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ABSTRACT

We deal with several sources of uncertainty in electricity
markets. The independent system operator (ISO) maximizes
the social welfare using chance constraints to hedge against
discrepancies between the estimated and real electricity
demand. We find an explicit solution to the ISO problem and
use it to tackle the problem of a producer. In our model,
production, as well as the income of a producer, are deter-
mined based on the estimated electricity demand predicted
by the ISO, which is unknown to producers. Thus, each pro-
ducer is hedging against the uncertainty of the prediction of
the demand using the value-at-risk approach. To illustrate our
results, a numerical study of a producer’s best response given
a historical distribution of both estimated and real electricity
demand is provided.
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1. Introduction

In this paper, we deal with the problem which arises in the deregulated electric-
ity markets. Since nowadays the electricity cannot be effectively stored, see [1]
for a deep discussion, one of the goals is to balance the aggregated demand and
the supply from several producers over a short time period. In particular, we
focus on the day-ahead market where the producers offer electricity deliveries
a day before the real demand is observed. The producers provide the bidding
curves stating the price for a particular electricity quantity that they are able to
deliver. Since, in the real world, the aggregated demand is not precisely known
and thus is uncertain, we incorporate it into our models as a random variable
leading to stochastic optimization problems. An independent system operator
(ISO) collects the bidding curves (bids) from several producers and according to
an estimated distribution of the aggregated demand, it computes the production
quantities to be dispatched. Under our settings, the ISO goal is tomaximize social
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welfare while satisfying the demand with a high probability. In our problems, we
do not react on past outcomes of the random variables, which would correspond
to the ‘wait-and-see’ approach, but we hedge against future unknown outcomes,
so our decisions must be made ‘here and know’ and thus are not random but
deterministic.

We focus onmodelling the various ways the ISO and the individual producers
are facing the uncertainty of (future) electricity demand in the day-aheadmarket.
We have twomain points in this respect. First, the way the ISO and the producers
manage the uncertain demand should reflect their different roles. The ISO has
to balance the supply and the demand with high reliability, whereas a producer
is more focused on the reliability of the profit. To this end, we model the ISO
problem with a chance constraint for the demand satisfaction, and we introduce
a chance-constrained problem (CCP) of a producer where the upper quantile of
the random profit is maximized.

Second, we argue that the uncertainty of the demand has to be modelled using
distinct random variables. Indeed, in real markets, producers are bidding ear-
lier than the ISO is clearing the market. Although this time difference may be
relatively small, it can nevertheless force producers to use, e.g. a less precise
weather forecast to compute their optimal bids. Even if this was not the case,
it is reasonable to assume that different tools and heuristics used by competing
market participants to model this uncertainty yield different results. To simplify
the notation, we use one random variable for the ISO and another one for all the
producers; note that one may easily generalize the model by using an individual
random variable for each producer. Such random variables may be dependent,
but it is not necessary to specify this dependence, because these variables are used
in independent models in our approach.

To be able to provide a numerical study, we had to estimate the probability
distribution of the future electricity demand from the point of view of the ISO as
well as producers. We were unable to provide realistic estimates, since both the
data and methods used are publicly unavailable. Thus, we used publicly available
data limited to point estimates and real observations of the demand available for
several weeks, and fit the parameters of the lognormal distribution.We are aware
that this is a simplifying approach and in practice we would need a more sophis-
ticated method for the demand forecasting such as time series analysis, cf. [2,3],
which can take into account seasonality effects and external factors affecting
the demand, such as weather. Note that papers [4,5] dealt with the problem of
energy pricing considering limited production capacity, unit commitment and
fixed costs, however, not taking into account the uncertainty in the electricity
demand.

General risky design equilibrium problems with stochastic elements were
investigated in [6,7]. Recently, [8] proposed a new stochastic-programming
market-clearing mechanism to optimize pre-dispatch quantities given the prob-
ability distribution of the random demand and the costs of real-time deviations.
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The previously proposed stochastic real-time clearing formulation in which
generation capacity, demand and transmission line capacity are considered as
random, has been extended in [9] by employing the social surplus function,
which induces penalties between day-ahead and real-time quantities.

To deal with uncertain (random) demand, we employ the chance-constrained
formulations of the problems of the ISO and each producer. CCPs, a standard
tool of stochastic optimization, cf. [10,11], are usually used to get optimal solu-
tions which are highly reliable with respect to stochastic parts of the optimization
problems under uncertainty. Recent progress in this area includes sequential
algorithm based on an exact penalty [12], optimality conditions and regular-
ization [13,14], or new quantile cuts for MINLP reformulations [15]. First- and
second-order differentiability results under elliptically symmetric distributions,
which can be directly employed in standard NLP solvers, have been derived
in [16]. Paper [17] compared four stochastic programming approaches (includ-
ing chance constraints) to a large-scale unit-commitment problem which deals
with computing the most cost-efficient production schedule while meeting cus-
tomer load under the operational constraints. A chance-constrained economic
dispatch model was presented by [18]. The model integrates energy storage and
high renewable penetration to satisfy renewable portfolio requirements. The
Mordukhovich subdifferential of probabilistic/robust (probust) functions was
characterized in [19]. In our case, the stochastic problem of each producer is
related to the Value at Risk problem, which was elaborated by several previous
works, see, e.g. [20–23]. However, due to the specific structure of the producer
problems, we are able to derive and solve a nonlinear programming equiva-
lent using the demand distribution function with decision dependent arguments,
which is, according to our best knowledge, the first attempt in the area of CCP.

From the modelling point of view, the above-described problem leads to a
multi-leader-common-follower problem, where the producers are considered as
the leaders and the ISO is viewed as a common follower. Showing the existence
of solutions of such a bi-level problem is typically difficult. Even if convexity is
assumed at both levels, it is no more satisfied once the upper-level pay-off func-
tions are composed with the solution map of the lower-level problem (the ISO).
For a specific setting, all equilibria may be found analytically, see, e.g. [24,25],
assuming, however, that the demand is deterministic. Alternatively, one may
model electricity markets as supply function equilibrium (SFE), a concept intro-
duced in [26] that naturally generalizes market models of both Cournot and
Bertrand. Modelling the competition of producers by Nash equilibrium, the
profit-maximizing support functions (i.e. inverses of bid functions) are smooth
functions described by differential equations. This general model ofmarket com-
petition has been well adapted to the particular situation of electricity markets,
see, e.g. [27,28] and the references therein. Note, however, that such an approach
is orthogonal to the value-at-risk approach used here. Indeed, supply functions
determined by maximization of (expected) profit are in no relation to optimal
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bid functions of producers using value-at-risk. As far as we know, an analytical
solution to such a market is yet to be determined; our work may be considered
as the first step in this direction.

To better take into account the uncertainty in the electricity demand, we sim-
plified the model of a pay-as-clear day-ahead market in several aspects. Next, we
will discuss our main assumptions:

(1) To focus more on competition amongst producers, we don’t model individ-
ual consumers. They may be probably included in a more detailed model by
following, e.g. [29].

(2) We consider one specific time period day-ahead (a quarter of an hour),
which is independent of other time periods. Thus, the model would have to
be considerably adapted to incorporate other market participants, e.g. mar-
ket speculators selling and purchasing contracts for different periods in the
day.

(3) Transmission constraints are not taken into account; in other words, model
is formulated at a single node of transmission network. Such constraints
substantially complicate the analysis of the problem, see, e.g. the discus-
sion in [28] where radial transmission network with local demand shocks
is analysed, and existence and uniqueness of SFE in two-node networks is
shown.

(4) The aggregated electricity demand is considered to be in-elastic. The model
may be generalized in this respect by following the direction of [30], thus
modelling the linear elasticity of the demand.

(5) We assume that the producers and the ISO are able to estimate the continu-
ous probability distribution of the demand in each step of the modelling.

(6) We model the production costs using convex quadratic functions, which is
quite common as a reasonable simplification in the analysis of equilibria in
electricitymarkets, see, e.g. [24,29,31,32]. Such approximation captures well,
at least qualitatively, the increasing marginal costs of electricity production.

(7) We limit producers to bid functions that are convex and quadratic, follow-
ing again, e.g. [24,29,31,32], thus obtaining approximation that is conve-
nient for further mathematical analysis. In real markets, however, produc-
ers’ bids are typically piecewise-linear functions with limited production
capacity.

Some of the above limitationsmay possibly be overcome in the future, whereas
others seem to be inevitable to facilitate the analysis below. In particular, even if
one found an analytic solution to the ISO problem with capacity constraints (cf.
Theorem 3.1), a statement analogous to Theorem 4.5 would still depend on the
assumption of quadratic cost and bid functions, see the points 6 and 7 above.We,
however, argue that such a simplified model still carries the main features of an
electricity market, and focus on the application of the probability constraints in
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the electricity market modelling; it is an open question to which extent one could
impose probability constraints using a more realistic model.

The paper is organized as follows. In Section 2, the basic notation, assump-
tions and market settings are introduced. Section 3 is focused on the optimal
dispatch problem of the ISO. Section 4 deals with the chance-constrained profit
maximization problem of a producer. A numerical study using the real data from
the French electricity market is proposed in Section 5. Section 6 concludes the
paper.

2. Notation and problem setting

First, we summarize the basic hypothesis that are considered in thiswork: we con-
sider a pay-as-clear electricity market with N>1 producers; we only consider
producers, that is, the demand of consumers is aggregated. Finally, the trans-
mission network is not taken into account, thus also thermal losses and ‘local
demand’ are omitted.

By δ > 0, we denote the (aggregated) electricity demand, N = {1, . . . ,N} is
the set of producers, and qi ≥ 0 represents the non-negative production quantity
of the ith producer. Considering q ∈ R

N
+, we use q−i ∈ R

N−1
+ to denote the vec-

tor (q1, . . . , qi−1, qi+1, . . . , qN), and the same convention is used also for other
vectors hereinafter. For i ∈ N , we use ai, bi ≥ 0 to denote the coefficients of the
ith producer’s bid aiqi + biq

2
i and Ai ≥ 0,Bi > 0 to denote the coefficients of the

true production cost function Aiqi + Biq
2
i . We use R++ = R+ \ {0}.

For a one-dimensional random variableX on a probability space (�,F ,P), we
denote its distribution by µ which is defined as

µX(A) := P(ω ∈ � |X(ω) ∈ A)

for all Borelmeasurable subsetsA ⊆ R. This distribution induces the distribution
function

FX(x) := µX((−∞, x)) ∀x ∈ R,

the inverse of which is the quantile function F−1
X defined by

F−1
X (t) := inf{x | FX(x) ≥ t}.

We say that a measurable real function fX is a density of X, if

µX(A) =
∫

z∈A
fX(z) dz

for all Borel measurable subsets A ⊆ R or, equivalently, if

FX(x) =
∫ x

−∞
fX(z) dz ∀x ∈ R.
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3. Problem of ISO

Each producer provides the ISO with a quadratic bid aiqi + biq
2
i . The ISO

thus have knowledge of the bid vectors a = (a1, . . . , aN) ∈ R
N
+ and b =

(b1, . . . , bN) ∈ R
N
++, however, the ISO is not aware of the true production

cost parameters Ai, Bi, i = 1, . . . ,N. Thus, knowing only the bid vectors, the
ISO computes the production quantity to be dispatched to the producers q =
(q1, . . . , qN) ∈ R

N
+ to maximize the so-called social welfare, see, e.g. [29,33].

