
Journal o Convex Analysis

Volume 30 (2023), No. 3, 1025–1052

A Turnpike Property for

Optimal Control Problems with

Dynamic Probabilistic Constraints

Martin Gugat

Department o Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
martin.gugat@au.de

Holger Heitsch, René Henrion

Weierstrass Institute, Berlin, Germany
holger.heitsch@wias-berlin.de, rene.henrion@wias-berlin.de

Dedicated to Roger J-B Wets on the occasion o his 85th birthday.

Received: May 27, 2022
Accepted: January 15, 2023

We consider systems that are governed by linear time-discrete dynamics with an initial condition
and a terminal condition or the expected values. We study optimal control problems where in
the objective unction a term o tracking type or the expected values and a control cost appear.
In addition, the easible states have to satisy a conservative probabilistic constraint that requires
that the probability that the trajectories remain in a given set F is greater than or equal to a given
lower bound. An application are optimal control problems related to storage management systems
with uncertain in- and output. We give sufcient conditions that imply that the optimal expected
trajectories remain close to a certain state that can be characterized as the solution o an optimal
control problem without prescribed initial- and terminal condition. In this way we contribute to
the study o the turnpike phenomenon that is well-known in mathematical economics and make a
step towards the extension o the turnpike theory to problems with probabilistic constraints.
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1. Introduction

The turnpike phenomenon or optimization problems has been discussed in mathe-
matical economics by P.A. Samuelson already in [4]. Ever since, the turnpike phe-
nomenon has been analyzed or optimal control problems o dierent types, see or
example [3, 7, 10]. The turnpike phenomenon or innite horizon optimal control is
studied in [21]. Turnpike properties in the calculus o variations and optimal control
are considered in [11, 12, 20]. For optimal control problems with partial dierential
equations see also [18] and the reerences therein.

In order to obtain decisions that are robust against uncertainties in the problem
data, probabilistic constraints are a useul tool i inormation on the corresponding
probability distribution is available (see [16]). Probabilistic constraints require that
the probability to remain easible is greater than or equal to a lower bound p that is
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prescribed as a problem parameter by the decision maker. They play a prominent
role in risk averse water reservoir management under uncertain infows (e.g.,[14, 16,
19]) but could equally well apply to gas reservoirs. Recently, probabilistic constraints
(or Value-at-Risk constraints) have attracted increasing interest in optimal control
or PDE constrained optimization (e.g., [5, 6, 8, 15].

Although the study o the turnpike phenomenon is an active area o current research,
results on the turnpike property or optimization problems with probabilistic con-
straints are not yet available in the literature.

This paper investigates the turnpike property or discrete time optimal control
problems with probabilistic constraints (chance constraints). For probabilistic con-
straints continuous in time (a special case o so-called probust constraints), we reer
to [1, 9]. The underlying random distribution is supposed to be continuous. We
consider a probabilistic constraint where it is required that the probability that the
whole trajectory remains in a given convex set F is greater than or equal to a given
parameter p.

It is the nature o these constraints that or a longer time horizon, they are harder
to satisy than or a short time horizon. Thereore in some cases i the probability
threshold p is not adapted to the time horizon there is a maximal time horizon
where the probabilistic constraint admits a nonempty easible set. Hence also in our
turnpike result or optimization problems with probabilistic constraints we consider
a time dependent probability threshold pT .

We present a turnpike result that states that the optimal expected trajectories ap-
proach a certain state (the turnpike, which is dened by the optimal trajectory o
the problem with ree initial and ree terminal state) in the sense that there is an
upper bound or the Euclidean distance between the trajectories o the expected
values that is independent o the time horizon. Since probabilistic constraints are
an excellent modeling tool or problems o optimal control and optimal design, also
or this case, the turnpike structure o the generated trajectories is o interest.

This paper has the ollowing structure. In Section 2 we introduce the time-discrete
system, a quadratic objective unction and dene an optimization problem with a
probabilistic constraint.

