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Abstract This paper aims at illustrating the efficient solution of nonlinear optimiza-
tion problems with joint probabilistic constraints under multivariate Gaussian distri-
butions. The numerical solution approach is based on Sequential Quadratic Program-
ming (SQP) and is applied to a renewable energy management problem. We consider
a coupled system of hydro and wind power production used in order to satisfy some
local demand of energy and to sell/buy excessive or missing energy on a day-ahead
and intraday market, respectively. A short term planning horizon of 2 days is con-
sidered and only wind power is assumed to be random. In the first part of the paper,
we develop an appropriate optimization problem involving a probabilistic constraint
reflecting demand satisfaction. Major attention will be payed to formulate this prob-
abilistic constraint not directly in terms of random wind energy produced but rather
in terms of random wind speed, in order to benefit from a large data base for identi-
fying an appropriate distribution of the random parameter. The second part presents
some details on integrating Genz’ code for Gaussian probabilities of rectangles into
the environment of the SQP solver SNOPT. The procedure is validated by means of
a simplified optimization problem which by its convex structure allows to estimate
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the gap between the numerical and theoretical optimal values, respectively. In the
last part, numerical results are presented and discussed for the original (nonconvex)
optimization problem.

Keywords Probabilistic constraints · Renewable energies · Multivariate Gaussian
probability · SQP with low precision data

Mathematics Subject Classification 90C15 · 90B05

1 Introduction

A probabilistic constraint is an inequality of the type

P (g(x, ξ) ≤ 0) ≥ p, (1)

where g is a mapping defining a (random) inequality system and ξ is an s- dimen-
sional random vector defined on some probability space (�,A,P). The constraint
(1) expresses the fact that a decision vector x is feasible if and only if the ran-
dom inequality system g(x, ξ) ≤ 0 is satisfied at least with probability p ∈ [0, 1].
Probabilistic constraints are important for engineering problems involving uncertain
data. Applications can be found in water management, telecommunications, elec-
tricity network expansion, mineral blending, chemical engineering etc. For a com-
prehensive overview on the theory, numerics and applications of probabilistic con-
straints, we refer to, e.g., Prékopa (1995), Prékopa (2003), Shapiro et al. (2009).
The analysis of probabilistic constraints has attracted much attention in recent years
with a focus on algorithmic approaches. Without providing an exhaustive list, we
refer here to models like robust optimization (Ben-Tal and Nemirovski 2002), penalty
approach (Ermoliev et al. 2000), p-level efficient points (Dentcheva and Martinez
2013), scenario approximation (Calafiore and Campi 2006), sample average approx-
imation (Pagnoncelli et al. 2009) or convex approximation (Nemirovski and Shapiro
2006).

In this paper, we want to pursue the classical idea that (1) is a nonlinear inequality
constraint in the decision vector x andmay be treated as such in the framework of non-
linear programming algorithms. Many of the recently proposed numerical approaches
to probabilistic programming are based on a possibly large number of scenarios sam-
pled according to the given distribution of ξ . These approaches are universal in the
sense that they just require the possibility to draw samples which is no problem for
most of the prominent multivariate distributions. On the other hand, the required sam-
ple size for guaranteeing a fairly good precision of optimal values and solutions to a
problem under probabilistic constraints may become excessive with increasing dimen-
sion of the random vector. An alternative would consist in taking advantage of specific
information about certain types of continuous distribution. This may yield a possibil-
ity not only to approximate values but also gradients with respect to x of (1). For
instance, in the special case of separable constraints g(x, ξ) = ξ − x , and of ξ having
a regular Gaussian distribution, one may employ an efficient code by Genz (1992) and
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Genz and Bretz (2009) which is based on a numerical integration scheme combining
separation and reordering of variables with randomized Quasi Monte Carlo. A similar
technique has been proposed for the multivariate Student (or T-) distribution (Genz
and Bretz 2009). The numerical evaluation of other multivariate distribution functions
such as Gamma or exponential distribution has been discussed, e.g., in Olieman and
van Putten (2010), Szántai (1996).

In particular the multivariate Gaussian distribution makes it possible to calculate
in reasonable time at fairly high precision values of (1) in the general linear model
g(x, ξ) = A(x)ξ −b(x) andmoreover analytically to reduce gradients of these proba-
bilities to probability values of the same type as before (but with different parameters,
VanAckooij et al. 2010, 2011;Henrion andMöller 2012).A perspective for continuing
this approach towards general nonlinear models and non-Gaussian (but Gaussian-like,
such as log-normal or Student) multivariate distributions is offered by spherical-radial
decomposition of Gaussian random vectors (Ackooij and Henrion 2014; Royset and
Polak 2007). So far, the nonlinear programming approach to probabilistic program-
ming has been primarily applied to settings yielding convex problems. This is the
case, for instance, if the mapping g in (1) is linear and the distribution of ξ is log-
concave (e.g., Gaussian, Student, uniform etc.). Among the applications considered,
hydro reservoir problems played a central role (Prékopa and Szántai 1978; Ackooij
et al. 2014; Van Ackooij et al. 2010, 2011; Andrieu et al. 2010). The supporting hyper-
plane method was the preferred one for the numerical solution of these problems. This
method is quite robust, easy to implement and provides upper and lower bounds for
the optimal value of the problem. On the other hand, it becomes less efficient with
increasing dimension and it does not apply to nonconvex problems. For this reason,
we decided to embed the nonlinear programming approach into an SQP (Sequential
Quadratic Programming) solver (SNOPT) and to check its efficiency for an example
of renewable energies. The main challenge in this embedding consists in handling
numerical imprecisions of function value and gradient evaluation for the probabilistic
constraint.

The application we consider here is a coupled system of hydro and wind energy
production which is supposed to meet a local demand of energy and to sell energy
on a day ahead market. Unbalanced demand satisfaction is regulated on an intra-
day market (buy/sale in case of falling short of or exceding demand). A short term
future time horizon of 48 h is considered and production of wind energy is the only
process considered to be stochastic. A major step in modeling this problem will con-
sist in providing a statistical model for wind energy production given a large histor-
ical data basis for wind speed observations. The paper is divided into three major
sections: in the first one an appropriate optimization model involving a joint prob-
abilistic constraint will be derived for the mentioned application. The next section
is devoted to details of implementing probabilistic constraints in an SQP solver.
Numerical tests including relative gaps for the optimal value and computing times
will be reported for a simplified (convex) example. The final section reports and
discusses the numerical results for the general (nonlinear, nonconvex) optimization
problem.
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2 A model for short term planning of a coupled system of hydro/wind
energy production

2.1 A deterministic model

We consider the following power management problem with renewable energy pro-
duction units: a hydro plant is coupled with a wind farm in order to meet some local
power demand and to sell any surplus electricity on the market. All time-dependent
quantities of the problem are discretized by subdividing the time horizon into a speci-
fied number of T intervals (e.g., hours). Accordingly, given the time interval [t −1, t),
we denote by ht the decision variable of hydro energy to be produced in this interval,
by dt the demand of electricity, by ξt the amount of electricity generated by the wind
farm, by πt the price for selling/buying one unit of electricity on a power market and
by wt the inflow of water into the hydro reservoir. Let us assume in the beginning that
all data of the problem—i.e., dt , ξt , wt , πt—are exactly known. Then, one may sell
or buy energy on a day ahead market in order to balance the demand satisfaction. The
total profit made over the whole time horizon equals

