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DISTANCE TO UNCONTROLLABILITY FOR CONVEX PROCESSES∗

ADRIAN LEWIS† , RENÉ HENRION‡ , AND ALBERTO SEEGER§

Abstract. The classical study of controllability of linear systems assumes unconstrained control
inputs. The “distance to uncontrollability” measures the size of the smallest perturbation to the ma-
trix description of the system rendering it uncontrollable and is a key measure of system robustness.
We extend the standard theory of this measure of controllability to the case where the control input
must satisfy given linear inequalities. Specifically, we consider the control of differential inclusions,
concentrating on the particular case where the control input takes values in a given convex cone.
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1. Introduction. Classical linear control theory concerns a system of the form

ẋ(t) = Ax(t) + Bu(t),(1.1)

where, at each time t, the state vector x(t) lies in the space R
n, the input control

u(t) lies in the space R
m, and the given matrices A and B are real and of appropriate

dimensions. A key question is controllability—whether x can be steered from the
origin to an arbitrary point in the state space. To fix the ideas, suppose the input
function u(·) is taken from

U =

{
u : [0, T ] → R

m |
∫ T

0

|u(t)|dt < ∞
}
,

the space of integrable functions over a prescribed time interval [0, T ]. The associated
trajectory

t �→ xu,A,B(t) =

∫ t

0

e(t−s)ABu(s)ds

is then an element of the function space

X = {x : [0, T ] → R
n | x is absolutely continuous}.

Controllability of the linear system (1.1), or equivalently of the pair (A,B), simply
means that {

xu,A,B(T ) | u ∈ U
}

= R
n.
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For convenience, we see (A,B) not just as a pair of matrices but also as an element
of L(Rn+m,Rn), the space of linear maps from R

n+m to R
n. Spaces of this type are

equipped with the operator (or spectral) norm, which we denote by ‖ · ‖. Norms in
standard Euclidean spaces are denoted simply by | · |. To avoid a possible misunder-
standing, let us be more explicit:

‖(A,B)‖ = sup
|(s,w)|=1

|As + Bw|.

As pointed out by Lee and Markus [25], the set

Ξ = {(A,B) ∈ L(Rn+m,Rn) | the system (1.1) is uncontrollable}

is closed. This fact prompted Paige [27] to introduce the number

μ(A,B) = inf
(C,D)∈Ξ

‖(A,B) − (C,D)‖(1.2)

as measure for the “degree of controllability” of a given (A,B). The number (1.2)
indicates how much we need to perturb the system (1.1) in order to destroy its con-
trollability.

The problem of estimating (1.2) is of importance for control theorists and engi-
neers alike. In section 3 we review what has been done already in connection with
the evaluation of Paige’s distance function μ : L(Rn+m,Rn) → R. We also clarify a
point that remained a bit obscure until now, namely, the difference between real and
complex controllability.

The purpose of our work is to go beyond the traditional context of the uncon-
strained linear model (1.1). As shown in section 5, the discussion becomes more
involved when the input function u(·) is subject to constraints. New concepts and
tools are needed to handle this more general situation. Sections 7 and 8 are devoted
to the controllability analysis of dynamical systems described by convex processes.

The notation that we employ is for the most part standard; however, a partial
list is provided for the reader’s convenience:

ImL = {Ls | s ∈ R
n} (range of an operator L defined on R

n),

KerL = {s ∈ R
n | Ls = 0} (nullspace of an operator L defined on R

n),

dist[z,Γ] = infγ∈Γ|z−γ| (distance from z to the set Γ),

spanK = K−K (space spanned by the cone K ⊂ R
n),

linK = K∩−K (lineality space of the cone K ⊂ R
n),

K+ = {q ∈ R
n | qT s ≥ 0 ∀s ∈ K} (dual cone of K ⊂ R

n),

S⊥ = {q ∈ R
n | qT s = 0 ∀s ∈ S} (orthogonal space of S ⊂ R

n),

grF = {(s, v) ∈ R
n×R

n | v ∈ F(s)} (graph of a process F : R
n −→−→R

n),

domF = {s ∈ R
n | F(s) �= ∅} (domain of a process F : R

n −→−→R
n),

ImF = ∪s∈RnF(s) (image of a process F : R
n −→−→R

n).
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2. The reduction lemma. Controllability is a linear-algebraic property of the
matrix pair (A,B), and in this framework, the problem of computing the distance to
uncontrollability is a matrix distance problem. As is often the case for such problems,
rank-one perturbations are important. We capture the essential idea in the following
abstract linear algebra result that plays a ubiquitous role throughout this work. The
notation xT indicates the transpose of the column vector x.

Lemma 2.1 (reduction lemma). Let Γ ⊂ R
p be a nonempty set, x ∈ R

n a nonzero
vector, y ∈ R

p, and F ∈ L(Rn,Rp). Then,

inf
E∈L(Rn,Rp)
Ex−y∈Γ

‖E − F‖ =
1

|x| dist[Fx− y,Γ].(2.1)

Furthermore, if γ is a point in Γ at minimal distance from Fx− y, then

E = F +
1

|x|2 (y − Fx + γ)xT(2.2)

achieves the infimum on the left-hand side of (2.1).
Proof. Denote by α the term on the left-hand side of (2.1). Then,

α = inf
E∈L(Rn,Rp)
Ex−y∈Γ

sup
|s|=1

|(E − F )s| ≥ inf
E∈L(Rn,Rp)
Ex−y∈Γ

∣∣∣∣(E − F )

(
x

|x|

)∣∣∣∣
≥ 1

|x| inf
E∈L(Rn,Rp)
Ex−y∈Γ

|(Ex− y) − (Fx− y)| ≥ 1

|x| dist[Fx− y,Γ].

To prove the reverse inequality, we find a sequence {γν}ν∈N in Γ such that

|Fx− y − γν | ≤ dist[Fx− y,Γ] + ν−1 ∀ν ∈ N.

(Recall that Γ is not assumed to be closed.) The corresponding linear map

Eν = F +
1

|x|2 (y − Fx + γν)x
T

satisfies Eνx− y ∈ Γ, and therefore

α ≤ ‖Eν − F‖ =
1

|x|2 sup
|s|=1

|(y − Fx + γν)x
T s|

≤ |y − Fx + γν |
|x| ≤ dist[Fx− y,Γ] + ν−1

|x| .

We now let ν → ∞ and arrive at the desired conclusion. The second part of the lemma
is obtained by working with γ instead of the minimizing sequence {γν}ν∈N.

What formula (2.1) says is that our complicated approximation problem in the
space (L(Rn,Rp), ‖ · ‖) can be reduced to a simpler approximation problem over the
Euclidean space (Rp, | · |).

3. The unconstrained linear model. Paige’s measure of controllability (1.2),
while rather natural, is not the most amenable to analysis. We therefore begin our ex-
position by discussing the easier case first analyzed by Paige, allowing the pair (A,B)
to have complex entries. Most of the material presented in this section is well known,
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but we take the opportunity to clarify some common points of confusion. The original
Paige measure of controllability is the distance function μcomplex : L(Cn+m,Cn) → R

defined by

μcomplex(A,B) = inf
(C,D) uncontrollable
(C,D)∈L(Cn+m,Cn)

‖(A,B) − (C,D)‖.(3.1)

A celebrated result due to Eising [9] asserts that

μcomplex(A,B) = inf
z∈C

σmin[A− zI,B],(3.2)

where the term on the right-hand side concerns the minimization of the smallest
singular value of the rectangular matrix [A − zI,B] with respect to the complex
scalar z. This minimization problem has been extensively studied in the last years
(cf. [6, 10, 11, 14, 17]), so we don’t indulge in this matter. Suffice it to say that the
Eising formula has its root in the Hautus [16] characterization of controllability:

(A,B) is controllable ⇐⇒ rank[A− zI,B] = n ∀z ∈ C.