In Section 3 we show that the solutions o the relaxed problem without the prob-
abilistic constraint have an exponential turnpike property. Moreover, we show a
turnpike property or the problems where the probabilistic constraint is replaced by
a probabilistic penalty term in the objective unction. Finally we also discuss the
problem with the probabilistic constraint.

In Section 4 numerical experiments are presented that illustrate the probabilistic
turnpike phenomenon. At the end o the paper, some conclusions are discussed.

2. Optimal control of time-discrete systems

We consider a linear time-discrete system. The initial state l0 ∈ R
n is given and

or t ∈ {1, 2, 3, ...} the evolution o the state lt ∈ R
n is infuenced by identically

distributed random variables ξt ∈ R
n and governed by the linear recursion

lt = A lt−1 + Bxt + ξt (1)

with linear operators A and B and control variables xt ∈ X = R
n.
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Assume that AT = A, (2)

that A is positive denite and that B is invertible. Expanding the recursion (1),
the state vector l can be written as an ane linear mapping o control and random
variables:

l(x, ξ) = Px+Qξ + r. (3)

As an example consider the linear recursion

lt = lt−1 + xt + ξt

or t ∈ {1, ..., T} that models the water level in a reservoir or hydroelectricity
generation. It can also be used as a model o gas storage. Gas storage is important
or power generation in gas-red power stations in the case o a lack o electricity
that is generated rom renewable energy. Also the storage o hydrogen can play an
important role in a uture hydrogen economy, see [2].

Let a closed convex set F ⊂ R
n and a desired state

l(δ) ∈ F (4)

be given. We assume that or all t ∈ {1, 2, ..., T} we have

Eξt = E

and that l(δ) = A l(δ) + Bx(δ) + E. (5)

Let a weight γ > 0 be given. For k ∈ {1, ..., T}, we dene the objective unction JT
with a control cost and a tracking term that is stated in terms o expected values as

JT (x) =
T
∑

t=0

∥Elt − l(δ)∥2 + γ

T
∑

t=1

∥Bxt − Bx(δ)∥2. (6)

Here, or z ∈ R
n we use the notation ∥z∥ =


n

i=1 z
2
i . Dene the probability

φT (x) = P (lt ∈ F or all t ∈ {1, ..., T})

in the sense that the initial state or t = 0 is l0 and lt is the corresponding random
state generated with the control x ∈ XT by (1).

For a natural number T and pT ∈ (0, 1) we dene the probabilistic constraint

φT (x) ≥ pT (7)

and the optimization problem

P(T, l0) : min
x∈XT

JT (x) subject to ElT = l(δ) and (7).

This is a problem where a here-and-now decision has to be taken based upon the
inormation that is available at the time t = 0.

I the easible set is nonempty, that is i pT is suciently small, our assumptions
imply that a solution o P(T, l0) exists.
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This can be seen as ollows. Dene the easible set o P(T, l0)

ΥT = {x ∈ XT : φT (x) ≥ pT}

that contains the easible control vectors that generate the trajectories (lt)
T
t=1 with

the starting point l0. Since the relation lt ∈ F or all t ∈ {1, . . . , T} can be repre-
sented as the inequality h(x, ξ) ≥ 0 with lt(x, ξ) rom (3) and with the continuous
unction

h(x, ξ) = − max
t∈{1,...,T}

dist (lt(x, ξ), F ), (8)

it ollows that φT is an upper semicontinuous unction. Hence the easible set ΥT is
closed.

Note that the objective unction JT is continuous. Assume that xS ∈ ΥT is a easible
control. Due to the growth o the objective unction JT the lower-level set

MT = {x ∈ XT : JT (x) ≤ JT (xS)}

is compact. Without changing the optimal control we can replace the easible set
ΥT o P(T, l0) by the set ΥT ∩MT . Since this set is compact, the existence o an
optimal control ollows.

