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We consider systems that are governed by linear time-discrete dynamics with an initial condition
and a terminal condition for the expected values. We study optimal control problems where in
the objective function a term of tracking type for the expected values and a control cost appear.
In addition, the feasible states have to satisfy a conservative probabilistic constraint that requires
that the probability that the trajectories remain in a given set F' is greater than or equal to a given
lower bound. An application are optimal control problems related to storage management systems
with uncertain in- and output. We give sufficient conditions that imply that the optimal expected
trajectories remain close to a certain state that can be characterized as the solution of an optimal
control problem without prescribed initial- and terminal condition. In this way we contribute to
the study of the turnpike phenomenon that is well-known in mathematical economics and make a
step towards the extension of the turnpike theory to problems with probabilistic constraints.
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1. Introduction

The turnpike phenomenon for optimization problems has been discussed in mathe-
matical economics by P. A. Samuelson already in [4]. Ever since, the turnpike phe-
nomenon has been analyzed for optimal control problems of different types, see for
example [3, 7, 10]. The turnpike phenomenon for infinite horizon optimal control is
studied in [21]. Turnpike properties in the calculus of variations and optimal control
are considered in [11, 12, 20]. For optimal control problems with partial differential
equations see also [18] and the references therein.

In order to obtain decisions that are robust against uncertainties in the problem
data, probabilistic constraints are a useful tool if information on the corresponding
probability distribution is available (see [16]). Probabilistic constraints require that
the probability to remain feasible is greater than or equal to a lower bound p that is
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prescribed as a problem parameter by the decision maker. They play a prominent
role in risk averse water reservoir management under uncertain inflows (e.g.,[14, 16,
19]) but could equally well apply to gas reservoirs. Recently, probabilistic constraints
(or Value-at-Risk constraints) have attracted increasing interest in optimal control
or PDE constrained optimization (e.g., [5, 6, 8, 15].

Although the study of the turnpike phenomenon is an active area of current research,
results on the turnpike property for optimization problems with probabilistic con-
straints are not yet available in the literature.

This paper investigates the turnpike property for discrete time optimal control
problems with probabilistic constraints (chance constraints). For probabilistic con-
straints continuous in time (a special case of so-called probust constraints), we refer
to [1, 9]. The underlying random distribution is supposed to be continuous. We
consider a probabilistic constraint where it is required that the probability that the
whole trajectory remains in a given convex set F' is greater than or equal to a given
parameter p.

It is the nature of these constraints that for a longer time horizon, they are harder
to satisfy than for a short time horizon. Therefore in some cases if the probability
threshold p is not adapted to the time horizon there is a maximal time horizon
where the probabilistic constraint admits a nonempty feasible set. Hence also in our
turnpike result for optimization problems with probabilistic constraints we consider
a time dependent probability threshold pr.

We present a turnpike result that states that the optimal expected trajectories ap-
proach a certain state (the turnpike, which is defined by the optimal trajectory of
the problem with free initial and free terminal state) in the sense that there is an
upper bound for the Euclidean distance between the trajectories of the expected
values that is independent of the time horizon. Since probabilistic constraints are
an excellent modeling tool for problems of optimal control and optimal design, also
for this case, the turnpike structure of the generated trajectories is of interest.

This paper has the following structure. In Section 2 we introduce the time-discrete
system, a quadratic objective function and define an optimization problem with a
probabilistic constraint.

In Section 3 we show that the solutions of the relaxed problem without the prob-
abilistic constraint have an exponential turnpike property. Moreover, we show a
turnpike property for the problems where the probabilistic constraint is replaced by
a probabilistic penalty term in the objective function. Finally we also discuss the
problem with the probabilistic constraint.

In Section 4 numerical experiments are presented that illustrate the probabilistic
turnpike phenomenon. At the end of the paper, some conclusions are discussed.

2. Optimal control of time-discrete systems

We consider a linear time-discrete system. The initial state [ € R™ is given and
for t € {1,2,3,...} the evolution of the state [; € R™ is influenced by identically
distributed random variables & € R™ and governed by the linear recursion

ly=Al_1+ Bz, + & (1)

with linear operators A and B and control variables z; € X = R".
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Assume that AT = A, (2)

that A is positive definite and that B is invertible. Expanding the recursion (1),
the state vector [ can be written as an affine linear mapping of control and random
variables:

l(x,8) = Pr+ Q&+ (3)
As an example consider the linear recursion
L=l +z+&

for t € {1,...,T} that models the water level in a reservoir for hydroelectricity
generation. It can also be used as a model of gas storage. Gas storage is important
for power generation in gas-fired power stations in the case of a lack of electricity
that is generated from renewable energy. Also the storage of hydrogen can play an
important role in a future hydrogen economy, see [2].

Let a closed convex set /' C R™ and a desired state

19 eF (4)
be given. We assume that for all ¢t € {1,2,..., T} we have

E¢, =FE
and that 19 = A1 4 B2® 4+ B, (5)

Let a weight v > 0 be given. For k € {1, ..., T}, we define the objective function Jr
with a control cost and a tracking term that is stated in terms of expected values as

T T
Jr(z) =Y _|[Bl — D)+~ ||Bx, — B2®|*. (6)
t=0 t=1

Here, for z € R™ we use the notation ||z|| = y/>__, z2. Define the probability
or(z) =P, € F forall te{1,..,T})

in the sense that the initial state for ¢ = 0 is [y and [; is the corresponding random
state generated with the control z € X7 by (1).

For a natural number 7" and pr € (0,1) we define the probabilistic constraint
or(z) > pr (7)
and the optimization problem

P(T, ly) : min Jr(z) subject to Elp =19 and (7).

zeXT

This is a problem where a here-and-now decision has to be taken based upon the
information that is available at the time ¢t = 0.

If the feasible set is nonempty, that is if pr is sufficiently small, our assumptions
imply that a solution of P(T [) exists.
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This can be seen as follows. Define the feasible set of P(T, )
Tr={zeX": or(x) >pr}

that contains the feasible control vectors that generate the trajectories (I;)7_, with
the starting point ly. Since the relation [, € F for all t € {1,...,T} can be repre-
sented as the inequality h(x,&) > 0 with [;(z,§) from (3) and with the continuous

function
h =— dist (1 F 8
(2,€) x| dis (le(2,6), F), (8)
it follows that (7 is an upper semicontinuous function. Hence the feasible set T is
closed.

Note that the objective function Jr is continuous. Assume that xg € Y is a feasible
control. Due to the growth of the objective function Jr the lower-level set

My ={z e X" : Jp(z) < Jp(zs)}

is compact. Without changing the optimal control we can replace the feasible set
Y7 of P(T, ly) by the set Y7 N Myp. Since this set is compact, the existence of an
optimal control follows.

We finish this section with a statement on the log-concavity of the probability func-
tion 7. As observed above, one may use the function h in (8) for the representation
or(z) =P(h(z,£) > 0). Thanks to (3), the functions

dist (I;(x, ), F) = dist (+, F)(Pyx + Qi€ + 1)

are convex as compositions of the convex (by convexity of F') distance function
dist (-, F') with an affine linear mapping. As a consequence, h is concave. Now,
the following Lemma is a direct consequence of a classical result by Prékopa [16,
Theorem 10.2.1]:

Lemma 2.1. If £ has a density fe such that In fe is concave (e.g., Gaussian and
many other prominent multivariate distributions), then In@r is a concave function.

3. Turnpike properties for the optimal controls and trajectories

In this section we consider decisions x that have to be taken before the & are ob-
served, that is we are looking for a decision that is taken at the time ¢t = 0 and yields
a control that is optimal subject to uncertainty about the random perturbations &;
for all t € {1,2,...,T}. This type of choice is often called a here-and-now-decision.

First we present an exponential turnpike property for the solution of P(T, ly) for the
case that the probabilistic constraint is not active. Our turnpike results in Theorem
3.1 states that for the problem where the probabilistic constraint is not active, in the
optimal trajectories the distance between the expected state and the desired state
decays exponentially fast with . Next, we consider problems with a logarithmic
penalty term for the probabilities and show that the optimal trajectories have a
turnpike property in the sense that the optimal trajectories approach the optimal
trajectories for the corresponding problem with free initial and terminal state. In
Theorem 3.5 below we state this turnpike result.
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Then we also discuss the problem with the probabilistic constraint. In order to
show a turnpike result in this case we have to adapt the probability level py to the
time-horizon.

In the sequel we assume that the feasible set of P(T ly) has non-empty interior.
More precisely, we assume that there exists a control 27 € X7 such that

@T(E(T)) >pr and Elp =19, 9)

Here, Ir refers to the final state resulting from the control 2T and the dynamics
(1). In the sequel we assume that the sequence (pr)32_; is decreasing.

For A € [0, 1] we introduce the problem with a probabilistic penalty term
Q(T,lp, ) : min A Jp(z) — (1= A)In(pr(z)) subject to Elp =10,

zeXT
In problem Q(T, Iy, A), the probabilistic constraint (7) is replaced by a penalty term
in the objective function and the initial state [ is still prescribed.

The aim of our turnpike analysis is to provide insights on the behavior of the so-
lutions of P(T, ly) for different values of 7', in particular for large time-horizons.
Therefore it is important to keep in mind that each component of the optimal state
I (te{1,..,T}) for P(T, 1) also depends on the time horizon 7. This also holds for
the optimal control z; (¢t € {1,...,T}) for P(T, ly). An emphasis on this dependence
would require a notation like ZIET), ng) (t € {1,...,T}). However, since this would
deteriorate the readibility of the paper, we have decided to use the more concise
form I;, where the dependence of T is not stated explicitly in each component.

3.1. An exponential turnpike result for the case that the probabilistic
constraint is not active

We start with an exponential turnpike result for the case that the probabilistic
constraint is not active. In this case, the optimal control solves a deterministic
problem.

Theorem 3.1. Assume that (7) is nonactive at a solution of P(T,ly). Then, such
solution is unique and has a discrete exponential turnpike structure in the sense that
there exists a number z, € (0, 1) that is independent of ly and T' such that for all
t € {1,...,T} we have the turnpike inequality

IEL — 1O* < 21 |l — 1], (10)

For all eigenvalues N\, of the matriz A define the polynomial
pe(w) = w® — [i<1+l> +)\k]w+1. (11)
Ak v
Then we can choose Zy = max min  |2|*.
ke{l,...,n} z€C:py(z)=0

For the optimal control x € XT of P(T,ly), for allt € {1, ..., T} we have the turnpike
inequality 8) 12 12 2 _t—1 812
lze — 2@ < IB7HP (14 Al 27 Bl — 1] (12)

where | B7Y| and ||A|| denote the spectral matriz norms.



1030 M. Gugat et al. / A Turnpike Property for Optimal Control Problems ...

Proof. For the proof we first observe that problem Q(T, 1y, 1) is identical to the
relaxed problem

R(T, 1) : min Jp(z) subject to Elp =1

zeXT

where the probabilistic constraint does not appear. Due to linearity, for the expected
values, we have the recursion

Since the objective function Jp only depends on the expected values, this implies
that in fact, we have a deterministic problem that we can solve. Equation (13) yields

Bz, =El,— AE, - E (te{l,...,T}).
This implies that we can write the objective function in terms of
ap =Bl —19 (te{0,...,T}). (14)
Then we have for t € {1,...,T}:
Bx; — Bz® = E(l, = 1¥) — A(Bl,_, —1¥) = ay — Aay_y. (15)

Hence, the constrained problem R(T), ) is equivalent with the free minimization of
the objective

T
Jr(e) = llaol® + Y (llall +vllaw — Aa]?). (16)

=1
We note that for Jp only a := (a,...,ar_1) is variable, while ag = Iy — I¥) and
ar = 0 (as a consequence of the terminal constraint in R(7ly)) are constant.

Recalling that A = AT differentiation yields for ¢ € {1,....,7 — 1}
Vath(a) =2 [Oét + 7y (Oét - AOét_l + A2 ap — Aat+1)]
=2 [—7140%—1 + (T +)1 + 'YAQ) Qp — ’YAOétH} .

Thus the necessary optimality condition implies the equation
Aaur = ((1+ %)I + AT @ - Aag s, (17)

Note that due to convexity, (17) is also a sufficient condition for the optimality of a
trajectory that minimizes (16).

Due to (2) there exists an orthonormal basis vV, ..., ™ of eigenvectors of the sym-
metric matrix A that correspond to the real eigenvalues Ai,...,\,. Our aim is to
express the optimal trajectories as a linear combination of the orthonormal basis
vectors v®) with k € {1,....,n}. In order to proceed, for k € {1,...,n} define the
polynomial

Pk(w):)\sz—<1+%+)\z)w+)\k.

Let z denote a number such that Py(z;) = 0. For t € {0,1,2,...} define the vector

agk) =2t v®) € R™.
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Note that Pg(z) = 0 implies

Akzﬁazz(1%—%—%Ai)zﬁi——Akz@
Hence we have A ag?Q = (1 + % + Ai) ag?l — M\ agk).

Since for all s € {0,1,2, ...}, the o) are eigenvectors corresponding to the eigenvalue

Ak, this implies that the aik) satisfy (17). Since Ay # 0, we can define the polynomial
DE = )}—k Py as in (11). With the roots of p, we obtain an explicit representation of

the optimal state. If one root is 2, the other root is i Note that since

1

A= [/\k

<1+%)+A42—4>0, (18)

pr has two different real roots. The initial state has the representation
=19 43 po®
k=1

(where the coefficients p;, pa,... p, are uniquely determined). We represent the

optimal state as a linear combination of the agk) corresponding to the roots z
and i The initial condition and the terminal constraint Elr = 0 yield a system

of 2n linear equations for the 2n coefficients. With suitable coefficients (i, hi)
(k€ {1,...,n}) for t € {1,..., T'} the optimal state is given by

El, =1 + Zpk (gkz,iv(k) + ilkzk_tv(k)) )
k=1

For t = 0 we obtain [, — (¥ = ZZ:1 Pk (Qk + iLk> v®) . This yields gp + izk =1 for
all k € {1,...,n}. For t =T we obtain the equation

n
Elp — 19 =0= Z Pk <gkzgv(k) + iLkZ,;Tv(k)> .
k=1

This yields 27 gy, + 2 by = 0 for all k € {1,...,n}. Thus we obtain

-7 ~ T

o = — b hy =k
9k P k B
n t—T  _T—t
and Bl =143 oo (19)
k=1

By our construction, this trajectory satisfies (17), hence it minimizes (16).

