to be random whereas the
right-hand side f is deterministic. For some probability space (Ω,F ,P) we assume
some log-normal random field κ(ω) for ω ∈ Ω with mean κmin < κ̄ < κmax such
that the conditions for solvability from Section 1.3 are met almost surely. In this
setting, the solutions u(ω) and uh(ω) from Equation (1.2) become stochastic and it
is the aim to compute the mean of the solution

´
Ω u dP or the mean of the quantity

of interest

E[Q(u)] =
ˆ

Ω
Q(u) dω =

ˆ
Ω

ˆ
D

gu dx dω.

The solvability in the stochastic context follows from some extended Lax–Milgram
theorem [GKSS13, CST13]. The bilinear form in Equation (1.2) is dependent on κ
and thus, on ω which we will indicate as

bω(u(ω), v) =
ˆ
D

κ(ω)∇u(ω) · ∇v dx.

This scalar product induces the energy norm for almost every ω ∈ Ω as

|||v|||2ω = bω(v, v). (1.5)

Additionally, ||v||2L2(D) = ||v||2 =
´
D
v2 dx defines the standard L2(D) norm and

||v||2H1(D) = ||v||2 + ||∇v||2 is the H1 norm for v ∈ V .

9





2 Sampling Based Methods



2 Sampling Based Methods

After the approximation by finite elements in the spatial dimension it is necessary
to discretize the stochastic dimensions of the solution space. A variety of methods
can be achieved. Among the most versatile are the sampling based methods as they
combine robustness with ease of adaptation for the problem at hand. Implementation
of these does not rely on details of the underlying spatial discretization and thus
they can be used as extensions to existing deterministic solver codes.

In the following sampling based estimators for the expected value of some random
variable Q(u) as well as its discrete spatial approximation Q(uh) are presented. Later
on these estimators are adopted for the partial differential equation at hand.

2.1 Monte Carlo

In order to approximate the quantity Q(u) with some numerical solution, we have to
integrate over the spatial domain D and the stochastic domain Ω simultaneously.
The spatial domain is discretized by restricting the solution space V to some finite
dimensional subspace Vh in which the discrete solution uh is sought. In the following,
stochastic integration is used to find the solution in Ω.

Definition 2.1 The Monte Carlo estimator with N > 0 samples for the
expected value of some random variable Q(u) is defined as

EMC
N [Q(u)] := N−1

N∑
i=1

Q(ui)

where Q(ui) = Q(u(ωi)) are samples of the random variable Q(u) and ωi is drawn
from Ω for i = 1, . . . , N . This estimator converges and is unbiased.

Remark 2.2 In Definition 2.1, the convergence states that the estimator converges to
the expected value of the estimated random variable, that is EMC

N [Q(u)]→ E[Q(u)],
for N → ∞. This follows from Lemma 2.3 below. Additionally, the unbiasedness
gives the identity of the expected value of the estimator and the expected value of
the random variable as E

[
EMC
N [Q(u)]

]
= E[Q(u)].

All the samples in the Monte Carlo estimator are independently and identically
distributed random variables and hence it holds for the variance of the estimator

Var
[
EMC
N [Q(u)]

]
= Var

[
N−1

N∑
i=1

Q(ui)
]

= N−1 Var[Q(u)] .

12
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This equation shows that the Monte Carlo estimator, itself a random variable, is a
variance reduction method as the estimator’s variance is smaller than that of the
estimand.

Lemma 2.3 For some discrete spatial approximation Q(uh) of Q(u) the decom-
position of the mean square error holds as

E
[(
EMC
N [Q(uh)]− E[Q(u)]

)2
]

= N−1 Var[Q(uh)] + E[Q(u)−Q(uh)]2 . (2.1)

That is, the error can be decomposed into a term which is governed by the properties
of the stochastic estimator and the variance of the discrete solution as well as a term
which depends solely on the expected value of the spatial approximation error.

Proof. Expanding the left-hand side with the help of the properties in Remark 2.2
and the definition for the variance of EMC

N [Q(uh)] gives the result

E
[(
EMC
N [Q(uh)]− E[Q(u)]

)2
]

= E
[
EMC
N [Q(uh)]2

]
+ E[Q(u)]2 − 2E

[
EMC
N [Q(uh)]

]
E[Q(u)]

= E
[
EMC
N [Q(uh)]2

]
− E

[
EMC
N [Q(uh)]

]2
+ E[Q(uh)]2

+ E[Q(u)]2 − 2E[Q(uh)]E[Q(u)]
= Var

[
EMC
N [Q(uh)]

]
+ E[Q(u)−Q(uh)]2

= N−1 Var[Q(uh)] + E[Q(u)−Q(uh)]2 .

Remark 2.4 The decomposition in Lemma 2.3 gives for some fixed number of
samples N the limit

E
[(
EMC
N [Q(uh)]− E[Q(u)]

)2
]
→ N−1 Var[Q(u)] for h→ 0

and for a fixed mesh size h this gives

E
[(
EMC
N [Q(uh)]− E[Q(u)]

)2
]
→ E[Q(uh)−Q(u)]2 for N →∞.

In other words, it is necessary to balance the two parameters in order to achieve
overall convergence.

Definition 2.5 The Monte Carlo approach for the discrete approximation of
the variance Var[Q(u)] is given by the approximation of the expected values in

13
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Definition 1.3 with Monte Carlo estimators

VarMC
N [Q(u)] := EMC

N

[(
Q(u)− EMC

N [Q(u)]
)2
]
.

2.2 Multilevel Monte Carlo

The main disadvantage of the Monte Carlo method in most situations is the slow
convergence rate of 1/2 with respect to N . To reduce the error by one half it takes
four times the amount of samples. As an approach to overcome this obstacle the
multilevel Monte Carlo algorithm has come into focus in the past years and was
introduced to the finite element context by [CGST11] and [Tec13]. It is loosely
related to the control variates variance reduction technique.

The main idea is to use a set of spatial discretizations with varying computational
complexity and offload the majority of the computation on cheap approximations.
For a given set of discretizations Q(u0), . . . , Q(uL) on a set of meshes T0, . . . , TL
with increasing computational complexity and a set N = (N0, . . . , NL) ∈ NL the
multilevel Monte Carlo estimator is defined by approximating the expected values in
the telescoping sum

E[Q(uL)] = Q(u0) +
L∑
`=1

E[Q(u`)−Q(u`−1)] (2.2)

with individual Monte Carlo estimators resulting in the multilevel Monte Carlo
estimator. From here on we will use the naming convention

Y0 := Q(u0) and Y` := Q(u`)−Q(u`−1). (2.3)

Definition 2.6 With the naming conventions from Equation (2.3) the multilevel
Monte Carlo estimator is given by

EML
N [Q(uL)] :=

L∑
`=0

EMC
N`

[Y`] (2.4)

for a given set of numbers of samples N = (N0, . . . , NL) ∈ NL on each level. It is
convergent and unbiased.

Lemma 2.7 Similar to Lemma 2.3 for the Monte Carlo estimator we get an error

14
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decomposition for the multilevel Monte Carlo estimator as follows

E
[(
EML

N [Q(uL)]− E[Q(u)]
)2
]

=
L∑
`=0

N−1
` Var[Y`] + E[Q(uL)−Q(u)]2 . (2.5)

Proof. First, we analyze the variance of the multilevel Monte Carlo estimator with
the help of the properties from Remark 2.2 for the Monte Carlo estimator.

Var
[
EML

N [Q(uL)]
]

= Var
[
L∑
`=0

EMC
N`

[Y`]
]

=
L∑
`=0

Var
[
EMC
N`

[Y`]
]

=
L∑
`=0

N−1
` Var[Y`] .

(2.6)

The rest of the proof is similar to the proof for Lemma 2.3

E
[(
EML

N [Q(uL)]
)2
]

= E
[
EML

N [Q(uL)]2
]

+ E[Q(u)]2 − 2E
[
EML

N [Q(uL)]
]
E[Q(u)]

= E
[
EML

N [Q(uL)]2
]
− E

[
EML

N [Q(uL)]
]2

+ E[Q(uL)]2 − 2E[Q(uL)]E[Q(u)] + E[Q(u)]2

= Var
[
EML

N [Q(uL)]
]

+ E[Q(uL)−Q(u)]2 .

Applying Equation (2.6) to the variance term concludes the proof.

Remark 2.8 As the spatial error |Y`| vanishes with `→∞, Var[Y`]→ 0 follows.
Thus, it is possible to choose N` → 1 for `→∞. This allows us to concentrate the
greatest number of samples in the computationally cheapest subspaces V`.
In fact the optimal number of samples N` on level ` = 0, . . . , L with respect to the
overall computational cost is given up to some constant cN > 0 as

N` = cN
√
C−1
` Var[Y`] (2.7)

where C` is the computational cost of one sample on that level.

Unlike with the Monte Carlo method, the multilevel approach requires the sampling of
additional quantities in order to approximate the variance of some random variable.

Definition 2.9 Extending the naming conventions from Equation (2.3) define
W0 := Q(u0)2 and W` := Q(u`)2 −Q(u`−1)2. The multilevel Monte Carlo approach

15
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for the discrete approximation of the variance Var[Q(u)] is given by

VarML
N [Q(uL)] :=

∣∣∣∣∣∣∣∣
L∑
`=0

EMC
N`

[W`]−
L∑
`=0

EMC
N`

[Y`]2 − 2
L∑

`,k=0
`<k

EMC
N`

[Y`]EMC
Nk

[Yk]

∣∣∣∣∣∣∣∣ .

Lemma 2.10 The multilevel approximation VarML
N [Q(uL)] of the variance in

Definition 2.9 is a convergent estimator of the variance Var[Q(uL)].

Proof. Given the variance Var[Q(uL)] as the starting point it holds

Var[Q(uL)] = E
[
(Q(uL)− E[Q(uL)])2

]
=
∣∣∣E[Q(uL)2

]
− E[Q(uL)]2

∣∣∣
=
∣∣∣∣∣
L∑
`=0

E[W`]−
(

L∑
`=0

E[Y`]
)2 ∣∣∣∣∣

=
∣∣∣∣∣
L∑
`=0

E[W`]−
L∑
`=0

E[Y`]2 − 2
L∑

`,k=0
`<k

E[Y`]E[Yk]
∣∣∣∣∣

as it is Var[Q(uL)] > 0. Approximating the expectations with Monte Carlo estimators
gives the result.

2.3 Random Fields

The Monte Carlo and multilevel Monte Carlo methods described in Section 2.1
and Section 2.2 necessitate sampled realizations of the random field κ. A Gaussian
random field is fully determined by its mean function E[κ] and its covariance function
C. In the application of the Darcy equation it is κ > κmin almost everywhere for
some fixed κmin > 0. Furthermore, the model requires larger variability and thus
log-normal fields are better suited for the problem. These fields behave in logarithm
like a Gaussian field.

Decomposition of the Covariance Matrix

A straightforward approach for the generation of random fields with prescribed mean
E[κ] and covariance function C is a decomposition of the covariance matrix Σ. For
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a set of random variables y = (y1, . . . , yn) ∈ D with covariance function C the
covariance matrix is defined as

Σ = (C (yi, yj))ni,j=1 .

With its Cholesky decomposition Σ = LLT and the independent identically distributed
standard Gaussian random variables x = (x1, . . . , xn) we define y := Lx. Then y is
normally distributed with

E
[
yyT

]
= E

[
LxxTLT

]
= LE

[
xxT

]
LT = LLT = Σ.

Other decompositions besides Cholesky’s are possible and might have advantages for
example with Quasi Monte Carlo algorithms. The approximation of the covariance
function is exact with respect to machine precision but the decomposition takes
O(n3) computations. Therefore, it is not feasible for finer domain discretizations or
more spacial dimensions.

Karhunen–Loève Expansion

In order to avoid the dimensionality problem the Karhunen–Loève decomposition
(KL) can be used [Kar47, Loè78, GS91]. The KL is a series expansion for the random
field κ which is optimal regarding the mean square error. It is given by

κ (x, ω) := E[κ] (x) +
∞∑
i=1

√
λifiξi(ω)

where E[κ] is the prescribed mean function, ξi are standard Gaussian random variables
as well as λi and fi with i = 1, 2, . . . are the eigenvalues and eigenfunctions of the
following Fredholm equation

ˆ
D

C (x, y) f (x) dx = λf (y) .

Given the eigenfunctions and eigenvalues in decreasing order of magnitude the KL
series can be truncated at a given number of terms resulting in a random field with
approximated covariance function.
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Smooth Benchmark Field

Similar to the Karhunen–Loève expansion from Section 2.3, the following field will
use a series expansion with the goal to provide an easy to construct random field
with good adjustability for benchmarking problems and similar properties as the
Karhunen-Loève expansion. The version of [EGSZ14] is modified to allow for values
closer to real world cases. The coefficients are defined as

am(x) := αm cos (2πβ1(m)x1) cos (2πβ2(m)x2) ,
αm := Am−σα ,

β1(m) := m− k(m) (k(m) + 1) /2,
β2(m) := k(m)− β1(m),

k(m) := b−1/2 +
√

1/4 + 2mc,

with the parameters σα > 0 and 0 < A < 1/ζ(σα). Here, ζ refers to the Riemann
zeta function. We need to assure that the random field κ fulfills κ(x, ω) > 0. Let
ϕm : Ω → [0, 1] for m = 0, . . . , t be uniformly distributed random variables. The
construction of κ is well defined by

κ(x) := cκ
αmin

(
t∑

m=0
am(x)ϕm + αmin

)
+ εκ (2.8)

for it is αmin := ∑t
m=0 αm ≤ minx∈D

∑t
m=0 am(x)ϕm as cos(x) ∈ [−1, 1] for x ∈ R.

The scaling factor cκ/αmin with cκ > 0 and the offset εκ > 0 allow to control the
codomain of the random field as it is κ : D → [εκ, 2cκ + εκ].

Practical Methods

Besides the Karhunen-Loève expansion, the above methods are not feasible for practi-
cal applications. The synthetic benchmark field only resembles the desired properties
on the unit square and the computational cost for the Cholesky decomposition
prohibits the use for finer grids. In fact, the domain D might model regions of 10 km2

and more while the random fields have to account for structures on a much smaller
scale. As a result, the cost of sampling the field becomes critical. A comparison of
different sampling techniques is given in [DSB11] where the circulant embedding
method [DN97] gave suitable results with the smallest cost.
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3 Probable Bounds, Adaptivity, and Heuristics

In real world applications the computation of the discrete solution uh for some partial
differential equation is usually only the first step in the estimation of some desired
value. Post-processing of the solution leads to derived values, the so called quantities
of interest. A major factor in these steps is the proliferation of computational errors
from the discrete solution to these quantities, that is errors in the computed solution
uh get carried over and augmented during the computation of the quantity of
interest.

Research in the past decades has provided suitable tools to quantify and confine the
error in standard FEM analysis, which led to efficient, reliable and guaranteed error
bounds in various norms. Furthermore, this was extended to different categories of
quantities of interest. The parallelogram identity for the primal and dual problem has
been introduced in [BM84a, BM84b, BM84c]. A good overview for optimal control
with respect to quantities of interest is given in [AO00] originally published as [AO97],
as well as in [BR01]. Introductions to adaptivity, error control and post-processing in
general are provided in [BR03] and [Joh12].

In the model description in Section 1.3 we assume, for simplicity, linearity of the
quantity of interest such that the dual problem with the right-hand side Q(v) =´
D
gv dx is well defined. This is necessary for the definition of the upper and lower

bounds as well as for the goal-driven adaptivity presented in this chapter. Many
nonlinear quantities can be linearized and thus fitted to this approach. However, all
other parts of the theory, such as the multilevel Monte Carlo algorithm as well as the
heuristics, do not depend on this property. No additional restrictions are imposed
by the Monte Carlo estimators and any error estimator for the error in the bound
|Q(u)−Q(uh)| will result in similar heuristics.

3.1 Deterministic Bounds for Quantities of Interest

The first step is to establish sample-wise deterministic bounds for the error in the
finite element approximation. For this purpose we fix ω ∈ Ω such that Equation (1.2)
admits a solution. This is a valid assumption as it holds true almost surely in Ω. We
follow the lines of [Mer13, CMN13].

Definition 3.1 The oscillation of a function f on a mesh T is a measure of
how well the mesh can represent the roughness of that function. It is defined for
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hT = diam(T ) as osc (f, T ) := ∑T∈T osc (f, T )2 where

osc (f, T ) := hT ||f − fT ||L2(T ) with fT := |T |−1
ˆ
T

f dx.

Finally define the mean function fT : D → R on the whole domain as

fT |T = fT for any T ∈ T .

Definition 3.2 The residual Res ∈ V ∗ of Equation (1.2) is a common starting
point in a posteriori error control. For the discrete solution uh and its stress ph = κ∇uh
it is defined for any v ∈ V as

Res(v) :=
ˆ
D

fv dx−
ˆ
D

ph · ∇v dx (3.1)

together with its dual norm

|||Res|||∗ = sup
v∈V \{0}

|Res(v)|
|||v|||ω

. (3.2)

Remark 3.3 The motivation of this ansatz is the equivalence of the residual and
the energy norm which allows to control the error in the energy norm |||u− uh|||ω
with means of the residual. In fact, it holds for every v ∈ V the identity

Res(v) =
ˆ
D

fv dx−
ˆ
D

κ∇uh∇v dx (3.3)

=
ˆ
D

κ∇u∇v dx−
ˆ
D

κ∇uh∇v dx = bω(u− uh, v) . (3.4)

Together with the Cauchy–Schwarz inequality this gives for any v ∈ V \{0}

|||Res|||∗ ≥
|Res(v)|
|||v|||ω

= |bω(u− uh, v)|
|||v|||ω

≥ |bω(u− uh, u− uh)|1/2 |bω(v, v)|1/2

|||v|||ω
≥ |||u− uh|||ω .