We nish this section with a statement on the log-concavity o the probability unc-
tion φT . As observed above, one may use the unction h in (8) or the representation
φT (x) = P(h(x, ξ) ≥ 0). Thanks to (3), the unctions

dist (lt(x, ξ), F ) = dist (·, F )(Ptx+Qtξ + rt)

are convex as compositions o the convex (by convexity o F ) distance unction
dist (·, F ) with an ane linear mapping. As a consequence, h is concave. Now,
the ollowing Lemma is a direct consequence o a classical result by Prékopa [16,
Theorem 10.2.1]:

Lemma 2.1. I ξ has a density fξ such that ln fξ is concave (e.g., Gaussian and
many other prominent multivariate distributions), then lnφT is a concave unction.

3. Turnpike properties for the optimal controls and trajectories

In this section we consider decisions x that have to be taken beore the ξt are ob-
served, that is we are looking or a decision that is taken at the time t = 0 and yields
a control that is optimal subject to uncertainty about the random perturbations ξt
or all t ∈ {1, 2, ..., T}. This type o choice is oten called a here-and-now-decision.

First we present an exponential turnpike property or the solution o P(T, l0) or the
case that the probabilistic constraint is not active. Our turnpike results in Theorem
3.1 states that or the problem where the probabilistic constraint is not active, in the
optimal trajectories the distance between the expected state and the desired state
decays exponentially ast with t. Next, we consider problems with a logarithmic
penalty term or the probabilities and show that the optimal trajectories have a
turnpike property in the sense that the optimal trajectories approach the optimal
trajectories or the corresponding problem with ree initial and terminal state. In
Theorem 3.5 below we state this turnpike result.
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Then we also discuss the problem with the probabilistic constraint. In order to
show a turnpike result in this case we have to adapt the probability level pT to the
time-horizon.

In the sequel we assume that the easible set o P(T, l0) has non-empty interior.
More precisely, we assume that there exists a control ẑ(T ) ∈ XT such that

φT (ẑ
(T )) > pT and El̂T = l(δ). (9)

Here, l̂T reers to the nal state resulting rom the control ẑ(T ) and the dynamics
(1). In the sequel we assume that the sequence (pT )

∞
T=1 is decreasing.

For λ ∈ [0, 1] we introduce the problem with a probabilistic penalty term

Q(T, l0,λ) : min
x∈XT

λ JT (x)− (1− λ) ln (φT (x)) subject to ElT = l(δ).

In problem Q(T, l0,λ), the probabilistic constraint (7) is replaced by a penalty term
in the objective unction and the initial state l0 is still prescribed.

The aim o our turnpike analysis is to provide insights on the behavior o the so-
lutions o P(T, l0) or dierent values o T , in particular or large time-horizons.
Thereore it is important to keep in mind that each component o the optimal state
lt (t ∈ {1, ..., T}) or P(T, l0) also depends on the time horizon T . This also holds or
the optimal control xt (t ∈ {1, ..., T}) or P(T, l0). An emphasis on this dependence
would require a notation like l

(T )
t , x

(T )
t (t ∈ {1, ..., T}). However, since this would

deteriorate the readibility o the paper, we have decided to use the more concise
orm lt, where the dependence o T is not stated explicitly in each component.

3.1. An exponential turnpike result for the case that the probabilistic

constraint is not active

We start with an exponential turnpike result or the case that the probabilistic
constraint is not active. In this case, the optimal control solves a deterministic
problem.

Theorem 3.1. Assume that (7) is nonactive at a solution o P(T, l0). Then, such
solution is unique and has a discrete exponential turnpike structure in the sense that
there exists a number zγ ∈ (0, 1) that is independent o l0 and T such that or all
t ∈ {1, ..., T} we have the turnpike inequality

∥Elt − l(δ)∥2 ≤ ztγ ∥El0 − l(δ)∥2. (10)

For all eigenvalues λk o the matrix A defne the polynomial

pk(ω) = ω2 −
[

1

λk

(

1 +
1

γ

)

+ λk

]

ω + 1. (11)

Then we can choose zγ = max
k∈{1,...,n}

min
z∈C:pk(z)=0

|z|2.