For the control that generates this trajectory we have Bz, = Bz + o, — Aoy_1.
Since this control generates an optimal trajectory, this is an optimal control for
R(T,1y). Since the optimization problem R(7) ly) has a strongly convex objective
function and the constraints are linear, the solution is uniquely determined.
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Now we show that for the problem without the probabilistic constraint, the expected
values of the optimal state approach the desired state {(%) exponentially fast. In order
to show this we introduce the notation

t—T T—t
_ Zk — Zk
fk t Z;T — Z}?
Then (19) implies low|l* = Z(pk)Q ‘fk,t‘2~ (20)
k=1

Since we can assume without restriction that |z;x| < 1 we have the inequality

1-— zi(T_t)

2T
11—z

<1

Hence the following inequality holds:

2t = 2T 1- 200
kl_Zsz = ’Zk‘t # < |Zk‘t

‘flc,t| =

vvvvv

n

laell® =Y (o) [fal® < D (o)l < D (00)?2 = 2Ll (21)
k=1 k=1

k=1

Thus we obtain (10) for the relaxed problem R(T', ).
For the controls, (15) implies

z,— 2% =B o, — B Ao, (ted{1,...,T}). (22)

Hence (21) yields [z, — @[ < [[B7H| 24/ laoll + 1B~ | Al 2972 [lag].
Hence (12) follows. This completes the proof. O

Note that the exponential decay implies that the optimal value v(T), ly) of the opti-
mization problem R(7T l) is uniformly bounded with respect to 7" and [y € U.

Define N = sup v(T, ly) < 0. (23)
T€{1,2,3,..},lo€l®4+U

Remark 3.2. If the optimal state of the relaxed problem R(T, ly) that is generated
by the optimal control xp(ly) satisfies the probabilistic constraint (7) (which is the
case if pr > 0 is sufficiently small), it is also the solution of P (T, ly) and satisfies
the exponential turnpike inequality (10).

In the next subsections, we investigate the role of the probabilistic constraint for
the turnpike phenomenon. We start with the problem where the corresponding
probability appears as a penalty term in the objective function.
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3.2. Results with probabilistic penalty term

Now we present a turnpike result for the problem with the probabilistic constraint.
Here the state that is approached in the interior of the time-interval (the "turnpike’)
is defined as the solution of the corresponding problem with free terminal and free
initial state, which obviously is independent of prescribed initial and terminal data.

First we state a result about the growth of —In(pr(x)).

Lemma 3.3. We have lim —In(pr(z)) = oo. (24)

llzf|—o0

Proof. Since the set F'is bounded, there exists a number Ry > ||| such that f € F
implies the inequality || f|| < Rp. Forall s € {1,...,T} we have {; = [;— Al;,_1 — Bxs.
This implies ||&|| > || Bxs|| — ||is|| = || A| ||ls—1]] where || A]| denotes the spectral norm
of A. For all s € {1,...,T} we have
or(x) = P, e Fforallte{l,..,T})
< P(|l]| < Rp for all t € {1,...,T})
< P& = (1Bl — Be (14 [|A]])-

Let a sequence of controls () € X7 be given such that lim,_,, ||z*| = co. Then

there exists an s € {1, ..., T} such that limy_, HBxgk)H = 00.

For all t € {1,...,T} we have klim P(||&|| > k) = 0. (25)
—00

This yields lim P([l&,| > |B2® || —Rp (14| A]])) = 0 and assertion (24) follows. [
—00

Due to (25) there exists a number ko > 0 such that for all ¢t € {1,...,T} we have
the inequality P(||&| > kor) < pr. Thus if for a control z € X7 and a natural
number s € {1,..,T} we have

|Bas|| > ko + Re (1 + [|A]]), (26)

we also have ¢r(z) < pr, and thus z is not feasible for P(ly, T).
By Lemma 3.3, for all A € [0, 1] for the objective function of Q(T), ly, ) we have

lim inf AJp(x) — (1 —A)In(pr(x)) >

||| —oc0 A€[0,1]
lim min {Jr(x), —In (¢r(z))} = cc. (27)

llzf| o0

Let 27 (ly) denote the optimal control for Q(7), ly, 1) presented in Theorem 3.1 and
define
Coron(T') = —Inor(z7(lo)) (28)

(where we set Cprop(T') = 00 if pr(zr(lp)) = 0). We define the set

Npo= | Re(N),

A€[0,1]
where, for A € [0, 1],

Np(A) = {re XT: A Jp(x) — (1=N)Inor(x) < XJr(zr(ly)) + (1=X) Cprop(T)}-
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Lemma 3.4. Assume that or(xzr(ly)) > 0 and that § has a density fe such that
In(fe) is concave. Then, for each A € [0, 1], the sets Rp(\) are nonempty, compact
and convex. Moreover, the set Nr is nonempty and compact.

Proof. For each A € [0,1] the set Xy () contains x7(ly), hence is nonempty. Much
more, Np is nonempty. As a consequence of Lemma 2.1, the Np()) are convex.
They are also closed thanks to the upper semicontinuity of ¢r (see Section 2). The
set Nr is bounded due to (27) and by our assumption that @p(xr(lp)) > 0. This
implies that the sets Np(\) are bounded too, hence compact. It remains to verify
the closedness of Nr. To this aim, consider a sequence {z,} C Ry with z,, — z* for
some x*. Then, there exists some sequence {\,} C [0, 1] with z,, € Xp()\,). Passing
to a subsequence which we do not relabel, we may assume that A, — A\* € [0,1].
Then, by upper semicontinuity of o7 it follows that

AJr(zr(lo)) + (1 = X) Cpropn(T') > limninf (An Jr(xn) — (1= N\p) Inpp(,))
= NJp(z") — (1 = X)) limsup Inor(z,) > X Jr(z") — (1 — X)) Inpr(x).

Hence, z* € Xp(A\*) € Ry, as was to be shown. d

In the next theorem we state that for a certain value of A\, problem Q(7, lp, A) is
equivalent to P(7, ly).

Theorem 3.5. Let T' € N be arbitrarily given. Assume that Cpop(T) < o0 for
Cpron(T') in (28). Let & have a density fe such that In(fe) is concave (e.g., mul-
tivariate Gaussian). Then, for all X € (0, 1], problem Q(T, ly, \) has a unique
solution and there exists a number \* € (0,1] such that the solution of Q(T, ly, \*)
is equal to the solution of P(T), ly).