Additionally, the choice of v = (u− uh) / |||u− uh|||ω applied to Equation (3.3) leads
to Res(v) = |||u− uh|||ω.

Remark 3.4 Though the model problem assumes u ≡ 0 on ∂D, the bounds can
be extended to inhomogeneous boundary data. For Dirichlet boundary data fulfilling
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uD ∈ H1(D) ∩H2(E(ΓD)) on all faces E(ΓD) on ΓD it holds the estimate

|||u− uh|||2ω ≤ |||Res|||2∗ + C

∣∣∣∣∣
∣∣∣∣∣h3/2κmax,T

∂2

∂s2 (uD − uh)
∣∣∣∣∣
∣∣∣∣∣
L2(ΓD)

. (3.5)

Proof. For homogeneous Dirichlet boundary data it follows the identity |||Res|||∗ =
|||u− uh|||ω as above. Let VΓD := {w ∈ H1(D)|w = u− uh on ΓD}. Under the given
constraints for the Dirichlet boundary data it holds the identity

|||u− uh|||2ω = |||Res|||2∗ + inf
VΓD

|||w|||2ω .

A clever choice of w leads to infVΓD
|||w|||ω ≤ C

∣∣∣∣∣∣h3/2κmax,T
∂2

∂s2
(uD − uh)

∣∣∣∣∣∣
L2(ΓD)

as
shown in [BCD04]. Therein, the analysis is further extended to include Neumann
boundaries.

Remark 3.5 The upper bound for the Dirichlet data error in Equation (3.5) consti-
tutes a higher order term and is therefore neglected in the following. Furthermore,
the constant C only depends on the shape of the triangles and [Mer13] shows
C ≤ 0.4980 for isosceles triangles.

Lemma 3.6 Consider for α 6= 0 the residuals Res± of the solution u± := αu± z
α

and its discrete approximation u±h := αuh ± zh
α

for the Problem (1.2) with the right-
hand side f± := αf ± g

α
. With these, the error in the quantity of interest can be

decomposed as follows

Q(u− uh) = 1
4
∣∣∣∣∣∣∣∣∣Res+

∣∣∣∣∣∣∣∣∣2
∗
− 1

4
∣∣∣∣∣∣∣∣∣Res−

∣∣∣∣∣∣∣∣∣2
∗
. (3.6)

Proof. The starting point is the following parallelogram equality based on the dual
problem (1.4) and the Galerkin orthogonality of the solutions. For any α 6= 0 it holds

Q(u)−Q(uh) = bω(u− uh, z − zh) (3.7)

= bω

(
α(u− uh),

z − zh
α

)
+ 1

4bω(α(u− uh), α(u− uh))−
1
4bω(α(u− uh), α(u− uh))

+ 1
4bω

(
z − zh
α

,
z − zh
α

)
− 1

4bω
(
z − zh
α

,
z − zh
α

)
= 1

4

∣∣∣∣∣∣∣∣∣∣∣∣αu+ z

α
−
(
αuh + zh

α

)∣∣∣∣∣∣∣∣∣∣∣∣2
ω
− 1

4

∣∣∣∣∣∣∣∣∣∣∣∣αu− z

α
−
(
αuh −

zh
α

)∣∣∣∣∣∣∣∣∣∣∣∣2
ω
.
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Equation (3.7) together with Equation (3.5) concludes the proof.

The next step is to derive upper and lower bounds for
∣∣∣∣∣∣∣∣∣Res±

∣∣∣∣∣∣∣∣∣
∗
which will allow to

bound the error in the quantity of interest via Lemma 3.6.

Lemma 3.7 For T ∈ T and u ∈ V there exists CP (T ) > 0 such that the local
Poincaré inequality holds as

||u− uT ||L2(T ) ≤ CP (T )hT ||∇u||L2(T )

with the mean function uT as in Definition 3.1. The constant CP depends solely on
the shape of the triangle T .

Proof. A proof for general open, bounded and connected domains with C1 boundary
is given in [Eva10, pp. 275]. The triangles T ∈ T do not fulfill the requirements. A
general proof is presented in [Gal11, II.5.1].

Remark 3.8 CP (T ) = sup
{
h−1
T ||v − vT ||L2(T )

∣∣∣ v ∈ H1(T ), |||v|||ω = 1
}
, defined

for each element T ∈ T , is called the Poincaré constant. Under certain assumptions,
it can be explicitly bounded from above. For convex domains, like the triangles
T ∈ T , [PW60, Beb03] claim CP (T ) ≤ 1/π and the constant is therefore often
referred to as the Payne–Weinberger constant. Moreover, for 2D domains [LS10]
improves this estimate to CP (T ) ≤ 1/j1,1 where j1,1 ≈ 3.8317 is the first positive
root of the first Bessel function J1 = 1/π

´ π
0 cos(ϕ− x sin(ϕ)) dϕ.

Theorem 3.9 Consider some r with div r = −fT . The residual Res with right-
hand side f and solutions u, uh is bounded above by

|||Res|||∗ ≤ γ(r) (3.8)

with

γ(r)2 :=
∑
T∈T

( ∣∣∣∣∣∣κ−1/2(ph − r)
∣∣∣∣∣∣
L2(T )

+ CP (T )hTκ−1/2
min,T ||f − fT ||L2(T )

)2
.

The constants CP (T ) are induced by Lemma 3.7 and thus share their properties.

Proof. Consider r ∈ H(div, D) satisfying div r = −fT . Starting from the definition
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of the residual in Equation (3.1), integration by parts results in

Res(v) =
ˆ
D

(f + div r)v dx−
ˆ
D

(ph − r) · ∇v dx (3.9)

for any v ∈ H1
0 (D). Splitting the first integral on the right-hand side into a sum

over the triangles of the triangulation allows for the local Poincaré inequalities from
Lemma 3.7 and local Cauchy–Schwarz inequalities as it holds the orthogonality
property

´
T

(f + div r)vT dx = 0 for the local mean function vT for v ∈ V and thus
the integral can be bounded as follows
ˆ
D

(f + div r)v dx =
∑
T∈T

ˆ
T

(f − fT )(v − vT ) dx

=
∑
T∈T

ˆ
T

κ
−1/2
min,T (f − fT )κ1/2

min,T (v − vT ) dx

≤
∑
T∈T

∣∣∣∣∣∣κ−1/2
min,T (f − fT )

∣∣∣∣∣∣
L2(T )

κ
1/2
min,T ||v − vT ||L2(T )

≤
∑
T∈T

∣∣∣∣∣∣κ−1/2
min,T (f − fT )

∣∣∣∣∣∣
L2(T )

CP (T )hT
∣∣∣∣∣∣κ1/2∇v

∣∣∣∣∣∣
L2(T )

.

Finally, the last integral in Equation (3.9) subjects to the inequality

−
ˆ
D

(ph − r) · ∇v dx ≤
∑
T∈T

∣∣∣∣∣∣κ−1/2 (ph − r)
∣∣∣∣∣∣
L2(T )

∣∣∣∣∣∣κ1/2∇v
∣∣∣∣∣∣
L2(T )

.

Altogether, these inequalities give a guaranteed estimate for the residual and another
Cauchy–Schwarz inequality in R|T | together with the requisite |||v|||ω = 1 proves the
claim.

Remark 3.10 It is possible to extend the above result to Neumann boundaries
ΓN ⊂ Γ = ∂D introducing additional constraints for the test function r and resulting
in additional terms for the bounds in Equation (3.8). A detailed explanation is given
in [Mer13, EMN16].

It remains to construct lower bounds for the dual norm of the residual. The starting
point for the following lemma is the definition of this norm.

Lemma 3.11 Consider the choice of some special function vA ∈ P2(T ) ∩ C0(D)
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3 Probable Bounds, Adaptivity, and Heuristics

with vA ≡ uh on ΓD. It holds the lower estimate

|||Res|||∗ ≥ ξ(vA − uh) where ξ(v) := |Res(v)|
|||v|||ω

.

Proof. The claim follows directly from the definition of the dual norm for the residual
in Equation (3.2).

Remark 3.12 The aim is to construct a function vA fulfilling the required charac-
teristics which at the same time approximates the argument of the maximum in ξ.
A proposal from [Ain08, Bra07] incorporates the Crouzeix–Raviart solution ûCR of
Problem (1.2) where the right-hand side f is replaced by its mean function fT . It
starts of with the construction of the nonconforming piecewise quadratic function
v0 ∈ P2(D) by

v0
∣∣∣
T

:= ûCR −
fTϕT
2κT

for all T ∈ T , (3.10)

where κT denotes the mean function of κ and for each T ∈ T it is

ϕT (x) := |x−mid(T )|2

2 − |T |−1
ˆ
T

|y −mid(T )|2 dy.

Let p̂RT be the solution to the mixed formulation Problem (1.3) with the tensor
κ replaced by κT . It then holds the identity κT∇v0 = p̂RT [Ain08] and thus it is
possible to set

v0
∣∣∣
T

:= arg min
v∈P2(T )

{
||κT∇v − p̂RT ||L2(T )

∣∣∣∣∣ |T |−1
ˆ
T

v dx = p̂RT (mid(T ))
}
. (3.11)

Both definitions, Equation (3.10) and Equation (3.11), for v0 require the computation
of an additional discrete solution. Note, that in the case of a piecewise constant
κ it holds the identity p̂RT = pRT for the mixed solution pRT from Equation (1.3).
Either way, v0 can be used to compute some nearby function vA ∈ P2(T ) ∩ C0(D),
for example by means of interpolation of v0. After enforcing boundary conditions
on vA to conform with uh on the Dirichlet boundary, it fulfills the requirements of
Lemma 3.11 and thus gives a lower bound for the residual.

In the following we will continue to use the naming conventions from Lemma 3.6,
that is, we denote the composite functions which combine the primal and the dual
problem as f± = αf ± f

α
, u± = αu± z

α
and so forth.
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3 Probable Bounds, Adaptivity, and Heuristics

Corollary 3.13 For any choices r± ∈ H(div, D) obeying div r± = −f±T and for
any choices v± ∈ V as well as α 6= 0 from Equation (3.7) there hold the bounds

η−(α, r−, v+) ≤ Q(u− uh) ≤ η+(α, r+, v−)

with the definition of η+ and η− set as

η− := 1
4ξ

+(v+)− 1
4γ
−(r−)2 and η+ := −1

4ξ
−(v−) + 1

4γ
+(r+)2.

Proof. The claim follows directly from the application of the upper and lower
bounds in Theorem 3.9 and Lemma 3.11 to the dual norms of the residuals in
Equation (3.6).

Remark 3.14 A possible setup for v± is given in Remark 3.12. The choice r± = p±RT
where p±RT are the mixed solutions for the right-hand side f± with the notation from
Lemma 3.6 is feasible and affordable to acquire. It remains to wisely select an α
as poor choices profoundly impact the bounds’ performances. Neglecting oscillation
terms for the input data it is possible to derive a computable optimal αopt [CMN13]
as

αopt :=
∣∣∣∣∣∣κ−1/2(qh − qRT )

∣∣∣∣∣∣1/2
L2(D)

∣∣∣∣∣∣κ−1/2(ph − pRT )
∣∣∣∣∣∣−1/2

L2(D)
.

3.2 Probable Bounds for Quantities of Interest

The aim of the following section is the extension of the deterministic bounds derived
for every ω ∈ Ω to the stochastic context. It presents upper and lower bounds for the
error in the discrete Monte Carlo finite element approximation up to some probability
p. The deterministic bounds from Section 3.1 will confine the error in the spatial
dimensions whereas the stochastic error is controlled with the help of some central
limit theorem.

As a starting point, consider the following probabilistic bounds which confine the
error in the Monte Carlo approximation of some random variable X with probability
p. That is, we seek an upper bound ε which fulfills

P
[
E[X]− EMC

N [X] < ε
]
≥ p.

Lemma 3.15 The cumulative distribution function for the standard normal dis-
tribution N0,1 is given by Φ(x) := (2π)−1/2 ´ x

−∞ exp(−t2/2) dt. It exists a sequence
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(ε∗X(N, p))N∈N such that for every p ∈ [0, 1] it is ε∗X(N, p)→ 0 for N →∞ and it
holds the upper bound for the Monte Carlo estimation error

E[X]− EMC
N [X] ≤ εX(N, p) with probability p

where εX(N, p) := Var[X]1/2N−1/2Φ−1(p) + ε∗X(N, p).

Proof. The central limit theorem by Lindeberg and Lévy [Fel68, Kal02] gives

Var[X]−1/2N1/2(E[X]− EMC
N [X]) d−→ N0,1 for N →∞

where d−→ is the limit in the distributional sense. For any s > 0 this gives the limit

p := P
[
E[X]− EMC

N [X] < Var[X]1/2N−1/2s
]
→ Φ(s) for N →∞.

Define εX(N, s) := Var[X]1/2N−1/2s. As we have p→ Φ(s) and as Φ is invertible
we get Φ−1(p)→ s for N →∞ which gives the result together with an appropriate
converging sequence ε∗X(N, p)→ 0 for N →∞.

Remark 3.16 This result can be used to control the error in a Monte Carlo
estimation. Lower estimates are derived in the very same manner as the standard
normal distribution is even and its cumulative distribution function is odd. Note, that
they are governed by the (fixed) variance and the number of samples used for the
approximation. An error reduction by the factor of two needs four times the samples,
which results in slow convergence.

Corollary 3.17 Prescribing the probability p ∈ (0, 1) the following constraints for
the overall Monte Carlo finite element approximation error can be established. Given
that p∗, p+, p− ∈ (0, 1) subject to p = 2p∗ + p+ + p− − 3 the bounds

η	(p∗, p−, N) := EMC
N

[
η−
]
− Var

[
η−
]1/2

N−1/2Φ−1(p−)− ε∗η−(N, p−)

− Var[Q(uh)]1/2N−1/2Φ−1(p∗)− εQ(uh)(N, p∗),

η⊕(p∗, p+, N) := EMC
N

[
η+
]

+ Var
[
η+
]1/2

N−1/2Φ−1(p+) + ε∗η+(N, p+)

+ Var[Q(uh)]1/2N−1/2Φ−1(p∗) + εQ(uh)(N, p∗)

hold with probability of at least p in the sense that

P
[
η	(p∗, p−, N) ≤ E[Q(u)]− EMC

N [Q(uh)] ≤ η⊕(p∗, p+, N)
]
≥ p.
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Proof. Direct calculations together with Corollary 3.13 show that the approximation
error is governed from above by

E[Q(u)]− EMC
N [Q(uh)] ≤ E

[
η+
]

+ E[Q(uh)]− EMC
N [Q(uh)]

= EMC
N

[
η+
]

+
(
E
[
η+
]
− EMC

N

[
η+
])

+
(
E[Q(uh)]− EMC

N [Q(uh)]
)
.

Similar calculations give the corresponding lower bound. The next step will apply
Lemma 3.15 a total of four times to these upper and lower bounds in order to control
the Monte Carlo errors E[η±] − EMC

N [η±] and twice E[Q(uh)] − EMC
N [Q(uh)] and,

thus, the four inequalities

E
[
η+
]
− EMC

N

[
η+
] I
≤ Var

[
η+
]1/2

N−1/2Φ−1(p+) + ε∗η+(N, p+),

E[Q(uh)]− EMC
N [Q(uh)]

II
≤ Var[Q(uh)]1/2N−1/2Φ−1(p∗) + εQ(uh)(N, p∗),

E
[
η−
]
− EMC

N

[
η−
] III
≥ Var

[
η−
]1/2

N−1/2Φ−1(p−)− ε∗η−(N, p−),

E[Q(uh)]− EMC
N [Q(uh)]

IV
≥ Var[Q(uh)]1/2N−1/2Φ−1(p∗)− εQ(uh)(N, p∗)

hold with the prescribed probabilities p+, p∗, p−, p∗ ∈ (0, 1] respectively. The goal
is, that these individual inequalities should hold at the same time with the overall
probability p which we want to control from below with the individual probabilities.
Consider two events A and B. The combined probability of the event A ∩ B is
constrained by

P[A ∩ B] = P[A] + P[B]− P[A ∪ B] ≥ P[A] + P[B]− 1. (3.12)

Let p∗ describe the probability in the Monte Carlo bound from Lemma 3.15 for Q(uh)
and p± the same for the bounds η±. Successive application of Equation (3.12) gives
the lower bound for the overall probability p

p = P[I ∩ II ∩ III ∩ IV] ≥ P[I] + P[II ∩ III ∩ IV]− 1
≥ P[I] + P[II] + P[III] + P[IV]− 3

and thus to the condition p ≥ 2p∗ + p+ + p− − 3. This concludes the proof.

Remark 3.18 In numerical applications N has to be chosen large enough such
that the influences of the residual terms ε∗η± and ε∗Q(uh) are negligible. Furthermore,
the parameters p∗, p+, p− ∈ (0, 1] have to be chosen large enough according to the
constraint p = 2p∗ + p+ + p− − 3. Numerical aspects are discussed in Remark 3.20
later on.
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The same ansatz is extended to the multilevel Monte Carlo context by utilizing the
deterministic bounds on each level and through the application of the multilevel idea
to these bounds. Therefore, define on each level ` the bounds η±` as random variables
dependent on ω such that η−` ≤ Q(u− u`) ≤ η+

` .