We would like to stress the fact that in this paper we are going to work with control
systems described only in terms of real entries. The field of complex numbers is ill
adjusted when it comes to conically constrained control systems or, more generally,
with convex processes.

As shown by Gracia and de Hoyos [15], even if (A,B) has real entries, the uncon-
trollable (C,D) achieving the infimum in (3.1) may well have complex entries. The
“real” Paige function (1.2) is not just the restriction of μcomplex to the real field. The
question of estimating the real Paige function can be answered in at least two different
ways.

3.1. The approach of DeCarlo and Wicks. In what follows, we identify the
set

O(r, n) = {Q ∈ L(Rr,Rn) | QTQ = I}

with the collection of orthonormal matrices of size n × r. The following variational
formula involves a minimization over the collection of orthonormal matrices having
at most two columns.

Proposition 3.1 (see DeCarlo and Wicks [8]). Consider a controllable operator
(A,B) ∈ L(Rn+m,Rn). Then, one has

μ(A,B) = inf
Q∈O(1,n)∪O(2,n)

‖(QTA(I −QQT ), QTB)‖.(3.3)

From a computational point of view, formula (3.3) is not very satisfactory because
it involves a minimization problem over a complicated set of matrices. Notice that
(3.3) can be written in the form

μ(A,B) = min{μ1(A,B), μ2(A,B)},

where the term

μ1(A,B) = inf
Q∈O(1,n)

‖(QTA(I −QQT ), QTB)‖ = inf
|q|=1

[
|(I − qqT )AT q|2 + |BT q|2

]1/2

= inf
|q|=1

inf
λ∈R

[
|AT q − λq|2 + |BT q|2

]1/2

= inf
λ∈R

σmin[A− λI,B]
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is rather easy to evaluate, but the computation of

μ2(A,B) = inf
Q∈O(2,n)

‖(QTA(I −QQT ), QTB)‖

remains a difficult task. As observed in [15], the term μ1(A,B) is not necessarily
equal to μ(A,B). As a general rule, it is only an upper bound.

3.2. The approach of Hu and Davison. An alternative formula for estimat-
ing the real Paige function has been suggested by Hu and Davison [19, 20]. In the
proposition stated below, the symbols RW and IW refer, respectively, to the real part
and the imaginary part of a complex linear map W ∈ L(Cn+m,Cn). The notation
sssv(E) stands for the second-smallest singular value of the matrix E.

Proposition 3.2 (see Hu and Davison [19, 20]). Consider a controllable operator
(A,B) ∈ L(Rn+m,Rn). Then,

μ(A,B) = inf
z∈C

sup
γ∈]0,1]

sssv

([
RWz −γIWz

γ−1IWz RWz

])
(3.4)

with Wz = [A− zI,B].
Paradoxically, the evaluation of the real Paige function is much more involved

than the evaluation of the complex counterpart. This should not be very surprising,
however, for readers who have encountered a similar phenomenon while comparing
the real stability radius of a matrix to the complex one. (See the survey paper of
Hinrichsen and Pritchard [18].)

3.3. Partial perturbations. The case of perturbations in the pair (A,B) is the
most popular one, but other situations could be considered as well. It may happen,
for instance, that only the component A is subject to perturbations. The partial index

∂Aμ(A,B) = inf
C∈L(Rn,Rn)

(C,B) uncontrollable

‖A− C‖

indicates how much one needs to perturb the first component of (A,B) in order to
produce a pair which is uncontrollable. A similar interpretation must be given to the
number

∂Bμ(A,B) = inf
D∈L(Rm,Rn)

(A,D) uncontrollable

‖B −D‖.

Later on, these indices are used in the more general context of cone-constrained linear
systems (section 5) and control systems governed by convex processes (section 7).

4. Incorporating linear constraints on the input function. Our aim in
this work is to extend the classical theory of the distance to uncontrollability to the
case where the control u is constrained. As a first, easy but illuminating, step, let us
consider the case of linear equality constraints. The works of DeCarlo and Wicks [8]
and Hu and Davison [19, 20] can both be extended to the case of a linear system with
linear constraints on the input function:{

ẋ(t) = Ax(t) + Bu(t),
u(t) ∈ S.

(4.1)
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Controllability for the model (4.1) simply means that
{
xu,A,B(T ) | u ∈ US

}
= R

n,
with

US = {u ∈ U | u(t) ∈ S a.e. on [0, T ]}.

For convenience, we introduce the notation

Ξ(S) = {(A,B) ∈ L(Rn+m,Rn) | the system (4.1) is uncontrollable}.

Theorem 4.1 (transfer theorem). Let S be an r-dimensional subspace of R
m.

Then, the index of controllability

μS(A,B) = inf
(C,D)∈Ξ(S)

‖(A,B) − (C,D)‖(4.2)

for the model (4.1) is given simply by

μS(A,B) = μ(A,BQ),(4.3)

where Q ∈ L(Rr,Rm) is any orthonormal map having S as range.
Proof. The subspace S can be represented as the range of a certain orthonormal

map Q ∈ L(Rr,Rm). By writing the input u in the form u(t) = Qw(t), we arrive at
a linear control problem

ẋ(t) = Ax(t) + BQw(t),(4.4)

where the input function w is chosen without restrictions. It is not difficult to see
that (4.1) is controllable if and only if the pair (A,BQ) is controllable. This simple
but important fact is at the origin of formula (4.3). First, one can write

‖(A,B) − (C,D)‖ ≥ ‖(A,BQ) − (C,DQ)‖ ∀(C,D) ∈ L(Rn+m,Rn)

because Q is orthonormal. Thus,

μS(A,B) ≥ inf
(C,D)∈L(Rn+m,Rn)
(C,DQ) uncontrollable

‖(A,BQ) − (C,DQ)‖

≥ inf
(C,Y )∈L(Rn+r,Rn)
(C,Y ) uncontrollable

‖(A,BQ) − (C, Y )‖ = μ(A,BQ).

For the proof of the reverse inequality μS(A,B) ≤ μ(A,BQ), pick up any solution
(C∗, Y ∗) to the minimization problem{

minimize ‖(A,BQ) − (C, Y )‖,
(C, Y ) ∈ L(Rn+r,Rn) uncontrollable.

(4.5)

Since the map D ∈ L(Rm,Rn) �→ DQ ∈ L(Rr,Rn) is surjective, one can write

μ(A,BQ) = inf
D∈L(Rm,Rn)

DQ=Y ∗

‖(A,BQ) − (C∗, DQ)‖.(4.6)

We now construct a D∗ ∈ L(Rm,Rn) such that

D∗Q = Y ∗ and ‖(A,BQ) − (C∗, D∗Q)‖ = ‖(A,B) − (C∗, D∗)‖.(4.7)
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To see that this is possible, take an orthonormal map V ∈ L(Rm−r,Rm) such that
ImV = S⊥, and define

D∗ = Y ∗QT + BV V T .

With this particular choice, one has

D∗Q = Y ∗QTQ + BV V TQ = Y ∗,

D∗V = Y ∗QTV + BV V TV = BV.

Hence,

‖(A,B) − (C∗, D∗)‖ = sup
|(s,w)|≤1

|(A− C∗)s + (B −D∗)w|

= sup
|(s,γ1,γ2)|≤1

|(A− C∗)s + (B −D∗)(Qγ1 + V γ2)|

= sup
|(s,γ1)|≤1

|(A− C∗)s + (B −D∗)Qγ1| = ‖(A,BQ) − (C∗, D∗Q)‖.

