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Abstract: Topological properties of the approximate subdifferential introduced by Mordukhovich
are studied. Apart from formulating a sufficient condition for connectedness, it is shown that, up to
homeomorphy, each compact subset of R” may occur as the approximate subdifferential of some
Lipschitz function. Furthermore, even an exact result is possible when considering the partial
approximate subdifferential, which was introduced as a parametric extension by J ourani and Thibault:
Given any compact subset of R, there is a locally Lipschitzian function realizing this set as its partial
approximate subdifferential at some predefined point.
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1 TIntroduction

The approximate subdifferential introduced by Mordukhovich [10] has been
extensively studied by Ioffe both in the finite-dimensional [5] and Banach space
setting [7]. Being minimal within a family of reasonable subdifferentials ([5],
Theorem 9), this concept has attracted much attention in some recent papers. As
examples, the derivation of Fritz-John or Kuhn-Tucker conditions as well as
metric regularity results by Jourani and Thibault [8], [9], Glover and Craven
[2] and Glover, Craven and Flim [3] may be cited. Fruitful applications can be
expected in stochastic and semi-infinite programming (see e.g. [3]).

As one of the most important features the approximate subdifferential is
contained in that of Clarke [1]. On the other hand it preserves upper semicon-
tinuity. This makes it preferable to, for instance, the Dini subdifferential [4]
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which is also a subset of Clarke’s subdifferential. Not being defined via support
functions, the approximate subdifferential fails to be convex in general. It may
even happen to become disconnected as can be seen from the simple example
J(x) = —|x|.

This paper deals with the quesiton, which topological types may occur in the
finite dimensional case. It turns out that, for locally Lipschitzian functions, there
are no restrictions apart from compactness. Nevertheless, it is possible to impose
specific conditions on the Dini subdifferential — being the essential ingredient of
the approximate subdifferential — which ensure certain topological properties
like convexity, star-shapedness or connectedness.

2 Basic Definitions and Properties
For topological spaces X, X* consider a multifunction F: X — 2%*,

Definition 2.1 (limits of multifunctions): For z € X put

lim sup F(x) = {x* € X*|there exist sequences x,, — z (x, € X), x¥ — x*
X7z (x* € X*)such that x¥ € F(x,)}

(upper limit of F at z) and

lim inf F(x) = {x* € X*| for all sequences x, — z(x, € X) there exists a
= sequence x* — x* (x* € X*) such that x* € F(x,)}

(lower limit of F at z)

Sometimes the convergence x, — z in the above definitions is restricted by
additional conditions to some subset of X. This will be indicated below the
‘limsup’ and ‘liminf” signs.

Now, let f: R - R u { —00, o0} be an extended-valued function.

Definition 2.2 ( Dini subdifferential): For x € R? put

{x* e R?|x*Th < d"f(x; W\Vhe R®} if | f(x)| < oo

of) = {@ else
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[
where .

foc+m)— f)

d~f(x; h) = lim inf ———
—h o t .

o
is the lower Dini directional derivative of f at x in direction h.
The definition of the approximate subdifferential will be given in the notation of
Definition 2.3 (approximate subdifferential): For x € R? put
lim siu‘p'aff(‘x) Hif1f@) < -
o.f@) =< soim
1] else

For continuous functions the condition f(x) f;;f(z) may be omitted, of course.

Example 2.1: Consider the lower semicontinouos function f: R* — R defined by

| _fx4y+1 o ifx >0andy>0
f(x9 ,V) - {0 : else
Then N

’{(0’0)} ifx<0¢,‘)r‘y<00rx=y=0
[0,00) x {0} ifx=0andy>0 -

0 f(x,y) = 3
{0} x [0,00) ify=0andx>0
{1} Cify>0andx >0

When computing 0, f(0, 0) here, one may exclude those sequences (X,, y,) = (0, 0)
with x, > 0 and y, > 0 because of f(x,, y,) > 1#0= £(0, 0) (see definition 2.3).
Therefore oo :
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(0, 0) = [[0, o) x {0}Jw [{0} x [0, )]

(union of two half-rays).
The following simple properties may be stated (see also [5], Theorem 2):

1. 8f(x) is a convex and closed set, 0,f(x) is a closed set. It always holds
07 f(x) = 0, f(x). ‘ '

2. 0,f(z) = lim sup 4, f(x) (upper semicontinuity).

x)=f(z

3. For lowe;( s)erflic):ontinuous functions the relation 0=f(x) < 9, f(x) < 8.f(x) is
valid, where 0, refers to Clarke’s subdifferential. For convex functions the
three subdifferentials coincide with the classical subdifferential of convex
analysis.