Corollary 3.19 Prescribing the probability p ∈ (0, 1) the following constraints
for the overall Monte Carlo finite element approximation error can be established.
Given that p∗,p+,p− ∈ (0, 1)L with the naming convention p• = (p•0, . . . , p•L) for
• ∈ {∗,+,−} subject to p = 2∑L

`=0 p∗`+
∑L
`=0 p+

` +∑L
`=0 p−` −4L−3 and the random

variables Y0 = Q(u0), Y` = Q(u`)−Q(u`−1) as well as Z±0 = η±0 , Z
±
` = η±` − η±`−1

for ` = 1, . . . , L there hold the upper and lower bounds

η	ML(p∗,p−,N ) := EML
N

[
η−L
]
−

L∑
`=0

Var
[
Z−`

]1/2
N
−1/2
` Φ−1(p−` )− ε∗

Z−
`

(N`, p−` )

−
L∑
`=0

Var[Y`]1/2N−1/2
` Φ−1(p∗`)− ε∗Y`(N`, p∗`)

η⊕ML(p∗,p+,N ) := EML
N

[
η+
L

]
+

L∑
`=0

Var
[
Z+
`

]1/2
N
−1/2
` Φ−1(p+

` ) + ε∗
Z+
`

(N`, p+
` )

+
L∑
`=0

Var[Y`]1/2N−1/2
` Φ−1(p∗`) + ε∗Y`(N`, p∗`)

with probability of at least p in the sense that

P
[
η	ML(p∗,p−,N ) ≤ E[Q(u)]− EML

N [Q(uL)] ≤ η⊕ML(p∗,p+,N )
]
≥ p.

Proof. Similar to the proof of Corollary 3.17, the introduction of an auxiliary zero
and the application of the deterministic bounds from Corollary 3.13 give

E[Q(u)]− EML
N [Q(uL)] = E[Q(u)]−

L∑
`=0

EMC
N`

[Y`]

= E[Q(u)]− E[Q(uL)] +
L∑
`=0

(
E[Y`]− EMC

N`
[Y`]

)

≤ E
[
η+
L

]
+

L∑
`=0

(
E[Y`]− EMC

N`
[Y`]

)

=
L∑
`=0

EMC
N`

[
Z+
`

]
+

L∑
`=0

(
E
[
Z+
`

]
− EMC

N`

[
Z+
`

])
+

L∑
`=0

(
E[Y`]− EMC

N`
[Y`]

)
.

The lower constraint follows accordingly. For the combined upper and lower bounds,
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we have to apply Lemma 3.15 to the Monte Carlo errors E
[
Z+
`

]
− EMC

N`

[
Z+
`

]
and

E
[
Z−`

]
− EMC

N`

[
Z−`

]
as well as twice E[Y`] − EMC

N`
[Y`] for ` = 0, . . . , L, that is 4L

times in total. Just like the four estimates in Corollary 3.17 all of these error estimates
have to hold with probability p at the same time. Let p∗` describe the probability for
the estimate in Lemma 3.15 with regard to the random variable Y`, p+

` and p−` the
same for Z+

` and Z−` . Thus, a successive application of Equation (3.12) to the 4L
probabilities leads to the condition p = 2∑L

`=0 p∗` +∑L
`=0 p+

` +∑L
`=0 p−` − 4L− 3 if

we want a guaranteed probability for the upper and lower bounds of at least p and
hence to the claim.

Remark 3.20 The parameters p∗, p+, p− and p∗,p+,p− in Corollary 3.17 and
Corollary 3.19 are free up to the given constraints and an optimal choice can be
acquired through numerical means (e.g. [Kra88]). A symbolic computation of the
optimal values is not possible as the inverse cumulative distribution function of the
normal distribution cannot be described by elementary functions.
Note however, that in practice the variances of the bounds η±, of the quantity of
interest Q(uh) and Z±` , Y` respectively can vary greatly and hence the optimal choice
might lead to numerically unstable results as this can lead to blowups of errors in the
approximation of the variances. Choosing the parameters equally circumvents this
problem and usually does not result in significantly poorer performance for relatively
small L.
Just as in the Monte Carlo case, the number of samples per level N` has to be large
enough such that the limit error terms ε∗

Z±
`

and ε∗Y` are small enough to be governed
by the other contributions in the bounds.
Nevertheless, the approach in Equation (3.12) becomes less beneficial for larger L.
This is to be expected as for large L a smaller tolerance for the error of the individual
Monte Carlo estimators on the levels must hold. But then the equal distribution
suggested here is disadvantageous. A better bound might be conceived with the
help of the normality of the multilevel Monte Carlo estimator similar to [CHAN+14]
where this is used to derive the number of levels and the optimal number of samples.

3.3 Goal-Adaptive Mesh Refinement

The aim of this section is to provide local error indicators ηloc
`,ω for each ω ∈ Ω which

give clues to the influence of the mesh structure on the error in the quantity of
interest Q(u)−Q(uh). Based on these indicators a finer mesh is derived which might
lead to faster convergence rates than uniform meshes. The indicators used are based
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on standard finite element adaptivity.

Mean Error Indicators

Because we want to derive error indicators for the quantity of interest, the influence
of the goal functional onto the error has to be respected as shown in [OP01].
Furthermore, [MS09] showed some guaranteed error reduction by using a global
Cauchy–Schwarz inequality instead of the local ones. A very similar idea based on
wavelets was already earlier presented in [DKV06]. Comparison of the two approaches
however is beyond the scope of this work and thus we focus on the former approach
as it is completely realized in the finite element framework. In the stochastic context
this error reduction cannot be guaranteed anymore in the same sense. Nevertheless,
it holds

E[|Q(u)−Q(u`)|] = E[|bω(u− u`, z − z`)|] ≤ E[|||u− u`|||ω |||z − z`|||ω]

≤
(
E
[
|||u− u`|||2ω

]
E
[
|||z − z`|||2ω

])1/2
.

(3.13)

For some fixed ω ∈ Ω the local indicators ηloc
`,ω(T ) and η̃loc

`,ω(T ) for the left and right
terms on the right-hand side of Equation (3.13) give these error reduction properties.
They are defined for each T ∈ T as follows

ηloc
`,ω(T )2 = h2

T

κmax,T
||f ||2L2(T ) +

∑
E∈E(T )

hT
κmax,E

||[κ∇u` · nE]||2L2(E) ,

η̃loc
`,ω(T )2 = h2

T

κmax,T
||g||2L2(T ) +

∑
E∈E(T )

hT
κmax,E

||[κ∇z` · nE]||2L2(E) .

In the next step these are used to define the mean error indicators E
[
ηloc
`,ω(T )

]
and E

[
η̃loc
`,ω(T )

]
which in practice we approximate with Monte Carlo estimators

EMC
Nη

[
ηloc
`,ω(T )

]
and EMC

Nη

[
η̃loc
`,ω(T )

]
using Nη samples. As with the deterministic case,

some criterion based on the indicators is used to select a set of elements for refinement.
With the parameter 0 < θ ≤ 1 the bulk criterion selects the smallest subsets
M`,u ⊆ T` andM`,z ⊆ T` fulfilling∑

T∈M
E
[
ηloc(T )

]2
≥ θ

∑
T∈T

E
[
ηloc(T )

]2
(3.14)

with eitherM =M`,u, ηloc = ηloc
`,ω orM =M`,z, ηloc = η̃loc

`,ω, respectively. In the
deterministic case, both choices will lead to meshes with guaranteed error reduction
properties and thus for the error in the quantity of interest in Equation (3.13). It is
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therefore admissible to choose the set of marked cells with smaller cardinality.

Based on the selected cells, a new mesh T`+1 is generated. In this process, a closure
step will extend the selected set of cells such that the refined mesh retains the
regularity properties. We will use the Dörfler marking strategy in [Dö96]. In the
following its bulk parameter is set to θ = 0.5. A pseudo code depiction of the
described algorithm is presented in Algorithm 3.1. We will denote the error indicators
that where used for the refinement with ηloc

MS and the global error estimator with

ηMS :=
∑
T∈T`

(
ηloc

MS

)2
1/2

.

As discussed in [MS09], the choice ofM`,u ∪M`,z is not optimal asymptotically.
However, as the refinement only occurs with respect to the primal or the dual problem
in each step, the error reduction property is not guaranteed for each refinement. In
fact, it might happen, that the error is momentarily increased between two levels.
This effect is clearly visible in the deterministic examples in Chapter 5.

Additionally, we will consider the error estimator ηOP. Based on the element-wise
Cauchy–Schwarz inequality we define

E[|Q(u)−Q(u`)|] ≤ E
∑
T∈T`
|||u− u`|||T |||z − z`|||T


≤ E

∑
T∈T`

ηloc
`,ω(T )η̃loc

`,ω(T )
 =: ηOP

by applying the local error estimates. Algorithm 3.2 gives a short overview of this
method using a Monte Carlo estimator with Nη samples to approximate the expected
value. In the numerical simulations we will compare these refinement methods with
uniform meshes as well as the mean indicator for the primal problem

η2
u := E

∑
T∈T`

ηloc
`,ω(T )


approximated yet again with Nη samples. However, this might lead to slow or even
stalled convergence in the error for the quantity of interest as only the primal solution
is considered. In any case, both of these algorithms are comparatively cheap, that is,
with respect to the actual calculations. On each level of the algorithm only a very small
amount of samples is needed to estimate the mean error indicators. This is due to
the self correcting nature of the algorithm. Consider the worst case, that the triangle
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In : initial mesh T0, number of samples Nη, bulk criterion θ
Out : hierarchy of meshes (T`)`=0,1,...

for ` = 0, 1, . . . do
solve (ui`)i=0,...,Nη and (zi`)i=0,...,Nη on T`
calculate

(
ηloc
`,i (T )

)
i=0,...,Nη ;T∈T

and
(
η̃loc
`,i (T )

)
i=0,...,Nη ;T∈T

approximate mean values
(
EMC
Nη

[
ηloc
` (T )

])
T∈T

and(
EMC
Nη

[
η̃loc
` (T )

])
T∈T

markM`,u andM`,z by Equation (3.14)
if |M`,u| ≤ |M`,z| then
T`+1 = refine(T`,M`,u,)

else
T`+1 = refine(T`,M`,z)

Algorithm 3.1: Generation of the MLMC mesh hierarchy based on ηMS

In : initial mesh T0, number of samples Nη, bulk criterion θ
Out : hierarchy of meshes (T`)`=0,1,...

for ` = 0, 1, . . . do
solve (ui`)i=0,...,Nη and (zi`)i=0,...,Nη on T`
calculate

(
ηloc
`,i (T )η̃loc

`,i (T )
)
i=0,...,Nη ;T∈T

approximate mean value
(
EMC
Nη

[
ηloc
` (T )η̃loc

` (T )
])
T∈T

markM` by Equation (3.14)
T`+1 = refine(T`,M`)

Algorithm 3.2: Generation of the MLMC mesh hierarchy based on ηOP
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with the biggest mean error indicator T ∗ is not refined because of a bad selection of
samples. Then, in the next loop the errors which have been chosen for refinement on
the last level have been lowered, as a result of the error reduction property of finite
element adaptivity. Now, the probability for triangle T ∗ being chosen for refinement
is even bigger. In fact, it holds for the probability P[T ∗ ∈ T` will be refined]→ 1 for
`→∞ due to the error reduction properties of the error indicators.

As a result, the cost to generate this mesh sequence is dominated by the cost of one
solution on the last level as the same fixed number of samples on each level can be
chosen. In fact, even one single sample on each level might be considered together
with different choices of θ in Equation (3.14). However, as modern computers tend
to be multi- or even many-core machines and as Monte Carlo algorithms are easily
implemented in parallel it gives almost no computational advantage to choose less
samples than processors are available.

It is not optimal to choose all the meshes from the sequence generated by this
algorithm as the error reduction between the levels are too small. Instead, we will
choose a subsequence such that for each mesh in the uniform sequence this new set
of adaptive meshes contains a grid with a similar number of degrees of freedom. In
the examples in Chapter 5 we will choose for each uniform mesh the first adaptive
grid with at least the same number of degrees of freedom. This choice of meshes will
give good results but [HANvST15] might suggest a different subset. For an optimal
choice, heuristical approaches have to be developed. An interesting ansatz is the
continuation multilevel Monte Carlo algorithm in [CHAN+14] which exploits the
normality of the multilevel Monte Carlo estimator for error control.

Pathwise Refinement

As an alternative to the above algorithm we will suggest a different adaptive approach.
In the method presented, the adaptivity is employed for the mean error indicators
leading to a mesh sequence with an optimal refinement for the average error. This
results in less optimal refinement when we consider only a single ω ∈ Ω as the worst
case of this method is in fact the uniform mesh sequence.

A suggestion to overcome this situation is to employ pathwise refinement that is
specific to ω. For each ω ∈ Ω we define a mesh sequence T ω0 , . . . , T ωL according to
the algorithm proposed in [MS09] up to a common prescribed tolerance εη for the
used error indicator. Algorithm 3.3 depicts this approach. In the Monte Carlo case
for each ω the quantity of interest is computed with these meshes and the expected
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In : initial mesh T ω0 , bulk criterion θ, sample ω
Out : hierarchy of meshes (T ω` )`=0,1,...

for ` = 0, 1, . . . do
solve uω` and zω` on T ω`
calculate

(
ηloc
` (ω, T )

)
T∈T

and
(
η̃loc
` (ω, T )

)
T∈T

markMω
`,u andMω

`,z similar to Equation (3.14)
if
∣∣∣Mω

`,u

∣∣∣ ≤ ∣∣∣Mω
`,z

∣∣∣ then
T ω`+1 = refine(T ω` ,M`,u,)

else
T ω`+1 = refine(T ω` ,M`,z)

Algorithm 3.3: Pathwise generation of the MLMC mesh hierarchy based on ηMS

value is taken

E[Q(u)] ≈ EMC
N

[
Q
(
uh(ω)

)]
.

A similar approach is conceivable for the multilevel Monte Carlo method where the
first level is treated as the Monte Carlo method and the latter levels choose two
different meshes for each ω from the sequence created with the above algorithm
based on the numbers of degrees of freedom or the achieved error reduction.

So far our numerical simulations show an unreliable performance for both methods
compared to the mean indicators as the generation of the meshes for each ω is
too costly for finer grids. Further tests with different values for θ or other cost
improvements and better stopping criterions are necessary to render this approach
competitive as indicated in Experiment 5.3.

3.4 Heuristics for the Optimal Number of Samples

The Monte Carlo method as well as the multilevel Monte Carlo method have in
common that two approximation parameters have to be carefully chosen in order
to assure the best possible convergence with respect to the computational cost.
Based on the error decompositions in Lemma 2.3 for Monte Carlo and Lemma 2.7
for multilevel Monte Carlo it is not possible to compute the optimal values a priori.
However, given some initial small quantity of samples, sufficient heuristics can be
derived.
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For the multilevel Monte Carlo method in [TSGU13] the constant cN in Equation (2.7)
is chosen as the minimal value where the expected asymptotic convergence rate of
the finite element error is realized. This value has to be provided and thus known
a priori or determined heuristically. Alternatively, the error can be approximated with
the help of the multilevel correction terms E[Y` − Y`−1] as proposed by [Mike B.
Giles, personal communication, September 16, 2015]. This and other more robust
approaches are presented below.

For the rest of the section we will assume that there exists an α > 0 such that it holds
|E[Q(u)]− E[Q(uh)]| . hα where h is defined as the mean diameter of the triangles
in the triangulation Th, that is h = |T |−1∑

T∈T hT . The first ansatz considers the
Monte Carlo method and is based on the error indicators from Section 3.3. A sketch
of the idea is given in Figure 3.1.

·cη

log h

lo
g

e`

η`α

Figure 3.1: Logarithmic sketch of the different variables in the heuristics for the
ansatz with error estimators.

Simple Ansatz for the Monte Carlo Method

The idea is to balance the two contributing terms in the error decomposition from
Lemma 2.3. The first step is to find good approximations for the two error parts
up to the number of samples N which can then be estimated. Some initial number
of samples Ninit will provide us with the discrete variance VarMC

Ninit [Q(uh)] and an
approximate Monte Carlo estimate EMC

Ninit [ηh] on that mesh for one of the error
indicators ηh = ηMS or ηh = ηOP from Section 3.3. The starting point is the error
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decomposition for the Monte Carlo method in Equation (2.1), that is

E
[(
EMC
N [Q(uh)]− E[Q(u)]

)2
]

= N−1 Var[Q(uh)] + E[Q(u)−Q(uh)]2 .

The discrete variance sufficiently approximates the first term for relatively small
numbers of initial samples Ninit. For the second term it holds the upper bound

E[Q(u)−Q(uh)]2 ≤ E[|Q(u)−Q(uh)|]2 ≤ E[cηηh]2

due to the Cauchy–Schwarz inequality in Equation (3.13). The residual error indicators
ηu and ηz for the primal and dual problem induce efficiency constants that depend
on the angles of the mesh as well as the input data and are combined here into
the unknown reliability constant cη. Unfortunately, this overestimation factor can
have arbitrary values which greatly reduces the practicality of this error estimate
for the estimation of the optimal number of samples. Note, that any mistake in
the error estimate is squared with regard to the number of samples used as seen in
Equation (2.1). Thus, further steps need to be taken in order to make this approach
feasible.

The idea is to compute some coarse solution EMC
Ninit [Q(uH)] and its error estimators

EMC
Ninit [cηηH ] and reconstruct cη with the help of the finer solution EMC

Ninit [Q(uh)].
Indeed we have E[|Q(u)−Q(uH)|] ≤ E[cηηH ] and thus

cη ≥
E[|Q(u)−Q(uH)|]

E[ηH ] ≈
EMC
Ninit [|Q(uh)−Q(uH)|]

EMC
Ninit [ηH ]

:= c̃η.

The approximation c̃η can now be used to balance the two error contributions in
Equation (2.1) which gives the approximation for the number of samples in the
Monte Carlo method

N ≈ c̃2
η

VarMC
Ninit [Q(uh)]
EMC
Ninit [ηh]

2 .