For the optimal control x ∈ XT o P(T, l0), or all t ∈ {1, ..., T} we have the turnpike
inequality

∥xt − x(δ)∥2 ≤ ∥B−1∥2 (1 + ∥A∥)2 zt−1
γ ∥El0 − l(δ)∥2 (12)

where ∥B−1∥ and ∥A∥ denote the spectral matrix norms.
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Proof. For the proo we rst observe that problem Q(T, l0, 1) is identical to the
relaxed problem

R(T, l0) : min
x∈XT

JT (x) subject to ElT = l(δ)

where the probabilistic constraint does not appear. Due to linearity, or the expected
values, we have the recursion

Elt = AElt−1 + B xt + E (t ∈ {1, . . . , T}). (13)

Since the objective unction JT only depends on the expected values, this implies
that in act, we have a deterministic problem that we can solve. Equation (13) yields

B xt = Elt − AElt−1 − E (t ∈ {1, . . . , T}).

This implies that we can write the objective unction in terms o

αt := Elt − l(δ) (t ∈ {0, . . . , T}). (14)

Then we have or t ∈ {1, . . . , T}:

Bxt − Bx(δ) = E(lt − l(δ))− A (Elt−1 − l(δ)) = αt − Aαt−1. (15)

Hence, the constrained problem R(T, l0) is equivalent with the ree minimization o
the objective

J̃T (α) := ∥α0∥
2 +

T
∑

t=1



∥αt∥
2 + γ∥αt − Aαt−1∥

2


. (16)

We note that or J̃T only α := (α1, . . . ,αT−1) is variable, while α0 = l0 − l(δ) and
αT = 0 (as a consequence o the terminal constraint in R(T, l0)) are constant.
Recalling that A = AT , dierentiation yields or t ∈ {1, ..., T − 1}

∇αt
J̃T (α) = 2



αt + γ


αt − Aαt−1 + A2 αt − Aαt+1



= 2


−γ Aαt−1 + ((1 + γ)I + γA2)αt − γ Aαt+1



.

Thus the necessary optimality condition implies the equation

Aαt+1 =
((

1 +
1

γ

)

I + A2
)

αt − Aαt−1. (17)

Note that due to convexity, (17) is also a sucient condition or the optimality o a
trajectory that minimizes (16).

Due to (2) there exists an orthonormal basis v(1), ..., v(n) o eigenvectors o the sym-
metric matrix A that correspond to the real eigenvalues λ1,...,λn. Our aim is to
express the optimal trajectories as a linear combination o the orthonormal basis
vectors v(k) with k ∈ {1, ..., n}. In order to proceed, or k ∈ {1, ..., n} dene the
polynomial

Pk(ω) = λk ω
2 −

(

1 +
1

γ
+ λ2

k

)

ω + λk.

Let zk denote a number such that Pk(zk) = 0. For t ∈ {0, 1, 2, ...} dene the vector

α
(k)
t = ztk v

(k) ∈ R
n.
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Note that Pk(zk) = 0 implies

λk z
t+2
k =

(

1 +
1

γ
+ λ2

k

)

zt+1
k − λk z

t
k.

Hence we have λk α
(k)
t+2 =

(

1 +
1

γ
+ λ2

k

)

α
(k)
t+1 − λk α

(k)
t .

Since or all s ∈ {0, 1, 2, ...}, the α
(k)
s are eigenvectors corresponding to the eigenvalue

λk, this implies that the α
(k)
t satisy (17). Since λk ̸= 0, we can dene the polynomial

pk = 1
λk

Pk as in (11). With the roots o pk we obtain an explicit representation o

the optimal state. I one root is zk, the other root is 1
zk
. Note that since

∆ =
[

1

λk

(

1 +
1

γ

)

+ λk

]2

− 4 > 0, (18)

pk has two dierent real roots. The initial state has the representation

l0 = l(δ) +
n

∑

k=1

ρk v
(k)

(where the coecients ρ1, ρ2,... ρn are uniquely determined). We represent the

optimal state as a linear combination o the α
(k)
t corresponding to the roots zk

and 1
zk
. The initial condition and the terminal constraint ElT = 0 yield a system

o 2n linear equations or the 2n coecients. With suitable coecients (ĝk, ĥk)
(k ∈ {1, ..., n}) or t ∈ {1, ..., T} the optimal state is given by

Elt = l(δ) +
n

∑

k=1

ρk

(

ĝkz
t
kv

(k) + ĥkz
−t
k v(k)

)

.

For t = 0 we obtain l0 − l(δ) =
n

k=1 ρk

(

ĝk + ĥk

)

v(k). This yields ĝk + ĥk = 1 or

all k ∈ {1, ..., n}. For t = T we obtain the equation

ElT − l(δ) = 0 =
n

∑

k=1

ρk

(

ĝkz
T
k v

(k) + ĥkz
−T
k v(k)

)

.

This yields zTk ĝk + z−T
k ĥk = 0 or all k ∈ {1, ..., n}. Thus we obtain

ĝk =
z
−T

k

z
−T

k
− zT

k

, ĥk =
−z

T

k

z
−T

k
− zT

k

and Elt = l(δ) +
n

∑

k=1

ρk
z
t−T

k
− z

T−t

k

z
−T

k
− zT

k

v(k). (19)

By our construction, this trajectory satises (17), hence it minimizes (16).

For the control that generates this trajectory we have Bxt = Bx(δ) + αt − Aαt−1.
Since this control generates an optimal trajectory, this is an optimal control or
R(T, l0). Since the optimization problem R(T, l0) has a strongly convex objective
unction and the constraints are linear, the solution is uniquely determined.
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Now we show that or the problem without the probabilistic constraint, the expected
values o the optimal state approach the desired state l(δ) exponentially ast. In order
to show this we introduce the notation

fk,t =
z
t−T

k
− z

T−t

k

z
−T

k
− zT

k

.

Then (19) implies ∥αt∥
2 =

n
∑

k=1

(ρk)
2 |fk,t|

2 . (20)

Since we can assume without restriction that |zk| < 1 we have the inequality

∣

∣

∣

∣

1− z
2(T−t)
k

1− z2T
k

∣

∣

∣

∣

≤ 1.

Hence the ollowing inequality holds:

|fk,t| =

∣

∣

∣

∣

z
t

k
− z

2T−t

k

1− z2T
k

∣

∣

∣

∣

= |zk|
t

∣

∣

∣

∣

1− z
2(T−t)
k

1− z2T
k

∣

∣

∣

∣

≤ |zk|
t.

Dene zγ = maxk∈{1,...,n} |zk|
2 < 1. Then we have

∥αt∥
2 =

n
∑

k=1

(ρk)
2 |fk,t|

2 ≤
n

∑

k=1

(ρk)
2|zk|

2t ≤
n

∑

k=1

(ρk)
2ztγ = ztγ ∥α0∥

2. (21)

Thus we obtain (10) or the relaxed problem R(T, l0).

For the controls, (15) implies

xt − x(δ) = B−1αt − B−1Aαt−1 (t ∈ {1, . . . , T}). (22)

Hence (21) yields ∥xt − x(δ)∥ ≤ ∥B−1∥ zt/2γ ∥α0∥+ ∥B−1∥ ∥A∥ z(t−1)/2
γ ∥α0∥.

Hence (12) ollows. This completes the proo.

Note that the exponential decay implies that the optimal value ν(T, l0) o the opti-
mization problem R(T, l0) is uniormly bounded with respect to T and l0 ∈ U .

Dene η∗ = sup
T∈{1,2,3,...},l0∈l(δ)+U

ν(T, l0) < ∞. (23)

Remark 3.2. I the optimal state o the relaxed problem R(T, l0) that is generated
by the optimal control xT (l0) satises the probabilistic constraint (7) (which is the
case i pT ≥ 0 is suciently small), it is also the solution o P(T, l0) and satises
the exponential turnpike inequality (10).

In the next subsections, we investigate the role o the probabilistic constraint or
the turnpike phenomenon. We start with the problem where the corresponding
probability appears as a penalty term in the objective unction.



M.Gugat et al. / A Turnpike Property or Optimal Control Problems ... 1033

3.2. Results with probabilistic penalty term

Now we present a turnpike result or the problem with the probabilistic constraint.
Here the state that is approached in the interior o the time-interval (the ’turnpike’)
is dened as the solution o the corresponding problem with ree terminal and ree
initial state, which obviously is independent o prescribed initial and terminal data.

First we state a result about the growth o −ln(φT (x)).

Lemma 3.3. We have lim
∥x∥→∞

−ln(φT (x)) = ∞. (24)

Proof. Since the set F is bounded, there exists a number RF ≥ ∥l0∥ such that f ∈ F
implies the inequality ∥f∥ ≤ RF . For all s ∈ {1, ..., T} we have ξs = ls−Als−1−Bxs.
This implies ∥ξs∥ ≥ ∥Bxs∥−∥ls∥−∥A∥ ∥ls−1∥ where ∥A∥ denotes the spectral norm
o A. For all s ∈ {1, ..., T} we have

φT (x) = P(lt ∈ F or all t ∈ {1, ..., T})

≤ P(∥lt∥ ≤ RF or all t ∈ {1, ..., T})

≤ P(∥ξs∥ ≥ ∥Bxs∥ −RF (1 + ∥A∥)).

Let a sequence o controls x(k) ∈ XT be given such that limk→∞ ∥x(k)∥ = ∞. Then

there exists an s ∈ {1, ..., T} such that limk→∞ ∥Bx
(k)
s ∥ = ∞.

For all t ∈ {1, ..., T} we have lim
k→∞

P(∥ξt∥ ≥ k) = 0. (25)

This yields lim
k→∞

P(∥ξs∥ ≥ ∥Bx(k)
s ∥−RF (1+∥A∥)) = 0 and assertion (24) ollows.

Due to (25) there exists a number k0,T > 0 such that or all t ∈ {1, ..., T} we have
the inequality P(∥ξt∥ ≥ k0,T ) < pT . Thus i or a control x ∈ XT and a natural
number s ∈ {1, .., T} we have

∥Bxs∥ ≥ k0,T +RF (1 + ∥A∥), (26)

we also have φT (x) < pT , and thus x is not easible or P (l0, T ).

By Lemma 3.3, or all λ ∈ [0, 1] or the objective unction o Q(T, l0, λ) we have

lim
∥x∥→∞

inf
λ∈[0,1]

λ JT (x)− (1− λ) ln (φT (x)) ≥

lim
∥x∥→∞

min {JT (x), −ln (φT (x))} = ∞. (27)

Let xT (l0) denote the optimal control or Q(T, l0, 1) presented in Theorem 3.1 and
dene

Cprob(T ) = −lnφT (xT (l0)) (28)

(where we set Cprob(T ) = ∞ i φT (xT (l0)) = 0). We dene the set

ℵT :=
⋃

λ∈[0, 1]

ℵT (λ),

where, or λ ∈ [0, 1],

ℵT (λ) := {x∈XT :λ JT (x)− (1−λ) lnφT (x) ≤ λ JT (xT (l0)) + (1−λ)Cprob(T )}.
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Lemma 3.4. Assume that φT (xT (l0)) > 0 and that ξ has a density fξ such that
ln(fξ) is concave. Then, or each λ ∈ [0, 1], the sets ℵT (λ) are nonempty, compact
and convex. Moreover, the set ℵT is nonempty and compact.

Proof. For each λ ∈ [0, 1] the set ℵT (λ) contains xT (l0), hence is nonempty. Much
more, ℵT is nonempty. As a consequence o Lemma 2.1, the ℵT (λ) are convex.
They are also closed thanks to the upper semicontinuity o φT (see Section 2). The
set ℵT is bounded due to (27) and by our assumption that φT (xT (l0)) > 0. This
implies that the sets ℵT (λ) are bounded too, hence compact. It remains to veriy
the closedness o ℵT . To this aim, consider a sequence {xn} ⊆ ℵT with xn → x∗

or
some x∗. Then, there exists some sequence {λn} ⊆ [0, 1] with xn ∈ ℵT (λn). Passing
to a subsequence which we do not relabel, we may assume that λn → λ∗ ∈ [0, 1].
Then, by upper semicontinuity o φT it ollows that

λ JT (xT (l0)) + (1− λ)Cprob(T ) ≥ lim inf
n

(λn JT (xn)− (1− λn) lnφT (xn))

= λ∗JT (x
∗)− (1− λ∗) lim sup

n
lnφT (xn) ≥ λ∗JT (x

∗)− (1− λ∗) lnφT (x
∗).

Hence, x∗ ∈ ℵT (λ
∗) ⊆ ℵT , as was to be shown.

In the next theorem we state that or a certain value o λ, problem Q(T, l0, λ) is
equivalent to P(T, l0).

Theorem 3.5. Let T ∈ N be arbitrarily given. Assume that Cprob(T ) < ∞ or
Cprob(T ) in (28). Let ξ have a density fξ such that ln(fξ) is concave (e.g., mul-
tivariate Gaussian). Then, or all λ ∈ (0, 1], problem Q(T, l0, λ) has a unique
solution and there exists a number λ∗ ∈ (0, 1] such that the solution o Q(T, l0, λ

∗)
is equal to the solution o P(T, l0).

Proof. According to Lemma 2.1, our assumption on the density o ξ implies that
lnφT is concave. Hence, or all λ ∈ (0, 1], the objective unction o problem
Q(T, l0, λ) is strongly convex. Since the optimal controls can be ound in the
nonempty, compact and convex set ℵT (λ) (see Lemma 3.4), the existence o a unique
solution o Q(T, l0, λ) ollows. By the concavity o lnφT , problem P(T, l0) is a con-
vex optimization problem. Similar to the proo o Theorem 3.1 we can transorm
it to an optimization problem in terms o α := (αt)

T−1
t=1 with αt = Elt − l(δ) or

t = 0, . . . , T :

minimize J̃T (α) subject to − ln φ̃T (α) ≤ − ln pT . (29)

Here, J̃T is dened in (16) and, using the linear transormation (15), φ̃T is dened as

φ̃T (α) := φT ([B
−1(αt − Aαt−1 + Bx(δ))]Tt=1) = φT (x), (30)

where in (29) α0 = l0 − l(δ) and αT = 0 are constants in these problems. Observe
that the concavity o lnφT implies that o ln φ̃T by linearity o the inner mapping.
Hence, (29) is a convex optimization problem too. Moreover, with ẑ(T )

rom (9),
we may resolve (15) or α with x := ẑ(T ) starting with α0 := l0 − l(δ) and ending –
thanks to the endpoint condition in (9) – as required with

αT = AαT−1 + E(lt − l(δ))− A (Elt−1 − l(δ)) = AαT−1 − A (Elt−1 − l(δ))

= AαT−1 − AαT−1 = 0.
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Using the correspondence (30) between α and controls, this yields some α̂(T ) with

α̂
(T )
0 = l0 − l(δ), α̂

(T )
T = 0 and φ̃T (α̂

(T )) = φT (ẑ
(T )) > pT . This means that α̂T is a

Slater point or problem (29). Consequently, the necessary and sucient conditions
or a solution α o (29) amount to the existence o a multiplier µ ≥ 0 such that
φT (α) ≥ pT and

0 ∈ ∇J̃T (α) + µ ∂ (−ln (φ̃T (α))) , µ(φ̃T (α)− pT ) = 0 (31)

where ∂ denotes the subgradient o convex analysis. Note that the last equation
in (31) represents the complementarity constraint associated with the inequality in
(29).

In the ollowing, denote by x(λ) the solution o Q(T, l0, λ) (whose unique existence
we have shown in the beginning o this proo). I φT (x

(1)) ≥ pT , then x(1) is a
solution o P(T, l0) as well and we may choose λ∗ = 1 in the statement o the
theorem. Thereore, we assume now that φT (x

(1)) < pT . Assume or a moment,
that there exists some λ∗ ∈ (0, 1) such that

φT (x
(λ∗)) = pT . (32)

Then, by denition, x(λ∗) solves Q(T, l0, λ
∗) and we show that it also solves P(T, l0)

as claimed in the Theorem. Indeed, like P(T, l0) in (29), Q(T, l0, λ
∗) can be or-

mulated as a (ree) convex problem in terms o the variable α:

minimizeλ∗J̃T (α)− (1− λ∗) ln φ̃T (α). (33)

Denote by α∗ the vector in correspondence with x(λ∗) via (15). Then, by (30) and (32),

φ̃T (α
∗) = φT (x

(λ∗)) = pT . (34)

Moreover, since x(λ∗) is the solution o Q(T, l0, λ
∗), α∗ is the solution o (33) which

is equivalent with the condition

0∈∂


λ∗J̃T (α
∗)+(1−λ∗)(− ln φ̃T (α

∗))


= λ∗ ∇J̃T (α
∗)+(1−λ∗) ∂ (− ln φ̃T (α

∗)) . (35)

Here, we have applied the sum rule or the convex subdierential which is justied
by, e.g., [17, Theorem 2.85] because J̃T is continuous and convex, − ln φ̃T is convex
and − ln φ̃T (α

∗) < ∞ as a consequence o (34) and our general assumption pT > 0.
Now, dening

µ := (1− λ∗)/λ∗ > 0, (36)

we get – thanks to λ∗ ∈ (0, 1) – that the inclusion inside (31) is satised or α∗.
The same holds true or the equality (complementarity condition) as a consequence
o (34). Hence, α∗ satises the necessary and sucient optimality conditions o
problem (29) which entails that it is a solution o this problem. Translated to the
original description in terms o the x-variables, this means that x(λ∗) is a solution o
P(T, l0) as was to be shown.

It remains to justiy the existence o λ∗ ∈ (0, 1) with (32). Dene

λ∗ := sup{λ ∈ (0, 1] | φT (x
(λ)) ≥ pT}.
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We show rst that λ∗ > 0 which amounts to saying that there exists some λ ∈ (0, 1]
with φT (x

(λ)) ≥ pT . Assume to the contrary that φT (x
(λ)) < pT or all λ ∈ (0, 1].

Then, by optimality o x(λ) and by easibility o x(0)
or problem Q(T, l0, λ), it

ollows that

λJT (x
(λ))− (1− λ) ln pT < λJT (x

(λ))− (1− λ) lnφT (x
(λ))

≤ λJT (x
(0))− (1− λ) lnφT (x

(0))

or all λ ∈ (0, 1]. Since all x(λ) belong to the compact set ℵT by Lemma 3.4 and
since JT is bounded on this set, we may pass to the limit λ ↓ 0, and arrive at
φT (x

(0)) ≤ pT . On the other hand, x(0) is the optimal solution o Q(T, l0, 0) which
amounts to maximizing φT under the endpoint constraint ElT = l(δ). Hence, we
obtain rom (9) the contradiction φT (x

0)) ≥ φT (ẑ
(T )) > pT . Thus, λ

∗ ∈ (0, 1].

Next, we veriy that φT (x
(λ∗)) ≥ pT . By denition o λ∗, there is a sequence λk ