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We consider systems that are governed by linear time-discrete dynamics with an initial condition
and a terminal condition or the expected values. We study optimal control problems where in
the objective unction a term o tracking type or the expected values and a control cost appear.
In addition, the easible states have to satisy a conservative probabilistic constraint that requires
that the probability that the trajectories remain in a given set F is greater than or equal to a given
lower bound. An application are optimal control problems related to storage management systems
with uncertain in- and output. We give sufcient conditions that imply that the optimal expected
trajectories remain close to a certain state that can be characterized as the solution o an optimal
control problem without prescribed initial- and terminal condition. In this way we contribute to
the study o the turnpike phenomenon that is well-known in mathematical economics and make a
step towards the extension o the turnpike theory to problems with probabilistic constraints.
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1. Introduction

The turnpike phenomenon or optimization problems has been discussed in mathe-
matical economics by P.A. Samuelson already in [4]. Ever since, the turnpike phe-
nomenon has been analyzed or optimal control problems o dierent types, see or
example [3, 7, 10]. The turnpike phenomenon or innite horizon optimal control is
studied in [21]. Turnpike properties in the calculus o variations and optimal control
are considered in [11, 12, 20]. For optimal control problems with partial dierential
equations see also [18] and the reerences therein.

In order to obtain decisions that are robust against uncertainties in the problem
data, probabilistic constraints are a useul tool i inormation on the corresponding
probability distribution is available (see [16]). Probabilistic constraints require that
the probability to remain easible is greater than or equal to a lower bound p that is
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prescribed as a problem parameter by the decision maker. They play a prominent
role in risk averse water reservoir management under uncertain infows (e.g.,[14, 16,
19]) but could equally well apply to gas reservoirs. Recently, probabilistic constraints
(or Value-at-Risk constraints) have attracted increasing interest in optimal control
or PDE constrained optimization (e.g., [5, 6, 8, 15].

Although the study o the turnpike phenomenon is an active area o current research,
results on the turnpike property or optimization problems with probabilistic con-
straints are not yet available in the literature.

This paper investigates the turnpike property or discrete time optimal control
problems with probabilistic constraints (chance constraints). For probabilistic con-
straints continuous in time (a special case o so-called probust constraints), we reer
to [1, 9]. The underlying random distribution is supposed to be continuous. We
consider a probabilistic constraint where it is required that the probability that the
whole trajectory remains in a given convex set F is greater than or equal to a given
parameter p.

It is the nature o these constraints that or a longer time horizon, they are harder
to satisy than or a short time horizon. Thereore in some cases i the probability
threshold p is not adapted to the time horizon there is a maximal time horizon
where the probabilistic constraint admits a nonempty easible set. Hence also in our
turnpike result or optimization problems with probabilistic constraints we consider
a time dependent probability threshold pT .

We present a turnpike result that states that the optimal expected trajectories ap-
proach a certain state (the turnpike, which is dened by the optimal trajectory o
the problem with ree initial and ree terminal state) in the sense that there is an
upper bound or the Euclidean distance between the trajectories o the expected
values that is independent o the time horizon. Since probabilistic constraints are
an excellent modeling tool or problems o optimal control and optimal design, also
or this case, the turnpike structure o the generated trajectories is o interest.

This paper has the ollowing structure. In Section 2 we introduce the time-discrete
system, a quadratic objective unction and dene an optimization problem with a
probabilistic constraint.

In Section 3 we show that the solutions o the relaxed problem without the prob-
abilistic constraint have an exponential turnpike property. Moreover, we show a
turnpike property or the problems where the probabilistic constraint is replaced by
a probabilistic penalty term in the objective unction. Finally we also discuss the
problem with the probabilistic constraint.

In Section 4 numerical experiments are presented that illustrate the probabilistic
turnpike phenomenon. At the end o the paper, some conclusions are discussed.

2. Optimal control of time-discrete systems

We consider a linear time-discrete system. The initial state l0 ∈ R
n is given and

or t ∈ {1, 2, 3, ...} the evolution o the state lt ∈ R
n is infuenced by identically

distributed random variables ξt ∈ R
n and governed by the linear recursion

lt = A lt−1 + Bxt + ξt (1)

with linear operators A and B and control variables xt ∈ X = R
n.
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Assume that AT = A, (2)

that A is positive denite and that B is invertible. Expanding the recursion (1),
the state vector l can be written as an ane linear mapping o control and random
variables:

l(x, ξ) = Px+Qξ + r. (3)

As an example consider the linear recursion

lt = lt−1 + xt + ξt

or t ∈ {1, ..., T} that models the water level in a reservoir or hydroelectricity
generation. It can also be used as a model o gas storage. Gas storage is important
or power generation in gas-red power stations in the case o a lack o electricity
that is generated rom renewable energy. Also the storage o hydrogen can play an
important role in a uture hydrogen economy, see [2].

Let a closed convex set F ⊂ R
n and a desired state

l(δ) ∈ F (4)

be given. We assume that or all t ∈ {1, 2, ..., T} we have

Eξt = E

and that l(δ) = A l(δ) + Bx(δ) + E. (5)

Let a weight γ > 0 be given. For k ∈ {1, ..., T}, we dene the objective unction JT
with a control cost and a tracking term that is stated in terms o expected values as

JT (x) =
T
∑

t=0

∥Elt − l(δ)∥2 + γ

T
∑

t=1

∥Bxt − Bx(δ)∥2. (6)

Here, or z ∈ R
n we use the notation ∥z∥ =


n

i=1 z
2
i . Dene the probability

φT (x) = P (lt ∈ F or all t ∈ {1, ..., T})

in the sense that the initial state or t = 0 is l0 and lt is the corresponding random
state generated with the control x ∈ XT by (1).

For a natural number T and pT ∈ (0, 1) we dene the probabilistic constraint

φT (x) ≥ pT (7)

and the optimization problem

P(T, l0) : min
x∈XT

JT (x) subject to ElT = l(δ) and (7).

This is a problem where a here-and-now decision has to be taken based upon the
inormation that is available at the time t = 0.

I the easible set is nonempty, that is i pT is suciently small, our assumptions
imply that a solution o P(T, l0) exists.



1028 M.Gugat et al. / A Turnpike Property or Optimal Control Problems ...

This can be seen as ollows. Dene the easible set o P(T, l0)

ΥT = {x ∈ XT : φT (x) ≥ pT}

that contains the easible control vectors that generate the trajectories (lt)
T
t=1 with

the starting point l0. Since the relation lt ∈ F or all t ∈ {1, . . . , T} can be repre-
sented as the inequality h(x, ξ) ≥ 0 with lt(x, ξ) rom (3) and with the continuous
unction

h(x, ξ) = − max
t∈{1,...,T}

dist (lt(x, ξ), F ), (8)

it ollows that φT is an upper semicontinuous unction. Hence the easible set ΥT is
closed.

Note that the objective unction JT is continuous. Assume that xS ∈ ΥT is a easible
control. Due to the growth o the objective unction JT the lower-level set

MT = {x ∈ XT : JT (x) ≤ JT (xS)}

is compact. Without changing the optimal control we can replace the easible set
ΥT o P(T, l0) by the set ΥT ∩MT . Since this set is compact, the existence o an
optimal control ollows.

We nish this section with a statement on the log-concavity o the probability unc-
tion φT . As observed above, one may use the unction h in (8) or the representation
φT (x) = P(h(x, ξ) ≥ 0). Thanks to (3), the unctions

dist (lt(x, ξ), F ) = dist (·, F )(Ptx+Qtξ + rt)

are convex as compositions o the convex (by convexity o F ) distance unction
dist (·, F ) with an ane linear mapping. As a consequence, h is concave. Now,
the ollowing Lemma is a direct consequence o a classical result by Prékopa [16,
Theorem 10.2.1]:

Lemma 2.1. I ξ has a density fξ such that ln fξ is concave (e.g., Gaussian and
many other prominent multivariate distributions), then lnφT is a concave unction.

3. Turnpike properties for the optimal controls and trajectories

In this section we consider decisions x that have to be taken beore the ξt are ob-
served, that is we are looking or a decision that is taken at the time t = 0 and yields
a control that is optimal subject to uncertainty about the random perturbations ξt
or all t ∈ {1, 2, ..., T}. This type o choice is oten called a here-and-now-decision.