Remark 3.21 The trade-off for the extra solutions on the coarse levels is well worth
the effort as even relatively small deviations in the number of samples lead to some
great impact on the computational cost in order to meet some error tolerance. The
same effect leads to insufficient sampling in practice if one ignores the effect of the
constant cη, that is one assumes cη = 1.
For the choice of the coarse level TH it is prudent to choose it independently of
h and rather coarsely. It only needs to be large enough such that the asymptotic
phase of the error indicators is already reached. In practice, this has to be done
heuristically with numerical tests or expert knowledge. The numerical simulations
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in Chapter 5 indicate, that deterministic calculations are enough to determine the
estimators’ behaviors.
For the coarse levels, where the above approach is not yet feasible, a fixed number of
samples Ninit is used to approximate the solution. We assume that on those coarse
levels the spatial error will dominate the stochastic error and hence has little or no
influence on the overall error.

Ansatz with Multilevel Correction Terms

As stated in Equation (2.7) the number of samples is chosen up to some constant
such that N` '

√
C−1
` Var[Y`] where C` is the cost it takes to compute one sample on

level `. Given enough levels in the multilevel Monte Carlo method, that is L > 1 we
can leverage the correction terms Y` on the levels to approximate the error on the last
level L with some hierarchical estimator. We start of with the error decomposition in
Equation (2.5) which reads for the quantity of interest

E
[(
EML

N [Q(uL)]− E[Q(u)]
)2
]

=
L∑
`=0

N−1
` Var[Y`] + (E[Q(uL)−Q(u)])2 .

The aim is to balance the two error contributions. Using the discrete Monte Carlo
variance from Definition 2.9 for some initial number of samples Ninit the first term is
known up to the number of samples. In the next step we will reconstruct the error

ek := |E[Q(uk)]− E[Q(u)]|
≤
∣∣∣EML

N [Q(uk)]− E[Q(u)]
∣∣∣+ ∣∣∣EML

N [Q(uk)]− E[Q(uk)]
∣∣∣

for multilevel estimators with k = 0, . . . , L− 1 levels. Neglecting the stochastic error
on the coarse levels, we get

ek /
∣∣∣EML

N [Q(uk)]− EML
N [Q(uL)]

∣∣∣+ ∣∣∣EML
N [Q(uL)]− E[Q(u)]

∣∣∣
≈

∣∣∣∣∣∣
L∑

`=k+1
EMC
N`

[Y`]

∣∣∣∣∣∣ =: ẽk

given
∣∣∣EML

N [Q(uL)]− E[Q(u)]
∣∣∣ � ∣∣∣EML

N [Q(uk)]− EML
N [Q(uL)]

∣∣∣ as we assume that
the error on the coarser meshes is dominating. With the assumptions from the
beginning of this section we have the asymptotic convergence rate ek . hαk and hence
we can reconstruct this α using linear regression over the points (log(hk), log(ẽk))
as sketched in Figure 3.1. With the reconstructed errors on the coarse levels and the
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convergence rate, we can define an extrapolated approximation of the error eL as
ėL := hαLh−αk ẽk. Now, the optimal number of samples on each level is given for some
constant cN as

N` = cN
√
Var[Y`] /C` (3.15)

where C` is the computational effort required for one sample on that level. The
balancing of the two error contributions as well as inserting Equation (3.15) gives
the constraint ∑L

`=0 c
−1
N

√
C`Var[Y`] ≈ ė2

L and hence we define

ċN := ė−2
L

L∑
`=0

√
C`Var[Y`]

which, together with Equation (3.15), gives an approximation of N`.

Ansatz with Probabilistic Bounds

The bounds from Section 3.2 provide the opportunity to choose the number of
samples based on variables computed in the initial approximation phase in the
multilevel Monte Carlo algorithm. The method presented below is an attempt to
reconstruct the necessary information from the computed upper and lower bounds
using those for an error estimate. As with the last ansatz, the goal is to balance the
two error contributions in Equation (2.5). The variance terms in this decomposition
will be approximated with an initial number of samples. It remains to treat the last
term. From the deterministic bounds in Section 3.1 we have

E
[
η−`
]
≤ E[Q(u)−Q(u`)] ≤ E

[
η+
`

]
.

Now consider some arbitrary spatial approximation E[ξ] of E[Q(u)]. Then, straight-
forward calculations give

E
[
η−` +Q(u`)− ξ

]
≤ E[Q(u)− ξ] ≤ E

[
η+
` +Q(u`)− ξ

]
and hence the error bound

|E[Q(u)− ξ]| ≤ max
{∣∣∣E[η+

` +Q(u`)− ξ
]∣∣∣ , ∣∣∣E[η−` +Q(u`)− ξ

]∣∣∣} .
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The linearity of the terms and equilibration gives the minimizer ξmin = Q(u`) +(
η+
` + η−`

)
/2 and hence it holds

E
[∣∣∣∣∣Q(u)−Q(u`)−

η+
` + η−`

2

∣∣∣∣∣
]
≤ E

[∣∣∣∣∣η
+
` − η−`

2

∣∣∣∣∣
]
.

Therefore, ẽ` := 1
2c
−1
η E

[
η+
` − η−`

]
is a reasonable a posteriori guess of the mean

finite element error E[|Q(u)−Q(u`)|] for each level ` = 0, . . . , L with the constant
cη not dependent on the level as it is independent of h. We now want to choose N`

such that ∑L
`=0N

−1
` Var[Y`] = c−2

η E
[(
η+
L − η−L

)
/2
]2

and with Equation (3.15) we
get

cN = 4c2
η

∑L
`=0

√
C`Var[Y`]

E
[
η+
L − η−L

]2 . (3.16)

It remains to obtain a rough approximation of the constant cη. Under the assumption
of L > 1, and for this purpose, EML

N [Q(uL)] ≈ E[Q(u)] we get

E[Q(u)]−
L−1∑
`=0

EMC
N`

[Y`] ≈ EML
N [Q(uL)]−

L−1∑
`=0

EMC
N`

[Y`]

= EMC
NL

[Q(uL)−Q(uL−1)] .
(3.17)

Here, the second term on the left-hand side represents an L− 1 multilevel Monte
Carlo estimate on level L − 1 and thus we can estimate the error on this level as
above. In order to compute the overestimation factor cη of our guess ẽL−1, we start
by comparing the guess and the approximation from Equation (3.17) like

EMC
NL

[Q(uL)−Q(uL−1)] = c−1
η E

[
η+
L−1 − η−L−1

2

]

and hence we arrive at the rough approximation using the notations for Y` and Z±`
from Equation (2.3) and Corollary 3.19

cη =
∑L−1
`=0 E

[
Z+
`

]
−∑L−1

`=0 E
[
Z−`

]
2EMC

NL
[YL]

(3.18)

by applying (L−1)-level Monte Carlo estimators EML
N init

[
η±L−1

]
for the expected values

of the bounds with the initial Ninit samples on each level. Here, we assume, without
the introduction of a new notation, the vector N init to always have the required
length identical to the number of levels of the associated multilevel estimator. Finally,
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we can combine Equation (3.15) with Equation (3.16) and Equation (3.18) to get
an estimate for the optimal number of samples on each level by

N` =

(
EML

N init

[
η+
L−1

]
− EML

N init

[
η−L−1

])2∑L
k=0

√
Ck VarMC

Ninit [Yk](
EML

N init

[
η+
L

]
− EML

N init

[
η−L
])2

EMC
Ninit [YL]2

√
C−1
` VarMC

Ninit [Y`]

through the approximation of the variances.

Ansatz with Error Estimators

In the following, we will adapt the idea to exploit the error estimators from the
simple ansatz for the Monte Carlo method to obtain sufficiently accurate numbers of
samples N for the multilevel Monte Carlo method. The first step is again to find an
adequate approximation of the error ẽk on each level. Consider the error estimators
η` = ηMS(u`, z`) or η` = ηOP (u`, z`) for the levels ` = 0, ..., L. For the last term in
the error decomposition we obtain Equation (2.5) the upper bound

E[Q(uL)−Q(u)]2 ≤ E[|Q(uL)−Q(u)|]2 ≤ E[cηηL] . (3.19)

As it is the case for the Monte Carlo ansatz, we need to obtain reliable approximations
of the asymptotic constant cη. In order to do so, we reconstruct hierarchically the
error for coarser multilevel estimates with k = 0, . . . , L − 1 levels and N init =
(Ninit, . . . , Ninit) initial samples as follows

E[Q(u)]− EML
N [Q(uk)] ≈ EML

N [Q(uL)]−
k∑
`=0

EMC
Ninit [Y`]

=
L∑

`=k+1
EMC
Ninit [Y`] =: ẽk.

(3.20)

Next, we will define a multilevel Monte Carlo estimate of the mean error estimator
E[ηL]. Following the naming conventions Equation (2.3) define the terms Z◦0 := η0
and Z◦` := η` − η`−1 for ` = 1, . . . , L. The multilevel Monte Carlo estimator for the
expected value of the error estimate on level L is defined as

EML
N [ηL] =

L∑
`=0

EMC
N [Z◦` ] .

The mean overestimation constant cη is now approximated for each k = 0, . . . , L by
ckη := EML

N init [ηk] ẽ
−1
k with ẽk as defined in Equation (3.20). We define the approximation
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of the constant as the mean value over all k as c̃η := 1
L−1

∑L−1
k=0 c

k
η. The final step is

to compute the constant cN in Equation (2.7) such that the two error contributions
are balanced as ∑L

`=0N
−1
` Var[Y`] = c−2

η E[ηL]2. Inserting Equation (2.7) leads to∑L
`=0 c

−1
N

√
C`Var[Y`] = c−2

η E[ηL]2 and thus to the approximation of cN as

c̃N := c̃2
η

L∑
`=0

√
C`VarMC

Ninit [Y`]
EML

N init [ηL]2

which gives a heuristic for the number of samples on each level.

A Practical Approach

All of the above heuristics rely on the asymptotic behavior of different quantities.
For uniform meshes this is usually not a problem as the preasymptotic phase is short
enough to be ignored. On the other hand, this phase can be much longer for adaptive
algorithms such that extra care needs to be taken for coarse meshes. Studying closely
related deterministic problems can provide a good overview for the behavior of the
different quantities used in the heuristics.

Furthermore, the adaptive algorithm suggested by [MS09] based on ηMS introduces
some stepping, as in every step it refines either for the primal or the dual problem.
Given an example where these refinements do not coincide locally, a primal refinement
step might even lead to a short divergent phase in the quantity of interest. In contrast,
a dual refinement might lead to a short phase with a much higher than expected
convergence rate. As a consequence strong over- or underestimation of the spatial
error might occur in the heuristics resulting in severe over- or undersampling.

Combinations of the above variants for the multilevel Monte Carlo method can
mitigate these problems to some extent as the error estimators express different
enough behavior compared to the multilevel control terms, as they are derived from
different levels. In practice, the minimum N` predicted by the correction terms and
the error estimators proved to be the most reliable. The probabilistic bounds, on the
other hand, did not provide good enough results to be practically feasible. This is
due to their very long preasymptotic phase as can be seen in Chapter 5.

In the approach with error estimates, it is possible to use the global or element-wise
Cauchy–Schwarz inequality, to obtain global estimates. However, numerical testing
for the problems in Chapter 5 indicates better performance of the local inequality for
the reconstruction of the convergence rate α.
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4.1 Stochastic Representation of the Stochastic
Problem

In general, the solution process for the stochastic version of Problem (1.1) requires
the discretization of the spatial dimensions and of the stochastic domain. Stochastic
Galerkin methods apply some finite-dimensional basis to both of these. For example,
the spatial domain might be discretized by standard finite element functions whereas
the stochastic domain is approximated with some polynomial basis functions like
Hermite polynomials.

This approach however is severely limited as it suffers from the curse of dimensionality.
That is, with increasing number of dimensions in either domain, the computational
cost increases exponentially. This might be tolerable for 3D finite element methods but
practical applications require a substantial amount of basis functions in the stochastic
domain, such that the resulting linear system becomes prohibitively large.

The Monte Carlo methods and its variants from Chapter 2 compensate for this problem
by replacing exact integration in the random space with stochastic integration.
The following method will extend this idea to both domains with the help of a
representation of Problem (1.1) as some stochastic ordinary differential equation
(SDE). This is actually a natural approach to this model as the Darcy equation is
also the homogenization of a SDE describing the transport of particles in porous
media.

The key is to establish a proper connection between the two formulations. The
Feynman–Kac formula establishes a link between parabolic partial differential equa-
tions and stochastic differential equations. Indeed, the Darcy model problem regarded
here resembles a special case. A more general approach is given in [ABE+15a].

This framework allows us to compute the mean of the solution at arbitrary points
x ∈ D in the domain. It allows to focus the computational effort in the most
important parts of the product space D × Ω giving optimal sparsity with respect to
the error density in that space. This is not possible with the methods presented in
Chapter 2 as the sampling has to occur on the whole domain. The adaptive meshes
and the multilevel Monte Carlo method can counter this drawback up to some degree
but are limited to the separate subspaces D and Ω.

In [ABE+15a] this approach is used in conjunction with some stochastic polynomial
regression scheme to construct the mean solution on the whole domain D. This allows
for a dimension-independent convergence rate but does not exploit the possibility

44



4 An Alternative Approach for Higher Dimensions

of local and independent adaptivity for both D and Ω. In this work, we will present
an interpolation method which links the adaptive tools from the finite element
framework with locally adaptive sampling to construct an optimal representation
of the mean solution on an adaptive mesh with minimal sampling cost. However,
the advantage of the independence of spacial adaptivity and sampling forfeits the
dimension-independent convergence rate.

To achieve this, three steps are necessary. First, a local Monte Carlo estimator for
the mean solution and its variance is established. Then, a global mean solution
is constructed via interpolation on some mesh T . Finally, an adaptive scheme is
conceived to generate a sequence of estimators on adaptively generated meshes
which gives the desired solution for a given error tolerance at minimal cost. The
same exploratory interpolation approach is presented in [ABE+15b].

Pointwise Approximation with an Ordinary Stochastic
Differential Equation

For this approach we assume D ⊂ Rd for d ∈ N. All input data as well as the
domain boundary are assumed to be smooth enough, such that the problem in
Equation (1.1) yields a unique solution. Furthermore we extend this problem by
replacing the homogeneous boundary data with the Dirichlet condition u = uD on Γ.
Neumann boundaries are feasible as well with this ansatz but we omit them for the
sake of simplicity in the presentation.

As stated above, the central tool in this approach is the Feynman–Kac formula which
connects stochastic processes with partial differential equations. Its application in
the context of ground water flow is somewhat natural as the Darcy equation can be
considered as a homogenized formulation of some underlying stochastic process in
which water particles traverse the domain D on paths with given probabilities. First
mentioned in [Kac49], a text book introduction on this topic is given in [MT04].
Finally, note that this method offers a more general approach but it is presented in a
limited manner for simplicity. For the complete overview we refer to the aforementioned
text book.

We characterize the problem at hand by the following stochastic differential equation
and adjoint processes given at some point x ∈ D ⊂ Rd for the processes Xt =
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Xx
t , Yt = Y x

t , and Zt = Zx
t

dXt = b(Xt) dt+ σ(Xt) dWt,

X0 = x,

Yt := exp
(ˆ t

0
c1(Xs) ds

)
,

Zt :=
ˆ t

0
c2(Xs)Ys ds.

(4.1)

Here, W is a d-dimensional standard Brownian motion in the probability space
(Ω,F ,P). The operators b : Rd → Rd and σ : Rd → Rd×d are assumed to be
uniformly Lipschitz continuous and c1, c2 : Rd → R. This results in a unique strong
solution process X in [0, T ] for every T > 0 which is adapted to the filtration
generated by W and satisfies

ˆ T

0
E
[
|Xt|2

]
dt <∞ and

Xt = x+
ˆ t

0
b(Xs) ds+

ˆ t

0
σ(Xs) dWs,

where the operator dWs is considered in the Itô-sense. With a(x) := σ(x)Tσ(x) we
get the infinitesimal generator L of the problem in Equation (4.1) as the differential
operator

Lf(x) =
d∑
i=1

bi(x) ∂

∂xi
f(x) + 1

2

d∑
i,j=1

aij(x) ∂2

∂xi∂xj
f(x). (4.2)

With the restriction of F : [0, T ] × Rd → R to be C1 time-continuous and C2

space-continuous Itô’s formula gives

F (t,Xt) = F (0, x) +
ˆ t

0

(
∂

∂t
F (s,Xs) + LF (s,Xs)

)
ds

+
ˆ t

0

d∑
i=1

d∑
j=1

∂

∂xi
F (s,Xs)σij(Xs) dW j

s .

Furthermore, E
[´ t

0 u(s) dWs

]
= 0 because t 7→

´ t
0 u(s) dWs is a martingale on

[0, T ] for any process u(s) adapted to the filtration generated by W under the
assumption

´ T
0 E

[
|u(t)|2

]
dt < ∞. The solution to the stationary Problem (1.1)

is derived as the limit t → ∞ from some corresponding time-dependent Cauchy
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problem defined with (t, x) ∈ [0,∞[×Rd as

∂

∂t
u(t, x) = Lu(t, x) + c1(x)u(t, x) + c2(x),

u(0, x) = uD(x).
(4.3)

Given the solution u ∈ C1,2([0,∞[×Rd) it holds for t ≥ 0, x ∈ Rd the identity

u(t, x) = E[uD(Xx
t )Y x

t + Zx
t ] .

For the special case of c1 = c2 = 0 in Equation (4.3), fixing T > 0 gives Y x
t ≡ 1,

Zx
t ≡ 0 and for F (t, x) =: u(T − t, x), Itô’s formula gives

u(0, Xx
T )− u(T, x) =

ˆ T

0

(
− ∂

∂t
u(T − t,Xx

t ) + Lu(T − t,Xx
t )
)

dt

+
ˆ T

0

d∑
i=1

d∑
j=1

∂

∂xi
u(T − t,Xx

t )σij(Xx
t ) dW j

t

=
ˆ T

0

d∑
i=1

d∑
j=1

∂

∂xi
u(T − t,Xx

t )σij(Xx
t ) dW j

t .