Notice that (C∗, D∗) ∈ Ξ(S). The combination of (4.6) and (4.7) produces then the
desired inequality, completing the proof in this way.

Remark. The proof technique of the transfer theorem tells us, in fact, how to con-
struct an operator (C∗, D∗) achieving the infimum (4.2) in the definition of μS(A,B).
Everything boils down to solving the easier and well-understood minimization prob-
lem (4.5).

We end this section with a proposition concerning the partial indices

∂AμS(A,B) = inf
C∈L(Rn,Rn)
(C,B)∈Ξ(S)

‖A− C‖,

∂BμS(A,B) = inf
D∈L(Rm,Rn)
(A,D)∈Ξ(S)

‖B −D‖.

As was done in the transfer theorem, it is possible to get rid again of the linear
contraint set S.

Proposition 4.2. Suppose that S is an r-dimensional subspace of R
m and that

Q ∈ L(Rr,Rm) is an orthonormal map having S as range. Then,

∂AμS(A,B) = ∂Aμ(A,BQ) and ∂BμS(A,B) = ∂Bμ(A,BQ).(4.8)

Proof. We take into account the transformation u(t) = Qw(t) that leads to the
unconstrained control system (4.4). One can show straightforwardly the first equality
in (4.8), as well as

∂BμS(A,B) ≥ inf
D∈L(Rm,Rn)

(A,DQ) uncontrollable

‖BQ−DQ‖ ≥ ∂Bμ(A,BQ).

For the proof of the reverse inequality ∂BμS(A,B) ≤ ∂Bμ(A,BQ), pick up any solu-
tion Y ∗ to the problem{

minimize ‖BQ− Y ‖ with respect to
Y ∈ L(Rr,Rn) such that (A, Y ) is uncontrollable,



DISTANCE TO UNCONTROLLABILITY 33

and observe that

∂Bμ(A,BQ) = inf
D∈L(Rm,Rn)

DQ=Y ∗

‖BQ−DQ‖.

It suffices then to construct a D∗ ∈ L(Rm,Rn) such that

D∗Q = Y ∗ and ‖BQ−D∗Q‖ = ‖B −D∗‖.

The construction of D∗ and the remaining part of the proof is as in Theorem 4.1.

5. The cone-constrained linear model. In the previous section we saw that
restricting controls to take values in a subspace presents no substantial technical
difficulties to the classical theory of controllability. In this section we take the next
natural step: conical constraints. The problem of controlling a linear system by using
positive inputs has been recognized as an important one since the pioneering works
of Brammer [5] and Korobov [22] (see also Son [32]).

5.1. Preliminaries. The model under consideration in this section is{
ẋ(t) = Ax(t) + Bu(t),
u(t) ∈ P,

(5.1)

where the closed convex cone P is regarded as the set of “positive” elements in R
m.

(Typically, P is the positive orthant of R
m.)

Controllability for the model (5.1) is defined in a similar way as before, except
that now the contraint set is not the subspace S but the cone P . Controllability of
(5.1) implies, of course, controllability of the relaxed control problem{

ẋ(t) = Ax(t) + Bu(t),
u(t) ∈ spanP.

(5.2)

Relaxation is a convenient device to be back in a linear setting, where simple and nice
controllability tests are available. In what follows, we use the notation

� A,B, P � = B(P ) + AB(P ) + · · · + An−1B(P ),

where addition of sets is understood in the usual Minkowski sense, and powers of
A ∈ L(Rn,Rn) correspond to iterated compositions. Since P is a convex cone, the set
� A,B, P � is also a convex cone and

span � A,B, P � = � A,B, spanP � = {CA,Bγ : γ ∈ [spanP ]n}

with CA,B = [B,AB, . . . , An−1B] denoting the controllability matrix associated to
the pair (A,B). If one represents the space spanP as the range of a linear map
Q ∈ L(Rr,Rm), with r = dim[spanP ], then

span � A,B, P � = Im CA,BQ.

Proposition 5.1. The following three conditions are equivalent:
(i) the relaxed system (5.2) is controllable,
(ii) � A,B, P � spans the whole space R

n,
(iii) CA,BQ has full rank.
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Proof. This result is surely well known since it is an obvious extension of Kalman’s
controllability theorem [21].

Unfortunately, the relaxation (or linearization) mechanism P �→ spanP destroys
part of the information contained in the original model (5.1). For recovering the
information that is lost, we introduce the concept of “unilateral uncontrollable mode.”

Definition 5.2. One says that λ ∈ R is an uncontrollable mode of (A,B) relative
to P if

Im(A− λI) + B(P ) �= R
n.(5.3)

Such an uncontrollable mode λ is declared unilateral if Im(A−λI)+B(P ) has nonempty
interior; otherwise it is declared bilateral.

If the relaxed system (5.2) is controllable, then we should not worry about the
existence of uncontrollable modes of the bilateral type. In fact, one has the next
lemma.

Lemma 5.3. Suppose that � A,B, P � spans R
n. Then, (A,B) doesn’t have

bilateral uncontrollable modes relative to P .

Proof. This corresponds to a particular case of a more general result stated in
section 7, namely, Proposition 7.9.

That � A,B, P � spans R
n doesn’t rule out, however, the existence of uncon-

trollable modes of the unilateral type. This is an important point that deserves to be
stressed.

Theorem 5.4. Controllability of the cone-constrained linear model (5.1) is equiv-
alent to the combination of the following two conditions:

(i) � A,B, P � spans R
n,

(ii) (A,B) has no unilateral uncontrollable mode relative to P .

Proof. According to Brammer [5], controllability of (5.1) is equivalent to the
combination of (i) and

{
the matrix AT has no (real) eigenvalue with
associated eigenvector in the cone [B(P )]+.

(5.4)

Since

[B(P )]+ = {q ∈ R
n | BT q ∈ P+},

Brammer’s condition (5.4) is just another way of saying that (A,B) has no uncon-
trollable mode relative to P . Due to Lemma 5.3, bilateral uncontrollable modes can
be taken out of the discussion. Indeed, these modes are excluded by the property
(i).

5.2. Divide and conquer. As shown in the above theorem, controllability of
a cone-constrained linear model is a concept that can be broken into two different
pieces. The first piece is a sort of generalized Kalman’s rank condition. It takes into
account the span of the cone P , but not the cone itself. This condition is purely
linear in the sense that it doesn’t recognize the “conic” part of P . The second piece
takes care of the possible gap between the cone P and its span. In line with this
observation, we split the set

Ξ(P ) = {(A,B) ∈ L(Rn+m,Rn) | the system (5.1) is uncontrollable}



DISTANCE TO UNCONTROLLABILITY 35

in two different components:

Ξrank(P ) = {(A,B) ∈ L(Rn+m,Rn) | span � A,B, P � �= R
n},

Ξuni(P ) = {(A,B) ∈ L(Rn+m,Rn) | σuni
P (A,B) �= ∅}.

The notation σuni
P (A,B) refers, of course, to the set of all unilateral uncontrollable

modes of (A,B) relative to P . Since

Ξ(P ) = Ξrank(P ) ∪ Ξuni(P ),

the index of controllability

μP (A,B) = inf
(C,D)∈Ξ(P )

‖(A,B) − (C,D)‖

for the cone-constrained model (5.1) can be computed by using the rule

μP (A,B) = min{μrank
P (A,B), μuni

P (A,B)},

where the component indices μrank
P (A,B) and μuni

P (A,B) are defined in an obvious
manner.

The evaluation of μrank
P is the “easy” part of the job. What we have to do is to

adjust Hu–Davison’s formula to the linearly constrained control system (5.2).
Proposition 5.5. Let P be an r-dimensional closed convex cone in R

m. Let
Q ∈ L(Rr,Rm) be any orthonormal map such that span P = Im Q. Consider an
operator (A,B) ∈ L(Rn+m,Rn) such that � A,B, P � spans R

n. Then,

μrank
P (A,B) = inf

z∈C

sup
γ∈]0,1]

sssv

([
RWz −γIWz

γ−1IWz RWz

])
(5.5)

with Wz = [A− zI,BQ].
Proof. By definition, μrank

P is the distance function to the set Ξrank(P ). Since

μrank
P (A,B) = μspanP (A,B),

it suffices to combine Theorem 4.1 and Proposition 3.2.
The evaluation of μuni

P falls beyond the context of Hu–Davison’s formula. We
no longer seem able to use arguments in the realm of standard linear algebra. The
number

μuni
P (A,B) = inf

(C,D)∈Ξuni(P )
‖(A,B) − (C,D)‖(5.6)

indicates how much we need to perturb the pair (A,B) if we wish to produce a
unilateral uncontrollable mode.

Before trying to compute this number, let us say a few additional words on the
set Ξuni(P ). In the very definition of this set, we use implicitly the expression

P⊕ = P+\lin(P+).

We don’t know if there is already a name for P⊕, so we call it the pseudo-dual cone
of P . Without loss of generality we may suppose that P is not a subspace. If P were
a subspace, then P⊕ would be empty, and Ξuni(P ) would be empty as well. Observe
that the cone P⊕ is convex but not necessarily closed.
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Lemma 5.6. Consider a closed convex cone K in some arbitrary Euclidean space.
If K is not a subspace, then one has cl[K\lin K] = K and also cl[K⊕] = K+.

Proof. We prove only K ⊂ cl[K\linK], the reverse inclusion being trivial. Take
c ∈ K. Suppose that c ∈ lin(K); otherwise we are done. Since K is not a subspace,
we can pick up some c∗ ∈ K\linK and form

cα = (1 − α)c + αc∗ with α ∈]0, 1[.

Since c and c∗ are in K, so is the convex combination cα. The equality

c∗ = α−1cα − α−1(1 − α)c

implies that cα doesn’t belong to lin(K). Hence, cα ∈ K\linK. The desired conclusion
is obtained by letting α → 0+.

Lemma 5.7. Suppose that P is a closed convex cone but not a subspace. Then,

(C,D) ∈ Ξuni(P ) ⇐⇒
{

one can find λ ∈ R and a unit vector q
such that CT q = λq and DT q ∈ P⊕.

Proof. The proof is not difficult, and therefore it is omitted.
Proposition 5.8. Suppose that P is a closed convex cone but not a subspace.

Then, the index (5.6) admits the characterization

μuni
P (A,B) = inf

λ∈R
|q|=1

[
|AT q − λq|2 + dist2[BT q, P+]

]1/2

.(5.7)

Proof. By using Lemma 5.7, one gets

μuni
P (A,B) = inf

(C,D)
inf

λ∈R,|q|=1
CT q=λq, DT q∈P⊕

‖(A,B) − (C,D)‖ = inf
λ∈R,|q|=1

ΨA,B(λ, q)

with

ΨA,B(λ, q) = inf
(C,D)∈L(Rn+m,Rn)

CT q=λq, DT q∈P⊕

‖(A,B) − (C,D)‖.

A simple matter of computation shows that

ΨA,B(λ, q) = inf
(C,D)∈L(Rn+m,Rn)

(CT−λI)q=0, DT q∈P⊕

����
[

CT − λI
DT

]
−
[

AT − λI
BT

]����
= inf

X,Y

����
[

X
Y

]
−
[

AT − λI
BT

]���� ,

where the last infimum is taken with respect to[
X
Y

]
∈ L(Rn,Rn+m) such that

[
X
Y

]
q ∈

[
0
P⊕

]
.

The reduction lemma yields

ΨA,B(λ, q) = dist

[[
AT − λI

BT

]
q,

[
0
P⊕

]]
,

and therefore

μuni
P (A,B) = inf

λ∈R
|q|=1

[
|AT q − λq|2 + dist2[BT q, P⊕]

]1/2

.

But, due to Lemma 5.6, one can change P⊕ by P+.
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6. Partial perturbations of cone-constrained linear models. Analogously
to our earlier discussion of partial perturbations, we might wish to consider perturbing
only the matrix A in measuring the distance to uncontrollability of the cone-contrained
linear model (5.1). The techniques of the previous section extend in a straightforward
manner. The nonnegative real number

∂Aμ
uni
P (A,B) = inf

C∈L(Rn,Rn)

σuni
P (C,B) 	=∅

‖A− C‖

indicates how much one needs to perturb the first component of (A,B) in order to
produce a unilateral uncontrollable mode relative to P . A similar interpretation must
be given to the number

∂Bμ
uni
P (A,B) = inf

D∈L(Rm,Rn)

σuni
P (A,D) 	=∅

‖B −D‖.

In the next proposition we provide the reader with a recipe for computing these partial
indices.

Proposition 6.1. Suppose that P is a closed convex cone but not a subspace.
Then,

∂Aμ
uni
P (A,B) = inf

λ∈R,|q|=1

BT q∈P+

|AT q − λq|(6.1)

and

∂Bμ
uni
P (A,B) = inf

λ∈R,|q|=1

AT q=λq

dist[BT q, P+].(6.2)

Proof. Both formulas are obtained by employing a similar proof technique as in
Proposition 5.8. By way of example, let us write

∂Aμ
uni
P (A,B) = inf

C∈L(Rn,Rn)
inf

λ∈R,|q|=1

CT q=λq, q∈[B(P )]⊕

‖A− C‖ = inf
λ∈R,|q|=1

q∈[B(P )]⊕

ΨA(λ, q)(6.3)

with

ΨA(λ, q) = inf
C∈L(Rn,Rn)

CT q=λq,

‖A− C‖ = inf
X∈L(Rn,Rn)

Xq=0

‖X − (AT − λI)‖ = |AT q − λq|.

The last equality is obtained, of course, by applying the reduction lemma. Notice
that due to Lemma 5.6 and a continuity argument, the last infimum in (6.3) can be
written with [B(P )]+ instead of [B(P )]⊕.

The partial indices ∂Aμ
rank
P and ∂Bμ

rank
P are defined in an obvious manner:

∂Aμ
rank
P (A,B) = ∂AμspanP (A,B) = inf

C∈L(Rn,Rn)
�C,B,spanP�	=R

n

‖A− C‖,

∂Bμ
rank
P (A,B) = ∂BμspanP (A,B) = inf

D∈L(Rm,Rn)
�A,D,spanP�	=R

n

‖B −D‖.

The computation of these indices can be carried out with the help of the transfer
formulas established in Proposition 4.2.
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7. Controllability of convex processes. We can consider the control models
we have studied so far in a slightly different light, as controlling differential inclusions
of the form ẋ ∈ Ax + K for convex cones K. In the model (5.1), for example,
K = BP . In this section we broaden this perspective, considering the controllability
of a differential inclusion

ẋ(t) ∈ F(x(t))(7.1)

whose right-hand side is a strict closed convex processes F : R
n −→−→R

n. That F is a
closed convex process simply means that

grF = {(s, v) ∈ R
n × R

n | v ∈ F(s)}

is a closed convex cone. Saying that F is strict is a short way of indicating that F is
nonempty-valued everywhere, that is to say, F(s) �= ∅ for any s ∈ R

n.
Definition 7.1. A strict convex process F : R

n −→−→R
n is said to be controllable

if the corresponding reachable set

Reach(F) = {x(T ) | x ∈ X solves (7.1) and x(0) = 0}

is the whole space R
n.

7.1. Characterizing controllability. We know exactly what controllability of
F means in terms of the trajectories of its associated differential inclusion, but it
would be helpful to have at our disposal some simple algebraic criteria for checking this
property. This topic has been handled in a brilliant manner by Aubin, Frankowska
and Olech in their 1986 paper [3]. Their contribution admits, however, a certain
number of improvements. To put everything in the right perspective, let us start by
recalling two algebraic concepts for an arbitrary convex process. The first concept
emerges as an extension of the classical rank condition of Kalman.

Definition 7.2. A convex process F : R
n −→−→R

n is said to be reproducing if

there is an integer k ≥ 1 such that Fk(0) spans R
n,(7.2)

where the kth power Fk = F ◦· · ·◦F (k-fold) is understood as an iterated composition
in the multivalued sense.

We shall say some extra words on the reproducibility or rank condition (7.2) in a
moment. The second concept is an extension of Definition 5.2.

Definition 7.3. The number λ ∈ R is called an uncontrollable mode of the
convex process F : R

n −→−→R
n if F − λI is not surjective, that is, if Im[F − λI] �= R

n.
The set of uncontrollable modes of F is denoted by σ(F).

These are the basic ingredients to state the following theorem.
Theorem 7.4 (see Aubin, Frankowska, and Olech, [3]). Let F : R

n −→−→R
n be a

strict closed convex process. Then,

F is controllable ⇐⇒ F is reproducing and has no uncontrollable modes.

We mention two ways of rendering this beautiful result even more attractive.
First, there is a simple way to characterize the reproducibility condition (7.2). The
proposition stated below seems to be new, so we prove it in detail. We rely on two
auxiliary lemmas.
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Lemma 7.5. Consider a strict convex process F : R
n −→−→R

n and an integer k ≥ 1.
If the spans of the cones Fk−1(0) and Fk(0) coincide, then so do the spans of the
cones Fj(0) for exponents j = k − 1, k, k + 1, . . . .

Proof. By induction, it suffices to prove the case j = k + 1. In this case, if the
result fails, there is a vector v in the cone Fk+1(0) outside the span of the cone Fk(0).
Choose a vector s in Fk(0) with v ∈ F(s) and a vector w in the relative interior of
the cone Fk−1(0). Since s lies in the span of the cone Fk−1(0), the vector bw + s lies
in Fk−1(0) for some real b > 0 sufficiently large. Since F is strict, there is a vector
z in F(w) (and hence in Fk(0)). Since the graph of F is a convex cone, the vector
bz+ v lies in F(bw+ s), and hence in Fk(0), contradicting the fact that v lies outside
the span of Fk(0).

Lemma 7.6. Suppose that F : R
n −→−→R

n is a strict convex process. Then the
interiors of the cones Fk(0) (for exponents k = n, n + 1, . . .) are either all empty or
all nonempty.

Proof. The spans of the cones Fk(0) (for exponents k = 1, 2, . . .) are an increas-
ing sequence of linear subspaces. The previous result implies that equality of two
successive elements of the sequence entails constancy thereafter. Hence, by count-
ing dimension, the sequence is constant after at most n elements. The result now
follows, since a convex cone has nonempty interior if and only if it spans the whole
space.

Remark. One can construct an easy example showing that Fn+1(0) need not be
equal to Fn(0). Consider, for instance, n = 2 and a convex process F : R

2 → R
2 of

the form F(s) = As + K, with

A =

[
cos θ sin θ
−sin θ cos θ

]
, K = R+

[
1
0

]
.

The angle θ > 0 is chosen small enough. Since K is a ray and A is a rotation matrix,
the set

Fk(0) = K + A(K) + · · · + Ak−1(K)

reduces to the convex cone generated by the vectors[
1
0

]
,

[
cos((k − 1)θ)
sin((k − 1)θ)

]
.

This happens as long as (k−1)θ ≤ π, that is, k ≤ 1+π/θ. It is only after k > 1+π/θ
that Fk(0) = R

2 becomes constant. Observe that 1 + π/θ goes to infinity as θ → 0+,
so one can adjust this example to cover the case of an arbitrary power n.

Proposition 7.7. A strict convex process F : R
n −→−→R

n is reproducing if and
only if Fn(0) spans R

n.
Proof. This follows from the last lemma.
The second improvement in the presentation of Theorem 7.4 has to do with the

nature of uncontrollable modes. The elements of σ(F) can be partioned into two
different categories. One says that λ ∈ σ(F) is of the unilateral type if Im[F − λI]
has nonempty interior; otherwise, it is declared of the bilateral type. In short, one
has a partition

σ(F) = σuni(F) ∪ σbi(F),

where the notation is self-explanatory.
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The different types of uncontrollability modes are perhaps better understood if
we characterize them in terms of the adjoint process of F . Recall that the adjoint (or
transpose) of the convex process F : R

n −→−→R
n is the convex process F∗ : R

n −→−→R
n

defined by

grF∗ = {(q, p) ∈ R
n × R

n | (−p, q) ∈ [grF ]+},

that is,

(q, p) ∈ grF∗ ⇐⇒ 〈p, s〉 ≤ 〈q, v〉 ∀(s, v) ∈ grF .

We assume that the reader is familiar with this transposition mechanism [2, 4, 29].
As observed already in Proposition 2.4 of [30], the convex cone Im[F − λI] is related
to

(F∗ − λI)−1(0) = {q ∈ R
n | λq ∈ F∗(q)}

by means of the duality formula

(F∗ − λI)−1(0) = [Im(F − λI)]
+
.(7.3)

As a consequence of (7.3), it is clear that an uncontrollable mode of F is exactly the
same thing as an eigenvalue of F∗. In short,

σ(F) = Λ(F∗)(7.4)

with

Λ(F∗) = {λ ∈ R | λq ∈ F∗(q) for some q �= 0}

denoting the (point) spectrum of F∗. General information on point spectra of convex
processes can be found, for instance, in [1, 23, 24]. For bilateral uncontrollable modes,
one has the next lemma.

Lemma 7.8. Consider a convex process F : R
n −→−→R

n. For λ ∈ R, the following
three conditions are equivalent:

(i) λ is a bilateral uncontrollable mode of F ,
(ii) the convex cone (F∗ − λI)−1(0) contains a line,
(iii) there is a unit vector q ∈ R

n such that λq ∈ F∗(q) and −λq ∈ F∗(−q).
Proof. The equivalence between (ii) and (iii) is straightforward. The equivalence

between (i) and (ii) is again a consequence of the duality formula (7.3).
Remark. A vector q as in Lemma 7.8 (iii) is called a bilateral eigenvector of F∗.

The concept of bilateral eigenvector is used by Gajardo and Seeger [13] in connection
with the asymptotic stability analysis of discrete-time evolution systems governed by
convex processes.

Proposition 7.9. For a strict convex process F : R
n −→−→R

n, one has the impli-
cation

σbi(F) �= ∅ =⇒ int[Fk(0)] = ∅ ∀k ≥ 1.

In particular, if a strict convex process F : R
n −→−→R

n is reproducing, then it has no
bilateral uncontrollable modes.

Proof. Take λ ∈ σbi(F). By Lemma 7.8, there is a unit vector q ∈ R
n such that

λq ∈ F∗(q), −λq ∈ F∗(−q).(7.5)
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We claim that for every k ∈ N, one has

λkq ∈ (F∗)k(q), −λkq ∈ (F∗)k(−q).(7.6)

The proof is carried out by using an induction argument. The case k = 1 corresponds
to (7.5). Suppose that (7.6) is true for a given k, and let us examine the situation for
k + 1. One has

(F∗)k+1(q) = F∗[(F∗)k(q)] = ∪z∈(F∗)k(q)F∗(z) ⊃ F∗(λkq),

and similarly

(F∗)k+1(−q) = F∗[(F∗)k(−q)] = ∪z∈(F∗)k(−q)F∗(z) ⊃ F∗(−λkq).

We now use the fact that F∗ is positively homogeneous. If λk ≥ 0, then one can write

λkF∗(q) ⊂ (F∗)k+1(q), λkF∗(−q) ⊂ (F∗)k+1(−q).

If λk < 0, then one gets

−λkF∗(−q) ⊂ (F∗)k+1(q), −λkF∗(q) ⊂ (F∗)k+1(−q).

In either case, one obtains

λk+1q ∈ (F∗)k+1(q), −λk+1q ∈ (F∗)k+1(−q),

proving in this way our claim. In fact, we don’t use the full power of (7.6). We just
observe that

q ∈ dom(F∗)k ∩ −dom(F∗)k,

that is, dom(F∗)k is a convex cone containing a line. By invoking the duality formula

[Fk(0)]+ = dom(F∗)k

of Phat [28, Prop. 2.5], we conclude that Fk(0) has empty interior.
In view of Propositions 7.7 and 7.9, the Aubin–Frankowska–Olech controllability

theorem can be reformulated in the following form.
Corollary 7.10. Suppose that F : R

n −→−→R
n is a strict closed convex process.

Then,

F is controllable ⇐⇒ Fn(0) spans R
n and σuni(F) is empty

7.2. Checking reproducibility. Deviating momentarily from the main stream
of the discussion, we make some comments concerning the concept of reproducibility.

The relaxation mechanism (5.2) introduced in section 5.1 can be extended to the
framework of a differential inclusion whose right-hand side is a general convex process.

Definition 7.11. The linear relaxation of a convex process F : R
n −→−→R

n is
defined as the multivalued operator Frel : R

n −→−→R
n whose graph is given by

grFrel = grF − grF .

Said in another way, the graph of Frel is the linear subspace spanned by the convex
cone grF .
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A more explicit formula for F rel is given by

F rel(s) =
⋃

s2−s1=s

F(s2) −F(s1) ∀s ∈ R
n.(7.7)

By construction, the multivalued operator F rel is linear in the sense that

F rel(α1s1 + α2s2) = α1F rel(s1) + α2F rel(s2)

∀s1, s2 ∈ domF rel and nonzero α1, α2 ∈ R. (That α1, α2 ∈ R are nonzero scalars is
of importance and should not be neglected.) General information on the theory of
linear multivalued operators can be found in the book by Cross [7].

We declare the differential inclusion

ẋ(t) ∈ F rel(x(t))(7.8)

as being the relaxed version of the control model (7.1). As we shall see in the next
theorem, reproducibility of F is equivalent to controllability of (7.8). First, we state
the next lemma.

Lemma 7.12. For a strict closed convex process F : R
n −→−→R

n, one has
(i) F(s2) −F(s1) ⊂ F(s2 − s1) −F(0) ∀s1, s2 ∈ R

n,
(ii) F rel(s) ⊂ F(s) −F(0) ∀s ∈ R

n,
(iii) F(s) ⊂ F rel(s) ∀s ∈ R

n,
(iv) (F rel)k(0) = spanFk(0) ∀k ∈ N.
Proof. For proving part (i), take s1, s2 ∈ R

n and v ∈ F(s2) −F(s1). Write

v = v2 − v1 with v1 ∈ F(s1), v2 ∈ F(s2).

By strictness of F , we can find some element w in F(−s1). Since the graph of F is a
convex cone, it follows that

v1 + w ∈ F(0), v2 + w ∈ F(s2 − s1).

Hence,

v = (v2 + w) − (v1 + w) ∈ F(s2 − s1) −F(0).

Part (ii) follows immediately from (i) and formula (7.7). Part (iii) is trivial because
grF ⊂ grF rel. The proof of (iv) is more subtle and is based on an induction argument.
For k = 1, the result is true because the equality

F rel(0) = spanF(0)

is obtained by combining (ii) and (iii). Suppose the announced formula is true for a
given k. For k + 1, one gets

(F rel)k+1(0) =
⋃

v∈(Frel)k(0)

F rel(v) =
⋃

v∈spanFk(0)

F rel(v) =
⋃

v1,v2∈Fk(0)

F rel(v2 − v1)

=
⋃

v1,v2∈Fk(0)

{
F rel(v2) −F rel(v1)

}
⊂

⋃
v1,v2∈Fk(0)

{
[F(v2) −F(0)] − [F(v1) −F(0)]

}
.

Therefore,

(F rel)k+1(0) ⊂ [F(Fk(0)) −F(0)] − [F(Fk(0)) −F(0)] = spanFk+1(0) + spanF(0).
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The subspace spanF(0) can be dropped from the last sum because it is contained in
spanFk+1(0). We have proved in this way the inclusion (F rel)k+1(0) ⊂ spanFk+1(0).
The reverse inclusion is trivial because the convex cone Fk+1(0) is smaller than the
linear space (F rel)k+1(0).

Lemma 7.13. Let F : R
n −→−→R

n be a strict closed convex process. Then, F rel

admits the representation

F rel(s) = AFs + SF ∀s ∈ R
n,(7.9)

where SF = spanF(0), and AF ∈ L(Rn,Rn) is defined by

AFs = πF [F rel(s)](7.10)

with πF : R
n → R

n denoting the orthogonal projection onto [spanF(0)]⊥.
Proof. It must be observed that πF [F rel(s)] is indeed a singleton. To see this,

take y1, y2 ∈ πF [F rel(s)] and write

y1 = πF (v1), y2 = πF (v2) with v1, v2 ∈ F rel(s).

Hence,

y1 − y2 = πF (v1) − πF (v2) = πF (v1 − v2) = 0,

the last equality being due to the fact that

v1 − v2 ∈ F rel(s) −F rel(s) = F rel(0) = spanF(0).

Checking the linearity of the single-valued operator AF is essentially a matter of
exploiting the linearity of the multivalued operator F rel. The details are omitted.
Finally, we check the representation formula (7.9). Take s ∈ R

n and y ∈ AFs + SF .
Thus,

y = q1 + πF (v) with q1 ∈ SF , v ∈ F rel(s).

Since q2 = v − πF (v) ∈ SF , it follows that

y = q1 − q2 + v ∈ SF + F rel(s) = F rel(0) + F rel(s) ⊂ F rel(s).

Conversely, take y ∈ F rel(s). Since y − πF (y) ∈ SF , it follows that

y = πF (y) + [y − πF (y)] ∈ AFs + SF .

Remark. The operator AF used to represent F rel is not unique. In fact, one has
F rel(·) = A(·) + SF for any A ∈ L(Rn,Rn) with Im(A−AF ) ⊂ SF . Such A is called
a linear selector of F rel. We declare AF to be the standard linear selector of F rel.

In view of Lemma 7.13, the relaxed version of the differential inclusion (7.1) can
be written in the form {

ẋ(t) = AFx(t) + u(t),
u(t) ∈ SF ,

(7.11)

a model that is well understood by now. Such linearly constrained control problem
can also be written in the unconstrained form{

ẋ(t) = AFx(t) + Qw(t),
w(t) ∈ R

r,
(7.12)
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where r is the dimension of SF , and Q ∈ L(Rr,Rn) is any orthonormal map such
that ImQ = SF .

Theorem 7.14. For a strict closed convex process F : R
n −→−→R

n, the following
five conditions are equivalent:

(i) F is reproducing,
(ii) F rel is reproducing,
(iii) the system (7.11) is controllable,
(iv) (AF , Q) is controllable for some Q ∈ O(r, n) such that Im Q = SF ,
(v) (AF , Q) is controllable for every Q ∈ O(r, n) such that Im Q = SF .

Proof. The equivalence between (i) and (ii) is a consequence of Lemma 7.12(iv).
From the controllability theory of linear systems, we know that the conditions (iii),
(iv), and (v) are all equivalent to (ii).

8. Additive versus hybrid perturbations. Equipped with the characteriza-
tions of controllability of process differential inclusions we explored in the previous
section, we can now return to our central topic of measuring the degree of control-
lability. Robustness of controllability for a system like (7.1) is a topic that has been
studied by Naselli-Ricceri [26], Tuan [33], and Lavilledieu and Seeger [24]. Here we
go beyond the qualitative analysis carried out by these authors and focus attention
on the quantitative aspect. We want to measure how much we need to perturb the
system (7.1) in order to destroy its controllability.

8.1. Additive perturbations. The simplest way to perturb the differential
inclusion (7.1) is to add a linear map L ∈ L(Rn,Rn) to the reference or nominal
operator F . The perturbed system

ẋ(t) ∈ (F + L)(x(t))(8.1)

may no longer be controllable if the perturbation L is too severe. The index

μadd(F) = inf
L∈L(Rn,Rn)

F+L uncontrollable

‖L‖(8.2)

speaks by itself and doesn’t need further explanation. In line with the “divide and
conquer” strategy adopted in this work, we write

μadd(F) = min{μrank
add (F), μuni

add(F)},

where

μrank
add (F) = inf

L∈L(Rn,Rn)
F+L irreproducing

‖L‖(8.3)

measures the distance to irreproducibility, and

μuni
add(F) = inf

L∈L(Rn,Rn)

σuni(F+L) 	=∅

‖L‖(8.4)

indicates how much we need to perturb F in order to produce a unilateral uncontrol-
lable mode.

In the proof of the theorem stated below, we use the notation F to indicate the
pseudo-adjoint of the convex process F : R

n −→−→R
n. By definition, F : R

n −→−→R
n is

the convex process given by grF = grF∗\lin[grF∗], or, more explicitly,

F(q) = F∗(q)\ − F∗(−q) ∀q ∈ R
n.
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Theorem 8.1. Suppose that F : R
n −→−→R

n is a strict closed convex process. Then,

μuni
add(F) =

{
inf λ∈R

|q|=1

dist[λq,F∗(q)] if grF is not a subspace,

∞ otherwise.
(8.5)

On the other hand,

μrank
add (F) = ∂Aμ(AF , Q)(8.6)

with Q ∈ O(r, n) such that Im Q = spanF(0) and AF denoting the standard linear
selector of F rel.

Proof. The formula (8.5) is based on the fact that σuni(F + L) �= ∅ if and only if
there exist a scalar λ ∈ R and a unit vector q ∈ R

n such that{
λq ∈ F∗(q) + LT q,

−λq /∈ F∗(−q) − LT q.

The above condition can be written in the more compact form LT q − λq ∈ −F(q).
Hence,

μuni
add(F) = inf

λ∈R
|q|=1

inf
L∈L(Rn,Rn)

LT q−λq∈−F�(q)

‖L‖.

By applying the reduction lemma, one obtains

μuni
add(F) = inf

λ∈R
|q|=1

dist[λq,F(q)].(8.7)

Both terms in (8.7) are equal to ∞ if grF is a subspace. Suppose then that grF is
not a subspace. Since F is a strict closed convex process, it follows that F∗(0) = {0}.
Hence,

F∗(q) + F∗(−q) ⊂ {0}.

From this relation, one can see that

domF = domF∗\lin[domF∗] and F(q) = F∗(q) ∀q ∈ domF.

It has to be shown that, for arbitrary λ ∈ R and unit vector q ∈ domF∗, one has

dist[λq,F∗(q)] ≥ μuni
add(F).

To do this, we take into account (8.7) and the following two facts. First, due to
Lemma 5.6, every unit vector in domF∗ can be obtained as limit of a sequence of unit
vectors taken from domF∗\lin[domF∗]. Second, since F is strict, F∗ maps bounded
sets to bounded sets and F∗ is single-valued over lin[domF∗] (cf. Corollary 2.5.8 in
[2]). As far as (8.6) is concerned, one follows a similar proof technique as in the more
general situation discussed in Theorem 8.3.

8.2. Hybrid perturbations. Perturbing a differential inclusion by adding a
linear map to the right-hand side is not the most general perturbational scheme that
one may consider. In fact, a perturbational scheme of the additive type is poorly
suited to deal with a large number of important situations occurring in practice. To
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see this, just think of the particular case of the unconstrained linear control problem
(1.1). This model can be represented in terms of the convex process FA,B : R

n −→−→R
n

given by

FA,B(s) = As + ImB.

By adding a linear map L ∈ L(Rn,Rn) to the convex process FA,B one recovers a
perturbed system

ẋ(t) = (A + L)x(t) + Bu(t)

for which the B component remains unaffected. A more sophisticated operation must
be carried out on FA,B if one wishes to incorporate perturbations in the B component
as well.

The concept of hybrid perturbation is based on the simultaneous use of two linear
maps, say, M ∈ L(Rn,Rn) and L ∈ L(Rn,Rn), the first acting in an multiplicative
way and the second in a additive way. The new convex process

s ∈ R
n �→ [M ◦ F + L](s) = M(F(s)) + Ls

is viewed as a perturbed version of F . Of course, perturbation doesn’t occur if one
takes (M,L) = (I, 0). All this is for saying that

μhyb(F) = inf
M,L∈L(Rn,Rn)

M◦F+L uncontrollable

‖(M,L) − (I, 0)‖(8.8)

is a reasonable candidate for measuring the degree of controllability of F . Observe,
incidentally, that hybrid perturbations preserve the strictness of F .

We follow once more our old habit of thought and decompose (8.8) in the form

μhyb(F) = min{μrank
hyb (F), μuni

hyb(F)}

with μrank
hyb (F) and μuni

hyb(F) being defined in an obvious way.
Theorem 8.2. Suppose that F : R

n −→−→R
n is a strict closed convex process. Then,

one has

μuni
hyb(F) =

{
inf λ∈R,

|q|=1

dist[(q, λq), grF∗] if grF is not a subspace,

∞ otherwise.
(8.9)

Proof. We consider only the case when grF is not a subspace, the other case
being trivial. For any M,L ∈ L(Rn,Rn), one has (M ◦ F + L)∗ = F∗ ◦ MT + LT .
Hence, σuni(M ◦F +L) �= ∅ if and only if there exist a scalar λ ∈ R and a unit vector
q ∈ R

n such that {
λq ∈ F∗(MT q) + LT q,

−λq /∈ F∗(−MT q) − LT q.

This can be written in the form

(LT q − λq,MT q) ∈ (grF)⊕

with (grF)⊕ denoting the pseudo-dual of the convex cone grF . Hence,

μuni
hyb(F) = inf

λ∈R,
|q|=1

inf
M,L∈L(Rn,Rn)

(LT q−λq,MT q)∈(grF)⊕

‖(M,L) − (I, 0)‖ = inf
λ∈R,
|q|=1

inf
X,Y

���[
X
Y

]
−
[

0
I

]���,
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where the last infimum is taken with respect to[
X
Y

]
∈ L(Rn,Rn+m) such that

[
X
Y

]
q −

[
λq
0

]
∈ (grF)⊕.

The reduction lemma yields

μuni
hyb(F) = inf

λ∈R,
|q|=1

dist[(−λq, q), (grF)⊕] = inf
λ∈R,
|q|=1

dist[(−λq, q), (grF)+],

from which one gets the announced result.
Theorem 8.3. Suppose that F : R

n −→−→R
n is a strict closed convex process. Then,

μrank
hyb (F) = inf

M,L∈L(Rn,Rn)
(MA+L,MQ) uncontrollable

‖(M,L) − (I, 0)‖(8.10)

with Q ∈ O(r, n) such that Im Q = spanF(0) and A denoting any linear selector of
F rel.

Proof. One can show that for any M,L ∈ L(Rn,Rn), one has the identity

gr(M ◦ F + L) − gr(M ◦ F + L) = gr(M ◦ F rel + L),

and therefore (M ◦ F + L)rel = M ◦ F rel + L. By combining this fact and Theorem
7.14, one sees that

M ◦ F + L is irreproducing ⇐⇒ (M ◦ F + L)rel is irreproducing

⇐⇒ M ◦ F rel + L is irreproducing

⇐⇒ (MA + L,MQ) is uncontrollable.

This proves, of course, the announced formula.
We end this section by showing how to evaluate the hybrid indices μuni

hyb and μrank
hyb

in the particular case of a convex process FP
A,B : R

n −→−→R
n given by

FP
A,B(s) = As + B(P ).

This choice may seem very peculiar, but, in fact, it is one of the most prominent
examples in the general theory of convex processes. Observe that the cone-constrained
model (5.1) can be written in the form of a differential inclusion whose right-hand
side is FP

A,B . For the sake of completeness, we mention that the class

HP = {FP
A,B | (A,B) ∈ L(Rn+m,Rn)}

is stable with respect to hybrid perturbations. Indeed, one can write the identity

M ◦ FP
A,B + L = FP

C,D,

where the pairs (A,B) and (C,D) are related through the transformation formulas

C = MA + L, D = MB.

Observe that the perturbation (M,L) that brings (A,B) to (C,D) is given by

M = D(BTB)−1BT , L = C −D(BTB)−1BTA.(8.11)
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For writing (8.11) we are implicitly assuming that the transpose of B ∈ L(Rm,Rn)
is surjective because otherwise BTB is not invertible. In the context of our cone-
constrained control problem (5.1), surjectivity of BT can be assumed without loss of
generality. It is interesting to note that seemingly more general types of perturbations
like pointwise or graphical addition of convex processes do not even allow to recover
the class Hp introduced above.

Corollary 8.4. Let P ⊂ R
m be a closed convex cone but not a subspace. Then,

μuni
hyb(FP

A,B) = inf
λ∈R
|q|=1

inf
BTh∈P+

[
|ATh− λq|2 + |h− q|2

]1/2

.(8.12)

Proof. An easy calculation shows that

gr(FP
A,B)∗ = {(h, p) | BTh ∈ P+, p = ATh}.

It suffices now to apply the general formula (8.9).
We mention in passing that (8.12) can also be obtained by writing

μuni
hyb(FP

A,B) = inf
M,L∈L(Rn,Rn)

σuni(M◦FP
A,B+L) 	=∅

‖(M,L) − (I, 0)‖

= inf
M,L∈L(Rn,Rn),λ∈R,|q|=1

ATMT q+LT q=λq, BTMT q∈P⊕

‖(M,L) − (I, 0)‖

and then applying the reduction lemma. This alternative method, however, requires
some additional simplificatory work.

Corollary 8.5. Let (A,B) ∈ L(Rn+m,Rn) and P ⊂ R
m be a closed convex

cone. Take any Q ∈ O(r, n) such that Im Q = span B(P ). Then,

μrank
hyb (FP

A,B) = inf
M,L∈L(Rn,Rn)

(MA+L,MQ) uncontrollable

‖(M,L) − (I, 0)‖.(8.13)

Proof. It suffices to apply Theorem 8.3, keeping in mind that the relaxed version
of FP

A,B is given by [FP
A,B ]rel(·) = A(·) + spanB(P ).

9. By way of conclusion. This paper is about measuring the distance to uncon-
trollability in cone-constrained linear control problems or, more generally, in control
problems described by convex processes. We have adopted the strategy of splitting
the analysis into two separate components. One part of our study consists in mea-
suring the distance to irreproducibility. The term reproducibility refers to a suitable
generalization of Kalman’s rank condition. The second part of our study consists in
measuring the distance to unilateral modality (i.e., existence of unilateral uncontrol-
lable modes). It is in this part of our study that the conic aspect of the data (convex
cones, convex processes, etc.) comes into the picture. Bilateral uncontrollable modes
belong to the realm of classical linear algebra and therefore they are left aside (in
fact, they are implicitly incorporated in the analysis of reproducibility).

The formulas for measuring the distance to unilateral modality were obtained
by exploiting the reduction lemma. There is a different approach which consists in
exploiting the concept of ε-eigenvalue for multivalued operators. Following Gajardo
and Seeger [12], we denote by

Λε(F∗) = {λ ∈ R | ∃(q, p) ∈ grF∗with q �= 0, such that |p− λq| ≤ ε|q|}
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the set of ε-eigenvalues of F∗. For practical purposes, it is important to estimate the
smallest value of ε ∈ R+ that guarantees the nonvacuity of Λε(F∗). This smallest
value is called the spectral threshold of F∗. As established in [12], the equality

inf{ε ∈ R+ | Λε(F∗) �= ∅} = inf
λ∈R
|q|=1

dist[λq,F∗(q)](9.1)

holds, in particular, when F is a strict closed convex process. Formula (9.1) gives us
an alternative interpretation of the index μuni

add(F) when grF is not a subspace (cf.
Theorem 8.1).

Remark. When grF is not a subspace, both expressions in (9.1) serve not only to
measure the distance to unilateral modality but also to modality in general (i.e., exis-
tence of uncontrollable modes without specification of their nature). This observation
is quite subtle because, in general, the sets σuni(F) and σ(F) don’t coincide.

As far as the hybrid index μuni
hyb(F) is concerned, we see now appearing an expres-

sion of the form

ΨF∗(λ) = inf
|q|=1

dist[(q, λq), grF∗](9.2)

which has to be minimized with respect to λ ∈ R. The function ΨF∗ is used by
Seeger [31] in connection with the upper stabilization of the point-spectral set-valued
mapping Λ. Observe that in a finite dimensional setting, one has

Λ(F∗) = {λ ∈ R |ΨF∗(λ) = 0}.

In an infinite dimensional setting, the above equality is no longer true. As shown in
[31], the roots of ΨF∗ produce a set which may be much larger than Λ(F∗) (one gets
the so-called approximate or stabilized spectrum of F∗). This observation is just to
warn the reader that some of our results (for instance, Theorem 8.2) do not extend
to an infinite dimensional setting, unless important modifications are incorporated.
Infinite dimensionality introduces various complications that are not addressed in the
present work.

REFERENCES

[1] F. Alvarez, R. Correa, and P. Gajardo, Inner estimation of the eigenvalue set and expo-
nential series solutions to differential inclusions, J. Convex Anal., 12 (2005), pp. 1–11.

[2] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
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