First we present an exponential turnpike property or the solution o P(T, l0) or the
case that the probabilistic constraint is not active. Our turnpike results in Theorem
3.1 states that or the problem where the probabilistic constraint is not active, in the
optimal trajectories the distance between the expected state and the desired state
decays exponentially ast with t. Next, we consider problems with a logarithmic
penalty term or the probabilities and show that the optimal trajectories have a
turnpike property in the sense that the optimal trajectories approach the optimal
trajectories or the corresponding problem with ree initial and terminal state. In
Theorem 3.5 below we state this turnpike result.
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Then we also discuss the problem with the probabilistic constraint. In order to
show a turnpike result in this case we have to adapt the probability level pT to the
time-horizon.

In the sequel we assume that the easible set o P(T, l0) has non-empty interior.
More precisely, we assume that there exists a control ẑ(T ) ∈ XT such that

φT (ẑ
(T )) > pT and El̂T = l(δ). (9)

Here, l̂T reers to the nal state resulting rom the control ẑ(T ) and the dynamics
(1). In the sequel we assume that the sequence (pT )

∞
T=1 is decreasing.

For λ ∈ [0, 1] we introduce the problem with a probabilistic penalty term

Q(T, l0,λ) : min
x∈XT

λ JT (x)− (1− λ) ln (φT (x)) subject to ElT = l(δ).

In problem Q(T, l0,λ), the probabilistic constraint (7) is replaced by a penalty term
in the objective unction and the initial state l0 is still prescribed.

The aim o our turnpike analysis is to provide insights on the behavior o the so-
lutions o P(T, l0) or dierent values o T , in particular or large time-horizons.
Thereore it is important to keep in mind that each component o the optimal state
lt (t ∈ {1, ..., T}) or P(T, l0) also depends on the time horizon T . This also holds or
the optimal control xt (t ∈ {1, ..., T}) or P(T, l0). An emphasis on this dependence
would require a notation like l

(T )
t , x

(T )
t (t ∈ {1, ..., T}). However, since this would

deteriorate the readibility o the paper, we have decided to use the more concise
orm lt, where the dependence o T is not stated explicitly in each component.

3.1. An exponential turnpike result for the case that the probabilistic

constraint is not active

We start with an exponential turnpike result or the case that the probabilistic
constraint is not active. In this case, the optimal control solves a deterministic
problem.

Theorem 3.1. Assume that (7) is nonactive at a solution o P(T, l0). Then, such
solution is unique and has a discrete exponential turnpike structure in the sense that
there exists a number zγ ∈ (0, 1) that is independent o l0 and T such that or all
t ∈ {1, ..., T} we have the turnpike inequality

∥Elt − l(δ)∥2 ≤ ztγ ∥El0 − l(δ)∥2. (10)

For all eigenvalues λk o the matrix A defne the polynomial

pk(ω) = ω2 −
[

1

λk

(

1 +
1

γ

)

+ λk

]

ω + 1. (11)

Then we can choose zγ = max
k∈{1,...,n}

min
z∈C:pk(z)=0

|z|2.

For the optimal control x ∈ XT o P(T, l0), or all t ∈ {1, ..., T} we have the turnpike
inequality

∥xt − x(δ)∥2 ≤ ∥B−1∥2 (1 + ∥A∥)2 zt−1
γ ∥El0 − l(δ)∥2 (12)

where ∥B−1∥ and ∥A∥ denote the spectral matrix norms.
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Proof. For the proo we rst observe that problem Q(T, l0, 1) is identical to the
relaxed problem

R(T, l0) : min
x∈XT

JT (x) subject to ElT = l(δ)

where the probabilistic constraint does not appear. Due to linearity, or the expected
values, we have the recursion

Elt = AElt−1 + B xt + E (t ∈ {1, . . . , T}). (13)

Since the objective unction JT only depends on the expected values, this implies
that in act, we have a deterministic problem that we can solve. Equation (13) yields

B xt = Elt − AElt−1 − E (t ∈ {1, . . . , T}).

This implies that we can write the objective unction in terms o

αt := Elt − l(δ) (t ∈ {0, . . . , T}). (14)

Then we have or t ∈ {1, . . . , T}:

Bxt − Bx(δ) = E(lt − l(δ))− A (Elt−1 − l(δ)) = αt − Aαt−1. (15)

Hence, the constrained problem R(T, l0) is equivalent with the ree minimization o
the objective

J̃T (α) := ∥α0∥
2 +

T
∑

t=1



∥αt∥
2 + γ∥αt − Aαt−1∥

2


. (16)

We note that or J̃T only α := (α1, . . . ,αT−1) is variable, while α0 = l0 − l(δ) and
αT = 0 (as a consequence o the terminal constraint in R(T, l0)) are constant.
Recalling that A = AT , dierentiation yields or t ∈ {1, ..., T − 1}

∇αt
J̃T (α) = 2



αt + γ


αt − Aαt−1 + A2 αt − Aαt+1



= 2


−γ Aαt−1 + ((1 + γ)I + γA2)αt − γ Aαt+1



.

Thus the necessary optimality condition implies the equation

Aαt+1 =
((

1 +
1

γ

)

I + A2
)

αt − Aαt−1. (17)

Note that due to convexity, (17) is also a sucient condition or the optimality o a
trajectory that minimizes (16).

Due to (2) there exists an orthonormal basis v(1), ..., v(n) o eigenvectors o the sym-
metric matrix A that correspond to the real eigenvalues λ1,...,λn. Our aim is to
express the optimal trajectories as a linear combination o the orthonormal basis
vectors v(k) with k ∈ {1, ..., n}. In order to proceed, or k ∈ {1, ..., n} dene the
polynomial

Pk(ω) = λk ω
2 −

(

1 +
1

γ
+ λ2

k

)

ω + λk.

Let zk denote a number such that Pk(zk) = 0. For t ∈ {0, 1, 2, ...} dene the vector

α
(k)
t = ztk v

(k) ∈ R
n.
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Note that Pk(zk) = 0 implies

λk z
t+2
k =

(

1 +
1

γ
+ λ2

k

)

zt+1
k − λk z

t
k.

Hence we have λk α
(k)
t+2 =

(

1 +
1

γ
+ λ2

k

)

α
(k)
t+1 − λk α

(k)
t .

Since or all s ∈ {0, 1, 2, ...}, the α
(k)
s are eigenvectors corresponding to the eigenvalue

λk, this implies that the α
(k)
t satisy (17). Since λk ̸= 0, we can dene the polynomial

pk = 1
λk

Pk as in (11). With the roots o pk we obtain an explicit representation o

the optimal state. I one root is zk, the other root is 1
zk
. Note that since

∆ =
[

1

λk

(

1 +
1

γ

)

+ λk

]2

− 4 > 0, (18)

pk has two dierent real roots. The initial state has the representation

l0 = l(δ) +
n

∑

k=1

ρk v
(k)

(where the coecients ρ1, ρ2,... ρn are uniquely determined). We represent the

optimal state as a linear combination o the α
(k)
t corresponding to the roots zk

and 1
zk
. The initial condition and the terminal constraint ElT = 0 yield a system

o 2n linear equations or the 2n coecients. With suitable coecients (ĝk, ĥk)
(k ∈ {1, ..., n}) or t ∈ {1, ..., T} the optimal state is given by

Elt = l(δ) +
n

∑

k=1

ρk

(

ĝkz
t
kv

(k) + ĥkz
−t
k v(k)

)

.

For t = 0 we obtain l0 − l(δ) =
n

k=1 ρk

(

ĝk + ĥk

)

v(k). This yields ĝk + ĥk = 1 or

all k ∈ {1, ..., n}. For t = T we obtain the equation

ElT − l(δ) = 0 =
n

∑

k=1

ρk

(

ĝkz
T
k v

(k) + ĥkz
−T
k v(k)

)

.

This yields zTk ĝk + z−T
k ĥk = 0 or all k ∈ {1, ..., n}. Thus we obtain

ĝk =
z
−T

k

z
−T

k
− zT

k

, ĥk =
−z

T

k

z
−T

k
− zT

k

and Elt = l(δ) +
n

∑

k=1

ρk
z
t−T

k
− z

T−t

k

z
−T

k
− zT

k

v(k). (19)

By our construction, this trajectory satises (17), hence it minimizes (16).

For the control that generates this trajectory we have Bxt = Bx(δ) + αt − Aαt−1.
Since this control generates an optimal trajectory, this is an optimal control or
R(T, l0). Since the optimization problem R(T, l0) has a strongly convex objective
unction and the constraints are linear, the solution is uniquely determined.
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Now we show that or the problem without the probabilistic constraint, the expected
values o the optimal state approach the desired state l(δ) exponentially ast. In order
to show this we introduce the notation

fk,t =
z
t−T

k
− z

T−t

k

z
−T

k
− zT

k

.