The general case follows similarly. Taking the expected value of the above equation
results in u(T, x) = E[uD(Xx

T )].

To compute the actual value of the solution u at the given point x we can utilize
the standard Monte Carlo method with N samples to approximate with a rate of
N1/2. This requires for each sample to approximate the diffusion process Xx

t by
some discretization XM . In this scenario we consider the explicit Euler method for
this purpose. Define some time sequence TM with 0 = t0 < . . . < tM = t with
∆tm := tm − tm−1 and ∆Wtm := Wm −Wtm−1 for m = 1, . . . ,M and thus

Xm := Xm−1 + b(Xm−1)∆tm + σ(Xm−1)∆Wm.

This method results in strong convergence with E[|Xt −XM |] ≤ Ch1/2 under weak
assumptions and C independent onM . Regarding weak convergence, the explicit Euler
scheme often gives |E[v(Xt)]− E[v(XM)]| ≤ Ch for any test function v : Rd → R
and constant C as above. The stationary elliptic problem is represented as the limit
for t→∞ of the parabolic problem discussed above. This results in

Lu(x) + c1(x)u(x) + c2(x) = 0 in D,
u(x) = uD(x) on ΓD,
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which gives the solution identity for x ∈ D

u(x) = E[uD(Xx
τ )Y x

τ + Zx
τ ] (4.4)

for the random stopping time τ = τx := inf {t ≥ 0 | Xx
t ∈ D}. The stopping time

τ is the time the diffusion process leaves the domain. Besides the error from the
discretization ofXx

t byXM , an additional error is introduced during the approximation
of the exit time τ by some discrete value τM as the discrete path usually crosses the
boundary of the domain in between two grid points of XM . Once again, the resulting
convergence rate is equal to 1/2. Nevertheless, adaptive time stepping techniques can
improve the practically observed behavior back to linear convergence. Here, we use
the distance to the closest boundary as the indicator as shown in Algorithm 4.1.

The second step concerns the integration of a random field into the stochastic
representation of Problem Equation (1.1). The main idea here is to have two separate
random spaces: one for the random diffusion field (Ω,F ,P) as defined in Section 1.3
and one for the diffusion process (ΩX ,FX ,PX). We will now consider the product
space (Ω,F ,P)⊗ (ΩX ,FX ,PX) of those two. Similar to the deterministic model,
we arrive at the representation for ω ∈ Ω and ωX ∈ ΩX

u(ω, x) =
ˆ

ΩX
uD

(
ω,Xx

τ(ω,ωX) (ω, ωX)
)
Y x
τ(ω,ωX) (ω, ωX) PX(dωX)

+
ˆ

ΩX
Zx
τ(ω,ωX) (ω, ωX) PX(dωX)

= E[uD(Xx
τ )Y x

τ + Zx
τ | ω] .

Compared to the Monte Carlo methods from Chapter 2 this approach adds contribu-
tion to the variance with regard to the computation of the expected value in the
random product space E[u(x)] = E[uD(Xx

τ )Y x
τ + Zx

τ ] as it is due to the law of total
variance

Var[u(x)] = Var[uD(Xx
τ )Y x

τ + Zx
τ ]

= Var[E[uD(Xx
τ )Y x

τ + Zx
τ | ω]] + E[Var[uD(Xx

τ )Y x
τ + Zx

τ | ω]]
= Var[u(x)] + E[Var[uD(Xx

τ )Y x
τ + Zx

τ | ω]] .

The last term on the right-hand side describes the extra variance and hence requires
additional samples in the Monte Carlo method. For a small number of dimensions d
it is not worth the extra effort but for larger dimensions the discretization cost per
sample grows for the methods in Chapter 2.

The third step in the discretization is the approximation of the expected value in
Equation (4.4) with a Monte Carlo estimator. Multilevel Monte Carlo methods are
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also possible but require the construction of two related realizations of XM for each
sample on the individual levels as described in [Gil08]. Here, we will limit ourselves
to the Monte Carlo estimator which is defined as

EMS
M,N [u(x)] := 1

N

N∑
i=1

uD
(
Xx
τ (ωi)

)
Y x
τ (ωi) + Zx

τ (ωi), (4.5)

where (ωi)Ni=1 is a set of samples drawn from the random space (Ω,F ,P) and M
describes the number of steps for the discrete diffusion process. Note that this random
space represents both the diffusion process XM and the random field κ from the
initial problem definition.

In the case of the Darcy Model Problem (1.1), the parameters in Equation (4.3) can
be directly deduced as c1 ≡ 0 and c2 ≡ f(x) which results in

Y x
τ ≡ 1 and Zx

τ =
ˆ τ

0
f(Xs) ds.

Furthermore it holds a(x) = 2κ(x)In and b(x) = ∇κ(x) for the parameters from
Equation (4.2) where In is the n-dimensional identity matrix. As it holds for the
normal distribution N0,∆t ∼

√
∆tN0,1, we get with the time steps t0, t1, . . . for

m = 0, . . . ,M

X0 = x,

Xm = Xm−1 +∇κ(Xm−1)∆tm +
√

2κ(Xm−1)∆tm N0,1,

where M is the last index with Xm ∈ D for m = 0, . . . ,M and XM+1 6∈ D.
Here, N0,1 denotes the standard normal distribution in d dimensions. The stopping
position and the stopping time tτ of the diffusion process is now approximated by
the projection

Xτ := arg min {||X −XM || | X ∈ ∂D,X = XM + s(XM+1 −XM), s ≥ 0} (4.6)

of XM onto the boundary ∂D in direction of XM+1. Equation (4.5) gives the
estimator with a simple one-point integration rule as follows

EMS
M,N [u(x)] := 1

N

N∑
i=1

uD(Xτ (ωi)
)

+
∑

m∈(0,...,M,τ)
f
(
Xm(ωi)

)
∆tm

 .
Simple time adaptivity is applied by choosing ∆tj = dist(∂D,Xj−1)∆t0 where
dist(∂D, x) := min {||xd − x|| | xd ∈ ∂D} is the Euclidean distance to the boundary
of the domain. The whole process is sketched in Algorithm 4.1 where a simple
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rectangle integration method is used and Figure 4.1 gives a sketch thereof.

Remark 4.1 During the derivation above we made rather basic and restrictive
assumptions, such as uniform ellipticity. In fact, most of the arguments hold with
more relaxed conditions, as time-dependent coefficients.

Extension to the whole Domain

In the following, the pointwise approximation of the solution by means of Monte
Carlo estimators is extended to the whole domain using interpolation techniques. This
allows to apply finite element a posteriori error control. We will define the approximate
solution as follows. Consider some given mesh Th with vertices Nh = (νih)

|Nh|
i=1 . We

will define the discrete solution EMS
M,N [uh] with M = (Mi)|Nh|i=1 and N = (Ni)|Nh|i=1 as

a P1 function on that mesh, by setting the node values for i = 1, . . . , |Nh|, which
resemble also the coefficients in the P1 basis, as follows

EMS
M,N [uh] (νih) := EMS

Mi,Ni

[
u(νih)

]
for i = 1, . . . , |Nh| .

This introduces three types of errors into the approximation. The first one is the
stochastic approximation error originating in the Monte Carlo estimators. It can
be controlled by the means from Lemma 3.15 through the numbers of samples Ni

for each point. Application of the Inequality (3.12) will be necessary to extend this
control to the P1 approximation. The second error arises from the approximation
of the diffusion process and is controlled by the parameters Mi. The third error
contribution results from the P1 interpolation which is approximated by the Monte
Carlo estimators and is governed through the interpolation mesh parameter h.

We will consider two error representations. The first one describes a decomposition
of the mean square error into three error parts resulting from the interpolation error,
the discretization of the ordinary differential equation, and the sampling error in the
Monte Carlo method. Define the expected value of the discrete ordinary differential
equation as E

[
uMh

]
:= E

[
EMS

M,N [uh]
]
. Now, it holds for the pointwise mean square

error in the approximation by binomial formulas

E
[(
EMS

M,N [uh]− E[u]
)2
]

= E
[
EMS

M,N [uh]2
]
− 2E

[(
EMS

M,N [uh]
)]
E[u] + E[u]2

= E
[
EMS

M,N [uh]2
]
− E

[
uMh

]2
+
(
E
[
uMh

]
− E[u]

)2

= 1
N

Var
[
uMh

]
+
(
E
[
uMh

]
− E[u]

)2
.

(4.7)
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D

X0

X1

X2

XJ

XJ+1

Xτ

(∆t0)

(∆t1)

Figure 4.1: Sketch of a discrete diffusion process realization with endpoint projection
and indicated step width.

In : point x ∈ D, number of samples N , initial time step ∆t0
Out : EMS

M,N [u(x)]

for i = 0, . . . , N do
X0 = x
F = 0
j = 1
sample κi = κ(ωi) with ωi ∈ Ω
while Xj ∈ D do

F = F + f(Xj−1)∆tj−1
∆tj = min {dist(∂D,X), 1}∆t0
sample Ξ from N0,1

Xj = Xj−1 +∇κi(Xj−1)∆tj +
√

2κi(Xj−1)∆tjΞ
j = j + 1

compute Xτ and tτ according to Equation (4.6)
F = F + f(Xτ )∆tτ
ui = uD(Xτ ) + F

return N−1∑N
i=0 u

i

Algorithm 4.1: Point estimate algorithm to compute the estimator EMS
M,N [u(x)]

using the simple one-point rectangle method for integration.
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The second decomposition seeks to represent the error locally in the L2 norm. In
the following, we will assume D ⊆ R2. Higher dimensions are possible with different
inequalities for the norms. Consider the element T ∈ Th as well as the pointwise P1
interpolation operator Ih on the mesh Th. It holds for the approximation error∣∣∣∣∣∣E[u]− EMS

M,N [uh]
∣∣∣∣∣∣
L2(T )

. ||E[u]− Ih E[u]||L2(T ) +
∣∣∣∣∣∣Ih E[u]− EMS

M,N [uh]
∣∣∣∣∣∣
L2(T )

. ||E[u]− E[uh]||L2(T ) + ||E[uh]− Ih E[u]||L2(T )

+
∣∣∣∣∣∣Ih E[u]− E

[
uMh

]∣∣∣∣∣∣
L2(T )

+
∣∣∣∣∣∣E[uMh ]− EMS

M,N [uh]
∣∣∣∣∣∣
L2(T )

. hTηT + h2
T |u|2 + |T |∆t0 + |T | max

K∈N (T )

{
Var

[
uMh

]1/2
N
−1/2
K

}
. (4.8)

The error control ηT is the same as in Section 3.3. The first two terms are both
governed by the mesh Th and can be controlled through refinement as well as
the adaptive algorithms from Section 3.3. The third term represents the error in
the approximation of the diffusion process in the Euler scheme for the stochastic
differential equation. Numerical experiments show that ∆t0 ' hmin is a reasonable
choice in the two-dimensional case. The last term represents the Monte Carlo
estimation error. It solely depends on the number of samples used for each node in
the element as the variance converges to the variance of the continuous solution
Var[u] for M →∞ and h→ 0.

4.2 Adaptive Algorithms

For convergence of the method presented in Section 4.1 all error components in
the decomposition Equation (4.8) have to converge. For optimal convergence they
should ideally converge with the same rate with respect to computational effort that
has to be invested to gain the error reduction. The main idea of the algorithm is
therefore to base the parameter choices on the underlying mesh. Hence, it is the
goal in the following parts to define some optimal sequence of meshes T0, . . . , TL
for the interpolation and then choose matching values for the other discretization
parameters.

We start with an initial quasi-uniform triangulation T0. The first step is to calculate
a discrete solution EMS

M0,N0
[uh]. The parameters M0 and N0 have to be guessed as

not enough information is available on the initial level. The next step involves the
calculation of the finite element error estimator η0. As can be seen in Equation (4.8),
the estimator only covers the first term ||E[u]− E[u0]||L2(T ) and thus the parameters
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M0 and N0 have to be chosen such that

hTη0|T �
∣∣∣∣∣∣Ih E[u]− E

[
uMh

]∣∣∣∣∣∣
L2(T )

+ |T | max
K∈N (T )

{
Var

[
uMh

]1/2
N
−1/2
K

}
.

The reason is that the finite element solution is bounded by the interpolator but
the discrete solutions’ stochastic properties introduce oscillations of length h and
amplitude as seen above. These are theoretically unbounded and artificially increase
the finite element error estimator. As refinement would not reduce these oscillations
we have to limit them by the means of the central limit theorem such that we get
reliable mesh refinements. In fact, the stochastic error term from Equation (4.8) for
each element has to be smaller than the smallest error estimator ηloc(T ) chosen for
the refinement setM in Equation (3.14), that is

min
T∈M

ηloc
0,T > |T | max

K∈N (T )

{
Var

[
uMh

]1/2
N
−1/2
K

}
+
∣∣∣∣∣∣Ih E[u]− E

[
uMh

]∣∣∣∣∣∣
L2(T )

. (4.9)

This constraint also includes the error of the approximation in the Euler scheme but
it is deterministic, smooth, and domain-wide. As a result, it alters the error estimator
only to some minor extent. The derived refinement T1 of the mesh T0 is the basis for
the next level and the process is repeated. Heuristics from below allow to balance
the parameters based on educated guesses of the error components. This however is
only possible if there are at least three meshes, that is L ≥ 3. Section 4.3 will cover
some approaches to this topic.

4.3 Heuristics for the Parameters

The error decomposition in Equation (4.8) results in three components that need to
be balanced for guaranteed and optimal convergence. Therefore, we aim to find good
estimates for the convergence rates with respect to the relevant parameters and then
extrapolate good error estimates to the next level. With these we can determine the
necessary parameters that fulfill our balancing requirements. The first goal is the
approximation of the convergence rate of the interpolation error introduced by the
mesh and controlled through the parameter α. Let h be the minimal inradius over all
the triangles of the triangulation Th and suppose we have some α > 0 such that

||E[u]− E[Ihu]||L2(D) . hα.

Standard finite element theory gives us ||E[u]− E[Ihu]||L2(D) ∼ ||E[u]− E[uh]||L2(D)
and thus with some efficient and reliable error estimate ηh ∼ ||E[u]− E[uh]||L2(D)
we get ηh ∼ hα. We exploit this property to gauge the parameter α as error
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estimators have smoothing properties and thus in practice exhibit a behavior closer
to a monotonic convergence. For the estimation αL of α we do a linear regression
over the data points (log(h`), log(η`))`=1,...,L.

Next we estimate the expected spatial error on the next level L+ 1. We exploit the
triangle inequality for ` = 1, . . . , L to get

||E[u]− E[u`]||L2(D) ≤ ||E[u]− E[uL]||L2(D) + ||E[uL]− E[u`]||L2(D) .

The last term on the right-hand side is computable and it remains to estimate the
error on level L. We assume ||E[u]− E[uL]||L2(D) � ||E[uL]− E[u`]||L2(D) for the
coarser levels ` < L and thus we conclude

||E[u]− E[u`]||L2(D) ≈ ||E[uL]− E[u`]||L2(D)

for each level ` = 1, . . . , L − 1. As we already have a good approximation of
the expected convergence rate αL we can now find approximations of the error
||E[u]− E[uL]||L2(D) with the help of the errors on the coarser levels through

||E[u]− E[u`]||L2(D) ∼ hα` and ||E[u]− E[uL]||L2(D) ∼ hαL

which gives asymptotically for each ` = 1, . . . , L− 1 the identity

||E[u]− E[uL]||L2(D)

||E[u]− E[u`]||L2(D)
= hαL
hα`

and hence we can construct the approximation

||E[u]− E[uL]||L2(D) ≈
hαL
hα`
||E[uL]− E[u`]||L2(D) .

We define now our estimate ẽL for the error ||E[u]− E[uL]||L2(D) on level L as the
arithmetic mean of the different extrapolations from the coarser levels ` = 1, . . . , L−1
as

ẽL := 1
L− 1

L−1∑
`=1

hαL
hα`
||E[uL]− E[u`]||L2(D) .

The same technique is used to gauge the expected error on level L+ 1. The mesh
TL+1 is already known as the adaptive algorithm from Section 4.2 has realized the
refinement. Thus, the parameter hL+1 can be used to generate the extrapolation
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ėL+1 with the same levels L = 1, . . . , L− 1

ėL+1 := 1
L− 1

L−1∑
`=1

hαL+1
hα`
||E[uL]− E[u`]||L2(D) .

The next step is to balance the expected Monte Carlo error with the extrapolated
spatial error. For the adaptive algorithm in Section 4.2 it is crucial to keep the
Monte Carlo error well below the spatial error as otherwise this error gets picked
up by the estimator which results in wrong refinement and thus unstable behavior
and suboptimal convergence or in no convergence at all. Hence, we introduce the
balancing factor δ which describes the desired relation between the two errors in
Equation (4.7) as follows

δ2 =

(
E[u]− E

[
uMh

])2

N−1 Var[uMh ] . (4.10)

A choice of δ = 1 would lead to equality. For some constant c`N for each level
` = 1, . . . , L we set the numbers of samples in the vertices N` = (νi`)

|N`|
i=1 as

N i
` := c`N Var

[
uM` (νi`)

]
for i = 1, . . . , |N`| . (4.11)

It is now the aim to choose cL+1
N wisely so Equation (4.10) will be fulfilled for

h = hL+1. In fact, applying Equation (4.11) to Equation (4.10) results in

E[u]− E
[
uML

]
= δ

(
cLN Var

[
uML

])−1/2
Var

[
uML

]1/2
.

For this purpose we assume Var
[
uM`

]
≈ Var

[
uM

]
for ` = 1, . . . , L is enough

approximation as only a rough estimate of the variance is needed. Taking the L2

norm of the last equation and applying the variance approximation we get

cLN = |D|
2

δ2

∣∣∣∣∣∣E[uML ]− E[u]
∣∣∣∣∣∣−2

L2(D)

and with the extrapolated estimate ėL+1 ≈
∣∣∣∣∣∣E[u]− E

[
uML+1

]∣∣∣∣∣∣
L2(D)

we get an estimate

for the constant cL+1
N as ċL+1

N = |D|2
δ2 ė

−2
L+1. The numbers of samples for level L+ 1

are now set according to Equation (4.11) as

N i
L+1 := ċL+1

N Var
[
uML (νiL+1)

]
for i = 1, . . . , |NL+1| . (4.12)

Remark 4.2 It is imperative to ensure a minimum number of samples for each
N i
L in Equation (4.12) as on each level a sufficient approximation of the variance
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Var
[
uM`

]
needs to be available. This is important as otherwise the algorithm can

become unstable through severe undersampling in single points which itself will result
in bad spatial error estimation in Section 4.2 and thus suboptimal mesh refinement
with reduction of convergence rate or even loss of convergence.
A simple solution is to choose some Nmin independent of all parameters and especially
independent of the level `. The practical application calls for some crude estimate of
the variance which can be computed alongside the expected value and thus set the
numbers of samples on level L+ 1 as

Ṅ i
L+1 := min

{
ċL+1
N VarMC

M,N

[
uML (νiL+1)

]
, Nmin

}
for i = 1, . . . , |NL+1| . (4.13)

Finally, it remains to choose the parameter ∆t for each level. The influence on the
error of this parameter is given in the last term of Equation (4.8). As we assume
linear pointwise convergence with respect to ∆t, we choose the relation h ∼ ∆t. In
Algorithm 4.2 the overall algorithm is sketched. The computation of EMS

M,N [u`] is
depicted in Algorithm 4.1. The experiments three and four in Chapter 5 evaluate the
numerical performance of the method.
Instead of the variance adaptive local number of samples for each vertex one can
choose a common number of samples based on the variance Var

[
uML

]
. This is closer

to the methods presented in Chapter 2 as they also have to compute each sample
on the whole domain, though the multilevel method uses coarser levels to mitigate
this shortcoming. The experiments in Chapter 5 will compare the method presented
here with one using uniform meshes and a common number of samples in different
combinations.

Remark 4.3 In the numerical calculations one has to impose Equation (4.9) well
enough, such that the algorithm becomes stable. This can be achieved by choosing
δ < 1. In the experiments in Chapter 5 we choose δ = 0.2. This allows for errors in
the error estimation and variance approximation which results in a stable algorithm
that only imposes a slight impact on performance.
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In : T0, N init, ∆t0
Out : solution EMS

M,N [uL]

for ` = 1, . . . , L do
if ` ≥ 2 then

compute N ` according to Equation (4.13)
else

set N ` to N 0

set ∆t according to h
compute EMS

M,N`
[u`] and VarMS

M,N`
[u`] with Algorithm 4.1

if ` = L then
break

compute η`
refine T` with η` to get T`+1

return EMS
M,N [uL]

Algorithm 4.2: Adaptive Algorithm for the stochastic representation.
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5.1 Overview

In order to investigate the effect of the different approaches onto the quality of the
solution, two problems are considered. The first one exhibits a strong singularity
induced by some slit or crack in the domain. The second one, on the other hand,
provides a huge bump in one corner whereas it is almost constant in the rest of its
domain.

The two quantities of interest are chosen such that an integral over some part of
the domain is computed which is some distance away from the singularity and the
oscillations of the solution. This constitutes a typical situation where the adaptivity
might fail if it is only driven by the problem data instead of taking the quantity of
interest into account.

In order to understand the impact of this problem, first, the adaptive meshes are
tested in deterministic situations with respect to the domain wide error in the L2

and H1 norms. Afterwards, the adaptivity will be goal-driven to assure convergence
with respect to the error in the quantity of interest. Finally, the tests are transferred
to the stochastic setting in order to assess if the gained advantages can be retained
in that setting.

The implementation of the algorithms is realized in Python with the FEniCS toolbox
[fen03, ABH+15, LMW+12]. This template based software package provides a highly
flexible Python front end to a high performance C++ back-end employing just-in-time
compilation. At the same time, it enables easy access to a variety of powerful and
wide-spread numerical packages such as PETSc, SLEPc, Trilinos, TetGen, CGAL and
UMFPACK.

The Unified Form Language (UFL) [ALO+14, Aln12] provides the basis for the
formulation of the variational problem in Python which is then processed by the
Unified Framework for Finite Element Assembly (UFC) [ALM+09, ALM12] from
which the FEniCS Form Compiler (FFC) [KL06, LORW12, OW10] generates C++

template code. This is compiled on the fly together with an extensive Python interface
which is loaded afterwards for immediate use.

In order to facilitate the full potential of multi-core processors the Joblib Python library
[V+16] is used as an accessible interface for the Unix fork paradigm. This mechanism
allows to share data between processes and gives excellent parallel performance with
an easy to use interface. Monte Carlo methods scale very well with the number of
threads or processes used as the samples can be computed individually. Hence, it is
important to avoid recalculation and multiple copies of data in memory.

60



5 Numerical Simulations

The UMFPACK solver [Dav04] is used for the solution of the resulting system of
linear equations. It is part of the SuiteSparse package [D+16] which contains a
collection of sparse matrix algorithms from [Dav06] and other sources. Additional
Python packages used include SciPy [H+16], Matplotlib [Hun07] and others.

The first part of the implementation for the alternate approach is realized in C++ as
a Python module computing the single point expectancies in parallel using OpenMP
whereas the rest of the adaptive algorithm is implemented in Python with the FEniCS
toolbox.

For all the experiments, reference solutions have been acquired on meshes which
result from two additional uniform refinements of the best adaptive method’s last
mesh. For this computation 105 samples have been used in the Monte Carlo method
to generate the mean function E[u?] ≈ E[u] and hence the reference value of the
quantity of interest.

5.2 Monte Carlo and Multilevel Monte Carlo

Experiment 5.1 – Slit Domain

The first experiment incorporates a constant right-hand side f ≡ 1 on the unit square
domain with a slit D = [0, 1]2 \ [0.5, 1]×{0.5} together with homogeneous Dirichlet
boundary data on the whole boundary ΓD of D. The weight g from Equation (1.4)
for the quantity of interest is defined with the parameters rg and x0 as

g =

C
−1
g r−2

g exp
(

−1
1−||x0−x||2r−2

g

)
if ||x0 − x|| ≤ rg,

0 else.
(5.1)

The weight Cg is defined such that g represents a mollifier, that is

Cg = r−2
g

ˆ
D

exp
 −1

1− ||x0 − x||2 r−2
g

 dx,

as g has compact support and limε→0 ε
−2g ((x0 − x)/ε) = δ(x0). The parameters

are chosen as rg = 0.3 and x0 = (0.3, 0.3). For the random field κ, first the
smooth experiment random field from Equation (2.8) is used with the parameters
A = 0.6, σα = 2, t = 5, εκ = 5 · 10−6, and cκ = 10−3. Later, the same input data is
exposed to a log-normal random field generated with the Cholesky decomposition
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as described in Section 2.3 with the vertices of some base mesh Tκ as input. The
covariance function used for the generation is defined as

C(x, y) := σ2
κ exp

(
−λ−2

κ ||x− y||
)
.

The normal random field κnorm generated in this way does not abide to the require-
ments in Problem (1.1). A field which does so and also exhibits behavior closer to
practical applications, like high oscillations and fast changing amplitudes, is given for
any function κ̄ > 0 in D and some constant cκ > 0 by

κ := κ̄+ cκ exp (κnorm) .

For the experiments, the parameters are chosen as κ̄ = 10−3, σκ = 1, λκ = 0.3, and
cκ = 10−4 in order to represent physically plausible values. Visualizations of the mean
solution, its variance, the weight of the quantity of interest g, and a realization of the
random field are given in Figure 5.2 for the smooth random field and in Figure 5.3
for the rough log-normal random field.

To get a better understanding of the adaptive algorithm’s behavior, it is a good idea
to evaluate deterministic settings first. Two settings are chosen for this purpose, the
constant κ ≡ 1 and some fixed realization of the rough random field. The resulting
meshes from the different adaptive approaches for the first case are presented in
Figure 5.4 together with a uniform mesh of similar complexity. The meshes for the
rough realization are depicted together with the resulting κ in Figure 5.5.

In these graphics, the main difference between the approaches becomes visibly
apparent. While the primal strategy naturally only refines near the singularity, the
two goal-driven approaches also care for the quantity of interest. It is apparent, that
ηMS refines distinctively with respect to the primal or the dual problem resulting in a
clear representation of the quantity and the singularity in the refined meshes. On
the other hand, the ηOP indicator constructs a combined estimator covering also
the error contributions connecting the quantity and the singularity for the price of
a lower resolution at both. Furthermore, the adaptivity is less pronounced as more
refinement occurs further away from these two areas. The rougher κ in the second
case introduces additional local refinement resulting in a more diverse mesh. Still,
the main features are common for both cases.

The convergence of the error with respect to the quantity of interest, the performance
of the bounds as well as the performance of the estimators for both cases is shown in
Figure 5.6. There, the relative error erel = |Q(u)−Q(uh)| / |Q(u)| is shown together
with the relative efficiency of the upper and lower bounds η±rel = |η+ − η−| / |Q(u)|.
Finally, the error estimators are scaled accordingly as ηQrel = η◦/ |Q(u)| where η◦ is
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the error estimator used for the refinement. In the case of the uniform meshes ηOP
is computed and plotted but not used for refinement.

In this setting, all adaptive algorithms exhibit the same much better convergence
rate compared to uniform meshes for both cases. This is due to the strong singularity
at x = [0.5, 0.5]. The two goal-driven adaptive methods improve the convergence
slightly as they also refine at the quantity of interest’s support. As expected, the
convergence for the rough κ is less smooth and due to the nature of the goal-driven
adaptivity even non-monotonic. However, after the oscillations are resolved, both
cases show the same errors at the same mesh complexity. The goal-adaptive indicator
ηOP performs the best.

The guaranteed bounds perform suitably well, and are sharpest for the uniform
meshes. Note that the convergence of the bounds is much smoother especially for
the goal-driven algorithms and that they converge monotonically. This is especially
welcome for the development of heuristics in Section 3.4. The efficiency of the bounds,
that is |η+ − η−| / |Q(u)−Q(uh)|, is somewhere around 10 - 70. The estimators
indicate the convergence behavior rather well, while they omit the preasymptotic
non-monotonic behavior of the true error. This also helps to derive stable and reliable
heuristics.

For the better understanding of the error estimators as well as the global convergence
behavior, Figure 5.7 presents the error in the L2 and the H1 norm alongside the
primal error indicator ηu. In both cases, the representation of the errors in the H1

norm through the estimators is very good. The overestimation constant differs for
varying permeability fields κ as the error estimators independence of κ only holds
for the weighted energy norm |||u− uh|||ω. The uniform meshes show a slower rate
of convergence, while all the adaptive refinement methods show approximately the
same rate. The primal error indicator ηu and the goal-adaptive indicator ηMS show
the best performance, closely followed by ηOP.

The sharpness of the guaranteed bounds depends greatly on the choice of α(ω). In
Remark 3.14 αopt(ω) is suggested as a suitable approximation to the optimal value.
The influence of α(ω) on the bounds is presented in Figure 5.1 for both deterministic
examples. Alongside the width of the bounds, the approximation αopt(ω) and the
value of the bounds with this choice is plotted. It is clear that αopt(ω) performs
almost perfectly for this setting.

In the stochastic setting, the refinement is driven by mean error estimators and thus,
the resulting meshes are less noisy or even smooth as shown for the smooth random
field in Figure 5.8 with Nη = 100 samples for each step in the mesh generation
algorithm and in Figure 5.9 with Nη = 10 samples as well as for the rough random
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field in Figure 5.10 with Nη = 100 samples for each step in the mesh generation
algorithm and in Figure 5.11 with Nη = 10 samples. Additionally to the meshes
generated with the primal and goal-driven adaptivity, a mesh resulting from the dual
problem’s error indicator is presented.

Due to the smoother nature of the mean meshes, the observations from the deter-
ministic cases are even more apparent. The separation of the two areas of interest is
clearly visible for the indicator ηMS, whereas the singularity and the quantity of interest
are clearly connected with a high resolution area in the mesh for ηOP. The number
of samples used for the refinement only has marginal impact on the general mesh
structure. The variant with less samples is a bit more noisy but as the singularity is
very strong, this is hardly noticeable. Furthermore, due to the nature of the algorithm,
the samples from the different levels add up, such that very few samples are needed
to get good results.

To evaluate the quality of the bounds, we take a closer look at two values. The first
one describes the width of the frustum between the upper and lower bound relative
to the true value. This gives us information about the efficiency of the bounds and
hence we define the relative efficiency index as

Erel := (η⊕ − η	) |Q(u)|−1.

The second quantity will give us insights into the quality of the solution. As the
results of the computations are realizations of random variables themselves, it is
possible that the error e :=

∣∣∣E[Q(u)]− EM
N [Q(uh)]

∣∣∣ can become arbitrarily small for
every mesh and any number of samples though asymptotically the error will converge
to the spatial error term in Equation (2.1) and Equation (2.5) for N → ∞ and
N →∞ respectively. In order to mitigate this problem, we will add the confidence
intervals derived in Section 3.2 to the error and hence define the reliable relative
error as

ẽrel := (e + Ic) |Q(u)|−1

with the confidence intervals Ic := Var[Q(uh)]1/2N−1/2Φ−1(p∗) for the Monte Carlo
method and Ic := ∑L

`=0 Var[Y`]
1/2N

−1/2
` Φ−1(p∗`) for the multilevel Monte Carlo

method. This will assure that we take the variance of the estimator into account
and thus, will give us reliable information about the expected error of the method.
Hence, we can compare the different methods reliably.

All multilevel Monte Carlo computations have been performed with L = 3 since
L = 2 did not show enough of an improvement over Monte Carlo methods and
L > 3 had too big of an initial overhead in order to catch up to Monte Carlo within
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reasonable time on the given computer setup and with the used implementation. The
effect of adding additional levels is also limited without further effort as shown in
[TSGU13]. More research is needed in this area to confirm and extend their findings.

The convergence with respect to the number of degrees of freedom is plotted in
Figure 5.12 with Nη = 100 and Figure 5.13 with Nη = 10 for the smooth random
field. Here, we can see that the adaptive algorithms perform just as well for the Monte
Carlo as well as the multilevel Monte Carlo method compared to the deterministic
test earlier. Just as in the earlier test the uniform meshes show a slower convergence
rate compared to the adaptive meshes. All in all, the results are noisier due to the
stochastic nature and the convergence is less smooth most likely due to differences
in the performance of the heuristics. The quality of the bounds is also similar to the
deterministic settings and the same conclusions hold true. No difference with respect
to the number of samples Nη used for the mesh sequence generation can be seen.

However, in contrast to the deterministic case, these graphics do not allow to evaluate
the quality of the solutions with respect to the computational effort. Once a balance
of the two error contributions in Equation (2.1) and Equation (2.5) is achieved, the
number of samples is the driving factor for the computational cost in error reduction.
This is due to the lower convergence rate of 1

2 for sampling methods. So, in order to
compare Monte Carlo and multilevel Monte Carlo, we have to examine the cost it
takes to achieve a prescribed error. Figure 5.14 for Nη = 100 and Figure 5.15 for
Nη = 10 allow to do just that for some implementation independent standardized
computational cost, which assumes C` ∼ ndof, and the actually consumed processor
time for our implementation. Note that the standardized computational cost plot
does not account for the mesh generation while the processor time includes this
effort.

As the overhead for the multilevel Monte Carlo method is bigger compared to the
standard Monte Carlo method, it gets a better start on the coarse meshes. Once
this advantage is exhausted, the multilevel Monte Carlo method is more efficient. In
this experiment, the multilevel Monte Carlo method is approximately two orders of
magnitude cheaper to achieve the same error in the solution. The adaptive meshes
show a similar effect of two to three orders of magnitude for both sampling methods
leading to an overall improvement of four orders of magnitude with respect to the
cost for adaptive multilevel Monte Carlo over uniform Monte Carlo. Once all methods
are in the asymptotic phase, their convergence rates are the same N1/2, as expected.
At the beginning, the more expensive mesh generation shows but is insignificant once
the sampling error dominates the computational cost. In fact, there is no reason to
invest a reasonable amount into the generation of the mesh sequence as it gives
slightly higher quality meshes at a very little expense.
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A slightly different picture is drawn, when the rough field is considered. In that case,
Figure 5.16 for Nη = 100 and Figure 5.17 for Nη = 10 once again show similar
performance as in the deterministic case. But as before, this does not allow for any
conclusions about the cost. Figure 5.18 for Nη = 100 and Figure 5.19 for Nη = 10
give this information. The bounds show similar performance as in the smooth case.
Multilevel Monte Carlo reduces the cost by approximately one order of magnitude and
the adaptive meshes alleviate it by another order of magnitude leading to an overall
two orders of magnitude cost advantage of adaptive multilevel Monte Carlo over
uniform Monte Carlo. In effect, the rough random field constitutes a much harder
problem but still the two presented methods result in a considerable improvement
whereas the bounds perform just as well.