4. For locally Lipschitzian functions d7f(x), 8, f(x) and 8, f(x) are compact and
0. f(x) = clco 0, f(x), where ‘co’ refers to convex hull and ‘I’ to closure. In
particular, d,f(x) # & Vx € RP.

In the context of metric regularity investigations for functions depending on a
parameter, Jourani and Thibault [8] introduced a parametric extension of the
approximate subdifferential which will be marked by an upper index ‘*’ for
better distinction.

Definition 2.4 (partial approximate subdifferential): For a metric space U, an
extended-valued function f: R? x U - Ru {—o0, o0} and (z, ) € R? x U put

(x, u)~>(z, ),

0Xf(z, B) = < w1z

[ else

limsup 3°£(x) iflf(z @) < o

where f,(x) = f(x, u).

The partial approximate subdifferential enjoys the same upper semicontinuity
property as the original one, i.c.

0rf(z,u) = limsup  OFf(x, u)
(x, u)=(z, )

J(x,u)=f(z,4)
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3 Results

Owing to its definition, topological properties of the approximate subdifferential
are closely related to the local behaviour of the Dini subdifferential. The follow-
ing conditions on 8~ (the first of which is included only for the sake of complete-
ness) will imply consecutively weaker characterizations of 0,

(A1) 0°f(z) =limsup 0 f(x)
S 5)
(A2) liminf 0 f(x) # &
(x)-*}(z) ,
“F)# D
(A3) 0 f(z) is compact and there exists ¢ > 0 such that all x with |lx — z|t

1f60) — f@)| < e and 67f(x) # @ fulfill 8f(x) N 9/ (2) # B

Lemma 3.1:

1. (A1) = 0,f(2) is convex.

2. (A2) = 3,f(2) is star-shaped.

3. (A3) = 0, f(z) is connected.

4. If f is locally Lipschitzian then
(A3) = (A1) as well as
(A2) = (A1) or 0,f(2) is a singleton

Proof:

ad 1.: This follows immediately from deﬁniﬁon 2.3 and the convexity of 07 f(z).
ad 2.: First, choose : '

y* € liminf 0 f(x) ' )

Xz
(x)~f(2)
~f(x)# &

Now, select any x* € 4, f(z). By definition 2.3, this means existence of sequences
Xy = 2, f(X,) = f(2), x¥ = x*, x¥ € 0 f(x,)

From (1) it follows, taking into account the restrictions below the ‘liminf” sign,
that there exists a sequence y* — y* with y* e 0 f(x,). For al‘bltldl'lly fixed
t € [0, 1] one gets
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w¥ = tx¥ + (1 — t)y¥ € 07f(x,), wi = tx* + (1 — )y*

by convexity of 0~ f(x,). Consequently, [x*, y*] < 0,f(z) for the line segment
joining x* and y*. In this way, y* chosen in (1) is itself an element of J, f(z) and
has the property, that [x*, y*] < 0°f(2) for arbitrary x* € d,f(z). This means
starshapedness of the approximate subdifferential.

ad 3.: First note, that it is sufficient to show that for each x* € 9, f(z) there exists
some y* € 0~ f(z) such that the line segment [x*, y*] is contained in J,f(z). In
fact, if there are given two arbitrary elements x¥, x¥ € 9,f(z), then one could
“conclude that [x*, y*], [x¥, y¥] < 0,f(z) for some y}, y} € 07 f(z). Now, convex-
ity of 07f(z) implies [y*, y¥] < 87 f(2) = 0,f(2) (see property 1 stated above).
Hence '

[x¥ y¥lolyk yvilo byt x¢1 < 0.f(2)

and &, f(z) is connected.

In order to prove the mentioned fact, assume x* € d, f(z). By definition, there
exist sequences x, — z, x¥ — x* such that f(x,) - f(z) and x} € 07f(x,). Owing
to assumption (A3) there exists y* € 07f(x,) N 0™ f(2). Since d~f(z) is compact,
one has y} — y* € 0~f(z) for some subsequence. For arbitrary ¢ € [0, 1] it holds

wr =txx + (1 = t)yk € 0°f(x,,), wn = tx* + (1 — )y* .

k

by convexity of 07f(x,, ). Therefore [x*, y*] < 0,f(z).
ad 4.: Suppose that §~f is not uppersemicontinuous for some locally Lipschitzian
f at z, ie. (A1) is violated. Then there exists a point x* € d,f(z)\d"f(2). By
convexity and closedness of d7f(z) (see property 1 stated in section 2) one even
has x* € d,f(z)\A for some proper superset A > 8 f(z) which is closed and
convex. ,

Again, there are sequences x, — z, x§ — x* with x¥ € 07f(x,) € 0.f(x,) (see
property 3 in section 2). According to [1] one may represent Clarke’s subdiffer-
ential as

x% € 0. f(x,) = co{y*|3yn, > x,: Vf(yn,) > y*} @

where V refers to the gradient which is supposed to exist at y, . Now, if y* € 4
would hold for all y* from (2) then convexity of A would imply x} € A. On the
other hand, it follows x* ¢ A for n > n, from the closedness of 4. Thus, for each
fixed number n > n, we may choose some element y* ¢ A from (2). By closedness
of A a point y, may be found such that ||y, — x,|| < 1/n and Vf(y,) ¢ 4. As a
result, there exists a sequence {y,} with
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Yn = 2, f(¥a) = f(2) (continuity of ), 07f(y,) = {Ff(ya)} # & €)

Furthermore, 0™ f(y,) n 8"f(z) = &, which contradicts assumption (A3).
For proving violation of (A2), first assume 07f(z) # &. Then

liminf 0 f(x)cd f@)c A )
(;;:; (z)
~f(x)# &

The first inclusion is seen as follows: Let w* e ‘liminf’ and consider the constant
sequence x, = z. By definition of liminf” there has to be a sequence wy — w*,
w* e 07f(2), which means w* € 9™ f(2).

Now, suppose that the ‘liminf* contains some element w*. Then, to the se-
quence {y,} constructed in (3), there must correspond a sequence yy € 87 f(y,)
with y* — w*. However, by (3), y* = Vf(y,) ¢ A, which yields w* ¢ 4 from the
closedness of A and a contradiction to (4). \

It remains to show that, in the case 67 f(z) = & (A2) enforces J, f(z) to reduce
to a singleton. If Clarke’s subdifferential of f at z would contain at least two
elements, then, again exploiting the representation (2) (now with x, replaced by
z), provides the existence of sequences {y}} (i = 1, 2), with

Yoz, 07 () = (P}, V(D) = o 0y #

This again contradicts (A2). Because of & # 4, f(z) < 0.f(z) (see property 4. of
section 2) the approximate subdifferential at z must reduce to a singleton. [

By Assertion 4 of lemma 3.1 it is confirmed that the value of assumptions (A2)
and (A3) is restricted to functions not being locally Lipschitzian since, otherwise
nothing else than convexity of the approximate subdifferential is implied (see
assertion 1 of the lemma). On the other hand, for the non-Lipschitzian case,
conditions (A2) and (A3) are not meaningless. Both of them are satisfied, for
instance, in example 2.1 where d,f(z) is star-shaped but not convex. In the
following example (A2) fails to hold but (A3) is fulfilled. As a consequence, 3, f(2)
is connected but it is not star-shaped.