Then (19) implies ∥αt∥
2 =

n
∑

k=1

(ρk)
2 |fk,t|

2 . (20)

Since we can assume without restriction that |zk| < 1 we have the inequality

∣

∣

∣

∣

1− z
2(T−t)
k

1− z2T
k

∣

∣

∣

∣

≤ 1.

Hence the ollowing inequality holds:

|fk,t| =

∣

∣

∣

∣

z
t

k
− z

2T−t

k

1− z2T
k

∣

∣

∣

∣

= |zk|
t

∣

∣

∣

∣

1− z
2(T−t)
k

1− z2T
k

∣

∣

∣

∣

≤ |zk|
t.

Dene zγ = maxk∈{1,...,n} |zk|
2 < 1. Then we have

∥αt∥
2 =

n
∑

k=1

(ρk)
2 |fk,t|

2 ≤
n

∑

k=1

(ρk)
2|zk|

2t ≤
n

∑

k=1

(ρk)
2ztγ = ztγ ∥α0∥

2. (21)

Thus we obtain (10) or the relaxed problem R(T, l0).

For the controls, (15) implies

xt − x(δ) = B−1αt − B−1Aαt−1 (t ∈ {1, . . . , T}). (22)

Hence (21) yields ∥xt − x(δ)∥ ≤ ∥B−1∥ zt/2γ ∥α0∥+ ∥B−1∥ ∥A∥ z(t−1)/2
γ ∥α0∥.

Hence (12) ollows. This completes the proo.

Note that the exponential decay implies that the optimal value ν(T, l0) o the opti-
mization problem R(T, l0) is uniormly bounded with respect to T and l0 ∈ U .

Dene η∗ = sup
T∈{1,2,3,...},l0∈l(δ)+U

ν(T, l0) < ∞. (23)

Remark 3.2. I the optimal state o the relaxed problem R(T, l0) that is generated
by the optimal control xT (l0) satises the probabilistic constraint (7) (which is the
case i pT ≥ 0 is suciently small), it is also the solution o P(T, l0) and satises
the exponential turnpike inequality (10).

In the next subsections, we investigate the role o the probabilistic constraint or
the turnpike phenomenon. We start with the problem where the corresponding
probability appears as a penalty term in the objective unction.
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3.2. Results with probabilistic penalty term

Now we present a turnpike result or the problem with the probabilistic constraint.
Here the state that is approached in the interior o the time-interval (the ’turnpike’)
is dened as the solution o the corresponding problem with ree terminal and ree
initial state, which obviously is independent o prescribed initial and terminal data.

First we state a result about the growth o −ln(φT (x)).

Lemma 3.3. We have lim
∥x∥→∞

−ln(φT (x)) = ∞. (24)

Proof. Since the set F is bounded, there exists a number RF ≥ ∥l0∥ such that f ∈ F
implies the inequality ∥f∥ ≤ RF . For all s ∈ {1, ..., T} we have ξs = ls−Als−1−Bxs.
This implies ∥ξs∥ ≥ ∥Bxs∥−∥ls∥−∥A∥ ∥ls−1∥ where ∥A∥ denotes the spectral norm
o A. For all s ∈ {1, ..., T} we have

φT (x) = P(lt ∈ F or all t ∈ {1, ..., T})

≤ P(∥lt∥ ≤ RF or all t ∈ {1, ..., T})

≤ P(∥ξs∥ ≥ ∥Bxs∥ −RF (1 + ∥A∥)).

Let a sequence o controls x(k) ∈ XT be given such that limk→∞ ∥x(k)∥ = ∞. Then

there exists an s ∈ {1, ..., T} such that limk→∞ ∥Bx
(k)
s ∥ = ∞.

For all t ∈ {1, ..., T} we have lim
k→∞

P(∥ξt∥ ≥ k) = 0. (25)

This yields lim
k→∞

P(∥ξs∥ ≥ ∥Bx(k)
s ∥−RF (1+∥A∥)) = 0 and assertion (24) ollows.

Due to (25) there exists a number k0,T > 0 such that or all t ∈ {1, ..., T} we have
the inequality P(∥ξt∥ ≥ k0,T ) < pT . Thus i or a control x ∈ XT and a natural
number s ∈ {1, .., T} we have

∥Bxs∥ ≥ k0,T +RF (1 + ∥A∥), (26)

we also have φT (x) < pT , and thus x is not easible or P (l0, T ).

By Lemma 3.3, or all λ ∈ [0, 1] or the objective unction o Q(T, l0, λ) we have

lim
∥x∥→∞

inf
λ∈[0,1]

λ JT (x)− (1− λ) ln (φT (x)) ≥

lim
∥x∥→∞

min {JT (x), −ln (φT (x))} = ∞. (27)

Let xT (l0) denote the optimal control or Q(T, l0, 1) presented in Theorem 3.1 and
dene

Cprob(T ) = −lnφT (xT (l0)) (28)

(where we set Cprob(T ) = ∞ i φT (xT (l0)) = 0). We dene the set

ℵT :=
⋃

λ∈[0, 1]

ℵT (λ),

where, or λ ∈ [0, 1],

ℵT (λ) := {x∈XT :λ JT (x)− (1−λ) lnφT (x) ≤ λ JT (xT (l0)) + (1−λ)Cprob(T )}.
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Lemma 3.4. Assume that φT (xT (l0)) > 0 and that ξ has a density fξ such that
ln(fξ) is concave. Then, or each λ ∈ [0, 1], the sets ℵT (λ) are nonempty, compact
and convex. Moreover, the set ℵT is nonempty and compact.

Proof. For each λ ∈ [0, 1] the set ℵT (λ) contains xT (l0), hence is nonempty. Much
more, ℵT is nonempty. As a consequence o Lemma 2.1, the ℵT (λ) are convex.
They are also closed thanks to the upper semicontinuity o φT (see Section 2). The
set ℵT is bounded due to (27) and by our assumption that φT (xT (l0)) > 0. This
implies that the sets ℵT (λ) are bounded too, hence compact. It remains to veriy
the closedness o ℵT . To this aim, consider a sequence {xn} ⊆ ℵT with xn → x∗

or
some x∗. Then, there exists some sequence {λn} ⊆ [0, 1] with xn ∈ ℵT (λn). Passing
to a subsequence which we do not relabel, we may assume that λn → λ∗ ∈ [0, 1].
Then, by upper semicontinuity o φT it ollows that

λ JT (xT (l0)) + (1− λ)Cprob(T ) ≥ lim inf
n

(λn JT (xn)− (1− λn) lnφT (xn))

= λ∗JT (x
∗)− (1− λ∗) lim sup

n
lnφT (xn) ≥ λ∗JT (x

∗)− (1− λ∗) lnφT (x
∗).

Hence, x∗ ∈ ℵT (λ
∗) ⊆ ℵT , as was to be shown.

In the next theorem we state that or a certain value o λ, problem Q(T, l0, λ) is
equivalent to P(T, l0).

Theorem 3.5. Let T ∈ N be arbitrarily given. Assume that Cprob(T ) < ∞ or
Cprob(T ) in (28). Let ξ have a density fξ such that ln(fξ) is concave (e.g., mul-
tivariate Gaussian). Then, or all λ ∈ (0, 1], problem Q(T, l0, λ) has a unique
solution and there exists a number λ∗ ∈ (0, 1] such that the solution o Q(T, l0, λ

∗)
is equal to the solution o P(T, l0).