As is the case with the smooth field, the choice of the number of samples during
the construction of the adaptive mesh sequence Nη shows almost no influence on
the error reduction but only a slight performance impact on the coarse levels with
a larger Nη. As this becomes insignificant on finer meshes, there is no reason to
choose a suitably large Nη.
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constant κ ≡ 1
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Figure 5.1: Experiment 5.1 Performance of the bounds with respect to the
choice of α compared to αopt for the two deterministic κ on adaptive
meshes using ηMS with approximately 1000 degrees of freedom.
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Figure 5.2: Experiment 5.1 The mean solution, the variance, the weight for the
quantity of interest and a sample realization of the smooth field κ.
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Figure 5.3: Experiment 5.1 The mean solution, the variance, the weight for the
quantity of interest and a sample realization of the rough field κ.
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Figure 5.4: Experiment 5.1 The uniform mesh and meshes generated with the
refinement indicators ηu, ηMS, and ηOP for the constant deterministic
κ ≡ 1 with approximately 4200 degrees of freedom which result in the
first graph in Figure 5.6.
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Figure 5.5: Experiment 5.1 The rough deterministic κ and the resulting
meshes from the refinement indicators ηu, ηMS, and ηOP with approx-
imately 4200 degrees of freedom which result in the second graph in
Figure 5.6.
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constant κ ≡ 1
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Figure 5.6: Experiment 5.1 Convergence of the error, the bounds, and the es-
timator with the refinement strategies uniform, ηu, ηOP, and ηMS for
two deterministic κ with respect to the number of degrees of freedom.
The short notations are ηQrel = η◦/ |Q(u)| with the refinement indicator
η◦, η±rel = |η+ − η−| / |Q(u)|, and erel = |Q(u)−Q(uh)| / |Q(u)|.
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Figure 5.7: Experiment 5.1 Convergence of the global error in the H1 norm,
the L2 norm, and the estimator with the refinement strategies uniform,
ηu, ηOP, and ηMS for two deterministic κ with respect to the number
of degrees of freedom.
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Figure 5.8: Experiment 5.1 The meshes in the stochastic setting generated by
different error estimators with approximately 8000 degrees of freedom
for the smooth random field with 100 samples for the adaptive
mesh generation.
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Figure 5.9: Experiment 5.1 The meshes in the stochastic setting generated by
different error estimators with approximately 8000 degrees of freedom
for the smooth random field with 10 samples for the adaptive mesh
generation.

75



5 Numerical Simulations

T (ηu) T (ηz)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

T (ηMS) T (ηOP)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Figure 5.10: Experiment 5.1 The meshes in the stochastic setting generated by
different error estimators with approximately 8000 degrees of freedom
for the rough random field with 100 samples for the adaptive mesh
generation.
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Figure 5.11: Experiment 5.1 The meshes in the stochastic setting generated by
different error estimators with approximately 8000 degrees of freedom
for the rough random field with 10 samples for the adaptive mesh
generation.
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Figure 5.12: Experiment 5.1 Convergence with respect to the number of degrees
of freedom for the Monte Carlo and multilevel Monte Carlo method
for the smooth random field with 100 samples for the adaptive
mesh generation.
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Figure 5.13: Experiment 5.1 Convergence with respect to the number of degrees
of freedom for the Monte Carlo and multilevel Monte Carlo method for
the smooth random field with 10 samples for the adaptive mesh
generation.
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Figure 5.14: Experiment 5.1 Convergence with respect to standardized com-
putational effort (top) and process time (bottom) for the smooth
random field with 100 samples for the adaptive mesh generation.
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ẽrel (ηMS)
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Figure 5.15: Experiment 5.1 Convergence with respect to standardized com-
putational effort (top) and process time (bottom) for the smooth
random field with 10 samples for the adaptive mesh generation.
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Figure 5.16: Experiment 5.1 Convergence with respect to the number of degrees
of freedom for the Monte Carlo and multilevel Monte Carlo method for
the rough random field with 100 samples for the adaptive mesh
generation.
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ẽrel (uni.)
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Figure 5.17: Experiment 5.1 Convergence with respect to the number of degrees
of freedom for the Monte Carlo and multilevel Monte Carlo method
for the rough random field with 10 samples for the adaptive mesh
generation.
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Figure 5.18: Experiment 5.1 Convergence with respect to standardized compu-
tational effort (top) and process time (bottom) for the rough random
field with 100 samples for the adaptive mesh generation.
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Figure 5.19: Experiment 5.1 Convergence with respect to standardized compu-
tational effort (top) and process time (bottom) for the rough random
field with 10 samples for the adaptive mesh generation.
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Figure 5.20: Experiment 5.1 Convergence with respect to standardized compu-
tational effort (top) and process time (bottom) for the rough random
field with 100 samples for the adaptive mesh generation.
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Figure 5.21: Experiment 5.1 Convergence with respect to standardized compu-
tational effort (top) and process time (bottom) for the rough random
field with 10 samples for the adaptive mesh generation.
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Experiment 5.2 – Square Domain with an Exponential Buckle

This experiment adopts a slightly modified variant of Example 8.5 from [AO00] to
the stochastic context. It is defined on the domain D = [0, 1]2 with homogeneous
Dirichlet boundary data uD ≡ 0 on ΓD. Let us fix

u∗ = 5x2(1− x)2(e10x2 − 1)y2(1− y)2(e10y2 − 1)

and define f = ∆u∗. This right-hand side f will give the exact solution u∗ for κ ≡ 1
as in the deterministic setting in [AO00] but, in general, the solution for any ω ∈ Ω
as well as the mean solution E[u] will be different from u∗ as κ 6≡ 1 almost surely.
The random field κ is defined in the same way as the rough field in Experiment 5.1.

This right-hand side oscillates strongly, that is osc(f, T )� 0, which in turn induces
large oscillations in the solution. In such a setting, the integration of the right-hand
side during the assembly of the load vector F in Equation (1.2) is a challenge
and enough care needs to be taking to suppress large numerical errors, which can
dominate the overall error. In our numerical calculations, we employ fifth degree
Gaussian quadrature with seven integration points according to the Strang and Fix
scheme [SF71, Cha99].

The goal uses the same definition of g as in Equation (5.1) but with the location
x0 = [0.6, 0.4] and the radius rg = 10−3. It resembles an approximation of the point
evaluation for the solution at x0. So, in effect, this problem exhibits no domain-
induced singularity besides the four corners but high oscillations in the right-hand side
f and the mean solution E[u] shown in Figure 5.22 next to its variance. Furthermore,
the goal, presented in the same figure, has a much smaller support and is, thus, much
harder in numerical terms.

We performed the same two experiments with a constant κ ≡ 1 and a deterministic κ.
The resulting meshes for the first case are shown in Figure 5.23 and the deterministic
κ is shown alongside the meshes for the second case in Figure 5.24. Once again, a
clear distinction between the goal adaptivity and the solution adaptivity is apparent
for ηMS, whereas the mesh generated with ηOP exhibits higher resolutions in the area
connecting the two. As in the first experiment, the meshes for the rough κ show
more noise and less symmetry.

In both cases, we observe a longer preasymptotic phase in Figure 5.25 due to the
small support of the quantity of interest which needs to be resolved. Notably the
biggest difference of the two cases is the lack of convergence when ηu is used for
refinement in the rough case, as it does not account well enough for the error in the
quantity of interest.
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The bounds and estimators perform differently for the different methods in both cases.
While for ηMS the bounds and estimators perform almost similarly, the difference for
the uniform methods is the biggest. Here, the estimator is much sharper compared
to the other methods. Also, in the constant case the uniform method performs just
as good at 105 degrees of freedom as the goal-adaptive methods.

Adaptivity solely with respect to the primal problem performs the worst however.
In the rough case, only the goal-driven adaptive methods perform similar to the
constant case. The uniform method achieves an error of about one magnitude worse
or for the same error it needs about two orders of magnitude more degrees of freedom.
The primal adaptive method is unfeasible as hardly any error reduction is visible after
103 degrees of freedom.

The preasymptotic phase for the estimators and bounds lasts as long as 104 degrees
of freedom. It is not until then that they give a good representation of the true error.
This will be a great hindrance for reliable heuristics. A special behavior is exhibited
by the guaranteed bounds when applied together with ηMS. This is due to the nature
of the adaptive algorithm, which in that case chooses to refine for either the primal
or the dual error indicator.

As the quantity’s support in this experiment is very small, the algorithm will choose
to refine almost exclusively with respect to the dual error indicator in the beginning.
This, however will lead to slow or no convergence at all for the global error in the L2

or H1 norms. As a result, the bounds sharpness is very limited as they rely on norms
of the global solutions and tend to give worst case estimates. Subsequently, the
bounds will show bad performance as long as the primal problem is not sufficiently
resolved by the mesh. With more than 300 degrees of freedom the guaranteed bounds
behave similar to the variant with ηOP.

The global convergence in Figure 5.26 shows similar behavior as in Figure 5.7 for
Experiment 5.1. The overestimation constant for the estimators once again depends
on the random field as it is only independent of κ with respect to the energy norm
|||u− uh|||ω. In contrast, the convergence for the uniform meshes shows the same
error reduction rate as for the adaptive meshes albeit those need up to 10 times less
degrees of freedom to achieve the same error.

The performance of αopt(ω) from Remark 3.14 as the choice of the parameter α in
the guaranteed bounds is shown in Figure 5.35. Yet again, this approximation proves
to be almost optimal for both example realizations of the random field.

The differences between the refinement algorithms become obvious in the stochastic
case as pictured in Figure 5.27. The mesh sequences were generated using 100
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samples in each step. The refinement with ηMS will refine just in the same areas as
the primal and dual indicators would respectively. However, with the ηOP indicator,
refinement also occurs in the area connecting the two main refinement spots, while
coarser triangles are observed in the support of the quantity and the upper right
corner. A big difference, compared to the first experiment, can be seen in Figure 5.29.
For both, Monte Carlo and multilevel Monte Carlo, ηOP performs among the best.
For Monte Carlo, the adaptivity with ηMS performs worse than expected due to
hardships with the heuristics. This is less of a problem with the multilevel variant if
the practical approach from Section 3.4 is used.

The performance of the bounds differs greatly from the first experiment, as this one
has much bigger oscillations in the problem data and the solution. Only the ηMS
method delivers sharp and thus useful bounds. During the preasymptotic phase, it
performs worse than ηOP due to the bad performance seen in Figure 5.25. Once
these are resolved, the bounds are stable and sharp up to one order of magnitude.
In contrast, the bounds for ηOP meshes are close to 103 overestimation in the
multilevel Monte Carlo method and the bounds for uniform and primal adaptive
meshes overestimate to an extend where they loose any usefulness.

In Figure 5.31 the efficiency of the two algorithms is evaluated with respect to the
standardized cost and actual running time. In Figure 5.33, the same data is presented
except for the bounds to achieve better scaling. Similar results as in Experiment 5.1
are achieved though it takes longer for the multilevel algorithm to become competitive
due to the higher variance of the solution. Moreover, struggling heuristics can be
observed for the multilevel method in connection with ηMS, which is only overcome
for meshes with more than 104 degrees of freedom.

Overall, this experiment shows the limits of the presented methods. When considering
the bounds, the ηMS method is the only feasible mesh strategy out of the presented
ones. If only the error is of concern, the ηOP meshes have superior characteristics
with respect to the error in the quantity of interest. In the asymptotic phase, however,
both goal-adaptive error indicators perform equally well.

Notably, goal-adaptive meshes improve the effectiveness of the methods considerably
and similar to the first experiment the advantages of multilevel Monte Carlo and goal-
adaptive meshes do add up as before, though it takes longer for the multilevel Monte
Carlo method to break even. In fact, up to 104 degrees of freedom goal-adaptive
Monte Carlo outperforms or at least performs just as well as goal-driven multilevel
Monte Carlo. For uniform meshes, this break-even point is much earlier with around
3 · 103 degrees of freedom. The advantage of adaptive multilevel Monte Carlo over
uniform Monte Carlo on finer grids is approximately three orders of magnitude and,
thus, well worth the effort.
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Figure 5.22: Experiment 5.2 The mean solution, the variance, and the weight
for the quantity of interest and a realization κi of the random field.

Similar to Experiment 5.1 the number of samples used for the generation of the
mesh sequence does not have a significant influence on the results. This can be
seen in Figure 5.28 for the meshes, in Figure 5.30 for the error with respect to the
degrees of freedom, and Figure 5.32 or Figure 5.34 for the error with respect to the
computational effort. Please note that, compared to the computations with 100 mesh
samples, this experiment stops at less finer meshes with less degrees of freedom due
to time constraints during the calculations.
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Figure 5.23: Experiment 5.2 The uniform mesh and meshes generated with the
refinement indicators ηu, ηMS, and ηOP for the deterministic constant
κ ≡ 1 with approximately 4100 degrees of freedom which result in the
first graph in Figure 5.25.
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Figure 5.24: Experiment 5.2 The deterministic rough κ and the resulting
meshes from the refinement indicators ηu, ηMS, and ηOP with ap-
proximately 4100 degrees of freedom which result in the second graph
in Figure 5.25.
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Figure 5.25: Experiment 5.2 Convergence of the error, the bounds, and the
estimator with the refinement strategies uniform, ηu, ηOP, and ηMS for
two deterministic κ with respect to the number of degrees of freedom.
The short notations are ηQrel = η◦/ |Q(u)| with the refinement indicator
η◦, η±rel = |η+ − η−| / |Q(u)|, and erel = |Q(u)−Q(uh)| / |Q(u)|.
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Figure 5.26: Experiment 5.2 Convergence of the global error in the H1 norm,
the L2 norm, and the estimator with the refinement strategies uniform,
ηu, ηOP, and ηMS for two deterministic κ with respect to the number
of degrees of freedom.
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Figure 5.27: Experiment 5.2 The meshes in the stochastic setting generated by
different error estimators with approximately 9000 degrees of freedom
with 100 samples for the adaptive mesh generation.
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Figure 5.28: Experiment 5.2 The meshes in the stochastic setting generated by
different error estimators with approximately 9000 degrees of freedom
with 10 samples for the adaptive mesh generation.
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Figure 5.29: Experiment 5.2 Convergence and efficiency of the bounds with
respect to the number of degrees of freedom for the Monte Carlo and
multilevel Monte Carlo method 100 samples for the adaptive mesh
generation.
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Figure 5.30: Experiment 5.2 Convergence and efficiency of the bounds with
respect to the number of degrees of freedom for the Monte Carlo and
multilevel Monte Carlo method 10 samples for the adaptive mesh
generation.
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ẽrel (ηOP)
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Figure 5.31: Experiment 5.2 Convergence and efficiency of the bounds with
respect to standardized computational effort (top) and process time
(bottom) 100 samples for the adaptive mesh generation.
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ẽrel (ηMS)
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Figure 5.32: Experiment 5.2 Convergence and efficiency of the bounds with
respect to standardized computational effort (top) and process time
(bottom) 10 samples for the adaptive mesh generation.
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Figure 5.33: Experiment 5.2 Convergence with respect to standardized compu-
tational effort (top) and process time (bottom) 100 samples for the
adaptive mesh generation.
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Figure 5.34: Experiment 5.2 Convergence with respect to standardized compu-
tational effort (top) and process time (bottom) 10 samples for the
adaptive mesh generation.
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Figure 5.35: Experiment 5.2 Performance of the bounds with respect to the
choice of α compared to αopt for the two deterministic κ on adaptive
meshes using ηMS with approximately 1000 degrees of freedom.
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Experiment 5.3 – On the Efficiency of the path-wise Approach

In Section 3.3 the additional path-wise refinement was suggested as an alternative
to the the mean error indicators. The idea is to resolve sample related oscillations
with indicators depending on ω. Preliminary numerical tests could not produce the
desired results as shown in Figure 5.40. The deterministic convergence experiments
in Figure 5.6, Figure 5.7, Figure 5.25, and Figure 5.26 plotted the error with respect
the number of degrees of freedom on the last level. This however only represents the
memory usage and ignores the time it takes to build the adaptive mesh sequence.

In stochastic sampling approaches, however, the time it takes to compute a sample
is usually more important than the memory it takes to compute that solution. Hence
another experiment will show, how the different adaptive algorithms perform with
respect to the computational effort for different choices of the bulk parameter θ in
Equation (3.14). Besides the time it took to generate the whole adaptive sequence
which includes the computation of the dual solution, the error estimators, and the
refined meshes we will plot the error with respect to the standardized computational
effort for the primal solution defined by the sum over all levels of the number of
degrees of freedom.

In Figure 5.36 and Figure 5.37 the convergence is plotted for Experiment 5.1 with
the rough deterministic κ from Figure 5.5. The adaptive algorithms show a good
advantage in both the goal-driven as well as the global setting but lag the improved
convergence rate seen in Figure 5.6. However, the adaptive algorithm resolves a
singularity which is geometry induced and, hence, can be sufficiently resolved by the
mean meshes of the other methods in Section 3.3. The overhead of the methods
employing mean indicators is independent of the number of samples on the levels
and thus likely outperform the path-wise adaptive meshes as in Figure 5.40.

In Figure 5.38 and Figure 5.39 the same experiment is repeated for Experiment 5.2.
We get sufficient advantage in the global setting but in the goal-driven setting the
best adaptive algorithms give only a small advantage compared to the uniform meshes
and they take time to compensate for the overhead in the beginning. In the stochastic
setting depicted in Figure 5.40 a considerable amount of the adaptive gain can be
realized with the mean meshes and hence the path-wise approach is yet again less
efficient compared to the mean indicator meshes and the even the uniform meshes.
The bulk parameter for those experiments was set to θ for both methods.

Note that different choices of θ might result in more efficient meshes for the cost of
smaller steps with regard to the number of degrees of freedom. For the path-wise
approach this becomes a problem as shown above. The mean meshes however can
employ different θ with only a small time penalty.
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Figure 5.36: Experiment 5.3 Deterministic convergence with respect to the
cumulative standardized computational effort for Experiment 5.1
with the rough κ in Figure 5.5 for different choices of θ.
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Figure 5.37: Experiment 5.3 Deterministic convergence with respect to the
time for Experiment 5.1 with the rough κ in Figure 5.5 for different
choices of θ.

107



5 Numerical Simulations

goal-oriented

101 102 103 104 105

std. cost of primal solution

10−2

10−1

100

101

102

103

104

105

106

107

108
ηQrel
erel

uniform (θ=1.00)

ηu (θ=0.10)

ηu (θ=0.19)

ηu (θ=0.28)

ηu (θ=0.37)

ηu (θ=0.46)

ηu (θ=0.54)

ηu (θ=0.63)

ηu (θ=0.72)

ηu (θ=0.81)

ηu (θ=0.90)

ηOP (θ=0.10)

ηOP (θ=0.19)

ηOP (θ=0.28)

ηOP (θ=0.37)

ηOP (θ=0.46)

ηOP (θ=0.54)

ηOP (θ=0.63)

ηOP (θ=0.72)

ηOP (θ=0.81)

ηOP (θ=0.90)

ηMS (θ=0.10)

ηMS (θ=0.19)

ηMS (θ=0.28)

ηMS (θ=0.37)

ηMS (θ=0.46)

ηMS (θ=0.54)

ηMS (θ=0.63)

ηMS (θ=0.72)

ηMS (θ=0.81)

ηMS (θ=0.90)

global

101 102 103 104 105

std. cost of primal solution

103

104

105

106

107

108 ηu
||u− uh||H1

||u− uh||L2

uniform (θ=1.00)

ηu (θ=0.10)

ηu (θ=0.19)

ηu (θ=0.28)

ηu (θ=0.37)

ηu (θ=0.46)

ηu (θ=0.54)

ηu (θ=0.63)

ηu (θ=0.72)

ηu (θ=0.81)

ηu (θ=0.90)

ηOP (θ=0.10)

ηOP (θ=0.19)

ηOP (θ=0.28)

ηOP (θ=0.37)

ηOP (θ=0.46)

ηOP (θ=0.54)

ηOP (θ=0.63)

ηOP (θ=0.72)

ηOP (θ=0.81)

ηOP (θ=0.90)

ηMS (θ=0.10)

ηMS (θ=0.19)

ηMS (θ=0.28)

ηMS (θ=0.37)

ηMS (θ=0.46)

ηMS (θ=0.54)

ηMS (θ=0.63)

ηMS (θ=0.72)

ηMS (θ=0.81)

ηMS (θ=0.90)

101 102 103 104 105

std. cost of primal solution

10−2

10−1

100

101

102

103

104

105

106

107

108
ηQrel
erel

uniform (θ=1.00)

ηu (θ=0.10)

ηu (θ=0.19)

ηu (θ=0.28)

ηu (θ=0.37)

ηu (θ=0.46)

ηu (θ=0.54)

ηu (θ=0.63)

ηu (θ=0.72)

ηu (θ=0.81)

ηu (θ=0.90)

ηOP (θ=0.10)

ηOP (θ=0.19)

ηOP (θ=0.28)

ηOP (θ=0.37)

ηOP (θ=0.46)

ηOP (θ=0.54)

ηOP (θ=0.63)

ηOP (θ=0.72)

ηOP (θ=0.81)

ηOP (θ=0.90)

ηMS (θ=0.10)

ηMS (θ=0.19)

ηMS (θ=0.28)

ηMS (θ=0.37)

ηMS (θ=0.46)

ηMS (θ=0.54)

ηMS (θ=0.63)

ηMS (θ=0.72)

ηMS (θ=0.81)

ηMS (θ=0.90)

Figure 5.38: Experiment 5.3 Deterministic convergence with respect to the
cumulative standardized computational effort for Experiment 5.2 for
different choices of θ.
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Figure 5.39: Experiment 5.3 Deterministic convergence with respect to the time
for Experiment 5.2 for different choices of θ.
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Experiment 5.1 with rough κ
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Figure 5.40: Experiment 5.3 Convergence with respect to standardized compu-
tational effort for the two previous examples with the rough random
field. The AMCMS graph depicts the preliminary path-wise algorithm
from Section 3.3 with θ = 0.5.
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5.3 Alternative Approach

Experiment 5.4 – Smooth Field for the Exponential Buckle

The next experiment will cover the alternative solution method from Chapter 4. The
visualization of these methods has to differ from the last experiments as one of the
biggest advantages of this method over the Monte Carlo and multilevel Monte Carlo
method is its proper separation of the spatial and stochastic domain. This allows
to choose the number of samples locally based on the variance in any part of the
domain. For comparison purposes we compute the solution for the experiments with
a fixed number of samples for all the points in the domain using uniform and adaptive
meshes and we use different numbers of samples for the same meshes. This results
in four variants of the experiment.

The input data for this experiment is the same as for Experiment 5.2 except for the
random field, which is based on the smooth benchmark field in Equation (2.8). Its
parameters are t = 5, εκ = 0.5 · 10−3, σα = 2, A = 0.6, and cκ = 1. The minimum
number of samples Ninit is always set to 100. The mean and variance of the solution,
as well as an adaptive finite element mesh from the method in Section 3.3 as well as a
realization of the random field κ are shown in Figure 5.42. In Figure 5.43 the number
of samples is plotted for each vertex in the domain using the P1 interpolation.

This, however, gives a wrong impression of the actual computational effort invested
in every part of the domain as the density of the adaptive meshes varies greatly in
the domain. Instead, Figure 5.44 gives a better overview over the invested time in
each part of the domain. It visualizes for each triangle T ∈ T` the average number
of samples on that triangle divided by its area. Let N1, N2, N3 be the number of
samples in the nodes of the triangle, then the values presented in Figure 5.44 are
defined as

CT = 1
3 |T |

3∑
i=1

Ni. (5.2)

Here, it becomes apparent that a uniform distribution of the samples is not efficient.
Adaptive sampling, related to stratified sampling, will allocate most samples to the
areas with the highest variance, whereas uniformly distributed samples will always
assume worst case variances for each point in the domain. In case of adaptive meshes,
the value of CT is quite small for large triangles even for the uniformly distributed
samples but as it does not cater for the local variance, small boundary triangles
exhibit a large computational effort per area CT despite their small variance. Only
the connection of the two methods results in the best approximation behaviors out
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of the approaches presented here.

The convergence for these methods is presented in Figure 5.41 for both the L2 and
the H1 norm. Note that the finite element error estimator optimizes the meshes
with respect to the energy norm, that is for the H1 norm. As a result, the best
performance of the mesh adaptive methods can be observed in the H1 norm. The
best result is achieved with the combination of the methods. Almost as good as this
is the mesh adaptive only version. Solely, sampling adaptivity performs in third place
with almost one order of magnitude more computational effort necessary to achieve
the same error compared to the best, while uniform meshes together with a uniform
sample distribution performs almost two orders of magnitude worse than the first.

A different picture is drawn for the L2 norm. The all uniform method is still the worst,
while the other methods are comparatively equal with a slight advantage for the two
adaptive sampling methods. Suitable error estimators in the L2 norm should improve
these results if necessary. Nevertheless, even in the L2 norm, the best method is one
order of magnitude faster than the all uniform method.
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Figure 5.41: Experiment 5.4 Convergence with respect to the process time for
different adaptive strategies in the H1 norm (above) and the L2 norm
(below). The abbreviations are aFEM for finite element adaptivity and
aV for the localized adaptive number of samples.
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Figure 5.42: Experiment 5.4 The mean solution, its variance, an adaptive finite
element mesh generated with the methods from Section 3.3 and a
single realization κi of the random field κ.
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Figure 5.43: Experiment 5.4 The number of samples for each vertex interpolated
onto the mesh. A better representation of the computational effort is
given in Figure 5.44.
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Figure 5.44: Experiment 5.4 The mean number of samples for each triangle
divided by its area, defined as Ct in Equation (5.2), is shown for the
different methods in order to visualize the computational effort and
its distribution in the domain.
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Experiment 5.5 – Smooth experiment

The random field κ is the same as in Experiment 5.4. In contrast to the last experiment,
the rest of the input data will be chosen to be very smooth. The right-hand side is
set to a constant f ≡ 1 and the homogeneous boundary data in Equation (1.1) is
replaced with the Dirichlet condition

uD = sin(πx) + sin(πy).

As can be seen in the mean solutions plot in Figure 5.46, spatial adaptivity is not
needed for this experiment and thus it will create an unnecessary overhead compared
to the uniform meshes. On the other hand, the variance, seen in the same figure,
is not constant owing to the random field and the domain shape. Furthermore, an
adaptive finite element mesh from the method in Section 3.3 as well as a realization
of the random field κ is shown.

The distribution of the samples is shown in Figure 5.47. For all the methods, a rather
homogeneous distribution is observed, except for the regions close to the boundary.
The variance adaptive methods use much fewer samples in those areas. This is,
however, compensated in the full adaptive method by the much smaller triangle
diameters close to the boundary.

This effect becomes apparent in Figure 5.48 where the CT from Equation (5.2) is
depicted for this experiment. We can see, that quite a lot of mean samples per area
are used in the full adaptive method despite a relatively low variance. This problem
is much stronger with the solely spatial adaptive method as nearly all computational
effort is concentrated in the low variance boundary regions.

The convergence plot in Figure 5.45 shows almost identical performance with respect
to the H1 norm for all four methods. This comes as no surprise as the described
problem is very smooth. With respect to the L2 norm, the spatial adaptive methods
perform slightly worse than those with uniform meshes as the adaptivity optimizes for
the H1 norm. At the end of the preasymptotic phase, the spatial adaptive methods
almost manage to catch up but some overhead factor of approximately 3 remains.
Yet again, an L2 norm error indicator might well improve their performance.
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Figure 5.45: Experiment 5.5 Convergence with respect to the process time for
different adaptive strategies in the H1 norm (above) and the L2 norm
(below). The abbreviations are aFEM for finite element adaptivity and
aV for the localized adaptive number of samples.
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Figure 5.46: Experiment 5.5 The mean solution, its variance, an adaptive finite
element mesh generated with the methods from Section 3.3 and a
single realization κi of the random field κ.
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Figure 5.47: Experiment 5.5 The number of samples for each vertex interpolated
onto the mesh. A better representation of the computational effort is
given in Figure 5.48.
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Figure 5.48: Experiment 5.5 The mean number of samples for each triangle
divided by its area, defined as Ct in Equation (5.2), is shown for the
different methods in order to visualize the computational effort and
its distribution in the domain.
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Overview

The biggest challenge in finding the solution for partial differential equations with
random fields, by far, remains to be the size of the solution space D × Ω as Ω
usually has infinite dimensions. Also the discretization of D and Ω in some finite-
dimensional subspaces still leaves a high-dimensional product space. It is futile to
attempt the numerical treatment of real world examples without the exploitation
of sparsity patterns in the product space. The aim for all methods must be to
focus all computational efforts on those parts with the highest error density. For
stochastic Galerkin methods, combined error estimators can be developed [EGSZ14]
but those methods still struggle with the high-dimensionality such that even the
construction of a sufficiently accurate Karhunen-Loève decomposition can become a
hard challenge.

Sampling based methods do not suffer from this problem but instead have to battle
a dimension independent slow rate of convergence. This rate is fundamental and
cannot be improved by any means. Thus, it is important to find ways to reduce the
variance of the random variable that needs to be sampled as well as to reduce the
computational effort for each sample that has to be rendered.

Monte Carlo and Multilevel Monte Carlo

The adaptive multilevel Monte Carlo method presented in Chapter 2 addresses both
problems. The multilevel method aims to reduce the variance as cheaply as possible
through offloading the computation of as many of the samples as possible onto
coarse and thus cheap meshes. On finer meshes only correcting random variables
are sampled which have a much smaller variance and thus need fewer samples. The
cost is reduced even further with adaptive meshes which give the same error but
with less computational effort. The method presented here aims to provide adaptive
meshes that are cheap to come by and yet offer enough error reduction. In fact, it
requires that the mean adaptive meshes offer enough error reduction with respect to
the overall error density in D × Ω.

One of the biggest advantage of the presented method is the ease of implementation,
as existing finite element solvers and adjoint adaptive algorithms can readily be used
in a black-box style in conjunction with the sampling approaches from Chapter 2. In
strong contrast, Galerkin methods need to alter the solver itself with the expected
challenges for complex problems. The adaptive meshes come at a very low cost
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yet achieve great improvements in cost efficiency for a wide variety of problems.
As shown in the numerical studies, the expected gain in speed can be gauged for
suitable problems from deterministic situations already at hand. Compared to the
other cost contributions, the additional operations in the multilevel algorithm are
cheap and the cost improvements easily justify their application. The combination of
both approaches can lead to a further reduction in the effort necessary to achieve a
given error which leads to a staggering two orders of magnitude cheaper method
compared to the uniform Monte Carlo approach.

The worst case scenario for the mean meshes is actually the uniform mesh, which
will result in the same performance as the uniform multilevel Monte Carlo method
with an additional overhead for the creation of the meshes. As the cost for their
generation is dominated by the costs on one level with a small constant number
of samples necessary to achieve reliable results, it can be ignored in almost any
circumstances. These problems, however, might profit from path-wise adaptivity,
that is a different adaptive mesh for every sample. This is much more expensive,
because for every sample the adaptive meshes have to be computed so one needs
to ensure that the effort for those samples is compensated by the advantage of the
adaptive meshes. This situation arises for example with the Lévêque problem, where
high velocities demand appropriate anisotropic adaptive meshes [Hol08]. In all the
numerical examples in this work, however, the expected improvement as seen in
the deterministic case could already be realized with the mean meshes so that no
considerable improvement is expected for this class of problems.

SDE Method

The SDE-based interpolation method from Chapter 4 provides a valuable alternative
to the finite element approach if combined with proper adaptivity. In case of some
quantity of interest this method only considers the support of the quantity and
disregards the rest of the domain. This is especially important for higher dimensional
problems where finite element approaches suffer from big computational costs.

The exploratory numerical tests in this work already showed encouraging results
regarding the adaptive methods. The residual error estimators optimized successfully
the mesh structure for the reduction of the H1 error. More important, however,
was the adaptive variance method, which improved the error reliably under cost
constraints in a problem-independent approach that is simple to implement.

A direct comparison is not reasonable in this context as the method is expected
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to perform the best for higher dimensional spaces D. For the sake of a reliable
implementation and verifiability through the Monte Carlo and multilevel Monte Carlo
method from Chapter 2 we restrained the number of dimensions to two as in the
first methods. This is enough as a proof of concept and to show the robustness of
this method even for complex problems with strong oscillations in the input data
and a very high variance in the solution.

Outlook

The mean meshes used in this thesis can adapt a great part of the advantages resulting
from adaptive meshes for the stochastic context. However, individual adaptivity for
each ω ∈ Ω will result in improved error reduction with respect to the number of
degrees of freedom. This comes at a higher cost which grows with the number of
degrees of freedom and the number of samples as for each sample a sequence of
adaptive meshes needs to be computed up to some error tolerance. A combination of
the above techniques or a truncated adaptive sequence which uses uniform refinement
after some threshold might mitigate this problem.

For the multilevel Monte Carlo method the adaptive meshes were chosen so that they
grow with similar computational complexity as the uniform refinement. However, the
uniform refinements themselves are not an optimal choice but instead some geometric
sequence promises better results [HANvST15, CHAN+14]. The same holds true for
the adaptive meshes.

The techniques presented for the Monte Carlo and the multilevel Monte Carlo methods
should be readily adaptable for stochastic collocation methods and Quasi-Monte
Carlo methods as they start with similar premises. The results should closely resemble
those in Chapter 5.

The alternative method showed promising results for these basic examples and further
investigation with higher dimensions in the stochastic and physical domain as well as
with quantities of interest needs to be done. Other error indicators that are better
adapted for the computational goal need to be derived.

Heuristics remain an important part of sampling based methods as non smooth
problems with high oscillations in the input data make it hard to extrapolate data in
a reliable manner. On the other hand it is common that suboptimal choices of key
parameters will lead to a great reduction in the computational efficiencies.
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Zusammenfassung

Das Stichprobenverfahren, auch bekannt als Monte-Carlo-Methode, ist ein robuster
Ansatz zum Lösen von partiellen Differentialgleichungen mit stochastischen Koeffizien-
ten, welcher sich gut für bereits existierende Finite-Elemente- oder Finite-Volumen-
Implementationen der entsprechenden deterministischen Differentialgleichung adap-
tieren lässt. Der Hauptvorteil dieses Verfahrens liegt in der dimensionsunabhängigen
Konvergenzrate von 1/2 bezüglich der verwendeten Stichproben, welche sich aus dem
zentralen Grenzwertsatz ergibt. Dies ist sogleich der größte Schwachpunkt. Daher
ist es ein zentrales Anliegen aktueller Ansätze die Berechnungskosten der einzelnen
Stichproben zu reduzieren. Das Multilevel-Monte-Carlo-Verfahren bietet hierfür einen
der vielversprechendsten Ansätze.

Diese Arbeit hat drei Ziele. Zum ersten sollen die Kosten für die Stichproben sowohl
im Monte-Carlo-Verfahren als auch im Multilevel-Monte-Carlo-Verfahren weiter
durch den Einsatz von adaptiven Gitterhierarchien verbessert werden. Dabei werden
Lösungsstrategien für die auftretenden Probleme beim Ermitteln von optimalen
Parametern für das Verfahren vorgeschlagen.

Eine fundamentale Eigenschaft des Stichprobenverfahrens ist die Unsicherheit des
numerischen Ergebnisses, da es sich wiederum um eine Zufallsgröße handelt. Daher
ist das zweite Ziel dieser Arbeit das Finden von Schranken, welche mit einer gewählten
Wahrscheinlichkeit den numerischen Fehler beschränken um somit verlässliche Aus-
sagen über die zu berechnende Größe treffen zu können.

Zuletzt soll eine alternative Methode untersucht werden, welche die Dimensions-
abhängigkeit von der Finite-Elemente-Diskretisierung des physikalischen Gebietes
auflöst, indem sie hier ebenfalls eine Zufallsvariable zur Modellierung mithilfe einer
stochastischen gewöhnlichen Differentialgleichung verwendet. Adaptive Methoden
werden auch hier die Stichprobenkosten reduzieren.

Numerische Tests belegen die Verbesserungen der vorgeschlagen Methoden.
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