Proof. According to Lemma 2.1, our assumption on the density of £ implies that
Inpr is concave. Hence, for all A € (0, 1], the objective function of problem
Q(T, ly, A) is strongly convex. Since the optimal controls can be found in the
nonempty, compact and convex set N () (see Lemma 3.4), the existence of a unique
solution of Q(T', ly, A) follows. By the concavity of In 7, problem P(T ly) is a con-
vex optimization problem. Similar to the proof of Theorem 3.1 we can transform
it to an optimization problem in terms of o := (ay)/_}' with oy = El, — 1) for
t=0,...,1"

minimize Jr(a) subject to  — In@r(a) < —Inpy. (29)
Here, Jp is defined in (16) and, using the linear transformation (15), ¢y is defined as
pr(a) = pr([B~ (o = Aayy + Ba)]i)) = pr(x), (30)

where in (29) ag = Iy — 1Y) and ar = 0 are constants in these problems. Observe
that the concavity of In o implies that of In @1 by linearity of the inner mapping.
Hence, (29) is a convex optimization problem too. Moreover, with (") from (9),
we may resolve (15) for a with x := 2(T) starting with ag := Iy — () and ending —
thanks to the endpoint condition in (9) — as required with

ap = Aap_y +E(l —19) — A(El,_y — 1) = Aap_, — A(El_, —19)

= AO(T_l - AO[T_l =0.



M. Gugat et al. / A Turnpike Property for Optimal Control Problems ... 1035

Using the correspondence (30) between a and controls, this yields some &™) with
al"” =1, — 19, &l = 0 and 3r(aD) = ©r(2@) > pr. This means that dr is a
Slater point for problem (29). Consequently, the necessary and sufficient conditions
for a solution « of (29) amount to the existence of a multiplier g > 0 such that
¢r(a) > pr and

0 € Vir(a) +pd (~In(pr(a), u(r(a)—pr) =0 (31)

where 0 denotes the subgradient of convex analysis. Note that the last equation
in (31) represents the complementarity constraint associated with the inequality in
(29).

In the following, denote by 2™ the solution of Q(T), Iy, A) (whose unique existence
we have shown in the beginning of this proof). If pr(zM) > pr, then 2 is a
solution of P(7, ly) as well and we may choose \* = 1 in the statement of the
theorem. Therefore, we assume now that or(z™")) < pp. Assume for a moment,
that there exists some A* € (0, 1) such that

or(@*)) = pr. (32)

Then, by definition, (") solves Q(T, Iy, A\*) and we show that it also solves P(T’, ly)
as claimed in the Theorem. Indeed, like P(T', ly) in (29), Q(T, lp, \*) can be for-
mulated as a (free) convex problem in terms of the variable a:

minimize A\*Jr(a) — (1 — \*) In @ (). (33)
Denote by o the vector in correspondence with *”) via (15). Then, by (30) and (32),
pr(a”) = pr(@™)) = pr. (34)

Moreover, since 21" is the solution of Q(T), Iy, A*), a* is the solution of (33) which
is equivalent with the condition

0D\ Jr(a")+(1=A) (= In $r(a"))) = N VJp(a®)+(1-X1") @ (= In $r(a”)) . (35)

Here, we have applied the sum rule for the convex subdifferential which is justified
by, e.g., [17, Theorem 2.85] because Jr is continuous and convex, — In @y is convex
and —In @r(a*) < oo as a consequence of (34) and our general assumption py > 0.
Now, defining

= (1=X)/\" >0, (36)

we get — thanks to A* € (0,1) — that the inclusion inside (31) is satisfied for o*.
The same holds true for the equality (complementarity condition) as a consequence
of (34). Hence, o* satisfies the necessary and sufficient optimality conditions of
problem (29) which entails that it is a solution of this problem. Translated to the
original description in terms of the z-variables, this means that (*") is a solution of
P(T, ly) as was to be shown.

It remains to justify the existence of A* € (0,1) with (32). Define

A" = sup{\ € (0, 1] | ‘PT(I(/\)) > pr}.



1036 M. Gugat et al. / A Turnpike Property for Optimal Control Problems ...

We show first that A* > 0 which amounts to saying that there exists some A\ € (0, 1]
with o7(x™)) > pr. Assume to the contrary that @7 (™) < pr for all A € (0, 1].
Then, by optimality of 2™ and by feasibility of 2(® for problem Q(T, Iy, M), it
follows that

Mp(MN) = (1 = N Inpp < Ap(a™) = (1 = N Inp(z™)
< )\JT(x(O)) —(1=XA)In @T(x(o))

for all A € (0,1]. Since all ™ belong to the compact set Ry by Lemma 3.4 and
since Jr is bounded on this set, we may pass to the limit A | 0, and arrive at
or(2®) < pr. On the other hand, () is the optimal solution of Q(T),ly,0) which
amounts to maximizing @7 under the endpoint constraint Elp = 1), Hence, we
obtain from (9) the contradiction @7 (%) > o7 (2™)) > pr. Thus, A* € (0,1].

Next, we verify that goT(mO‘*)) > pr. By definition of \*, there is a sequence A\, T \*
with @r(x*®)) > pr. Since the ) belong to the compact set Np (see Lemma
3.4), we may assume that ¥} — 2*. Observe that, since all z**) as solutions
of Q(T, ly, M) satisfy the endpoint condition Elr = 1) the same holds true for
z*. Let = be arbitrary such that Ely = [©). Then, since z**) is the solution of
Q(T, ly, \x) and the objective of that problem is lower semicontinuous, we obtain

N Jr(z*) — (1= N)pp(x™) < limkinf e (2 TM)) — (1 = Np)pr (2 TA)
< limkinf Aedr(2) — (1 = Me)or(z) = XN Jp(x) — (1 — A")pr(x).

This means that o* is the solution of Q(T), ly, A\*), i.e., 2* = z*"). Now, the upper
semicontinuity of ¢r yields the desired inequality

pr < limsup 7)) < or(2*) = @r(a?)).
k

As a consequence, \* < 1 because ¢r(z)) < pr. Summarizing, we have that
X € (0,1) and pr(a™) > pr.

In the last step we show that actually or(z*")) = pp. For k € N sufficiently large
it holds that A\* + 1/k < 1 and, hence, by definition of \*, for k large enough,
or(zXFYR)) < pr. Then, by optimality of 2 *1/%) and by feasibility of z(*") for
problem Q(T, ly, \* + 1/k), it follows that

(N +1/k) Jp(zWNHYRY — (1 — A = 1/k) Inpy
(N + 1/k) Jp(zWHYRY — (1 — A — 1/k) In o (23 F1/R)

<
< (N 1/k) Jr(@®)) — (1= N = 1/k) Inpr(a®)

for all k£ sufficiently large. Repeating an argument, already used before in this
proof, we may assume that 2> +1/5) —, 23 for a subsequence. Invoking now the
continuity of Jr, we end up, after passing to the limits above, at (")) < pr
which finally yields the desired relation @r(2*")) = py. ([
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3.3. A turnpike result for the case that the probabilistic constraint is
active

In the sequel we denote by Ar the multiplier A* from Theorem 3.5 associated with
an arbitrary T" € N. Accordingly we define the following sequence of problems with
free initial state and free terminal state

Q(T) : min ArJr(x) — (1= Ar)In(er(z)) (T €N), (37)

(lo, z)eR?Px XT

where now, in contrast to the previous problems, le is a variable initial state. In
the following, we denote by I (t =0,...,7T) the random states generated by the
optimal solution of Q(7). Next we state a probabilistic turnpike result:

Lemma 3.6. Let the assumptions of Theorem 3.5 be valid for all T € N. Assume
that there exists some constant R such that for all T € N

IEL| <R Vte{0,...,T} (38)
Moreover, suppose that k > 0 for

k= inf P (ZT —Ely+19 eF|l,e FYte{l,..,T - 1}) . (39)
€

Then, there exists Cy > 0 such that the random states (I;)L_, generated by the optimal
control of P(T, ly) satisfy the estimate

T
S IEL—Eh|? < S vren. (40)
=0 T
Proof. Fix an arbitrary 7' € N. For Z = (2, ..., 27) | € X7 define the function
T
Hy(Z) = |l20” + ) (lzel® + 7012 = Azea]?) - (41)
t=1

Then H, is strongly convex in the sense that for all s € [0,1] and all Z, Y € XT+!
we have the inequality

Hi(1=8)Z+sY) < (1—3s)H(Z)+sH\(Y)—s(1—3s)|[|Z-Y]> (42)
This can be seen as follows. For Hy(Z) == |20l + 31, ||z]|* we have
Hy(1=8)Z +sY) = (1 —s)Hy(Z) + sHa(Y) — s (1 — 5)|[| Z = Y]~
Since H; is the sum of Hy and a convex function, (42) follows. Define
H(a) := A Hi(a) = (1 = Ar)In(pr(a))  (ae XTH,

where ¢ is as in (30), but now with ag, ar being variables. Note that H is the
objective function of Q(T') when similarly as in the proof of Theorem 3.1, problem
Q(T) is restated as an optimization problem in terms of « as defined in (14). Due
to (42) our assumptions imply that H is a strongly convex function in the sense that
for all s € [0,1] and all Z, Y € X7+ we have the inequality

H(1—8)Z+5sY) < (1—8)H(Z)+sHY) = Ars(1—3)|Z - Y|

where we exploited (42), the concavity of In ¢ according to Theorem 3.5 (see remark
below (30)) and Ay < 1 by the same Theorem.
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For all s € (0, 1] this is equivalent to the inequality

) B =9z +5v) - H(Z)

H(Y)> H(Z tar(1—9)|Z - Y|~

If Z is a point such that H(Y) > H(Z) for all Y € X7+, this yields

H(Y) > H(Z)+ A sup (1=s)|Z =Y|* = H(Z)+ M | Z - Y|
s€(0,1]

Following our previous reformulation of problems in the new variable a, we may

tate Q(T
restate Q(7") as min H(a)

aeXT+1

and Q(T, lp, Ar) as the corresponding problem with fixed oy = Iy — Y and
ar = 0 (see remarks below (30)). Let #(T) denote the optimal value of Q(T)
and v(T, ly, Ar) the optimal value of Q(T, ly, Ar). Since problems Q(T, ly, Ar)
and P(T, ly) are equivalent by Theorem 3.5, we have that

(T, lo, Ar) = 0(T) + Ar Y llaj — a5 (43)
where o = El; — 10 and af = EZt — 19 and El, El} are the expected states

generated by the optimal solutions of Q(T), ly, Ar) and Q(T'), respectively.

Since the matrices A, B are regular by our basic assumptions, there exists a control
g € XT that generates for the deterministic dynamics

ne = Ani—1 + By (44)
the deterministic trajectory (1o, 71, ....,nr) = (lo — lp,0,...,0,10® — EZT)
To be precise, we have § = (=B~ [A(ly — 1y)],0,...,0, B~[I© — Eiz]).
Starting with [} := [y the control u := & + ¢ with the (uncertain) dynamics
lf:IAlf_l—l—But—i—ft (tzl,,T)

generates the trajectory (I)7_, = (I; + 1), which is equal to

lo, Zl,...,lATfl,lAT+l(6) —EZT. (45)
Since E(lp + 19 — Eip) = 1) the control u is feasible for Q(T, Iy, Az ).

Due to the definition of the objective function of Q(T, lp, A\r) and Q(T), our con-
struction implies the inequality

(T, lo, Ar) = o(T) < Ar (Jr(u) = Jr()) = (1= Ar) (Inpr(u) — Ingr(2)) . (46)

First we derive an upper bound for the deterministic part Jr(u)— Jr(z). Given (16)
and with ot := EI* — 1) for t =0,...,T, we get that

A n ~ % T u ~
Jr(u) = Jr(z) = lagl® = llagh? + X2l |1 = llag1?
+ (e = Aa |12 = &g — Ay |1%) < llag)l? = llagl? (47)
+7 (ot = Aag|l? = &7 — AaglP* + | Aag_y || = llag — Aaz_, %),
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because, thanks to (45) one has that o = & for ¢ = 1,..., T — 1 and because

of off = E(ZT + 10 — El}) — 1) = 0. For the probabilistic part of the objective
function we proceed in a similar way. By definition of ¢7, we may write in terms of
conditional probabilities

or(u) =PI € F(t=1,...,T—1))-P(lt e F|I* € F(t=1,..., T —1))
or(@)=P(l,e F(t=1,....T=1)-Plr e F|l,e F(t=1,...,T —1)).

By (45), the first factors coincide. Since also the log of a probability is negative, we
may conclude that

Iner(u) — Inep(i) > Py +19 —EBlp e Fll,e F(t=1,...,T —1)).
Thus, we may continue (46) by using (47) as
(T, lo, Ar) = o(T) < Ar ([lag ] — [la5]1%)
+Ary (lof — Aagl® — [la7 — AGg|1* + | Aag, |12 — |G — Adq_y |1°)
—(1=A)InP(lp +1% —Elp e Fll,e F(t=1,...,T —1))
< Ar ([lagl® +7llaf = Aag]® + yllAat_[?) = (1 = Ar) Ink,
where we we exploited that x > 0 by assumption. Observing that
llag | < Nloll + 11}
lag — Aagll < R+ 1]+ LA (1ol + 11]1)
1Ay | < AN (R + (1)),
we arrive at v(T, lo, A\r) — 0(T") < C4, where C is independent of 7. With (43) the
above inequality implies
T
> llai = &l < 5 [T o, Ar) = 9(T)) < T 0
=0

AT

In Lemma 3.6, the quotient f—; on the right-hand side of (40) becomes arbitrarily
large if Ay € (0,1] converges to zero. In the following we derive a strictly positive
lower bound for the corresponding values of Ap. To show that there is a strictly
positive uniform lower bound for the multipliers for problem P(7’, ly) with respect
to T, we have to introduce a normalization with respect to T in the probabilistic
constraint, that is, we adapt the probability level to the time-horizon. For this
purpose for a given parameter ¢ € (0,1) and 7" € N we define

pr = C" Pmax(T) (48)

where prax(7') is the optimal value of the probability maximizing problem Q(7', ly, 0).
Since pmax (1) is decreasing with T'; also pr is decreasing as a function of 7.

Lemma 3.7. Assume that the probability levels pr in problems P(T, ly) are given
by (48). Suppose, moreover, that there exists some R such that for all T € N.

|EL|| <R Vte{o,...,T}, (49)
Then, there is some Cy > 0 such that Ay > Cy for oll T € N.
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Proof. The probabilistic constraint (7) with the time-dependent probability level
is
er(z) > pr.
Under the assumptions of Theorem 3.5, define the convex function
gr(z) = In(pr) — In(er(z)).

Then the probabilistic constraint (7) is equivalent to the convex constraint
gr(z) <O0. (50)

Let xs(T) be a solution of Q(T), ly, 0) (i.e. a control that yields the maximum
probability ¢r(-)). Then for all T € {2, 3,4, ...} we have the SLATER condition (9)
for problem P(T), ly):

p1(25(T)) = Pmax(T) > ¢ pnax(T) = pr- (51)
Define the affine subspace
Xr ={z € XT | Ely = 1) under Iy = 0 and the dynamics (1)}.
Then, we can write the dual problem for P(T', ly) as

D(T, ly) : max inf Lp(z, p)

120 peXT

with the Lagrangian Ly (z, p) = Jr(x) + pgr(x). Let pr(ly) denote the multiplier
that corresponds to the optimal control xr(ly) of problem P(T, ly). Let 5(T, 1)
denote the optimal value of P(7T,[ly). Due to the SLATER condition (51) we have
strong duality, which means that the optimal value of P(T, ly) is equal to the optimal
value of D(T), ly), that is

B(T, lp) = inf Lr(z, pr(l)).

zeXT
This yields the inequality 5(T, ly) < Lr(zs(T), pr(lo)), which implies in turn

B(T, lo) — Jr(xzs(T)) _ Jr(zs(T)) — B(T, lo) _ Jr(xzs(T)) — B(T, lo)
prllo) S == 2Ty T Jees@ o amer o 02

Due to the recursion (13) for the expected values, we have
(I‘S(T))t = Bil (Elt - AElt_l — E) .

This implies with (49)
(T)
sup max |[(z < o .
Telm);te{ymj}”( s M 5

Note that by (6) Jr attains only values greater than or equal to zero. This yields
B(T, ly) > 0. Hence we obtain

sup ZrES D) AL g

TeN TeN

JT(-IS(T)).
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The objective function Jp is defined as tAhe sum of T+ 1 terms each of which can
be bounded by some common constant M thanks to (49). Hence (53) yields

sup w S sup

TeN TeN

Due to (52) we have su lp) <
(52) sap o) < T

Due to the relation (36), we have that pur = (1 — Ar)/Ar, whence

[ In(<)]

> — = VT € N. O
|In(Q)| +2 M

Now, we are in a position to formulate our main result on the probabilistic turnpike
property of the expected states for the optimal control of problem P(T) ly):

Theorem 3.8. Under the assumptions of Lemma 3.6 and Lemma 3.7, the expected
states (El;)L, generated by the optimal controls of the sequence of problems P (T, ly)
for T € N have a turnpike structure near the expected states (Eit)thl generated by
the optimal solutions of the sequence of problems Q(T) in the sense that there exists
a constant C' such that

T
> |IEL —EL|* <C VT €N (54)

t=0

For the optimal control x € XT of P(T,ly) and & of Q(T) we have the turnpike

inequality .

Do llze—al* <20 |B7HP (1+ A7) VT eN, (55)

t=1
where |B7Y|| and ||A|| denote the spectral norms. Also here the control values x;
and &; (t € {1,...,T}) depend on the problem parameter T of P(T, o).
Proof. Combine Lemmas 3.6 and 3.7 and put C' := C,/C5. For the controls, (15)
implies
v — 2% =Bl —B Aol |, & —2® =B'a; - B 'Aar, (te{l,...,T}).
Hence we have

xy — & = B™'(a] — &) — BT A(aj_; — 4;_y).

Hence due to the definition of o and &; (54) yields

T T
~ ~ 2
> e =@l < 30 (1B 1 1BL — Bl + I B |A] By — By
t=1 t=1

T
<2[B7MP (1+ A7) Y IIEL — BL|* < 2IB7Y* (1+||A]*) C VT €N,
t=0

Then (55) follows. O
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3.4. Discussion of assumptions

The assumptions of Theorem 3.8 (via those of Lemmas 3.6 and 3.7) concern, on
the one hand, the uniform boundedness of expected states generated by the optimal
solutions of the original problem and the problem with free initial and terminal state,
and on the other hand the sequence of conditional probabilities in (39). While the
former ones are intuitively clear, the latter one is purely technical. Conversely, the
former ones are hard to ensure by reasonable conditions on the initial data whereas
we will show in the following how (39) can be guaranteed in a standard setting.
We note that the uniform boundedness of the respective optimal expected states
might be verified empirically as in the numerical results of Fig. 4.5, where both
trajectories stay within the desired region no matter how large the time horizon has
been chosen.

Now, we address the verification of (39). We start with a technical preparation. Fix
an arbitrary 7" € N. We consider the time-discrete dynamic system of the random
states lo, [ = (I1,...,l7)" that are generated by the optimal solution & of the free

terminal state problem Q(7') in (35). Together with the recursion in (1) we obtain
Zt:AlAt_l—f—BZ%t—’—ft, tzl,,T

Let be & = (1,...,27)" and £ = (&, e )T Definine the lower triangular block
matrix A € R">*"T and the matrices A € R">" B € R"*"T such that

I 0 A

A I ~ A2
A= : . , A= )

B 0
: B:=

AT-1 .o AT AT
Then the evolution of the states can be represented in closed form by
[ = A¢ + Aly + ABz. (56)

Assuming that & ~ N(E,X) for t = 1,...,T are independently and identically
distributed Gaussian random variables, and by defining

E X 0
E = : and Y := ,

E 0 )y
we obtain that

E~N(E,S) and [ ~N(AE+ Aly+ AB#, ASAT).
Now, we are able to represent the joint density function for L. Setting
ii:=AE + Aly + AB#,

the density function reads

fi(z) = 1 o~ 3T (ASAT) 1 (z—f1) (57)

2m)" det()T
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Both, A and ¥ involve special structures that allow for a simple representation of
their inverses. It is easy to see that the inverse of A is of the form

1 0
-A I
Al =
0 —A 1

We assume that ¥ has the Cholesky factorization ¥ = LLT. Now let L € R*Tx"T
be defined as

L 0 L~ 0
L= with L' =
0 L 0 Lt
Therefore, due to 71 = (LLT)™! = L~TL™!, we obtain for any z € R"” that
ZHASAT) 2 = ZTATTES AT = (LA ) TLTIAT (58)

The matrix L=*A~! is of the form

Lt 0
_ —L7'A L™
Mp:=L"'A""'= . . . (59)
0 —L7'A Lt
Applying (58) and (59), (57) reads
(2) — 1 ~3(Mp(z—p) T Mr(=70) 60
2 = Fosrmmr ¢ : (60)

Proposition 3.9. Let (ZO, ) be the solution of the free initial state problem Q(T),
where T € N is arbitrarily fived, and denote by [ = (Zl, e ,ZT)T the random states
generated by this solution. Under the assumption that & ~ N (E,X), t = 1,2, ...
are i.i.d. Gaussian random variables and under assumption (38) of Lemma 3.6, it
holds that

IP(ZT—EZT+Z<5> cFlleFvie {1,...,T—1}) > C,
where C' > 0 is a constant independent of T

Proof. To determine the formulated conditional probability for a given 7' € N we
want to apply the joint density function (60) of [. To do this we consider the random
variable

n = (Zl, .. -alAT—lglAT — EZT)T

that is obtained from [ by shifting the Tth component by the constant Elr to
zero mean. Note that the covariance matrix does not change by this shift. In the
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following argumentation, for any vector z = (z1,...,27)" € R™ we will denote by
2= (21,...,2r_1)" € R*TY its first T — 1 entries (each of dimension n). Having
0
My = Mrp_y ,
0
0 -+ 0 —L7'A L7!

the joint density function of 7 can be derived from the density of [ given in (60).
Since En = (fi1, ..., fir—1,0), we obtain

fo(z) = ! e~ 2 (IMr—a (=P HIL e =L Aler i —Ar—2)I*) (61)
(2m)7T det (5)T
where [ - || denotes the respective Euclidean norm. Moreover, the density function

of the reduced vector ' = (Iy,.. ., ZT,l) is obtained by

fo () = 1 o= SIMr 1 (=) (62)
\/(2m)n(T=1) det () (T

For the wanted conditional probability we have now (with F7~1:= F x ... x F)
—
T—1 times

p§9nd = P(ZT—EZT+Z(6)EF ZtEthE{l,,T—l})

= P(preF—19|9neFr™").

The latter conditional expression can be represented in terms of the above densities
(61) and (62). More precisely, with

\/(@m)nT =D det ()T )

(2m)"T det(X)T B ((2m)" det(X)) -

it turns out that

LMy (=B AL = L AGor s~ DI)
cond __ 0 f:rEFT—l nyF—l(5> € 2 dydl'

T 1 alE
5([M7r-1(z
fxeFTﬂe 2 (IMr—1 (@O g

Since F and therefore F' — 1 are compact and because hr_1 = EZT_l and therefore
fir—1 < R due to assumption (38) (independently of T), for any (z,) € F x (F—1®)
we can uniformly estimate

IL7y = LAz = el < L7yl + 127 A=)+ [l

< C|L7Y + C|IL7 Al + R||L~'A]|. (64)

Here, C' is a constant such that the unit ball B4 (0) contains both F and F — ().

cond

Applying inequality (64) to (63) we can bound the conditional probability pSs
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uniformly from below. Let A denote the Lebesgue measure. Then we observe from
(63) that

MNEF — l(é))e*%(C‘HL*I||+C'HL*1AH+RHL’1AH)2 f CpT e~ 3 (IMr_1 (@) 14

fmeFT 1e 2(||]VIT 1(z—p HQd

cond

Pr >

— OA(F — 19)e SCILTIHRCILT ARRILT AN o 5 g,

Since the constants C' , 0 and R from Lemma 3.6 do not depend on T, so C' does not
either, which completes the proof. O

In the numerical experiments presented in the next section the turnpike property
stated in Theorem 3.8 is clearly visible and in particular for sufficiently large time
horizons close to the middle of the time inteval the two expected trajectories almost
coincide.

4. Numerical experiments for the probabilistic turnpike

In this section we present numerical experiments for the probabilistic turnpike for
here-and-now decisions. For studying the turnpike phenomenon in a probabilistic
setup, as an instance for a time-discrete system (1), we consider the linear recursion

by =11+ + & (65)

for t € {1,...,T}. Here, equation (65) models the state level in a reservoir prob-
lem, for example the water level for hydroelectricity generation. For any time step
t € {1,...,T} the scalar state variable [, € R denotes the water level in the reservoir,
the control variable x; € R is the amount of water to be filled or released at ¢, and
& € R is some random water inflow to the reservoir. We assume that the inflows
& describe a sequence of identically distributed Gaussian random numbers with
E&=FEfort=1,...,T.

Instead of computing policies for optimal water releases for power generation, in our
numerical tests we are rather interested in turning a given water level [, back to a
desired level [ € F := [a,b] in a cost optimal way. According to (5) we have

20 = _F
and define the objective function of the optimal control problem by

T

Jr(x) =Y (E(l,) — 1) +’nyt—x

t=0

where 7 is some non-negative weighting factor concerning the control cost. Intro-
ducing the probabilistic constraint

or(x,lo) =Pl € [a,b] for all t € {1,...,T}),
finally, the optimization problem P(T),ly) introduced in Section 2 reads

m}%{r% Jr(z) subject to Elp =19 and @r(z,ly) > p (66)
re

for a given and fixed probability level p € [0, 1].
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4.1. Turnpike study for a short time horizon

In a first test series we want to study numerical examples, where we consider a
short fixed time horizon 7', varying initial water levels [y compared to different
desired levels 1®) and a given fixed confidence interval [a,b]. In particular, we solve
(66) numerically with the following data:

Confidence interval: [a,0] = [11,25]
Initial level: lo = 5,13
Desired level: 19 = 16, 20
Time horizon: T = 10

Control cost factor: v =5
Distribution of inflow ¢: & ~ N(E\1); E=-1

25 25

] B R e e T ) S s e ——
16

//’ 13
11 11

desired level
5 expected level

Level
>
Level

desired level
v=5, p=0.70 expected level

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Interval [0,T] Interval [0,T]
Figure 4.1: Solution of the turnpike problem for two examples with different initial

level Iy = 5 (left) and [y = 13. The level trajectories are computed for a fixed desired
level 1Y) = 16 as well as probability levels p = 0.70 (left) and p = 0.91.

Computed solutions of the optimal control problem (66) for the first two numerical
examples are shown in Fig. 4.1. The expected level trajectories of the reservoir for
the given data are displayed for two different situations, where the initial level is
located outside and inside the confidence interval, respectively. Beside the expected
level, the figure also shows realizations of the level curves realizing the computed
optimal control for randomly selected inflow scenarios (light gray) for the given time
horizon. The expected level (shown by purple lines) are observed for probability
levels p = 0.70 and p = 0.91, respectively. Clearly, in both example, by the optimal
solution the system is controlled towards the desired level. However, if the initial
level as in the first example is located outside the confidence interval, we observe a
jump of the expected level into the confidence interval in the first time step in order
to satisfy the probabilistic constraint. Afterwards, similar to the second example,
the system is smoothly turned to the desired level, which is a consequence to the
chosen parameter v > 0. By this setting, due to the control cost within the objective
function, abrupt rises of the reservoir levels will be avoided.

Next, we want to study the behavior of the reservoir levels when increasing the
probability level inside the probabilistic constraint. With the same setup as in the
two examples before we just change the probabilities to p = 0.91 and p = 0.93,
respectively.
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25 25

,,,,,, 18F-nne ot e > e~
16

Level

13
1"

desired level —— desired level
5 expected level —— v=5, p=091 expected level

Interval [0,T] Interval [0,T]

Figure 4.2: Solution of the turnpike problem for two examples with different initial
level [y = 5 (left) and [y = 13, but, with increased probability levels p = 0.91 (left)
and p = 0.93. The level trajectories are computed for the fixed desired level () = 16.

25 25
20
_ 18 f - — —— — o~ L BANSS e e -
[} [}
3 16 3
- -
13 13

1" 1"

desired level
expected level

desired level
Y=5, Pmax=0.9333 expected level

Y=5, Prax = 0.9341

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Interval [0,T] Interval [0,T]

Figure 4.3: Solution of the turnpike problem for p.«. Displayed are level trajectories
for different desired levels [(®) = 16 (left) and (9 = 20.