Proof. According to Lemma 2.1, our assumption on the density o ξ implies that
lnφT is concave. Hence, or all λ ∈ (0, 1], the objective unction o problem
Q(T, l0, λ) is strongly convex. Since the optimal controls can be ound in the
nonempty, compact and convex set ℵT (λ) (see Lemma 3.4), the existence o a unique
solution o Q(T, l0, λ) ollows. By the concavity o lnφT , problem P(T, l0) is a con-
vex optimization problem. Similar to the proo o Theorem 3.1 we can transorm
it to an optimization problem in terms o α := (αt)

T−1
t=1 with αt = Elt − l(δ) or

t = 0, . . . , T :

minimize J̃T (α) subject to − ln φ̃T (α) ≤ − ln pT . (29)

Here, J̃T is dened in (16) and, using the linear transormation (15), φ̃T is dened as

φ̃T (α) := φT ([B
−1(αt − Aαt−1 + Bx(δ))]Tt=1) = φT (x), (30)

where in (29) α0 = l0 − l(δ) and αT = 0 are constants in these problems. Observe
that the concavity o lnφT implies that o ln φ̃T by linearity o the inner mapping.
Hence, (29) is a convex optimization problem too. Moreover, with ẑ(T )

rom (9),
we may resolve (15) or α with x := ẑ(T ) starting with α0 := l0 − l(δ) and ending –
thanks to the endpoint condition in (9) – as required with

αT = AαT−1 + E(lt − l(δ))− A (Elt−1 − l(δ)) = AαT−1 − A (Elt−1 − l(δ))

= AαT−1 − AαT−1 = 0.
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Using the correspondence (30) between α and controls, this yields some α̂(T ) with

α̂
(T )
0 = l0 − l(δ), α̂

(T )
T = 0 and φ̃T (α̂

(T )) = φT (ẑ
(T )) > pT . This means that α̂T is a

Slater point or problem (29). Consequently, the necessary and sucient conditions
or a solution α o (29) amount to the existence o a multiplier µ ≥ 0 such that
φT (α) ≥ pT and

0 ∈ ∇J̃T (α) + µ ∂ (−ln (φ̃T (α))) , µ(φ̃T (α)− pT ) = 0 (31)

where ∂ denotes the subgradient o convex analysis. Note that the last equation
in (31) represents the complementarity constraint associated with the inequality in
(29).

In the ollowing, denote by x(λ) the solution o Q(T, l0, λ) (whose unique existence
we have shown in the beginning o this proo). I φT (x

(1)) ≥ pT , then x(1) is a
solution o P(T, l0) as well and we may choose λ∗ = 1 in the statement o the
theorem. Thereore, we assume now that φT (x

(1)) < pT . Assume or a moment,
that there exists some λ∗ ∈ (0, 1) such that

φT (x
(λ∗)) = pT . (32)

Then, by denition, x(λ∗) solves Q(T, l0, λ
∗) and we show that it also solves P(T, l0)

as claimed in the Theorem. Indeed, like P(T, l0) in (29), Q(T, l0, λ
∗) can be or-

mulated as a (ree) convex problem in terms o the variable α:

minimizeλ∗J̃T (α)− (1− λ∗) ln φ̃T (α). (33)

Denote by α∗ the vector in correspondence with x(λ∗) via (15). Then, by (30) and (32),

φ̃T (α
∗) = φT (x

(λ∗)) = pT . (34)

Moreover, since x(λ∗) is the solution o Q(T, l0, λ
∗), α∗ is the solution o (33) which

is equivalent with the condition

0∈∂


λ∗J̃T (α
∗)+(1−λ∗)(− ln φ̃T (α

∗))


= λ∗ ∇J̃T (α
∗)+(1−λ∗) ∂ (− ln φ̃T (α

∗)) . (35)

Here, we have applied the sum rule or the convex subdierential which is justied
by, e.g., [17, Theorem 2.85] because J̃T is continuous and convex, − ln φ̃T is convex
and − ln φ̃T (α

∗) < ∞ as a consequence o (34) and our general assumption pT > 0.
Now, dening

µ := (1− λ∗)/λ∗ > 0, (36)

we get – thanks to λ∗ ∈ (0, 1) – that the inclusion inside (31) is satised or α∗.
The same holds true or the equality (complementarity condition) as a consequence
o (34). Hence, α∗ satises the necessary and sucient optimality conditions o
problem (29) which entails that it is a solution o this problem. Translated to the
original description in terms o the x-variables, this means that x(λ∗) is a solution o
P(T, l0) as was to be shown.

It remains to justiy the existence o λ∗ ∈ (0, 1) with (32). Dene

λ∗ := sup{λ ∈ (0, 1] | φT (x
(λ)) ≥ pT}.
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We show rst that λ∗ > 0 which amounts to saying that there exists some λ ∈ (0, 1]
with φT (x

(λ)) ≥ pT . Assume to the contrary that φT (x
(λ)) < pT or all λ ∈ (0, 1].

Then, by optimality o x(λ) and by easibility o x(0)
or problem Q(T, l0, λ), it

ollows that

λJT (x
(λ))− (1− λ) ln pT < λJT (x

(λ))− (1− λ) lnφT (x
(λ))

≤ λJT (x
(0))− (1− λ) lnφT (x

(0))

or all λ ∈ (0, 1]. Since all x(λ) belong to the compact set ℵT by Lemma 3.4 and
since JT is bounded on this set, we may pass to the limit λ ↓ 0, and arrive at
φT (x

(0)) ≤ pT . On the other hand, x(0) is the optimal solution o Q(T, l0, 0) which
amounts to maximizing φT under the endpoint constraint ElT = l(δ). Hence, we
obtain rom (9) the contradiction φT (x

0)) ≥ φT (ẑ
(T )) > pT . Thus, λ

∗ ∈ (0, 1].

Next, we veriy that φT (x
(λ∗)) ≥ pT . By denition o λ∗, there is a sequence λk ↑ λ∗

with φT (x
(λk)) ≥ pT . Since the x(λk) belong to the compact set ℵT (see Lemma

3.4), we may assume that x(λk) → x∗. Observe that, since all x(λk) as solutions
o Q(T, l0, λk) satisy the endpoint condition ElT = l(δ), the same holds true or
x∗. Let x be arbitrary such that ElT = l(δ). Then, since x(λk) is the solution o
Q(T, l0, λk) and the objective o that problem is lower semicontinuous, we obtain

λ∗JT (x
∗)− (1− λ∗)φT (x

∗) ≤ lim inf
k

λkJT (x
(T,λk))− (1− λk)φT (x

(T,λk))

≤ lim inf
k

λkJT (x)− (1− λk)φT (x) = λ∗JT (x)− (1− λ∗)φT (x).

This means that x∗ is the solution o Q(T, l0, λ
∗), i.e., x∗ = x(λ∗). Now, the upper

semicontinuity o φT yields the desired inequality

pT ≤ lim sup
k

φT (x
(λk)) ≤ φT (x

∗) = φT (x
(λ∗)).

As a consequence, λ∗ < 1 because φT (x
(1)) < pT . Summarizing, we have that

λ∗ ∈ (0, 1) and φT (x
(λ∗)) ≥ pT .

In the last step we show that actually φT (x
(λ∗)) = pT . For k ∈ N suciently large

it holds that λ∗ + 1/k ≤ 1 and, hence, by denition o λ∗, or k large enough,
φT (x

(λ∗+1/k)) < pT . Then, by optimality o x(λ∗+1/k) and by easibility o x(λ∗)
or

problem Q(T, l0, λ
∗ + 1/k), it ollows that

(λ∗ + 1/k) JT (x
(λ∗+1/k))− (1− λ∗ − 1/k) ln pT

< (λ∗ + 1/k) JT (x
(λ∗+1/k))− (1− λ∗ − 1/k) lnφT (x

(λ∗+1/k))

≤ (λ∗ + 1/k) JT (x
(λ∗))− (1− λ∗ − 1/k) lnφT (x

(λ∗))

or all k suciently large. Repeating an argument, already used beore in this
proo, we may assume that x(λ∗+1/kl) →l x

(λ∗)
or a subsequence. Invoking now the

continuity o JT , we end up, ater passing to the limits above, at φT (x
(λ∗)) ≤ pT

which nally yields the desired relation φT (x
(λ∗)) = pT .
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3.3. A turnpike result for the case that the probabilistic constraint is

active

In the sequel we denote by λT the multiplier λ∗
rom Theorem 3.5 associated with

an arbitrary T ∈ N. Accordingly we dene the ollowing sequence o problems with
ree initial state and ree terminal state

Q̂(T ) : min
(l̂0, x)∈Rn×XT

λT JT (x)− (1− λT ) ln (φT (x)) (T ∈ N), (37)

where now, in contrast to the previous problems, l̂0 is a variable initial state. In
the ollowing, we denote by l̂t (t = 0, . . . , T ) the random states generated by the
optimal solution o Q̂(T ). Next we state a probabilistic turnpike result:

Lemma 3.6. Let the assumptions o Theorem 3.5 be valid or all T ∈ N. Assume
that there exists some constant R such that or all T ∈ N

∥El̂t∥ ≤ R ∀t ∈ {0, . . . , T}. (38)

Moreover, suppose that κ > 0 or

κ := inf
T∈N

P

(

l̂T − El̂T + l(δ) ∈ F | l̂t ∈ F ∀t ∈ {1, ..., T − 1}
)

. (39)

Then, there exists C1 > 0 such that the random states (lt)
T
t=1 generated by the optimal

control o P(T, l0) satisy the estimate
T∑

t=0

∥Elt − El̂t∥
2 ≤

C1

λT

∀T ∈ N. (40)

Proof. Fix an arbitrary T ∈ N. For Z = (z0, ..., zT )
⊤ ∈ XT+1 dene the unction

H1(Z) := ∥z0∥
2 +

T∑

t=1


∥zt∥

2 + γ∥zt − Azt−1∥
2

. (41)

Then H1 is strongly convex in the sense that or all s ∈ [0, 1] and all Z, Y ∈ XT+1

we have the inequality

H1((1− s)Z + sY ) ≤ (1− s)H1(Z) + sH1(Y )− s (1− s)∥Z − Y ∥2. (42)

This can be seen as ollows. For H2(Z) := ∥z0∥
2 +

T

t=1 ∥zt∥
2 we have

H2((1− s)Z + sY ) = (1− s)H2(Z) + sH2(Y )− s (1− s)∥Z − Y ∥2.