Assuming, moreover, that also the aggregated demand δ > 0 is given, the prob-
lem ISO(a, b, δ) reads

ISO(a, b, δ) min
q

∑

i∈N
aiqi + biq

2
i

s.t.




0 ≤ qi, ∀ i ∈ N ,∑

i∈N
qi = δ.

Note that the market clearing price λ(a, b, δ) corresponds to the Lagrange multi-
plier of the demand satisfaction constraint in ISO(a, b, δ). The following result is
fundamental for this work.

Theorem 3.1: Let δ > 0 be given. Then, for any (a, b) ∈ R
N
+ × R

N
++, the mar-

ket clearing price λ(a, b, δ) and optimal production quantities q(a, b, δ) in problem
ISO(a, b, δ) are the solutions of the system of equations

N∑

k=1

(
λ − ak

2bk

)+
= δ (1)

and

qi =
(

λ − ai

2bi

)+
, i ∈ N , (2)

in variables (λ, q).

This statement is already known, see, for example, a more general setting
of [25, Theorem 2.1]. For the sake of completeness, we nevertheless include a
concise proof.

Proof: TheKarush–Kuhn–Tucker (KKT) conditions for the problem ISO(a, b, δ)
are stated as





0 = ai + 2biqi − νi − λ,
0 ≤ νi ⊥ qi ≥ 0,

δ =
∑

i∈N
qi,

(3)

with the first two conditions considered for all i ∈ N . Since δ > 0, at any feasible
point of ISO(a, b, δ) there has to be some i ∈ N such that qi > 0. Then one may
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easily verify that Linear Independence Constraint Qualification (LICQ) is satis-
fied everywhere, and so KKT conditions (3) are necessary and sufficient for the
solution to ISO(a, b, δ).

To solve (3), we first show that λ ≥ 0. Let λ < 0 for a contradiction. Assump-
tion δ > 0 implies that qj > 0 for some j ∈ N , and so νj = 0. Then, aj + 2bjqj =
λ < 0 contradicts aj, bj, qj ≥ 0. Next, let us observe that

{i ∈ N : νi = 0} = {i ∈ N : ai ≤ λ}. (4)

Indeed, for all i ∈ N such that νi = 0 we have

λ = ai + 2biqi ≥ ai. (5)

On the other hand, νi > 0 implies qi = 0 and thus also λ = ai − νi < ai.
Now, we may verify formula (2); considering first i ∈ N such that ai > λ, we

have νi > 0 by (4), and so qi = 0. Similarly, ai ≤ λ implies νi = 0, and combined
with (5) leads to qi = λ−ai

2bi
. Next, by substituting (2) into the last equation of (3)

we directly verify also (1).
Finally, it remains to show that the implicit definition of the real function

λ(a, b, δ) onR
N
+ × R

N
++ × R++ by (1) is correct. Indeed, the left-hand side of (1)

is continuous in λ, and also strictly monotone in λ using λ > 0 implied by
assumption δ > 0. �

The fact that λ(a, b, δ) is well defined by (1) may also be seen from the
following remark.

Remark 3.2: Consider the setting of Theorem 3.1. If we moreover assume,
without loss of generality, that ai ≤ aj for i< j, we may restate (1) equally as

λ(a, b, δ) = min
k=1,..,N

1
∑k

j=1
1
2bj


δ +

k∑

j=1

aj

2bj


 . (6)

For details see [25, Remark 3]. In this article, however, we will not assume any
ordering of producers.

Now, we turn our attention to the ISO problem with stochastic demand repre-
sented by a positive random variable DISO on the probability space (�,F ,P).
In the remained of the paper, we impose the following assumption on the
distribution of the random demand:

(CD) Let the distribution of random demand be absolutely continuous, i.e. it has a
probability density function with respect to the Borel measure.

Since we deal with one particular part of the day (a quarter of an hour), we are
not using any time index. We assume that the main goal of the ISO is to estab-
lish equilibrium between supply and demand with great reliability to avoid high
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costs associated with the supply failure. Such a problem may be formulated as a
chance-constrained problemwhere a probability p ∈ ]0, 1[ is prescribed to satisfy
the demand:

SD-ISO(a, b) min
q

∑

i∈N
aiqi + biq

2
i

s.t.





0 ≤ qi, ∀i ∈ N ,

P

[∑

i∈N
qi ≥ DISO

]
≥ p.

(7)

As the individual chance constraint above has a structure of the so-called sepa-
rable (random) right-hand side, cf. [11], one can easily reformulate it using the
quantile function ofDISO, thus obtaining a deterministic constraint. Consequen-
tially, the explicit solution of ISO(a, b, δ) stated in Theorem 3.1 remains valid
even for SD-ISO(a, b) provided δ is replaced by F−1

DISO(p), i.e. SD-ISO(a, b) =
ISO(a, b, F−1

DISO(p)) . This important observation will be used in Section 5 to solve
the stochastic ISO problem to get the optimal dispatch quantities and clearing
price.

4. Problem of producer

In this section,we illuminate the point of viewof a particular producer i ∈ N sup-
posing that its true production cost function is given by Aiqi + Biq

2
i with known

Ai ≥ 0 and Bi > 0. Producer i ∈ N then aims to maximize his profit function
πi(a, b, δ)

πi(a, b, δ) = (λ(a, b, δ) − Ai)qi(a, b, δ) − Biqi(a, b, δ)
2, (8)

with respect to his decision variables ai ≥ 0, bi > 0, with the remaining bid coef-
ficients (a−i, b−i) fixed. Furthermore, we assume that the electricity demand δ is
not known when the producer’s bid is submitted to the ISO. Instead, we consider
stochastic demand is given by a positive random variable D on the probabil-
ity space (�,F ,P) with a probability density function f (δ). We stress that the
producers and the ISO can represent demand with random variables having dif-
ferent distributions since the ISO can use more recent information to predict the
demand for the considered time period in the next day.

Now, producer i can solve the following chance-constrained problem, where
the profitmi that can be reached with a probability pi ∈ ]0, 1[ with respect to the
random demand D is maximized:

Pi(a−i, b−i, pi) max
ai,bi,mi

mi

s.t.

{
P [πi(ai, a−i, bi, b−i,D) ≥ mi] ≥ pi,
ai, bi, mi ≥ 0.

(9)
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Note that this formulation is related to the value at risk (VaR), where the analo-
gous chance constraint is imposed on random losses resulting from investments
on financial markets, cf. [20,23]. Alternatively, one may consider losses above
the quantile leading to the measure known as conditional value at risk (CVaR),
see [21,22].

4.1. Existence of solution

In this subsection, we show that problem Pi(a−i, b−i, pi) is well-posed.

Theorem 4.1: For any i ∈ N , a−i ∈ R
N−1
+ , b−i ∈ R

N−1
++ and pi ∈ ]0, 1[ there

exists a solution to Pi(a−i, b−i, pi).

Before proving the above theorem (on p. 10), we show several auxiliary lem-
mas. First, we extend the domain of the profit functionπi to include points having
bi = 0, and establish continuity of thus adjusted function; we shall denote such
function still by πi. Should the optimal bid function of producer i be such that
bi = 0, it has to be interpreted as ‘limiting’ bid function, cf. remarks follow-
ing equation (15) in [25], since such bi is not considered in the problem of the
ISO(a, b, δ).

Lemma 4.2: Fix i ∈ N , a−i ∈ R
N−1
+ , b−i ∈ R

N−1
++ and δ > 0. For any ai ∈ R+,

we define the value of πi at point (ai, a−i, 0, b−i, δ) by

πi(ai, a−i, 0, b−i, δ) = lim
ãi→ai, bi→0+

πi(ãi, a−i, bi, b−i, δ). (10)

Thus adjusted function πi is well-defined. Moreover, given the fixed values of a−i,

b−i and δ, function πi is (jointly) continuous in (ai, bi) on R
2
+.

Proof of Lemma 4.2: We order producers as in Remark 3.2, i.e. for all k, l ∈ N

such that k< l it holds ak ≤ al (slightly abusing the notation by denoting the pro-
ducer in question still by i). Next, define function q̃i for any x ∈ R by q̃i(x) =
δ −

∑
j∈N ;j 
=i

(
x−aj
2bj

)+
, and observe that it is bounded by δ. Moreover, denoting

λ̃ = λ(a1, . . . , ai−1, b1, . . . , bi−1, δ) and using (1) wemay verify that q̃i(x) > 0 for
all x < λ̃, and q̃i(x) < 0 for all x > λ̃. First, we will show that

lim
ãi→ai,bi→0+

λ(ãi, a−i, bi, b−i, δ) = min{λ̃, ai}. (11)

For any ãi ≥ 0 and bi > 0 one may rewrite Equation (1) equivalently as
(

λ(ãi, a−i, bi, b−i, δ) − ãi

2bi

)+
= q̃i(λ(ãi, a−i, bi, b−i, δ)). (12)

By evaluating both sides of (12) for ãi converging to ai and bi converging to 0 from
above, wewill prove (11) by contradiction. Let us denote the left-hand side of (11)
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by L; for L < min{λ̃, ai} the left-hand side of (12) is converging to 0, whereas
the right-hand side is, eventually, positive, leading to a contradiction. For L >

λ̃, the right-hand side of (12) is, eventually, negative, which is a contradiction
with non-negativity of the left-hand side. Finally, for L > ai, the left-hand side
of (12) is, eventually, above δ, thus we get a contradiction with boundedness of
the right-hand side.

Further, we will show that

lim
ãi→ai,bi→0+

πi(ãi, a−i, bi, b−i, δ) =
{
0 if ai > λ̃, (13)

(ai − Ai) q̃i(ai) − Biq̃i(ai)
2 if ai ≤ λ̃.(14)

For ai > λ̃, Equation (11) implies that, eventually, qi(ãi, a−i, bi, b−i, δ) is zero due
to (2), and so is profitπi(ãi, a−i, bi, b−i, δ) using (8). Thus formula (13) is justified.
Otherwise, i.e. for ai ≤ λ̃, the clearing price converges to ai due to (11). Then

for j 
= i quantity qj(ãi, a−i, bi, b−i, δ) converges to
(
ai−aj
2bj

)+
using (2). Next, by

employing identity

qi(ãi, a−i, bi, b−i, δ) = δ −
∑

j 
=i

qj(ãi, a−i, bi, b−iδ)

valid for any ãi and bi > 0 one establishes convergence of qi(ãi) to q̃i(ai), and so
profit πi(ãi, a−i, bi, b−i, δ) converges to (14) by the means of (8).

We will complete the proof by showing that function πi, now defined for all
(ai, bi) ∈ R

2
+, is continuous in (ai, bi). Continuity on R+ × R++ is a direct con-

sequence of formulas (2), (6) and (8). Continuity at points (ai, 0) with respect to
sequences bi → 0+ is due to the definition, see (10). Thus, one has only to verify
continuity of πi at points (ai, 0), i.e. of the function given by (13) and (14), with
respect to ai. To this end observe first that q̃i(λ̃) = 0, thus there is no jump when
passing between (13) and (14). Finally, formula (14) is continuous in ai due to
continuity of q̃i(ai). �

In the rest of this subsection, we will denote by λ(a−i, b−i, δ) a value of a func-
tion defined onR

N−1
+ × R

N−1
++ × R++ by an equation analogous to (1) for the set

of producersN \ {i}. For all a ∈ R
N
+, b ∈ R

N
++, and δ > 0, equation (6) implies

λ(a, b, δ) ≤ λ(a−i, b−i, δ). (15)

Let us henceforth denote by m⋆
i (a−i, b−i, pi) the supremum of the objective

function in Pi(a−i, b−i, pi). We will establish lower and upper bounds on
m⋆

i (a−i, b−i, pi).

Lemma 4.3: Let a−i ∈ R
N−1
+ , b−i ∈ R

N−1
++ , and pi ∈ ]0, 1[ . Then there exists

ai, bi ≥ 0 such that P [πi(a, b,D) ≥ 0] ≥ pi, thus m
⋆
i (a−i, b−i, pi) ≥ 0. Moreover,

m⋆
i (a−i, b−i, pi) is finite.
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Proof: Fixing any bi > 0, we claim that

P [πi(a, b,D) ≥ 0] ≥ P [λ(a, b,D) ≤ ai] ≥ P [λ(a−i, b−i,D) ≤ ai] .

To show the first inequality, observe that λ(a, b, δ) ≤ ai implies πi(a, b, δ) = 0
using (2); the latter stems from (15). Now, finding ai high enough such that
P [λ(a−i, b−i,D) ≤ ai] ≥ pi we have shownm⋆

i (a−i, b−i, pi) ≥ 0.
To show that m⋆

i (a−i, b−i, pi) is finite, we will now find an upper bound on
πi(a, b, δ) being valid for all δ > 0 such that πi(a, b, δ) > 0. Necessarily, one then
has Ai < λ(a, b, δ) due to (8), thus also Ai < λ(a−i, b−i, δ) using (15). Assuming
bi > 0 for the moment, we observe from (8) that πi(a, b, δ) ≤ (λ(a−i, b−i, δ) −
Ai) qi(a, b, δ) − Bi qi(a, b, δ)2 ≤ (λ(a−i,b−i,δ)−Ai)

2

2Bi
. The first inequality is due

to (15); to show the latter it suffices tomaximize themiddle formula w.r.t. qi ∈ R.
Moreover, such an upper bound on πi holds also for bi = 0 using continuity of
πi as stated in Lemma 4.2. Further, denoting α =

∑
j 
=i

aj
2bj

and β =
∑

j 
=i
1
2bj

,

Equation (6) implies λ(a−i, b−i, δ) ≤ δ+α
β

for all δ, and since Ai < λ(a−i, b−i, δ),
we have shown

πi(a, b, δ) ≤ (δ + α − βAi)
2

2Biβ2
.

Thus, given some pi ∈ ]0, 1[ , for ai, bi ∈ R+ andmi > 0 to be a feasible point of
Pi(a−i, b−i, pi), it has to hold

pi ≤ P [πi(a, b,D) ≥ mi] ≤ P

[
(D + α − βAi)

2

2Biβ2
≥ mi

]

= P

[
D ≥ βAi − α + β

√
2Bimi

]
.

In other terms,β
√
2Bimi ≤ α − βAi + F−1

D (1 − pi), using quantile function F
−1
D

of D; we thus obtained an upper bound onmi. �

Now, we define probability function ρi(ai, bi,mi) and a set-valued mapping
Xi(mi) by

ρi(ai, bi,mi) = P [πi(a, b,D) ≥ mi] , (16)

Xi(mi) = {(ai, bi, m̃i) ∈ R
3
+ : m̃i ≥ mi, ρi(ai, bi, m̃i) ≥ pi}, (17)

omitting fixed parameters a−i and b−i in the notation. Note that Xi(mi) is an
intersection of the set of feasible points of Pi(a−i, b−i, pi) with a half space
{(ai, bi, m̃i) ∈ R

3 : m̃i ≥ mi} . Denoting by F−1
D the quantile function of D, we

show boundedness of Xi(mi) for allmi > 0.
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Lemma 4.4: Let i ∈ N , a−i ∈ R
N−1
+ , b−i ∈ R

N−1
++ , and pi ∈ ]0, 1[ . Then for any

mi > 0 it holds

Xi(mi) ⊂ [0,�] × [0,�2/(2mi)] × [mi,m
⋆
i (a−i, b−i, pi)],

where � = λ(a−i, b−i, F
−1
D (1 − pi)).

Proof: To show the statement, we may alternatively prove that for mi > 0 set-
valued mapping

S(mi) = {(ai, bi) ∈ R
2
+ : ρi(ai, bi,mi) ≥ pi}

satisfies S(mi) ⊂ [0,�] × [0,�2/(2mi)], and S(y) ⊃ S(x) for all x> y>0.
Observe first that the monotonicity of S(mi) is directly due to monotonicity of
ρi(ai, bi,mi) inmi, see (14).

Next, consider a realization δ > 0 of random demand D and observe that
πi(a, b, δ) ≥ mi implies qi(a, b, δ) > 0 due to (2), and so λ(a, b, δ) > ai. For the
case of bi > 0, one may use Equations (2) and (8) to obtain

λ(a, b, δ)2

2bi
≥ λ(a, b, δ)qi(a, b, δ) ≥ πi(a, b, δ).

We see that ρi(ai, bi,mi) ≥ pi implies P
[
λ(a, b,D) ≥ max {ai,

√
2mibi}

]
≥ pi.

Considering the quantile function F−1
D of D, the last formula may be rewritten

as

λ(a, b, F−1
D (1 − pi)) ≥ max {ai,

√
2mibi}.

Using λ(a−i, b−i, δ) ≥ λ(a, b, δ), see (15), one may conclude S(mi) ⊂ [0,�] ×
[0,�2/(2mi)], where we included also the previously avoided values of bi = 0.

�

Proof of Theorem 4.1: For this proof denote m⋆
i (a−i, b−i, pi) simply by m⋆

i . If
m⋆

i = 0, then a maximizer of Pi(a−i, b−i, pi) exists due to Lemma 4.3, thus we
may further assumem⋆

i > 0. Next, for any 0 < m̃i < m⋆
i a non-empty set Xi(m̃i)

is closed since ρi in (17) is upper-semicontinuous. This stems from (16) using
continuity of πi in (ai, bi) due to Lemma 4.2. Moreover, Xi(m̃i) is also bounded
using Lemma 4.4, and so problem

max
(ai,bi,mi)∈Xi(m̃i)

mi

has a solution. This solution is, however, also a solution of Pi(a−i, b−i, pi),
cf. (17). �
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4.2. Problem reformulation

In this subsection, we reformulate problemPi(a−i, b−i, pi) to facilitate the numer-
ical experiment in Section 5. First, we analyse what values δ > 0 of the demand
yield πi(a, b, δ) ≥ mi. To this end, we define functions λ1(ai, bi,mi), λ2(ai, bi,mi)

for all possible values of ai, bi ∈ R+ andmi > 0 in the following way:

(1) if 2bi > Bi, then λ2(ai, bi,mi) = +∞,

λ1(ai, bi,mi) = ai +
bi

Bi − 2bi
(ai − Ai −

√
(ai − Ai)2 − 4mi(Bi − 2bi)),

(2) if 2bi = Bi and ai > Ai, then λ1(ai, bi,mi) = ai + Bimi
ai−Ai

, λ2(ai, bi,mi) =
+∞,

(3) if 2bi < Bi and ai ≥ Ai + 2
√
mi(Bi − 2bi), then λ1(ai, bi,mi) is as in the case

(1) and

λ2(ai, bi,mi) = ai +
bi

Bi − 2bi
(ai − Ai +

√
(ai − Ai)2 − 4mi(Bi − 2bi)),

(4) otherwise, λ1(ai, bi,mi) = +∞ and λ2(ai, bi,mi) = −∞.

Then, we may reformulate the probability function ρi.

Theorem 4.5: Let i ∈ N , a−i ∈ R
N−1
+ , b−i ∈ R

N−1
++ , ai, bi ∈ R+, and mi > 0,

then it holds

ρi(ai, bi,mi) = P [λ(a, b,D) ∈ [λ1(ai, bi,mi), λ2(ai, bi,mi)]] . (18)

By comparing (18) with (16), one may deduce that functions λ1,2(ai, bi,mi)

are roots of πi(a, b, δ) = mi; indeed, given qi(a, b, δ) > 0, the profit πi(a, b, δ) is
quadratic in λ(a, b, δ).

Proof: For any (ai, bi,mi) such that bi > 0, realization δ > 0 of demand D and

πi(a, b, δ) ≥ mi > 0, (19)

we necessarily have qi(a, b, δ) > 0 and so using (2) also

qi(a, b, δ) = λ(a, b, δ) − ai

2bi
(20)

and λ(a, b, δ) > ai. Then, denoting α = ai − Ai, β = 2bi − Bi, and

�(ai, bi,mi) = {l ∈ R : l > ai, βl2 − 2l(aiβ − αbi)

+ ai(Aiβ − αBi) − 4b2imi ≥ 0}, (21)

and substituting (20) into (8), we may reformulate inequality (19) equiva-
lently as λ(a, b, δ) ∈ �(ai, bi,mi). Evaluating functions inf{�(ai, bi,mi)} and
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sup{�(ai, bi,mi)}, with the discriminant of the left-hand side of the inequality
in (21) being

4b2i (α
2 + 4miβ),

one may establish that

λ1(ai, bi,mi) = inf{�(ai, bi,mi)}

and

λ2(ai, bi,mi) = sup{�(ai, bi,mi)},
thus showing (18). Further, observe that all above arguments are valid also for
bi = 0 due to continuity of profitπi with respect to bi → 0+, see Lemma 4.2. �

Next, we define functions

δ1,2(a, b,mi) =
N∑

k=1

(
λ1,2(ai, bi,mi) − ak

2bk

)+
, (22)

yielding what value of the aggregated demand corresponds to clearing prices
λ1,2(ai, bi,mi), see Equation (1), and conclude this section with a corollary
playing a key role in the numerical experiment.

Corollary 4.6: Let i ∈ N , a−i ∈ R
N−1
+ , b−i ∈ R

N−1
++ , and denote by FD the distri-

bution function of the demand D. Then either the optimal profit in Pi(a−i, b−i, pi)
is zero, or Pi(a−i, b−i, pi) may be equivalently formulated as

max
ai,bi,mi

mi

s.t.

{
FD(δ2(a, b,mi)) − FD(δ1(a, b,mi)) ≥ pi,
ai, bi,mi ≥ 0.

(23)

Proof: Using Theorem 4.5, it suffices to observe that the probability function can
be expressed as

ρi(a, b,mi) =
∫ δ2(a,b,mi)

δ1(a,b,mi)

f (δ) dδ.

�

5. Numerical study

In the numerical study, we apply the above-derived results to real data from the
French electricity market. We derive the optimal bidding curves for five artifi-
cial producers and report the corresponding optimal dispatch quantities, which
are provided by the ISO. We employ the real data to estimate the distribution
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Figure 1. Day-ahead electricity market schema.

of the random demand. Note that these estimates are different for the producers
and the ISO as discussed below. Our goal is also to illustrate that the reformula-
tions obtained in the previous section lead to problems which can be solved by
standard software tool such as Matlab.

The sequence of steps is from the perspective of producer i ∈ N as follows:
estimate the future demanddistributionD; use it to solve producer’s optimization
problem, thus obtaining bidding parameters ai, bi to be submitted to the ISO;
after the clearing process of the ISOusingDISO, the producer obtains the dispatch
order and the payment. The sequence of steps from the perspective of the ISO:
generate a forecast of the demand distributionDISO; obtain the bids a, b from the
producers; use these data to clear the market day-ahead; announce the dispatch
and pay the producers according to the clearing price. In the case that the demand
realization DISO = δ does not match the planned supply, the difference is then
compensated in the intraday market. The situation is outlined in Figure 1.

We will now introduce a naive approach to estimating parameters of D and
DISO. Table 1 contains the point estimates and the real data observed between
January 3 and February 28, 2017. These days correspond to Tuesdays, Wednes-
days, and Thursdays; wewanted to avoidMondays and Fridays when the demand
can differ considerably. Note that our model can be used to deal with any par-
ticular time period for which we are able to construct reliable estimate of the
random demand distributions. The table contains the point estimates D̂t of the
demand used by producers, the point estimates D̂ISO

t used by the ISO, the real
consumptions on the dayDISO

t , and the clearing prices. We assume that the point
estimates are i.i.d. realizations of the demand forecasts for the next day. We are
aware that this is a highly simplifying assumption and in practice we would need
more sophisticated approach as we have discussed in the Introduction. Based on
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Table 1. Input dataa: point estimates of the demandat various stages (D̂t usedbyproducers, D̂
ISO
t

used by ISO), observed consumptions DISOt and clearing prices.

Day (2017) Demand Demand Observed Clearing
from 10:00 am estimate (GW) estimate (GW) consumption (GW) price

to 10:15 am D̂t D̂ISOt DISOt (EUR/MWh)

3-Jan 87.8 84.7 84.323 74.65
4-Jan 86.5 86.5 86.270 72.85
5-Jan 86.8 84.6 84.406 73.03
10-Jan 81.5 80.8 80.521 84.59
11-Jan 80.6 79.0 79.443 82.57
12-Jan 78.1 76.6 77.020 86.71
17-Jan 88.1 87.6 88.211 129.33
18-Jan 91.7 92.2 92.751 111.75
19-Jan 93.8 92.8 93.120 94.00
24-Jan 90.2 90.5 90.544 151.07
25-Jan 91.5 90.9 90.821 151.29
26-Jan 90.9 92.6 93.100 126.09
31-Jan 74.5 73.1 72.964 89.80
1-Feb 72.1 71.6 71.780 79.11
2-Feb 70.3 70.3 70.746 58.55
7-Feb 74.6 75.0 75.081 NA
8-Feb 75.9 76.2 76.322 73.02
9-Feb 79.1 79.7 79.522 70.97
14-Feb 73.2 73.5 73.618 64.67
15-Feb 71.4 69.9 70.256 58.80
16-Feb 71.0 70.0 74.800 61.90
21-Feb 68.6 67.9 68.023 54.59
22-Feb 67.3 67.0 67.627 53.00
23-Feb 67.1 67.8 68.586 43.36
28-Feb 69.8 72.2 72.433 49.61

aData has been taken from http://www.rte-france.com/fr/eco2mix/eco2mix-consommation

Table 2. Parameters estimates of the lognormal distribution.

Parameters µ̂ σ̂ 2 Exp. value MSPE

Producer(s) 4.3623 0.0123 78.92 77.01
ISO 4.3672 0.0119 79.29 75.01

the observations, we have estimated the parameters of the lognormal distribu-
tion, cf. Table 2.Note that our approach is not limited to this particular probability
distribution, but we can use any distribution with positive support, e.g. Gamma
or inverse-Gaussian.

As already discussed in the Introduction, we further construct the producers’
estimate of D based on point estimates D̂t that are published by the ISO. Such
a naive method is necessary to illustrate our approach since one may not use
private data and/or models of producers. For a producer, the parameters of the
lognormal distribution ofD are estimated using the pairs D̂t , D̂ISO

t . The expected
value corresponds to the sample mean of the producer demand estimate D̂, i.e.

Ê[D̂] = 1

T

T∑

t=1

D̂t ,
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whereas the variance represents theMean Square Prediction Error (MSPE)which
is estimated as a sum of the sample variance of D̂

V̂ar(D̂) = 1

T − 1

T∑

t=1

(D̂t − Ê[D̂])2,

and the mean square error

MSE(D̂ISO, D̂) = 1

T

T∑

t=1

(D̂ISO
t − D̂t)

2,

i.e.

MSPE(D̂ISO, D̂) = V̂ar(D̂) + MSE(D̂ISO, D̂).

The values of the parameters µ̂, σ̂ 2 for a producer are then obtained by the follow-
ing arithmetic operations valid for the lognormal distribution using the desirable
expected value and variance

µ̂ = ln


 (Ê[D̂])2√

MSPE(D̂ISO, D̂) + (Ê[D̂])2


 , (24)

σ̂ 2 = ln

(
1 + MSPE(D̂ISO, D̂)

(Ê[D̂])2

)
. (25)

Analogous approach is used to estimate the parameters of DISO with the pairs of
observations D̂ISO

t , DISO
t in the place of D̂t , D̂ISO

t , see Table 2.
Considering five producers, we will solve problem (9) for each producer given

the initial values of the bidding coefficients ai, bi and the production cost coef-
ficients Ai,Bi, see Table 3. Note that producer 1 is considered as the largest one
with the smallest linear cost coefficient and the highest quadratic one, whereas
producer 5 is the smallest with corresponding cost curve. We will employ the
reformulated form of the problem of producer, see (23), assuming pi = 0.9 for
all i.

As we mentioned above, we are not able to get the equilibrium over all pro-
ducers strategies. Instead, we are going to compare three approaches which
demonstrate different information propagation/availability of the other produc-
ers strategies. We consider the following approaches:

(1) compute âi, b̂i given (a−i, b−i) for all i = 1, . . . ,N , i.e. all producers per-
form optimization independently and know only initial/unoptimized bid-
ding coefficients of other producers, which means they have only basic
information about other producers strategies,
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Table 3. Starting values of the coefficients (ai , bi) and results of the producer (âi , b̂i , m̂i) and the

ISO problems (q̂i , λ̂) for considered approaches.

Approach Producer 1 2 3 4 5

Ai 23.20 34.10 36.00 34.50 51.30
Bi 0.69 0.62 0.51 0.72 0.35
ai 24.20 35.10 37.00 35.50 52.30
bi 0.79 0.72 0.61 0.82 0.45

(1) âi 24.40 34.92 37.44 35.80 53.45

b̂i 0.82 0.63 0.63 0.83 0.38
m̂i 446.28 274.76 242.58 198.07 34.79
q̂i 21.36 19.47 17.28 14.20 7.71

λ̂ 59.27
(2) âi 24.20 35.10 37.44 35.50 52.30

b̂i 0.79 0.72 0.63 0.82 0.45
m̂i 242.58
q̂i 22.45 17.06 17.59 14.74 8.19

λ̂ 59.67
(3) âi 24.40 35.75 40.99 35.83 54.04

b̂i 0.82 0.73 0.53 0.82 0.35
m̂i 446.28 240.74 250.72 208.76 42.01
q̂i 21.87 16.74 17.99 14.75 8.69

λ̂ 60.09

(2) compute only â3, b̂3 given (a−3, b−3), i.e. only one (randomly selected)
middle-sized producer optimizes its profit and the others use basic unop-
timized coefficients as the inputs for the ISO,

(3) compute âi, b̂i given â1, . . . âi−1, ai+1, . . . , aN , b̂1, . . . b̂i−1, bi+1, . . . , bN for
all i = 1, . . . ,N , i.e. producer i is given the optimal bids of producers
1, . . . , i − 1, which corresponds to partially informed producers. Note that
the last producer N knows the optimal strategies of other producers, i.e. it is
perfectly informed.

The problems are solved by optimization solvers available in Matlab. The imple-
mentation of the producer problem (23) includes the following steps:

(0) Writing the lower and upper bounds δ1,2(a, b,mi) as Matlab functions.
Defining the nonlinear constraint and objective function as anonymous
functions using@() declaration. Setting the solver option to SQP algorithm.

(1) Fixing the parameters (a−i, b−i) according to the selected approach (1)–(3).
(2) Selecting the starting points for the decision vector (ai, bi,mi).
(3) Setting the lower and upper limits for the decision vector.
(4) Solving the problem for each producer using fmincon solver.

The obtained optimal bids âi, b̂i, i = 1, . . . ,N are then reported to the ISO, which
produces the dispatch orders q̂i and the clearing price λ̂ by solving SD-ISO(a, b)
problem (7). This optimization problem is solved by quadprog solver. The clear-
ing price λ̂ is obtained as the value of the Lagrange multiplier corresponding to
the constraint, which is part of the quadprog output.
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Figure 2. Optimal solutions of problem (9) for producer 3 for different levels pi ∈ [0.5, 0.99].

Table 3 contains the numerical results. We can observe that although the
delivered bids are all different in all cases, the clearing price is stable. If we com-
pare the dispatched quantities, we can observe that the producer 1 is expected
to deliver the most (m̂1 = 21.36), although not as much more than the pro-
ducer 2 in the first approach (m̂2 = 19.47). The difference is then greater in the
other approaches. As expected, the smallest producer will deliver the least in all
approaches.

We also investigated the development of optimal values of parameters for pro-
ducer 3 with respect to the changes of the probabilistic level pi ∈ [0.5, 0.99], see
Figure 2. Note that a−3 and b−3 are hold fixed and that the optimal values from
the previous iteration are used as the starting points for the update. We can
observe that the behaviour is quite stable for m̂3, whereas â3, b̂3 rapidly change
for high probabilistic level p3 where the coefficient for the linear term â3 rapidly
increases whereas b̂3 decreases. We can deduce that the optimization tries to sta-
bilize the bidding function by reducing the influence of the quadratic term and
by strengthening the linear term.

Sensitivity analysis of optimal value m3 was also performed with respect to
its production cost parameters A3, B3, see Figure 3. As the production costs
of producer 3 increase, the profit quantile decreases, which is certainly in line



20 M. BRANDA ET AL.

Figure 3. Optimal solutions of problem (9) for producer 3 – sensitivity with respect to the
production cost parameters A3, B3.

Figure 4. Optimal solutions of problem (9) for producer 3 – sensitivity with respect to the
producer’s bid coefficients a2, b2.

with expectations. When the coefficient for the quadratic term B3 increases, the
decrease of the profit quantile m̂3 is more significant than that associated with
growth of the linear term A2. Perhaps less expected is the behaviour of the profit
quantile relative to the expected bidding function of another producer. The devel-
opment of the profit quantile m̂3 with respect to the producer’s bid coefficients
a2, b2 can be found in Figure 4. As the coefficients of the bidding function of
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producer 2 increase, so does the quantile of producer 3’s profit m̂3. This can be
interpreted as that if producer 2 is more expensive, producer 3 can benefit from it
and achieve higher profits with a high probability by optimizing its bidding coef-
ficients. When we increase the coefficient for the quadratic term b2, the growth
of the profit quantile m̂3 is more significant than for the linear one a2.

6. Conclusions

In this paper, we have investigated two closely connected problems appearing on
deregulated electricitymarkets which are subject to uncertainty.We have focused
on the stochastic demand and employed the chance-constrained formulations for
the problems of the ISO and producers. We have shown that due to the structure
of the ISO problem, it is possible to use an earlier result and derive an explicit
solution for the production quantities. For each producer, we have formulated a
value at risk problem with the maximization of profit which can be reached with
a certain level of probability. Then, we have derived an explicit reformulation of
the probability function, which enables to solve the problem using a nonlinear
programming solver. In the numerical study, we have illustrated our approach
using real data from the French market. We have solved the producers as well
as the ISO problems and compared several approaches to sharing the informa-
tion about producers’ bidding functions showing their impact on the optimal
production quantities.
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