Example 3.1: Consider the function

1 ifxy>0
[x] else

f&x.y) ={

which is lower semicontinous in a neighbourhood of the origin. Computing the
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approximate subdifferential gives
2,50, 0) = [(~o, ®) x O UL{~1} x (-0, 0]V [{1} x (0, )]

Finally, condition (A2) may circumvent the compactness assumptlon in (A3) as
in the example

ifx>0o0rxy<0
else

=4

Before stating the results on the generality of topological typcs for approx:mate
subd1ﬁerent1als we need the followmg s1mple lemmas

Lemma 3.2: For a compact set K = R? and a function g(z) = min z7x. put

xeK

1(2) = {yeKlzTyys z"x¥x e K}

Then it holds
I0) = {¥) =07l = (X} PR )

#12)>2=09@0)=F o . ©

Proof: Clearly, the assurrlptlon in (5)implies d~g(z; h) = = XThVh e R from which
the result follows (see definition 2.2). Concerning (6), assume X € 0 g(z). Given
arbitrary x°, x e I(z) and h e R it follows (compare defmltlon 22)

min{x*Th,x*Th} > min xTh =d g(z; h) =2 Xx"h > —d " g(z; —h)
xel(2)

= — min {—xTh} = max xTh
xel(z) ; xel(z)

> max{x*Th, x"Th}

Therefore, x*Th = x*Th Vh € R% hence x® = x® and # I(z) = 1, which contradicts
the assumption of (6). -~ S : O
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. ) Ky
Fig. 1.

Lemma 3.3: For some fixed number u € R, u # 0 consider the following ellipsoid
(compare fig. 1). '

E.= {0 e R x Rllul|x|? + ¢~ 1> =1} | M

Then for arbitrary (z,®) € E, and A < 0, the linear function h: R? x R > R,
h(x, t) = Alu|zTx + A(x — 1)t attains its minimum over E, exactly at the point
(x,8) = (z, @).

The assertion of the last lemma is easily verified.

The following theorem indicates that any predefined compact subset of a finite
dimensional space may occur as the partial approximate subdifferential (see
definition 2.4) of some locally Lipschitzian function.

Theorem 3.1: For each compact subset K < R there exists a locally Lipschitzian
function f: RP*2 — R such that 8}f(0,.4, 0) = K x {0}

Proof: Let C be some positive number fulfilling ||x||> < C Vx € K. Then, for
ju| < 1/C the set

K,={(xt)eR? >‘<yR|xe'Kv,z=~1 — /1= lulIx]?} : : ®

is well defined. Clearly, K, = K x {0} and, for u # 0, K, < E, with respect to

the parameter-dependent ellipsoid in (7). An illustration is given in figure 1.
The assertion of the theorem will be shown to hold for the following locally

Lipschitzian function f: R* x R x R—> R: '

min{z"x + at|(x,t) e K,}  forju| < 1/C
min{z"x + at|(x,t) € Ky,c} forlu|>1/C

f(Z, a, u) = { 9
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1) 8¥f(0,,0,0) < K x {0}
Let (x*, t*) € 37f(0,, 0, 0). By definition 2.4 there exist sequences

(Xps Ens Up) = (Ops 0, 0), (xy, t3) — (x*, t¥)

with (x¥, i,‘:‘) € 07, (X, t,). Lemma 3.2 applied to the function g = £, and to the
compact set K, yields — having in mind that the set I defined in the lemma is
always nonempty — {(x}¥, t¥)} = I(x,, t,) € K, . Consequently,

x*eKandt* =1 — /1 — |u,|[|x*]> >0

(see (8)). But this means x* € K and t* = 0.

2) K x {0} = 0¥f(0,,0,0)

Let x* € K and, for n > C, define t* = 1 — /1 — ||x*|?/n to get (x*, t¥) € Ky,
Put x, = —x*/n? t, = —(t* — 1)/n. Then, for fixed parameter u = 1/n, the par-
tial function f, of (9) evaluated at (x,, t,) reads as

fl/n(xn’ tn) = f(xm tn’ l/n) = min{_xTx*/nz - t(t: - 1)/n|(xa t) € Kl/n}

Application of lemma 3.3 with u = 1/n, z = x*, « = t¥, A = —1/n provides that
the linear function

h(x, t) = —xTx*/n? — t(t* — 1)/n

attains its minimum over E,;, exactly at the point (x*, £}}). Owing to (x*, ty) €
Kyjn € Ey it follows, that the same linear function attains its minimum over
K ,,, exactly at the mentioned point, or in other words: the set of active indices
of fi at (x,, t,) is I(x,, t,) = {(x*, t¥)}. Via (5) one arrives at 0 f,,(x,, t,) =
{(x*,t¥)}. By the corresponding definitions it holds (x,, t,) = (0,, 0), (x*, t¥) —»
(x*, 0) and therefore (x*, 0) € 7f(0,, 0, 0). O

For the usual, nonparametric approximate subdifferential, a little bit weaker, but
topologically equivalent result may be derived by similar arguments.

Theorem 3.2: For each compact subset K = R” and each number ¢ > 0 there exists
a Lipschitzian function f: R?P*! - R such that K is homeomorphic with 8, f(0) and
dist (K x {0}, 0,f(0)) < e.

Proof: First, we verify the equality
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0,£00,,0)=K, 0<u<1/C : , (10)

where f, K, C refer to theorem 3.1.

1) 3,£.0,,0) < K,
Let (x*, t*) € 3,£,(0,, 0). By definition 2.3 there exist sequences

(Xn> 1) = (0, 0), (37, 1) = (x*, %)

with (x¥*, t*) € 87f,(x,, t,). The same reasoning as in theorem 3.1 with u, replaced
by u yields (x¥, t¥) € K,, hence (x*, t*) € K,,.

2) K, € 3,£,0,,0) |

For (x*, t*) € K, define x, = —ux*/n, t, = —(t* — 1)/n. Along the same lines as
in theorem 3.1 one arrives at 8~ f,(x,, t,) = {(x*, t*)}. Furthermore, (x,, t,) =
(0,, 0), hence (x*, t*) € 0,£.(0,, 0).

Now, for each u € (0, 1/C) the mapping ¢: K — K, defined by

$x) = (x, 1 — /1 = lul[x]1?)

is a homeomorphism between K and K,,. In fact, with y: K, = K, {/(y, t) = y one
has Y o ¢ = idy, ¢ o = idy,. This means that ¢ is bijective and both, ¢ and
¢! = y are continuous. Summarizing, one may take f = f, for any u € (0, 1/C)
to prove the first assertion of the theorem via (10). Note that any such f; is even
(globally) Lipschitzian (see (9)).

Finally, put f = f, for any u € (0, §) with

B = min{1/C, [1 - (1 — &)*1/C}

to get dist(K x {0}, K,) < & by definition of K, and by (10) O

If relation (10) would hold also in the case u = 0 then, since K x {0} = K, each
compact set could be exactly realised as an approximate subdifferential of some
Lipschitzian function. The crucial point is, that uniqueness of the minimum of
the linear function f, over K, is enforced by embedding K, into an ellipsoid for
u € (0, 1/C). For u— 0, this ellipsoid degenerates to {R? x {0}]Juw [R? x {2}]
and uniqueness of the minimum is lost in general. Therefore one cannot establish
the inclusion K, < 8, fo(0,, 0) with the ideas used here. Recalling, that

K x {0} = K, = limsup K,
u—0



172 R. Henrion

holds in the example, this may serve as well as an illustration for the relation
lim sup 0, £,(2) # 0,fo(2)
u—0

i.e., upper semicontinuity of the approximate subdifferential with respect to an
exterior parameter fails to hold. This lack is cricumvented by the partial approx-
imate subdifferential.

4 Conclusions

By theorem 3.2 each topological type of a compact set in R? may occur as the
approximate subdifferential of Lipschitzian functions. The fact that this sub-
differential appears in quite a variety of shapes might be helpful when comparing
it to other subdifferentials. Another consequence of the theorem is, that the
Clarke subdifferential of any locally Lipschitzian function may be approximated
arbitrarily close by the approximate subdifferential of simple min-type functions
as in (9).

It is possible to extend the ideas used here to the infinite dimensional case in
an appropriate setting, but care has to be taken of the generalized definition of
the approximate subdifferential (see [6]). It remains an open question, whether
each compact set itself (not just an homeomorphic image thereof) can be ob-
tained as the approximate subdifferential of a locally Lipschitzian functions.
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