Since H1 is the sum o H2 and a convex unction, (42) ollows. Dene

H(α) := λT H1(α)− (1− λT ) ln (φ̃T (α)) (α ∈ XT+1),

where φ̃ is as in (30), but now with α0,αT being variables. Note that H is the
objective unction o Q̂(T ) when similarly as in the proo o Theorem 3.1, problem
Q̂(T ) is restated as an optimization problem in terms o α as dened in (14). Due
to (42) our assumptions imply that H is a strongly convex unction in the sense that
or all s ∈ [0, 1] and all Z, Y ∈ XT+1 we have the inequality

H((1− s)Z + sY ) ≤ (1− s)H(Z) + sH(Y )− λT s (1− s)∥Z − Y ∥2,

where we exploited (42), the concavity o ln φ̃ according to Theorem 3.5 (see remark
below (30)) and λT ≤ 1 by the same Theorem.
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For all s ∈ (0, 1] this is equivalent to the inequality

H(Y ) ≥ H(Z) +
H((1− s)Z + sY )−H(Z)

s
+ λT (1− s)∥Z − Y ∥2.

I Z is a point such that H(Ỹ ) ≥ H(Z) or all Ỹ ∈ XT+1, this yields

H(Y ) ≥ H(Z) + λT sup
s∈(0,1]

(1− s)∥Z − Y ∥2 = H(Z) + λT ∥Z − Y ∥2.

Following our previous reormulation o problems in the new variable α, we may
restate Q̂(T ) as

min
α∈XT+1

H(α)

and Q(T, l0, λT ) as the corresponding problem with xed α0 = l0 − l(δ) and
αT = 0 (see remarks below (30)). Let v̂(T ) denote the optimal value o Q̂(T )
and v(T, l0, λT ) the optimal value o Q(T, l0, λT ). Since problems Q(T, l0, λT )
and P(T, l0) are equivalent by Theorem 3.5, we have that

v(T, l0, λT ) ≥ v̂(T ) + λT

T∑

t=0

∥α∗
t − α̂∗

t∥
2 (43)

where α∗
t := Elt − l(δ) and α̂∗

t := El̂t − l(δ) and Elt, El̂t are the expected states
generated by the optimal solutions o Q(T, l0, λT ) and Q̂(T ), respectively.

Since the matrices A,B are regular by our basic assumptions, there exists a control
q̃ ∈ XT that generates or the deterministic dynamics

ηt = Aηt−1 + Bq̃t (44)

the deterministic trajectory (η0, η1, ...., ηT ) = (l0 − l̂0, 0, . . . , 0, l
(δ) − El̂T ).

To be precise, we have q̃ = (−B−1[A(l0 − l̂0)], 0, . . . , 0, B
−1[l(δ) − El̂T ]).

Starting with lu0 := l0 the control u := x̂+ q̃ with the (uncertain) dynamics

lut := A lut−1 + But + ξt (t = 1, . . . , T )

generates the trajectory (lut )
T
t=0 = (l̂t + ηt)

T
t=0 which is equal to

l0, l̂1, . . . , l̂T−1, l̂T + l(δ) − El̂T . (45)

Since E(l̂T + l(δ) − El̂T ) = l(δ), the control u is easible or Q(T, l0,λT ).

Due to the denition o the objective unction o Q(T, l0,λT ) and Q̂(T ), our con-
struction implies the inequality

v(T, l0,λT )− v̂(T ) ≤ λT (JT (u)− JT (x̂))− (1− λT ) (lnφT (u)− lnφT (x̂)) . (46)

First we derive an upper bound or the deterministic part JT (u)−JT (x̂). Given (16)
and with αu

t := Elut − l(δ) or t = 0, . . . , T , we get that

JT (u)− JT (x̂) = ∥αu
0∥

2 − ∥α̂∗
0∥

2 +
T

t=1∥α
u
t ∥

2 − ∥α̂∗
t∥

2

+γ

∥αu

t − Aαu
t−1∥

2 − ∥α̂∗
t − Aα̂∗

t−1∥
2

≤ ∥αu

0∥
2 − ∥α̂∗

0∥
2 (47)

+γ

∥αu

1 − Aαu
0∥

2 − ∥α̂∗
1 − Aα̂∗

0∥
2 + ∥Aαu

T−1∥
2 − ∥α̂∗

T − Aα̂∗
T−1∥

2

,
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because, thanks to (45) one has that αu
t = α̂∗

t or t = 1, . . . , T − 1 and because

o αu
T = E(l̂T + l(δ) − El̂T ) − l(δ) = 0. For the probabilistic part o the objective

unction we proceed in a similar way. By denition o φT , we may write in terms o
conditional probabilities

φT (u) = P(lut ∈ F (t = 1, . . . , T − 1)) · P(luT ∈ F | lut ∈ F (t = 1, . . . , T − 1))

φT (x̂) = P(l̂t ∈ F (t = 1, . . . , T − 1)) · P(l̂T ∈ F | l̂t ∈ F (t = 1, . . . , T − 1)).

By (45), the rst actors coincide. Since also the log o a probability is negative, we
may conclude that

lnφT (u)− lnφT (x̂) ≥ lnP(l̂T + l(δ) − El̂T ∈ F | l̂t ∈ F (t = 1, . . . , T − 1)).

Thus, we may continue (46) by using (47) as

v(T, l0,λT )− v̂(T ) ≤ λT (∥αu
0∥

2 − ∥α̂∗
0∥

2)

+λTγ

∥αu

1 − Aαu
0∥

2 − ∥α̂∗
1 − Aα̂∗

0∥
2 + ∥Aαu

T−1∥
2 − ∥α̂∗

T − Aα̂∗
T−1∥

2


−(1− λT ) lnP(l̂T + l(δ) − El̂T ∈ F | l̂t ∈ F (t = 1, . . . , T − 1))

≤ λT


∥αu

0∥
2 + γ∥αu

1 − Aαu
0∥

2 + γ∥Aαu
T−1∥

2

− (1− λT ) ln κ,

where we we exploited that κ > 0 by assumption. Observing that

∥αu
0∥ ≤ ∥l0∥+ ∥l(δ)∥

∥αu
1 − Aαu

0∥ ≤ R + ∥l(δ)∥+ ∥A∥(∥l0∥+ ∥l(δ)∥)

∥Aαu
T−1∥ ≤ ∥A∥(R + ∥l(δ)∥),

we arrive at v(T, l0,λT )− v̂(T ) ≤ C1, where C1 is independent o T . With (43) the
above inequality implies

T∑

t=0

∥α∗
t − α̂∗

t∥
2 ≤

1

λT

[v(T, l0,λT )− v̂(T )] ≤
C1

λT

.

In Lemma 3.6, the quotient C1

λT

on the right-hand side o (40) becomes arbitrarily
large i λT ∈ (0, 1] converges to zero. In the ollowing we derive a strictly positive
lower bound or the corresponding values o λT . To show that there is a strictly
positive uniorm lower bound or the multipliers or problem P(T, l0) with respect
to T , we have to introduce a normalization with respect to T in the probabilistic
constraint, that is, we adapt the probability level to the time-horizon. For this
purpose or a given parameter ζ ∈ (0, 1) and T ∈ N we dene

pT = ζT pmax(T ) (48)

where pmax(T ) is the optimal value o the probability maximizing problemQ(T, l0, 0).
Since pmax(T ) is decreasing with T , also pT is decreasing as a unction o T .

Lemma 3.7. Assume that the probability levels pT in problems P(T, l0) are given
by (48). Suppose, moreover, that there exists some R̃ such that or all T ∈ N.

∥Elt∥ ≤ R̃ ∀t ∈ {0, . . . , T}, (49)

Then, there is some C2 > 0 such that λT ≥ C2 or all T ∈ N.
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Proof. The probabilistic constraint (7) with the time-dependent probability level
is

φT (x) ≥ pT .

Under the assumptions o Theorem 3.5, dene the convex unction

gT (x) = ln(pT )− ln(φT (x)).

Then the probabilistic constraint (7) is equivalent to the convex constraint

gT (x) ≤ 0. (50)

Let xS(T ) be a solution o Q(T, l0, 0) (i.e. a control that yields the maximum
probability φT (·)). Then or all T ∈ {2, 3, 4, ...} we have the Slater condition (9)
or problem P(T, l0):

φT (xS(T )) = pmax(T ) > ζT pmax(T ) = pT . (51)

Dene the ane subspace

X̃T = {x ∈ XT | ElT = l(δ) under l0 = 0 and the dynamics (1)}.

Then, we can write the dual problem or P(T, l0) as

D(T, l0) : max
µ≥0

inf
x∈X̃T

LT (x, µ)

with the Lagrangian LT (x, µ) = JT (x) + µ gT (x). Let µT (l0) denote the multiplier
that corresponds to the optimal control xT (l0) o problem P(T, l0). Let β(T, l0)
denote the optimal value o P(T, l0). Due to the Slater condition (51) we have
strong duality, which means that the optimal value o P(T, l0) is equal to the optimal
value o D(T, l0), that is

β(T, l0) = inf
x∈X̃T

LT (x, µT (l0)).

This yields the inequality β(T, l0) ≤ LT (xS(T ), µT (l0)), which implies in turn

µT (l0) ≤
β(T, l0)− JT (xS(T ))

gT (xS(T ))
=

JT (xS(T ))− β(T, l0)

|gT (xS(T ))|
=

JT (xS(T ))− β(T, l0)

T | ln(ζ)|
. (52)

Due to the recursion (13) or the expected values, we have

(xS(T ))t = B−1 (Elt − AElt−1 − E) .

This implies with (49)

sup
T∈N

max
t∈{1,...,T}

∥(x
(T )
S )t∥ < ∞. (53)

Note that by (6) JT attains only values greater than or equal to zero. This yields
β(T, l0) ≥ 0. Hence we obtain

sup
T∈N

JT (xS(T ))− β(T, l0)

T
≤ sup

T∈N

JT (xS(T ))

T
.
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The objective unction JT is dened as the sum o T + 1 terms each o which can
be bounded by some common constant M̂ thanks to (49). Hence (53) yields

sup
T∈N

JT (xS(T ))

T
≤ sup

T∈N

(T + 1) M̂

T
≤ 2 M̂ < ∞.

Due to (52) we have sup
T∈N

µT (l0) ≤
2 M̂

| ln(ζ)|
< ∞.

Due to the relation (36), we have that µT = (1− λT )/λT , whence

λT ≥
| ln(ζ)|

| ln(ζ)|+ 2 M̂
=: C2 ∀T ∈ N.

Now, we are in a position to ormulate our main result on the probabilistic turnpike
property o the expected states or the optimal control o problem P(T, l0):

Theorem 3.8. Under the assumptions o Lemma 3.6 and Lemma 3.7, the expected
states (Elt)

T
t=1 generated by the optimal controls o the sequence o problems P(T, l0)

or T ∈ N have a turnpike structure near the expected states (El̂t)
T
t=1 generated by

the optimal solutions o the sequence o problems Q̂(T ) in the sense that there exists
a constant C such that

T∑

t=0

∥Elt − El̂t∥
2 ≤ C ∀T ∈ N. (54)

For the optimal control x ∈ XT o P(T, l0) and x̂ o Q̂(T ) we have the turnpike
inequality

T∑

t=1

∥xt − x̂t∥
2 ≤ 2C ∥B−1∥2


1 + ∥A∥2


∀T ∈ N, (55)

where ∥B−1∥ and ∥A∥ denote the spectral norms. Also here the control values xt

and x̂t (t ∈ {1, ..., T}) depend on the problem parameter T o P(T, l0).

Proof. Combine Lemmas 3.6 and 3.7 and put C := C1/C2. For the controls, (15)
implies

xt − x(δ) = B−1α∗
t −B−1Aα∗

t−1, x̂t − x(δ) = B−1α̂∗
t −B−1A α̂∗

t−1 (t ∈ {1, . . . , T}).

Hence we have

xt − x̂t = B−1(α∗
t − α̂∗

t )− B−1A(α∗
t−1 − α̂∗

t−1).

Hence due to the denition o α∗
t and α̂∗

t (54) yields

T∑

t=1

∥xt − x̂t∥
2 ≤

T∑

t=1

(

∥B−1∥ ∥Elt − El̂t∥+ ∥B−1∥ ∥A∥ ∥Elt−1 − El̂t−1∥
)2

≤ 2∥B−1∥2

1 + ∥A∥2


T∑

t=0

∥Elt − El̂t∥
2 ≤ 2∥B−1∥2


1 + ∥A∥2


C ∀T ∈ N.

Then (55) ollows.
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3.4. Discussion of assumptions

The assumptions o Theorem 3.8 (via those o Lemmas 3.6 and 3.7) concern, on
the one hand, the uniorm boundedness o expected states generated by the optimal
solutions o the original problem and the problem with ree initial and terminal state,
and on the other hand the sequence o conditional probabilities in (39). While the
ormer ones are intuitively clear, the latter one is purely technical. Conversely, the
ormer ones are hard to ensure by reasonable conditions on the initial data whereas
we will show in the ollowing how (39) can be guaranteed in a standard setting.
We note that the uniorm boundedness o the respective optimal expected states
might be veried empirically as in the numerical results o Fig. 4.5, where both
trajectories stay within the desired region no matter how large the time horizon has
been chosen.

Now, we address the verication o (39). We start with a technical preparation. Fix
an arbitrary T ∈ N. We consider the time-discrete dynamic system o the random
states l̂0, l̂ = (l̂1, . . . , l̂T )

⊤ that are generated by the optimal solution x̂ o the ree
terminal state problem Q̂(T ) in (35). Together with the recursion in (1) we obtain

l̂t = Al̂t−1 + Bx̂t + ξt, t = 1, . . . , T.

Let be x̂ = (x̂1, . . . , x̂T )
⊤ and ξ = (ξ1, . . . , ξT )

⊤. Denine the lower triangular block
matrix ∆ ∈ R

nT×nT and the matrices Ā ∈ R
nT×n, B̄ ∈ R

nT×nT such that

∆ :=



















I 0
A I
...

...

AT−1 · · · A I



















, Ā :=



















A
A2

...

AT



















, B̄ :=













B 0
...

0 B













.

Then the evolution o the states can be represented in closed orm by

l̂ = ∆ξ + Āl̂0 +∆B̄x̂. (56)

Assuming that ξt ∼ N (E,Σ) or t = 1, . . . , T are independently and identically
distributed Gaussian random variables, and by dening

Ē :=













E
...

E













and Σ̄ :=













Σ 0
...

0 Σ













,

we obtain that

ξ ∼ N (Ē, Σ̄) and l̂ ∼ N (∆Ē + Āl̂0 +∆B̄x̂,∆Σ̄∆
⊤).

Now, we are able to represent the joint density unction or l̂. Setting

µ̄ := ∆Ē + Āl̂0 +∆B̄x̂,

the density unction reads

fl̂(z) =
1



(2π)nT det(Σ)T
e−

1
2
(z−µ̄)⊤(∆Σ̄∆⊤)−1(z−µ̄). (57)
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Both, ∆ and Σ̄ involve special structures that allow or a simple representation o
their inverses. It is easy to see that the inverse o ∆ is o the orm

∆
−1 =



















I 0
−A I

... ...

0 −A I



















.

We assume that Σ has the Cholesky actorization Σ = LL⊤. Now let L̄ ∈ R
nT×nT

be dened as

L̄ :=













L 0
...

0 L













with L̄−1 =













L−1 0
...

0 L−1













.