T∑

t=1

πt (ht + ξt − dt ) , (2)

where with respect to demand satisfaction surplus energy [ht + ξt − dt ]+ is sold and
missing energy [ht + ξt − dt ]− is bought at price πt . Turbining of water in a hydro
reservoir is subject to certain constraints: first, there are simple operational bounds:

0 ≤ ht ≤ M (t = 1, . . . , T ) . (3)

Second, the water level in the hydro reservoir has to stay between zero and some
maximum capacity (these constraints make sure that water can be turbined only if
present in the reservoir and stored only if there is enough capacity left). In practice,
hard lower and upper level constraints are imposed which are more stringent for
ecological (e.g., flood reserve), technological or economical reasons. One arrives at
relations

lmin ≤ l0 +
t∑

τ=1

(
wτ − �−1hτ

)
≤ lmax (t = 1, . . . , T ) . (4)

Here, l0 denotes the initial filling level of the reservoir in the beginning of the time
horizon and � is a conversion constant between water turbined and hydro energy
produced. Accordingly, the current filling level at time t equals the inital level plus
the cumulative amount

∑t
τ=1 wτ of water inflow until time t minus the cumulative

amount �−1 ∑t
τ=1 hτ of water released from the reservoir and transformed into hydro

energy
∑t

τ=1 hτ until time t .
Finally, in order to exclude production strategies which are optimal for the given

time horizon but come at the expense of future ones (e.g., maximum turbining), a so-
called end level constraint is imposed for the final water level in the hydro reservoir. In
the simplest case, the end level l∗ could be chosen equal to the initial level l0 but one
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might also consider increasing it by a certain amount, for instance, if the initial level
is low. We do not insist here on a more sophisticated water level evaluation strategy
as described, for instance, in (Ackooij et al. 2014) because this issue is less relevant
for the mathematical aspects discussed in this paper. Summarizing, we are led to the
end-level constraint

l0 +
T∑

τ=1

(
wτ − �−1hτ

)
≥ l∗. (5)

Observing that the only decision variable in the objective (2) is givenbyht , the resulting
optimization problem becomes a conventional linear program which numerically to
solve does not represent any challenge:

max
T∑

t=1

πt ht subject to (3), (4), (5). (6)

2.2 A model with random wind energy and joint probabilistic constraint

In reality, all data of (6)—prices, demand, inflow to reservoir and wind energy—are
random with a degree of uncertainty increasing over time. In what follows, we shall
consider a short time horizon of 2 days. In that case, prices, demand and water inflow
may be assumed to be known with sufficient precision, so that we will consider them
as deterministic data. Figure 1 shows some typical profiles of the price signal and the
demand of electricity for a period of two days.

For the inflow we will even assume that it comes at constant speed so that wt = w

for all t . In contrast, the more volatile wind energy production will be treated as a
random vector ξ = (ξ1, . . . , ξT ). Since the (future) realizations of this random vector
are not known at the time one has to decide on the amount of energy traded on a day
aheadmarket, one has to take account of surplus or missing energy in the more flexible
intraday market which allows for short term (e.g., 15 min ahead) contracts. These may
come, of course, at quite different prices π̃t when compared with day ahead prices
πt . In order to distinguish between both kinds of transactions, we split the amount of
hydro energy produced into two parts

ht = xt + yt (t = 1, . . . , T ) , (7)

Fig. 1 2-days profiles for price signal (left) and demand (right) of power
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where xt ≥ 0 denotes the part which is offered on the day ahead market and yt ≥ 0
refers to the remaining part used for demand satisfaction (together with random wind
energy). Now, the overall profit will be

∑T

t=1
πt xt +

T∑

t=1

π̃t (yt + ξt − dt ) . (8)

This profit is a random quantity not only due to the uncertain wind energy but also due
to the presence of highly uncertain intraday prices π̃t . Our aim consists in risk-averse
maximization of the random profit. For instance, we could maximize some profit
which can be guaranteed with some probability p ∈ [0, 1] given the joint distribution
of the random vector (ξ, π̃) which would correspond to value-at-risk maximization.
However, information about the distribution of π̃ may be very difficult to obtain
because intraday prices are strongly influenced by rare events like outages of certain
production units in the market pool. In contrast, modeling the distribution of wind
energy production has a much better chance due to abundant historical data on wind
speed, as will be described in Sect. 2.3. This leads us to the following partitioned
risk-averse objective:

max

{
η|P

(
ω|

T∑

t=1

πt xt +
T∑

t=1

π̃t (yt + ξt (ω) − dt ) ≥ η ∀π̃

)
≥ p

}

(p ∈ [0, 1]) (9)

Its meaning is the following: we maximize some profit η which can be guaranteed
with at least probability p with respect to uncertain wind energy production and for
all possible intraday prices. This mixed probabilistic-worst case objective will be
reformulated in the following section by using a joint probabilistic constraint.

Lemma 1 Let p > 0 and assume that intraday prices are non-negative (π̃ ≥ 0).
Then, for arbitrarily fixed decisions xt , yt and level η in (9) one has the following
equivalence:

P

(
ω|

T∑

t=1

πt xt +
T∑

t=1

π̃t (yt + ξt (ω) − dt ) ≥ η ∀π̃ ≥ 0

)
≥ p (10)

if and only if

P(ω|yt + ξt (ω) ≥ dt ∀t = 1, . . . , T ) ≥ p,
T∑

t=1

πt xt ≥ η (11)

Proof Evidently, by π̃t ≥ 0 for all t , (11) implies (10). Conversely, let (10) hold true.
Assume that

∑T
t=1 πt xt < η. Then, we arrive at the following contradiction with (10):
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P

(
ω|

T∑

t=1

πt xt +
T∑

t=1

π̃t (yt + ξt (ω) − dt ) ≥ η ∀π̃ ≥ 0

)

≤ P

(
ω|

T∑

t=1

πt xt ≥ η

)
= 0 < p.

This shows the second relation of (11). Next, let ω be such that

T∑

t=1

πt xt +
T∑

t=1

π̃t (yt + ξt (ω) − dt ) ≥ η ∀π̃ ≥ 0. (12)

Assume that yτ + ξτ (ω) < dτ for some τ ∈ {1, . . . , T }. Then, defining π̃ by π̃t := 0
if t ∈ {1, . . . , T } \{τ } and

π̃τ := η − ∑T
t=1 πt xt

yτ + ξτ (ω) − dτ

+ 1,

we observe that π̃τ > 0 because of the already shown relation η − ∑T
t=1 πt xt ≤ 0.

Hence, π̃ ≥ 0. This establishes the contradiction
T∑

t=1

πt xt +
T∑

t=1

π̃t (yt + ξt (ω) − dt ) =
T∑

t=1

πt xt + π̃τ (yτ + ξτ (ω) − dτ )

<

T∑

t=1

πt xt + η −
T∑

t=1

πt xt = η

with (12). Consequently, any ω satisfying (12), satisfies yt + ξt (ω) ≥ dt for all
t ∈ {1, . . . , T } as well. Therefore, we have shown the first relation of (11):

P(ω|yt + ξt (ω) ≥ dt ∀t = 1, . . . , T )

≥ P

(
ω|

T∑

t=1

πt xt +
T∑

t=1

π̃t (yt + ξt (ω) − dt ) ≥ η ∀π̃ ≥ 0

)

≥ p.

��
In the light of Lemma 1, we may replace the maximization of the objective (9) by a

maximization of η subject to the constraints (11). However, maxizing η subject to the
second constraint of (11) is equivalent with simply maximizing the day ahead profit∑T

t=1 πt xt . Therefore, the resulting optimization problem reads as follows:

max
T∑

t=1

πt xt (13)

subject to

P(ω|yt + ξt (ω) ≥ dt ∀t = 1, . . . , T ) ≥ p (14)

123

Author's personal copy



442 I. Bremer et al.

xt ≥ 0, yt ≥ 0, xt + yt ≤ M (t = 1, . . . , T ) (15)

lmin ≤ l0 + tw − �−1
t∑

τ=1

(xτ + yτ ) ≤ lmax (t = 1, . . . , T ) (16)

l0 + Tw − �−1
T∑

τ=1

(xτ + yτ ) ≥ l∗ (17)

Here, (14) follows from the first constraint in (11), (15) is a consequence of (3) and
(7) and (16) and (17) result from (4) and (5) upon recalling that we assume wt = w

for all t . Observe that, by Lemma 1 an optimal solution (x̄, ȳ) satisfies the property
that the random profit

∑T

t=1
πt x̄t +

T∑

t=1

π̃t (ȳt + ξt (ω) − dt )

made on the day-ahead and intraday market will exceed the deterministic quantity∑T
t=1 πt x̄t at least with probability p no matter what the prices π̃t on the intraday

market will be.Moreover,
∑T

t=1 πt x̄t is the largest possible quantity with this property.
From the mathematical viewpoint, the most interesting ingredient of this optimiza-

tion problem is the inequality (14) which acts as a constraint on the decision vector
y. One refers to this as a joint probabilistic (or chance) constraint where the attribute
‘joint’ reminds of the fact that under the decision y the whole random inequality
system

yt + ξt (ω) ≥ dt (t = 1, . . . , T )

has to be satisfied with probability at least p. The probabilistic constraint (14) is of
static type, i.e., it is assumed that the whole vector y is decided on without reacting on
possible past observations of the random process ξt . This approach is justified in our
setting, because the sale x of hydro energy on the day-ahead market has to be decided
on one day before the contribution of wind energy will be observed. But deciding on
x amounts to deciding on y at the same time due to the constraint (15). In general,
one might also consider dynamic (closed loop) decisions reacting on past realizations
of the random variable leading to more complex dynamic models of probabilistic
constraints (as discussed, e.g., in Andrieu et al. 2010).

2.3 Modeling the distribution of wind energy

In order to cope with the probabilistic constraint (14) one has to characterize the distri-
bution of the random vector ξ representing the wind energy produced. Our approach
consists in exploiting distribution information about hourly mean wind speed data and
to transfer this information to the generated wind energy. More precisely, we assume
that generated wind energy ξ and wind speed v are related by

ξ = min{cv3, a} (18)
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Fig. 2 Left plot of generated power vs. wind speed for a real wind plant (thick curve) and approximation
by (18) (thin curve). Right historical scenario for hourly wind speed of 1 day (thick curve) and associated
scenario of (ideal) power generation (thin curve)

for certain coefficients a, c > 0. This relation reflects the fact that wind energy pro-
duced is roughly proportional to the third power of wind speed before reaching a
maximum amount a which cannot be exceeded by further increasing wind speed.

Figure 2 (left) shows that relation (18) provides a very good approximation to real
data. For details on related issues, we refer, for instance, to Tamura (2012). A concrete
wind speed scenario and associated power scenario withmaximum production a being
realized in the second half of the day is illustrated in Fig. 2 (right).

As far as wind speed is concerned, wewant to apply a statistical model which allows
us to eventually establish a multivariate distribution for the discrete-time random
vector which moreover is accessible to a numerical treatment of the probabilistic
constraint (14). This seems to be difficult when assuming a usual Weibull distribution
for wind speed data. Therefore, we shall follow here an approach presented in Aksoy
et al. (2004) where wind speed data vt are raised to a certain power vθ

t as to make
them normal-like (with θ ≈ 0.38 for the data considered by the authors) and these
transformed data are modeled as a stationary autoregressive process of order one with
normally distributed innovations. The statistics of this autoregressive process (mean,
standard deviation and correlation) may be used in order to derive some (truncated)
multivariateGaussian distribution for the transformedwind speeddata.More precisely,
putting

ηt := vθ
t , (19)

one has that (ηt )t∈Z is a truncation to nonnegative values of some Gaussian process
(η̃)t∈Z obeying the relations

η̃t = (1 − ρ) μ + ρη̃t−1 + σεt ∀t ∈ Z, (20)

where εt ∼ N (0, 1) and all εt are uncorrelated with all ετ (τ ∈ Z, τ �= t) and
all η̃τ (τ ∈ Z, τ < t). Moreover, η̃t ∼ N (

μ, σ 2/
(
1 − ρ2

))
for all t ∈ Z, and

cov (η̃t , η̃τ ) = ρ|t−τ |σ 2/
(
1 − ρ2

)
for all t, τ ∈ Z. Collecting this information for

times t ∈ {1, . . . , T }, η̃ is a T -dimensional Gaussian vector with multivariate distrib-
ution

η̃ ∼ N (μ1, ) , i j := ρ|i− j |σ 2/
(
1 − ρ2

)
(i, j ∈ {1, . . . , T }) , (21)
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where 1 = (1, . . . , 1). Accordingly, η is the truncated toRT+ version of η̃ which means
that the distribution of η is given by

P (η ∈ A) = P
(
η̃ ∈ A ∩ R

T+
)

P
(
η̃ ∈ R

T+
) (22)

for all Borel measurable sets A ⊆ R
T+.

2.4 A statistical model for the multivariate distribution of hourly wind speed data

In order to determine the distribution parameters mentioned in the previous section,
we used data from the data basis of the German Weather Service (Quelle: Deutscher
Wetterdienst) for the station Kap Arkona (north east Germany). In order to disregard
seasonal variations of wind speed data, we restricted the data base to hourly data for
all days in month October from 1992 to 2013.

In a first step, we want to determine the appropriate exponent for our data in (19).
To this aim, we fit an optimal normal distribution to the transformed wind speed data
vθ
t . The fit is carried out according to a minimum Kolmogorov distance between the
empirical distribution of the transformed data and the fitted normal distribution. The
use of the Kolmogorov distance is motivated by stability results for chance constrained
optimization problems with separated random vector, a class which problem (13–17)
belongs to. These confirm that the perturbation of solutions and optimal values to such
problems can be controlled (in a Lipschitz or Hölder way) by the perturbation of the
underlying distribution when measured by the Kolmogorov distance. Recall that the
Kolmogorov distance between two univariate cumulative distribution functions F and
G is defined as

dK (F,G) := sup
z∈R

|F(z) − G(z)|.

In the particular case of F being continuous and ofG(z) = N−1#{i |x (i) ≤ z} being the
empirical distribution function of some random variable γ associated with a sample
x (1), . . . , x (N ) of an i.i.d. sequence γ1, . . . , γN of random variables having the same
distribution as γ , the supremum in the definition of the Kolmogorov distance can be
reduced to a finite maximum:

dK (F,G) = max
i=1,...,N

max{F(x̃ (i)) − N−1(i − 1), N−1i − F(x̃ (i))}. (23)

Here, x̃ (1) ≤ · · · ≤ x̃ (N ) is an ordered version of the sample x (1), . . . , x (N ). In order
to get an i.i.d. sample for the wind speed, we used the total of 15.835 hourly October
data from the data basis mentioned above and extracted a subsequence of values at
distance of 50 h in order to complywith the required independence of sampling.Hence,
instead of using the total sample x (1), x (2), . . . , x (N ), we considered a subsample
x (1), x (51), x (101), . . . and fitted to its empirical distribution function G an optimal
normal distribution Fμ,σ with mean value μ and standard deviation σ applied to an
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Fig. 3 Left distribution function of the best fitting normal distribution applied to an optimal power transfor-
mation of arguments (thick curve) for a given empirical distribution function (thin curve) of a subsample of
size 316. Right normal distribution function (thick curve) simultaneously best fitting to a set of 50 empirical
distribution functions (cloud of thin curves) drawn from the total data basis

optimal power θ of the argument. Given (23), the best fitting parameters μ, σ, θ can
be found by solving the following nonlinear optimization problem

min
{
d | Fμ,σ

([
x̃ (i)

]θ
)

− m−1(i − 1) ≤ d, m−1i − Fμ,σ

([
x̃ (i)

]θ
)

≤ d

i = 1, . . . ,m
}

in 4 variables (μ, σ, θ, d), where x̃ (1) ≤ · · · ≤ x̃ (m) is the ordered version of the
subsample x (1), x (51), x (101), . . . of size m = 316. The optimal solution

(
μ̄, σ̄ , θ̄ , d̄

)

of this problem identifies the best fitting normal distribution with parameters μ̄, σ̄ , the
best exponent θ̄ at which the data have to be raised as well as the resulting minimum
Kolmogorov distance d̄ with the given empirical distribution. Figure 3 (left) shows
the best fitting normal distribution function with parameters μ̄ = 2.82, σ̄ = 0.65 and
applied to an optimal power θ̄ = 0.52 of arguments as well as the given empirical
distribution function. Of course one could also drive other independent subsamples of
independent wind speed data, such as x (2), x (52), x (102), . . . or x (3), x (53), x (103), . . .

yielding different optimal fitting parameters. In order to stabilize the estimation of
these parameters on the basis of all given data, we looked for the best fitting nor-
mal distribution and optimal power transformation simultaneously with respect to
all possible 50 subsamples. Figure 3 (left) shows the best fitting normal distribu-
tion function with parameters μ̄ = 4.23, σ̄ = 1.54 and applied to an optimal power
θ̄ = 0.73of arguments aswell as the cloudof the total of 50given empirical distribution
function.

In the second step, we model the transformed wind speed vθ
t with the determined

optimal power θ = 0.73 as a stationary autoregressive process of order one with nor-
mally distributed innovations according to (20) whose parameter values are estimated
using the entire data basis of 15.835 October data for hourly wind speed. The corre-
lation coefficient was found to be ρ = 0.96. Along with the previously determined
values μ = 4.23, σ = 1.54 for the stationary mean and standard deviation, respec-
tively, this allows us to set up a multivariate Gaussian distribution according to (21)
approximating the distribution of transformed wind speed data vθ

t for t = 1, . . . , T .
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Since vθ
t is nonnegative, we pass from the distribution (21) to a truncated multivariate

Gaussian distribution according to (22).

2.5 Reformulation of the probabilistic constraint

The next Lemma allows us to transform the probabilistic constraint (14) involving
the generated wind energy ξ with unknown distribution into a probabilistic constraint
involving the multivariate distribution identified in the previous section:

Lemma 2 Under the assumption that yt ≤ dt for t = 1, . . . , T , and that θ > 0 in
(19), the probabilistic constraint (14) is equivalent with the constraints

P

(
η̃t ≥

(
dt − yt

c

)θ/3

(t = 1, . . . , T )

)
≥ p p̃ and a ≥ dt − yt

(t = 1, . . . , T ) , (24)

where η̃ is the Gaussian random vector introduced in (21) and

p̃ := P (η̃t ≥ 0 (t = 1, . . . , T )) . (25)

Proof Exploiting our assumption and using (18) and (19), we derive that for t =
1, . . . , T ,

ξt ≥ dt − yt ⇔
(
min{cv3t , a}

)θ ≥ (dt − yt )
θ

⇔ cθη3t ≥ (dt − yt )
θ and a ≥ dt − yt

⇔ ηt ≥
(
dt − yt

c

)θ/3

and a ≥ dt − yt .

Hence,

P (ξt ≥ dt − yt (t = 1, . . . , T )) ≥ p

⇔ P

(
ηt ≥

(
dt − yt

c

)θ/3

and a ≥ dt − yt (t = 1, . . . , T )

)
≥ p

⇔ P

(
ηt ≥

(
dt−yt

c

)θ/3

(t=1, . . . , T )

)
≥ p and a ≥ dt − yt (t=1, . . . , T ) .

The last equivalence follows becausewe required p > 0 from the beginning (otherwise
a probabilistic constraint is always automatically satisfied) and, hence, deterministic
constraints can be isolated from probabilistic ones. Finally, for nonnegative arguments
αt the relation between the truncated (to non-negative values) Gaussian random vector
η and its associated un-truncated Gaussian random vector η̃ is [see (22)]
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P (ηt ≥ αt (t = 1, . . . , T )) = P (η̃t ≥ αt (t = 1, . . . , T ))

P (η̃t ≥ 0 (t = 1, . . . , T ))
.

This entails the assertion of the Lemma. ��
We claim next that the assumption yt ≤ dt for t = 1, . . . , T of Lemma 2 is always

satisfied for a solution of problem (13–17) under the reasonable assumption that all
day-ahead prices πt are strictly positive. Therefore, adding the relations yt ≤ dt as
additional constraints to the problem would not change its solution. On the other
hand, under these additional constraints, we may take for granted the conclusion of
Lemma 2.

Lemma 3 Let (x∗, y∗) be a solution to problem (13–17). Assume that πt > 0 for all
t = 1, . . . , T . Then, y∗

t ≤ dt for t = 1, . . . , T .

Proof Assume to the contrary that y∗
t∗ > dt∗ for some t∗ ∈ {1, . . . , T }. Define a vector(

x̂, ŷ
)
by

x̂t :=
{
x∗
t if t ∈ {1, . . . , T } \{t∗}
x∗
t∗ + y∗

t∗ − dt∗ if t = t∗ ;

ŷt :=
{
y∗
t if t ∈ {1, . . . , T } \{t∗}
dt∗ if t = t∗ .

Clearly, x̂, ŷ ≥ 0 because x∗, y∗ ≥ 0 [as a solution to problem (13–17)] and d ≥ 0 (as
a demand profile). From x̂t + ŷt = x∗

t + y∗
t for all t ∈ {1, . . . , T } it follows that (x̂, ŷ)

satisfies all linear constraints (15–17) because (x∗, y∗) does so. But the probabilistic
constraint (14) is fulfilled too due to

P
(
ŷt + ξt ≥ dt (t = 1, . . . , T )

)

= P
(
y∗
t + ξt ≥ dt t ∈ {1, . . . , T } \{t∗} and ξt∗ ≥ 0

)

= P
(
y∗
t + ξt ≥ dt t ∈ {1, . . . , T } \{t∗})

≥ P
(
y∗
t + ξt ≥ dt (t = 1, . . . , T )

) ≥ p.

Here, the second equality follows from the fact that ξt∗ as the generated wind energy
is non-negative P−almost surely and the last inequality relies on (x∗, y∗) satisfying
the probabilistic constraint (14). Consequently,

(
x̂, ŷ

)
is a feasible solution to problem

(13–17). On the other hand,

T∑

t=1

πt x̂t −
T∑

t=1

πt x
∗
t = πt∗

(
y∗
t∗ − dt∗

)
> 0.

This, however, means that the feasible solution
(
x̂, ŷ

)
realizes a strictly larger objective

value than the optimal solution (x∗, y∗) to problem (13–17), a contradiction proving
our assertion. ��
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2.6 The resulting optimization problem

We are now in a position to formulate the final optimization problem with identified
distribution of the random vector. Lemmas 2 and 3 allow us to replace the probabilistic
constraint (14) by the relations (24) involving a Gaussian random vector and several
linear deterministic constraints. Referring back to (13–17), we arrive at:

max
T∑

t=1

πt xt (26)

subject to

P

(
η̃t ≥

(
dt − yt

c

)θ/3

(t = 1, . . . , T )

)
≥ p p̃ (27)

0 ≤ dt − yt ≤ a (t = 1, . . . , T ) (28)

xt , yt ≥ 0; xt + yt ≤ M (t = 1, . . . , T ) (29)

lmin ≤ l0 + tw − �−1
t∑

τ=1

(xτ + yτ ) ≤ lmax (t = 1, . . . , T ) (30)

l0 + Tw − �−1
T∑

τ=1

(xτ + yτ ) ≥ l∗. (31)

3 Numerical solution via SQP method

As mentioned in the introduction, the traditional approach to probabilistic constraints
in the context of nonlinear programming consisted in the verification of convexity and
the application of first-order methods from convex numerical optimization such as
supporting hyperplane, central cutting plane or reduced gradient methods. Two major
reasons suggest rather to deal with probabilistic constraints in an SQP environment:
first, the aforementionedmethod converge rather slowwith increasing dimension (both
of the random and of the decision vector). Here, we have in mind problems where the
dimension of the random vector amounts to a few hundred (talking, of course, about its
joint distribution), while there is no a priori restriction to the dimension of the decision
vector. Second, SQP methods provide the right framework also for potentially non-
convex problems. Both aspects will be significant for the application discussed in this
paper.

Formally, there is no problem to integrate a probabilistic constraint like (1) into the
environment of an SQP solver: all one has to be able to provide is routines to compute
values and gradients of the function

ϕ(x) := P (g(x, ξ) ≤ 0)

assigning to each decision vector the probability of satisfying the inequality system
g(x, ξ) ≤ 0. This being granted, onemay treat (1) as a conventional constraint ϕ(x) ≥
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p of nonlinear programming. The main challenge, however, arises from the fact that
no explicit formula for evaluating ϕ or ∇ϕ is available and that all one can hope for
is a numerical approximation of these quantities whose accuracy is never comparable
with that in case of analytic expressions. On the other hand, as far as the solution of
an optimization problem is concerned, one usually does not insist on highly precise
values, so one might have the idea of running an SQP code with less precise data
but which are sufficient to provide solutions of reasonable accuracy. Our working
horse for calculating ϕ and ∇ϕ will be Genz’ code for probabilities of rectangles
under multivariate Gaussian distribution (Genz 1992; Genz and Bretz 2009). This
code assigns to each multidimensional rectangle [a, b] (with possible components
−∞ or ∞) the probability αξ (a, b) := P(ξ ∈ [a, b]), where ξ is a Gaussian random
vector. In the context of problem (26–31), the probabilistic constraint (27) can be
written as ϕ(y) := αη̃(H(y), ∞̃), where ∞̃ := (∞, . . . ,∞) and

Ht (y) :=
(
dt − yt

c

)θ/3

(t = 1, . . . , T ) .

Now, as H is given analytically, the evaluation of ϕ basically reduces to that of
αη̃ and similarly, the evaluation of ∇ϕ basically reduces to that of ∇αη̃. Although,
similar to αη̃ itself, there is no explicit formula for ∇αη̃, a fortunate consequence
of the properties of Gaussian distributions leads to the possibility of analytically (!)
expressing the partial derivatives (∂αη̃/∂xt ) in terms of the values αη′ of some other
Gaussian rectangle probability (see, e.g., Prékopa 1995, p. 204). A remarkable con-
sequence of this fact is that gradients (and even higher order derivatives by further
differentiation) can be calculated by means of the same method as function values
themselves. This underlines the importance of an efficient code for computing multi-
variate Gaussian distribution functions. Usually, this task is considered to be extremely
time consuming in larger dimension, but it turns out that with a parallelized version
of Genz’ code—which will be discussed more in detail in the next section—one may
obtain a distribution function value in dimension 100 at relative precision of 10−4

within a few seconds.
The preceding discussion motivates us to integrate Genz’ code in an SQP code

environment, taking care of the reduced precision in order to keep the code running
smoothly. For our application, we have chosen the SQP solver SNOPT Gill et al.
(1997).

3.1 Genz’ code for Gaussian probabilities

As mentioned in the previous section, Genz’ code provides the probability αξ (a, b)
of some s-dimensional Gaussian random vector ξ taking values in a rectangle [a, b].
Assume without loss of generality that ξ has mean zero and some covariance matrix
. The basic idea behind Genz’ method is to transform the original multiple integral
associated with this probability into the following iterated integral on the standard unit
cube:
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αξ (a, b) = (e1 − d1)
∫ 1

0
(e2(z1) − d2(z1))

∫ 1

0
(e3(z1, z2) − d3(z1, z2)) · · ·

∫ 1

0
(es (z1, . . . , zs−1) − ds (z1, . . . , zs−1)) dw, (32)

where

di (or ei ) (z1, . . . , zi−1) := Φ

⎛

⎝l−1
i i

⎛

⎝ai (or bi ) −
∑

j<i

li jΦ
−1 (

z j
)
⎞

⎠

⎞

⎠ , (33)

L = (li j ) is the Cholesky factor of  = LLT and Φ refers to the onedimensional
standard Gaussian distribution function. Then, the integral (32) can be numerically
approximated by generating random samples (preferebly via randomizedQuasiMonte
Carlo) of the uniform distribution on [0, 1]s and passing them through the iterated
integral which turns into a finite sum. The final result is obtained upon dividing by
the sample size. In the practical application of the code, a certain accuracy for the
desired probability is chosen by the user and the set of samples is increased step-wise
(each step yielding an increase of accuracy by a factor of approximately 0.8) thereby
averaging the final result over all steps. The final result is guaranteed to satisfy the
chosen accuracy at 99% confidence. As observed in Genz and Bretz (2009), the order
of integration variables influences significantly the variance of the obtained estimator.
For this purpose, a cheap preprocessing step taking into account the structure of the
Cholesky factor L is carried out in the beginning.

The main computational effort in the approximation of (32) is spent by the frequent
evaluation of Φ and Φ−1 in (33). As this computation is the same for each sample,
it can be perfectly parallelized. Parallelization options for Genz’ code have already
been presented in Doncker et al. (1999). In our implementation, we make some block-
oriented rearrangements by means of a parallizing compiler with OpenMP-support.
On current hardware (Intel(R) Xeon(R) CPU E5-2680) using all 32 prozessors is a
good choice with a good load-balancing.

3.2 Embedding of Genz’ code into SQP solver SNOPT

As mentioned above, we chose the SNOPT code as an SQP environment for the solu-
tion of optimization problems involving joint nonlinear probabilistic constraints. In
order to employ this code, the user has to provide routines for function values and
gradients of the objective and constraints. Gradients are checked by an internal con-
trol and can be replaced by finite difference approximations. As described above, in
our problem the evaluation of the probabilistic constraint can be basically reduced
to Genz’ code for calculating Gaussian probabilities of rectangles. As far as gradi-
ents of such (parameter dependent) probabilities are concerned, it has been shown in
Van Ackooij et al. (2010) that the partial derivatives can be reduced analytically to
Gaussian probabilities of rectangles again albeit in different dimension and with dif-
ferent distribution parameters. This allows to employ the same code by Genz to obtain
gradients at the same time.Moreover, as shown in Henrion (2012), the accuracy of this
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gradient can be explicitly controlled by that of function values. Inductive application
of this reduction would allow, in principle, to use the given code in order to calculate
derivatives of any order if desired. A generalization of this possibility from rectangle
to arbitrary polyhedra is presented in Henrion and Möller (2012).

Although Genz’ method described above is able to provide fairly good approxima-
tions, the precision of the obtained values for the probability function ϕ is too low for
a straight forward embedding into the SNOPT code. In particular, the internal gradient
check via finite differences typically fails. Moreover, the accuracy levels for primal
and dual feasibility imposed as stopping criteria in SNOPT cannot be chosen the same
as for usual problems with high accuracy numerical function evaluations but have
to be harmonized iteratively with the application of Genz’ code. Therefore, we have
taken several measures in order to stabilize the line search step and convergence of the
iterates. As far as the line search is concerned, it is mainly affected by noisy function
values mainly having the following three sources: first, when using a fixed precision
for Genz’ code, jumps in function values close to a given argument may occur due to
a sudden increase of the sample size in the stepwise procedure mentioned in Sect. 3.1;
second, the use of variable seeds for the random number generator will contribute to
noise as well; third, a change of the order of integration variables (see Sect. 3.1) will
lead to additional discontinuities. While this third source cannnot and should not be
eliminated due to its significance for computational efficiency, we were using a fixed
seed for the random number generator and did not prescribe the accuracy for Genz’
code but rather fix a sample size on the discrete scale available in Genz’ code. This is
what we will call the chosen accuracy level (see, e.g., Table 1) in what follows. It turns
out that in contrast with considering this fixed level directly, the computation time can
be significantly reduced when starting SNOPT with the smallest sample size (accu-
racy level 0) and then—using the obtained solution as a new starting point—stepwise
increasing it until the chosen one has been reached. We could observe in numerical
experiments a reduction of a factor up to around 5 depending on the dimension of
the problem and on the chosen accuracy level. Running the SQP code with imprecise
function values and gradients requires of course to adapt the appropriate stopping
criteria for primal and dual feasibility in order to guarantee the termination of the
algorithm for the corresponding accuracy level. As far as primal feasibility is con-
cerned, which basically means satisfying the probabilistic constraint, we measure it
by adding the achieved accuracy in Genz’ code to the obtained probability. In this way
it is guaranteed the criterion for primal feasibility being satisfied at 99% confidence.
The dual feasibility criterion is set (and possibly modified) at the lowest accuracy level
0 in some heuristic way and then, passing to the next higher accuracy level, adapted
by exploiting gradient information of the probabilistic constraint at the solution of
the lower level. Here, by gradient, we mean the analytical reduction of the theoretical
gradient to function values and its approximation by the latter ones mentioned in the
beginning of this section. While this ’analytical’ gradient is useful for adapting the
dual feasibility criterion, it is less appropriate for defining the direction of line search
or for updating the Jacobian in the SQP code. Rather, we employ here a handmade
substitute of automatic differentiation for the code. This turns out to fit better to the
function values used in the line search step and to be less time consuming than the
analytic counterpart in the Jacobian update.
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3.3 Validation of computing times and precision for a simplified convex model

In this section we will illustrate the performance of the numerical solution approach
bymeans of a simplifiedmodel. More precisely, we consider the optimization problem
(13–17) under the assumption of wind energy ξ having some multivariate Gaussian
distribution. Of course, this assumption is unrealistic and we will devote the final
section of this paper to the solution of the optimization problem (26–31), which takes
into account a statistically founded model on the basis of real life wind speed data.
The simplified optimization problem, however has the advantage of being a (nonlinear)
convex one which is more appropriate for discussing numerical issues of the solution
of joint chance constraints. In particular, it allows us to validate solutions in terms of
relative gaps for optimal values by (less efficient) algorithms from convex optimization
such as the supporting hyperplane method. In our opinion, besides computing times,
an estimation of the relative gap between the theoretical and the numerically obtained
optimal value is essential in order to validate a specific method (as done, e.g., in
Luedtke and Ahmed 2008).

For modeling the wind energy ξ via a multivariate Gaussian distribution, we used
appropriate adaptations of the parameters (mean values, standard deviations, corre-
lations) obtained in the more realisitc nonlinear model. The concrete values of these
parameters is of not much interest here because we will not discuss the solutions
themselves but rather check the performance of the algorithm. In this context, the
advantage of the simpified model (13–17) is the following: the linear structure of
the inequalities yt + ξt ≥ dt in the probabilistic constraint (14) along with the (log-
concave) Gaussian distribution of the random vector ξ ensure that the feasible set (in
the x, y space) defined by (14) is convex (Prékopa 1995, Th. 10.2.1). This allows us
to derive upper and lower bounds for the optimal value by employing, for instance,
the supporting hyperplane method. While this method suffers from slow convergence
in larger dimension of the random vector, it provides us some upper bound f̂ of the
maximization problem (13–17). In order to make this upper bound as small as possi-
ble, we had this method run for a long time within these computational experiments.
On the other hand, our numerical approach via SQP method always yields in the end
some significantly feasible solution, by which we mean that this solution satisfies the
probabilistic constraint at a significance level of 99%. Consequently, the optimal value
f num associated with this numerical solution is a lower bound for problem (13–17).
Denoting by f ∗ the true optimal value, we consider the relative gap

� := | f num − f ∗|
f ∗

to be a measure of quality for the obtained nuerical solution. Since f ∗ is unknown,
we cannot directly determine �. However, taking into account that f̂ ≥ f ∗ ≥ f num,
we are able to calculate an upper estimate

� ≤ f̂ − f num

f num
. (34)
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Table 1 Upper estimates for the relative gaps of optimal values in different dimensions of the random
vector and vor different accuracy levels

Accuracy level Dim = 48 Dim = 96 Dim = 192

0 0.07%–117s 0.32%–679s 1.53%–5,077s

1 0.09%–218s 0.32%–2,031s 1.36%–4,884s

3 0.08%–545s 0.32%–2,600s 1.34%–13,100s

7 0.04%–1,716s 0.30%–24,260s 1.26%–69,346s

11 0.03%–4,278s 0.27%–31,090s –

15 0.03%–21,087s 0.27%–114,815s –

Table 1 compiles computing times and upper estimates for the relative gap �

according to (34) for different dimensions of the random vector and different accuracy
levels in Genz’ code for computing values of the multivariate Gaussian distribution
function. The dimensions correspond to different discretizations of our 2 days plan-
ning horizon into hours, half hours and quarter of hours as they will be used in the
solution of the realistic model discussed in the following section. Not surprisingly,
computing times increase with dimension and accuracy level, whereas the obtained
upper estimates for � decrease with the accuracy level and increase with dimension.
One may observe that very good precisions for the optimal value can be obtained in
dimension 48 even for the lowest accuracy level resulting in a computation time of
2 min. It seems that significantly higher accuracy is bought by a considerably larger
computing time and that the obtained upper estimates for � tend to a certain limit
that cannot be improved. This is certainly due to the unavoidable gap f̂ − f ∗ between
the upper bound obtained by the supporting hyperplane method and the true optimal
value. Hence, the true relative gaps � might improve much faster in reality than the
values collected in the table.

4 Results for the problem with nonlinear probabilistic constraint

In this section we present the computational results for the solution of problem (26–
31). Starting with an hourly discretization of a two-days horizon (T = 48) (which
is extended later to an half hourly and quarter of an hour discretization), we used
the data specified in Table 2 (in appropriate units and with MWh as basic unit for
energy). The distribution data for the random vector η̃ were chosen according to (21)
with parameters μ, ρ, σ as indicated above and corresponding to those determined in
Sect. 2.4. The probability p̃ was computed according to (25). The data were designed
in a way that hydro production alone cannot completely meet the demand, hence, wind
power has to be added. As the latter is random, one cannot expect almost sure demand
satisfaction (p = 1). It turns out that the maximum probability to meet the demand
amounts to approximately p = 0.85 in this example. We illustrate several aspects of
the obtained solutions for probability levels ranging from 0.1 to 0.85.

Figure 4 illustrates the results of computations. The first diagram (first row, left)
plots the given price signal πt (thin curve) and the optimal profile xt (thick curve) of
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Table 2 Input data for problem (26–31)

Problem data
π = (25.12, 15.59, 12.87, 12.86, 10.09, 18.9, 40.48, 51.36, 61.91, 57.13, 54.66, 53.2,

51.94, 52.56, 53.59, 52.35, 55.51, 65.88, 61.65, 61.92, 55.45, 38.15, 37.21, 34.3,

30.63, 30.69, 29.49, 29.1, 26.18, 36.07, 49.39, 61.15, 63.19, 61.13, 61.17, 61.12,

55.15, 46.87, 44.62, 47.02, 53.25, 58.03, 52.08, 37.57, 34.99, 35.14, 31.38, 10.79)

d = (8.25, 7.86, 7.65, 7.73, 7.85, 8.18, 9.12, 11.37, 12.61, 12.57, 13.06, 13.40,

12.88, 12.51, 12.19, 12.04, 11.84, 12.04, 12.39, 11.88, 11.02, 10.78, 10.81, 9.69,

8.72, 8.21, 8.16, 8.34, 8.46, 8.74, 9.41, 11.37, 12.52, 12.50, 12.53, 12.43,

12.13, 12.02, 12.02, 11.91, 11.65, 11.95, 12.36, 11.85, 11.08, 10.86, 10.78, 9.85)

c = 0.032; a = 40; w = 6 × 105; � = 1.8 × 10−5; M = 16.2;

lmin=2.4×106; lmax = 4.8×106; l0 = 3.2×106; l∗ = 3.6 × 106;

μ = 4.23; σ =1.54; ρ = 0.96; θ = 0.73;

hydro energy sold on the day ahead market for the probability level p = 0.4. It can
be seen that the sale of hydro energy tries to follow as much as possible (under the
given additional constraints) the price profile in order to maximize the profit on the
day ahead market. The next diagram (first row, right) provides an analogous plot of the
given demand signal dt (thin curve) and the optimal profile yt (thick curve) of hydro
energy used for demand satisfaction for the same probability level p = 0.4. Evidently,
the degree of freedom in the choice of decisions satisfying a probabilistic constraint at
a given level is used according to the objective function: for an optimal splitting of the
total amount of hydro energy produced, the support of demand is maximum at time
periods when intraday prices are low andminimumwhen those prices are high (see left
diagram). The diagram also shows that the inequality yt ≤ dt is satisfied at any time
[see (28)]. The next diagram (second row, left) shows the filling level profiles resulting
for probability levels p = 0.3 (black thick line) and p = 0.7 (black thin line). In both
cases, the lower and upper filling limits lmin, lmax (grey lines) are respected [see (30)]
and also the specified end level l∗ is realized [see (31)].While for the lower probability
level, the limits of the reservoir are reached several times, the filling level stays strictly
between these limits for the high probability requirement. The neighbouring diagram
(second row, right), provides the corresponding plot of total hydro energy production
xt + yt for the same two probability levels. Again the upper production limit (thin
line) is respected [see (29)], but the variation of the production profile is much lower in
the case of high probability. The dependence of solutions on the probability level p is
demonstrated in the next row of diagrams. These show the surfaces of hydro energy xt
sold on the day ahead market (left) and hydro energy yt used for demand satisfaction
(right). Both surfaces are interpolations based on computations for probability levels
p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85 (black curves on the surfaces). It can
be clearly seen how the contribution to demand satisfaction increases while that to
sale on the day ahead market decreases with increasing probability level. In particular,
at probability level p = 0.85 no more sale takes place and the total amount hydro
power production is used for demand satisfaction. Therefore, the right most profile
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on the right-hand side surface (at p = 0.85) can be interpreted as a solution which
guarantees no losses (day-ahead+intraday) at a probability of 85%. Here we have
to keep in mind, that arbitrary intraday prices are allowed—even in the sense of an
adversary arranging a worst case situation -, hence the realistic situation is a much
more optimistic one.

Fig. 4 Illustration of results for the nonlinear problem (details see text)
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The first diagram in the fourth row superposes for p = 0.5 the optimal profiles
xt of hydro energy sold on the day ahead market for finer discretizations of the 2
day horizon: hourly discretization (T = 48, black thick line), half ourly discretization
(T = 96, grey thick line) and discretization in quarters of hours (T = 192, thin line).
Similarly, the second diagram in the fourth row superposes the optimal profiles yt of
hyrdo energy used for demand satisfaction at the same levels of discretization as in the
left diagram. On the one hand, the purpose of these computations was to demonstrate
that our approach works well even for the nonlinear model in rather large dimension
192 of the random vector.

Second, the obtained solutions immediately lead to an interesting mathematical
questions about their limit: the decrease of sale profiles and increase of the contribution
for demand satisfaction with finer discretization is not surprising, because fulfilling
the probabilistic constraint in each quarter of an hour is much harder than doing so
in a cumulative way in each hour. Intuitively, one might guess that—in the limit—
the discretized solutions would converge to the solutions of a continuous version
of problem (26–31). Here, continuous means that not only all data profiles (demand,
prices) and all control variables (profiles for hydro energy) are supposed to be elements
of an appropriate function space but also the random process of wind speed (wind
energy, respectively) is no longer discrete but continuous. This supposed convergence
is somehow supported by those last two diagrams, where the transition from hours to
half hours is much larger than that from half hours to quarters of hours.

In order to illustrate the feasibility of the obtained solutionswith respect to the prob-
abilistic demand satisfaction constraint, we make a posterior check using simulated
and historical wind speed data. As an example, we consider the solution for the prob-
ability level p = 0.7. To the obtained profile yt of hydro power devoted to demand
satisfaction, we add 100 different wind energy profiles ξt and verify, whether the sum
of both exceeds the demand profile. We have two ways of using wind energy data:
the first way is to employ historical scenarios from the given data basis. The seconsd
way—which our formulation of optimization problem (26–31) relies on—consists in
generating 100 scenarios for the random vector η̃ introduced in (21) according to the
distribution parameters specified in Table 2. By omitting scenarios with possibly nega-
tive values, one ends up at scenarios ηt which via (19) and (18) finally yield simulated
wind energy scenarios. Figure 5 illustrates the demand profile (black bold) and the 100

Fig. 5 Illustration of demand satisfaction for 100 simulated (left) and 100 historical wind scenarios (right)
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Fig. 6 Hydro energy sold on
day ahead market for a
risk-neglecting (thin) and a
probabilistic (thick) solution

scenarios obtained by adding hydro power contribution and 100 simulatedwind energy
scenarios (left) as well as by adding hydro power contribution and 100 historical wind
energy scenarios (right). It turns out that 76 out of the 100 simulated scenarios meet
the demand throughout the whole time interval (i.e., 24 scenarios fall short of demand
occasionally). This corresponds to an empirical probability of 76% for satisfying the
probabilistic constraint. In the case of historical scenarios, the corresponding empiri-
cal probability equals 68%. Both values are fairly good approximations of the given
level p = 0.7 given a data basis of only 100 scenarios.

Finally wewant to illustrate the robustness of the solutions obtained with our model
involving a probabilistic constraint. To this aim, we introduce first a risk-neglecting
strategy obtained as a solution to the optimization problem (26–31) with the prob-
abilistic constraint (27) removed. In this case, no hydro power is contributed to the
demand satisfaction (yt = 0) and a maximum possible hydro power generation xt is
sold on the day ahead market. This leads to a higher optimal value (=profit on day
ahead market) of when compared to any solution involving the probabilistic constraint
(27).

Figure 6 shows the profiles for hydro energy sold on the day ahead market for the
risk-neglecting solution and for a solution considering the probabilistic constraint at
level p = 0.7. The optimal values (profit from day ahead market) of both solutions
are 25,698 and 868, respectively. Next we construct two different worst-case like
situations for intraday prices. To this aim 1,000 wind energy scenarios are simulated.
In the first situation, for each scenario, we put the intraday price equal to zerowhenever
the demand is satisfied for the risk-neglecting solution and equal to the double of the
day-ahead price whenever shortage of demand is observed for this solution. As a
consequence, the intraday- market is never profitable for this solution and the final
(scenario-dependent) profit is always smaller than the calculated day-ahead profit. The
top left diagram of Fig. 7 illustrates these scenario-dependent total profits for scenarios
labeled from 1 to 1,000 along the horizontal axis and opposes them to the day ahead
profit (thick line). It can be seen that the loss on the intraday market due to shortage
of demand can be that drastic as to yield strongly negative total profits in many cases,
thus annihilating the apparently large profit on the day ahead market. The top right
diagram illustrates the same situation for the probabilistic solution assuming the same
set of wind energy scenarios and (scenario-dependent) intraday prices according to
the construction given above. Here only very few values for the total profits fall below
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Fig. 7 Comparison of random profits for a risk-neglecting (left) and a probabilistic (right) solution in
nearly worst-case situations

zero and very mildly only, if so. Most of the time the total profit is comparatively large
and much larger, in particular, than the small day-ahead profit.

In the second situationwe relate the constructiondescribed above to the probabilistic
rather than the risk-neglecting solution, i.e., for each scenario, the intraday price is
put equal to zero in case that the demand is satisfied for the probabilistic solution
and equal to the double of the day-ahead price in case of the probabilistic solution
falling short of demand. The corresponding profits are plotted in the bottom diagrams
of Fig. 7. It can be seen that in this situation the risk-neglecting solutions may possibly
yield a total profit exceding the day-ahead profit. However, as before, there may occur
rather frequent negative profits. In contrast, the probabilistic solution cannnot yield
total profits larger than the (small) day-ahead profit by construction. However, on the
negative side it is still very robust so that only few total profits fall below zero and
mildly only if so.

Of course, these constructed, worst-case like situations are not likely to occur in
reality, but they demonstrate in the extreme, what might happen if intraday prices
cannot be predicted well.
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