The results are shown in Fig. 4.2. The new observation is the following: When
increasing the probability the expected reservoir level will be forced to leave the
desired state in order to increase the probability that the state curves remain within
the confidential bounds. As consequence, within intermediate time steps the ex-
pected state of the system exceeds the desired level and turns toward the center
line of the confidence interval. However, as required by the constraints, at the end
of the time horizon in both examples the expected value of the reservoir level turns
back and reaches the desired level again.

As typical for optimization problems with probabilistic constraints there exists a
maximum probability level pn.. such that the feasibility set becomes empty for
higher probability p, i.e. for pmax < p < 1. The previous results are obtained for
probability levels below the maximum probability. Now, we want to look at the
turnpike behavior when reaching ppax. If p = pmax, the reservoir problem solution
approaches the level state that maximizes the probability p in one step. This is
shown in Fig. 4.3 for two instances, where we compare two different desired levels.
In both cases it turns out that the expected reservoir levels almost ignore the desired
level, because they are forced towards the center of confidence in order to match the
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maximum probability. They both turn to the desired level only to the end of the
time horizon that is due to the terminal condition.

4.2. The turnpike property for increasing time horizons

Finally, we want to illustrate the probabilistic turnpike property for a increasing
time horizon. The turnpike result from Section 3 describes the turnpike behavior
of the system state with increasing time horizon T. In order to show this specific
probabilistic turnpike phenomenon by the numerical example we want to setup the
time horizon sequentially by 7" =40 /60 /80 /100. In addition, we adjust the stan-
dard deviation of the random vectors & and we want to allow correlations between
different time steps.

Probability
ISy
©

0.8 | b

éO ?:O 4‘0 5:0 G:O 7‘0 éO éO 1‘00
Time horizon T

Figure 4.4: Bounding maximal and minimal probability curves ppax(-) and pmin(+)

as function of the time horizon such that the level problem (66) is feasible and such

that the probabilistic constraint is active. The graphic also shows a suitable time

dependent choice of probabilities p(T'), where p(T) = (7 - pmax(T) with constant

¢ = 0.99996.

In particular, we assume an inflow process £ = (&1, ..., &r) that follows a multivariate
Gaussian distribution with tridiagonal covariance matrix of the form

[ o1 09 O3 0 |
o9 . . .
E~N(=Ip,Yr) and Yp= | 55 -, . L oy
o2
i 0 o3 o2 01 |

with o1 = 0.05, g9 = 0.03, o3 = 0.015, and where I denotes the T-dimensional
identity matrix. All other fixed problem data of the level problem (66) follow the
general setup above with initial level I, = 13 and desired level {(9) = 20.

When increasing the number of time steps, the probability that the system remains
within some given bounds drops down. This is due to the increasing variance of
perturbations caused by the random inflow process. More precisely, the probability
Pmax(T") as function of the time horizon is strictly monotonic decreasing. On the
other hand, for small enough probability levels the probabilistic constraint becomes
inactive.
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Figure 4.5: Probabilistic turnpike property for increasing time horizons T° = 40,
60, 80, 100. Shown here are the expected state trajectories compared to the corres-
ponding free initial and terminal state curves.
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Figure 4.6: Probabilistic turnpike property disclosed by the optimal controls. Shown
here are the computed optimal controls of the turnpike problems compared to the
computed corresponding free initial and terminal state controls.
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In consequence, the probability level p in (66) should be chosen between the upper
bound pma.x(7") and some lower bound pu,(7). Otherwise, the problem (66) is
getting infeasible or it turns to a pure deterministic turnpike problem. Fig. 4.4
shows the bounding maximal and minimal probability curves ppax(:) and puin(+) as
function of the time horizon for the numerical example. In order to get a suitable
probability levels for (66) we setup the probability p as function of pyay. In the
following we apply p according to the definition

p(T) = CT : pmax(T) )

where ¢ € (0,1) is some constant number that is chosen sufficient close to 1. In
the numerical example ¢ is assigned to ¢ = 0.99996 (cf. Fig. 4.4). The related
probabilistic turnpike property for an increasing time horizon is studied in Fig. 4.5
and Fig. 4.6. The numerical results are shown for time horizons 7" = 40 /60 /80 / 100
for both the expected states (Fig. 4.5) and the optimal controls (Fig. 4.6). On the
one hand we compare the expected state of the system, observed when applying the
optimal control as solution of (66), with the expected state according to the optimal
solution of the free initial state and free terminal state problem Q(T') defined in (37).
On the other hand we show the turnpike phenomenon as stated in Theorem 3.8 for
the optimal controls themselves.

The pictures in Fig. 4.5 reveal that at the beginning of the time horizon the ex-
pected system state (when applying the problem with bounding conditions) turns
from the defined initial state smoothly towards the expected state of the problem
with free initial and free terminal state. Before reaching the end of the time horizon
the expected level leaves the free initial/terminal state solution in order to match
the deterministic terminal state condition, i.e. the expected system state of the
bounded problem terminates with the desired level. The effect becomes more evi-
dent with a prolongation of the time horizon. The longer the time horizon the more
intermediate time steps can be observed, where the computed expected level accord-
ing to (66) is close to the expected level of the corresponding free initial/terminal
solution. According to Fig. 4.6 a similar observation can be made for the optimal
controls computed for the example problems on the different time scales. The nu-
merical results confirm empirically the turnpike properties (54) and (55) stated in
Theorem 3.8.

5. Conclusion

Motivated by the application of probabilistic constraints in dynamic optimal plan-
ning problems for the operation of gas networks, we have studied the turnpike prop-
erty for time-discrete systems with an additive random perturbation. We have con-
sidered optimal control problems where the quadratic objective functional is stated
in terms of expected values and a probabilistic constraint is prescribed. We have
shown that under suitable assumptions we obtain a turnpike structure for the ex-
pected optimal state also for problems with probabilistic constraints. We have shown
that for large time horizons the optimal expected trajectories approach the optimal
expected trajectories of the problem with free initial and free terminal states in the
majority of time steps.
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In our analysis we consider problem Q(T, Iy, \) where the probability that a given
inequality constraint is satisfied appears in a penalty term in the objective functional
with a certain weight that is parameterized by A € [0, 1]. We show that there exists
a parameter \ for which the solution of the problem P(T, ly) with a probabilistic
constraint and given terminal state and prescribed expected terminal state coincides
with the solution of problem Q(T), ly, A). This yields a turnpike result of a new type,
where the turnpike trajectory is obtained as the solution of an auxiliary problem
that depends on the parameter A and thus indirectly (via the value of the parameter
A) also on the given initial state. It is important to emphasize that for the problem
with the probabilistic contraint, this specific parameter is not known a priori and
is not indpendent of the initial state. Since the parameter A\ varies in a bounded
set, this new type of turnpike result yields a family of limit trajectories that is
parameterized by A, whereas in the classical turnpike results only a single turnpike
trajectory appears.

There are some open questions left, in particular about the verification of our as-
sumptions in terms of the problem data, in particular the underlying probability
distributions. We have considered a special finite-dimensional setting with affine
linear dynamics. In the applications, in contrast to our setting the dynamics are
often nonlinear, in fact often given by partial differential equations. In this infinite-
dimensional setting specific probabilistic box-constraints are required for the feasible
states. How the results can be generalized to this setting is a topic for future re-
search. Such an analysis could be based upon the recent paper [13].
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