Thereore, due to Σ̄
−1 = (L̄L̄⊤)−1 = L̄−⊤L̄−1, we obtain or any z ∈ R

nT that

z⊤(∆Σ̄∆
⊤)−1z = z⊤∆−⊤

Σ̄
−1
∆

−1z = (L̄−1
∆

−1z)⊤L̄−1
∆

−1z. (58)

The matrix L̄−1
∆

−1 is o the orm

MT := L̄−1
∆

−1 =



















L−1 0
−L−1A L−1

... ...

0 −L−1A L−1



















. (59)

Applying (58) and (59), (57) reads

fl̂(z) =
1



(2π)nT det(Σ)T
e−

1
2
(MT (z−µ̄))⊤MT (z−µ̄). (60)

Proposition 3.9. Let (l̂0, x̂) be the solution o the ree initial state problem Q̂(T ),
where T ∈ N is arbitrarily fxed, and denote by l̂ = (l̂1, . . . , l̂T )

⊤ the random states
generated by this solution. Under the assumption that ξt ∼ N (E,Σ), t = 1, 2, . . .
are i.i.d. Gaussian random variables and under assumption (38) o Lemma 3.6, it
holds that

P

(

l̂T − El̂T + l(δ) ∈ F
∣
∣
∣ l̂t ∈ F ∀t ∈ {1, . . . , T − 1}

)

≥ C,

where C > 0 is a constant independent o T .

Proof. To determine the ormulated conditional probability or a given T ∈ N we
want to apply the joint density unction (60) o l̂. To do this we consider the random
variable

η := (l̂1, . . . , l̂T−1, l̂T − El̂T )
⊤

that is obtained rom l̂ by shiting the T th component by the constant El̂T to
zero mean. Note that the covariance matrix does not change by this shit. In the
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ollowing argumentation, or any vector z = (z1, . . . , zT )
⊤ ∈ R

nT we will denote by
z′ = (z1, . . . , zT−1)

⊤ ∈ R
n(T−1) its rst T − 1 entries (each o dimension n). Having

MT =



















0

MT−1

...

0
0 · · · 0 −L−1A L−1



















,

the joint density unction o η can be derived rom the density o l̂ given in (60).
Since Eη = (µ̄1, . . . , µ̄T−1, 0), we obtain

fη(z) =
1

√

(2π)nT det(Σ)T
e−

1
2
(∥MT−1(z

′−µ̄′)∥2+∥L−1zT−L−1A(zT−1−µ̄T−1)∥
2), (61)

where ∥ · ∥ denotes the respective Euclidean norm. Moreover, the density unction
o the reduced vector η′ = (l̂1, . . . , l̂T−1) is obtained by

fη′(z
′) =

1
√

(2π)n(T−1) det(Σ)(T−1)

e−
1
2
∥MT−1(z

′−µ̄′)∥2 . (62)

For the wanted conditional probability we have now (with F T−1 := F × · · · × F
  

T−1 times

)

pcondT := P

(

l̂T − El̂T + l(δ) ∈ F
∣
∣
∣ l̂t ∈ F ∀t ∈ {1, . . . , T − 1}

)

= P

ηT ∈ F − l(δ)

∣
∣ η′ ∈ F T−1


.

The latter conditional expression can be represented in terms o the above densities
(61) and (62). More precisely, with

√

(2π)n(T−1) det(Σ)(T−1)

√

(2π)nT det(Σ)T
=

1
√

((2π)n det(Σ))
=: θ

it turns out that

pcondT = θ

∫

x∈FT−1

∫

y∈F−l(δ)
e−

1
2
(∥MT−1(x−µ̄′)∥2+∥L−1y−L−1A(xT−1−µ̄T−1)∥

2)dydx
∫

x∈FT−1 e
− 1

2
(∥MT−1(x−µ̄′)∥2dx

. (63)

Since F and thereore F − l(δ) are compact and because µ̄T−1 = El̂T−1 and thereore
µ̄T−1 ≤ R due to assumption (38) (independently o T ), or any (z, y) ∈ F×(F−l(δ))
we can uniormly estimate

∥L−1y − L−1A(z − µ̄T−1)∥ ≤ ∥L−1∥∥y∥+ ∥L−1A∥(∥z∥+ ∥µ̄T−1∥)

≤ Ĉ∥L−1∥+ Ĉ∥L−1A∥+R∥L−1A∥. (64)

Here, Ĉ is a constant such that the unit ball BĈ(0) contains both F and F − l(δ).
Applying inequality (64) to (63) we can bound the conditional probability pcondT
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uniormly rom below. Let λ denote the Lebesgue measure. Then we observe rom
(63) that

pcondT ≥ θ
λ(F − l(δ))e−

1
2
(Ĉ∥L−1∥+Ĉ∥L−1A∥+R∥L−1A∥)2

∫

x∈FT−1 e
− 1

2
(∥MT−1(x−µ̄′)∥2dx

∫

x∈FT−1 e
− 1

2
(∥MT−1(x−µ̄′)∥2dx

= θλ(F − l(δ))e−
1
2
(Ĉ∥L−1∥+Ĉ∥L−1A∥+R∥L−1A∥)2 =: C > 0.

Since the constants Ĉ, θ and R rom Lemma 3.6 do not depend on T , so C does not
either, which completes the proo.

In the numerical experiments presented in the next section the turnpike property
stated in Theorem 3.8 is clearly visible and in particular or suciently large time
horizons close to the middle o the time inteval the two expected trajectories almost
coincide.

4. Numerical experiments for the probabilistic turnpike

In this section we present numerical experiments or the probabilistic turnpike or
here-and-now decisions. For studying the turnpike phenomenon in a probabilistic
setup, as an instance or a time-discrete system (1), we consider the linear recursion

lt = lt−1 + xt + ξt (65)

or t ∈ {1, . . . , T}. Here, equation (65) models the state level in a reservoir prob-
lem, or example the water level or hydroelectricity generation. For any time step
t ∈ {1, . . . , T} the scalar state variable lt ∈ R denotes the water level in the reservoir,
the control variable xt ∈ R is the amount o water to be lled or released at t, and
ξt ∈ R is some random water infow to the reservoir. We assume that the infows
ξt describe a sequence o identically distributed Gaussian random numbers with
Eξt = E or t = 1, . . . , T .

Instead o computing policies or optimal water releases or power generation, in our
numerical tests we are rather interested in turning a given water level l0 back to a
desired level l(δ) ∈ F := [a, b] in a cost optimal way. According to (5) we have

x(δ) = −E

and dene the objective unction o the optimal control problem by

JT (x) =
T∑

t=0

(E(lt)− l(δ))2 + γ

T∑

t=1

(xt − x(δ))2,

where γ is some non-negative weighting actor concerning the control cost. Intro-
ducing the probabilistic constraint

φT (x, l0) = P(lt ∈ [a, b] or all t ∈ {1, . . . , T}),

nally, the optimization problem P(T, l0) introduced in Section 2 reads

min
x∈RT

JT (x) subject to ElT = l(δ) and φT (x, l0) ≥ p (66)

or a given and xed probability level p ∈ [0, 1].
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4.1. Turnpike study for a short time horizon

In a rst test series we want to study numerical examples, where we consider a
short xed time horizon T , varying initial water levels l0 compared to dierent
desired levels l(δ) and a given xed condence interval [a, b]. In particular, we solve
(66) numerically with the ollowing data:

Condence interval: [a, b] = [11, 25]
Initial level: l0 = 5, 13
Desired level: l(δ) = 16, 20
Time horizon: T = 10
Control cost actor: γ = 5
Distribution o infow t: ξt ∼ N (E, 1); E = −1
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Figure 4.1: Solution o the turnpike problem or two examples with dierent initial
level l0 = 5 (let) and l0 = 13. The level trajectories are computed or a xed desired
level l(δ) = 16 as well as probability levels p = 0.70 (let) and p = 0.91.

Computed solutions o the optimal control problem (66) or the rst two numerical
examples are shown in Fig. 4.1. The expected level trajectories o the reservoir or
the given data are displayed or two dierent situations, where the initial level is
located outside and inside the condence interval, respectively. Beside the expected
level, the gure also shows realizations o the level curves realizing the computed
optimal control or randomly selected infow scenarios (light gray) or the given time
horizon. The expected level (shown by purple lines) are observed or probability
levels p = 0.70 and p = 0.91, respectively. Clearly, in both example, by the optimal
solution the system is controlled towards the desired level. However, i the initial
level as in the rst example is located outside the condence interval, we observe a
jump o the expected level into the condence interval in the rst time step in order
to satisy the probabilistic constraint. Aterwards, similar to the second example,
the system is smoothly turned to the desired level, which is a consequence to the
chosen parameter γ > 0. By this setting, due to the control cost within the objective
unction, abrupt rises o the reservoir levels will be avoided.

Next, we want to study the behavior o the reservoir levels when increasing the
probability level inside the probabilistic constraint. With the same setup as in the
two examples beore we just change the probabilities to p = 0.91 and p = 0.93,
respectively.
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Figure 4.2: Solution o the turnpike problem or two examples with dierent initial
level l0 = 5 (let) and l0 = 13, but, with increased probability levels p = 0.91 (let)
and p = 0.93. The level trajectories are computed or the xed desired level l(δ) = 16.
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Figure 4.3: Solution o the turnpike problem or pmax. Displayed are level trajectories
or dierent desired levels l(δ) = 16 (let) and l(δ) = 20.

The results are shown in Fig. 4.2. The new observation is the ollowing: When
increasing the probability the expected reservoir level will be orced to leave the
desired state in order to increase the probability that the state curves remain within
the condential bounds. As consequence, within intermediate time steps the ex-
pected state o the system exceeds the desired level and turns toward the center
line o the condence interval. However, as required by the constraints, at the end
o the time horizon in both examples the expected value o the reservoir level turns
back and reaches the desired level again.

As typical or optimization problems with probabilistic constraints there exists a
maximum probability level pmax such that the easibility set becomes empty or
higher probability p, i.e. or pmax < p ≤ 1. The previous results are obtained or
probability levels below the maximum probability. Now, we want to look at the
turnpike behavior when reaching pmax. I p = pmax, the reservoir problem solution
approaches the level state that maximizes the probability p in one step. This is
shown in Fig. 4.3 or two instances, where we compare two dierent desired levels.
In both cases it turns out that the expected reservoir levels almost ignore the desired
level, because they are orced towards the center o condence in order to match the
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maximum probability. They both turn to the desired level only to the end o the
time horizon that is due to the terminal condition.

4.2. The turnpike property for increasing time horizons

Finally, we want to illustrate the probabilistic turnpike property or a increasing
time horizon. The turnpike result rom Section 3 describes the turnpike behavior
o the system state with increasing time horizon T . In order to show this specic
probabilistic turnpike phenomenon by the numerical example we want to setup the
time horizon sequentially by T = 40 / 60 / 80 / 100. In addition, we adjust the stan-
dard deviation o the random vectors ξt and we want to allow correlations between
dierent time steps.

 0.8

 0.9

 1

 20  30  40  50  60  70  80  90  100

ζ
T. 

pmax(T)

P
ro

b
a
b
ili

ty

Time horizon T

pmax(T)
pmin (T)

Figure 4.4: Bounding maximal and minimal probability curves pmax(·) and pmin(·)
as unction o the time horizon such that the level problem (66) is easible and such
that the probabilistic constraint is active. The graphic also shows a suitable time
dependent choice o probabilities p(T ), where p(T ) = ζT · pmax(T ) with constant
ζ = 0.99996.

In particular, we assume an infow process ξ = (ξ1, . . . , ξT ) that ollows a multivariate
Gaussian distribution with tridiagonal covariance matrix o the orm

ξ ∼ N (−IT ,ΣT ) and ΣT =











σ1 σ2 σ3 0

σ2
. . .

. . .
. . .

σ3
. . .

. . .
. . . σ3

. . .
. . .

. . . σ2
0 σ3 σ2 σ1











with σ1 = 0.05, σ2 = 0.03, σ3 = 0.015, and where IT denotes the T -dimensional
identity matrix. All other xed problem data o the level problem (66) ollow the
general setup above with initial level l0 = 13 and desired level l(δ) = 20.

When increasing the number o time steps, the probability that the system remains
within some given bounds drops down. This is due to the increasing variance o
perturbations caused by the random infow process. More precisely, the probability
pmax(T ) as unction o the time horizon is strictly monotonic decreasing. On the
other hand, or small enough probability levels the probabilistic constraint becomes
inactive.
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Figure 4.5: Probabilistic turnpike property or increasing time horizons T = 40,
60, 80, 100. Shown here are the expected state trajectories compared to the corres-
ponding ree initial and terminal state curves.
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Figure 4.6: Probabilistic turnpike property disclosed by the optimal controls. Shown
here are the computed optimal controls o the turnpike problems compared to the
computed corresponding ree initial and terminal state controls.
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In consequence, the probability level p in (66) should be chosen between the upper
bound pmax(T ) and some lower bound pmin(T ). Otherwise, the problem (66) is
getting ineasible or it turns to a pure deterministic turnpike problem. Fig. 4.4
shows the bounding maximal and minimal probability curves pmax(·) and pmin(·) as
unction o the time horizon or the numerical example. In order to get a suitable
probability levels or (66) we setup the probability p as unction o pmax. In the
ollowing we apply p according to the denition

p(T ) := ζT · pmax(T ) ,

where ζ ∈ (0, 1) is some constant number that is chosen sucient close to 1. In
the numerical example ζ is assigned to ζ = 0.99996 (c. Fig. 4.4). The related
probabilistic turnpike property or an increasing time horizon is studied in Fig. 4.5
and Fig. 4.6. The numerical results are shown or time horizons T = 40 / 60 / 80 / 100
or both the expected states (Fig. 4.5) and the optimal controls (Fig. 4.6). On the
one hand we compare the expected state o the system, observed when applying the
optimal control as solution o (66), with the expected state according to the optimal
solution o the ree initial state and ree terminal state problem Q̂(T ) dened in (37).
On the other hand we show the turnpike phenomenon as stated in Theorem 3.8 or
the optimal controls themselves.

The pictures in Fig. 4.5 reveal that at the beginning o the time horizon the ex-
pected system state (when applying the problem with bounding conditions) turns
rom the dened initial state smoothly towards the expected state o the problem
with ree initial and ree terminal state. Beore reaching the end o the time horizon
the expected level leaves the ree initial/terminal state solution in order to match
the deterministic terminal state condition, i.e. the expected system state o the
bounded problem terminates with the desired level. The eect becomes more evi-
dent with a prolongation o the time horizon. The longer the time horizon the more
intermediate time steps can be observed, where the computed expected level accord-
ing to (66) is close to the expected level o the corresponding ree initial/terminal
solution. According to Fig. 4.6 a similar observation can be made or the optimal
controls computed or the example problems on the dierent time scales. The nu-
merical results conrm empirically the turnpike properties (54) and (55) stated in
Theorem 3.8.

5. Conclusion

Motivated by the application o probabilistic constraints in dynamic optimal plan-
ning problems or the operation o gas networks, we have studied the turnpike prop-
erty or time-discrete systems with an additive random perturbation. We have con-
sidered optimal control problems where the quadratic objective unctional is stated
in terms o expected values and a probabilistic constraint is prescribed. We have
shown that under suitable assumptions we obtain a turnpike structure or the ex-
pected optimal state also or problems with probabilistic constraints. We have shown
that or large time horizons the optimal expected trajectories approach the optimal
expected trajectories o the problem with ree initial and ree terminal states in the
majority o time steps.
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In our analysis we consider problem Q(T, l0, λ) where the probability that a given
inequality constraint is satised appears in a penalty term in the objective unctional
with a certain weight that is parameterized by λ ∈ [0, 1]. We show that there exists
a parameter λ or which the solution o the problem P(T, l0) with a probabilistic
constraint and given terminal state and prescribed expected terminal state coincides
with the solution o problemQ(T, l0, λ). This yields a turnpike result o a new type,
where the turnpike trajectory is obtained as the solution o an auxiliary problem
that depends on the parameter λ and thus indirectly (via the value o the parameter
λ) also on the given initial state. It is important to emphasize that or the problem
with the probabilistic contraint, this specic parameter is not known a priori and
is not indpendent o the initial state. Since the parameter λ varies in a bounded
set, this new type o turnpike result yields a amily o limit trajectories that is
parameterized by λ, whereas in the classical turnpike results only a single turnpike
trajectory appears.

There are some open questions let, in particular about the verication o our as-
sumptions in terms o the problem data, in particular the underlying probability
distributions. We have considered a special nite-dimensional setting with ane
linear dynamics. In the applications, in contrast to our setting the dynamics are
oten nonlinear, in act oten given by partial dierential equations. In this innite-
dimensional setting specic probabilistic box-constraints are required or the easible
states. How the results can be generalized to this setting is a topic or uture re-
search. Such an analysis could be based upon the recent paper [13].
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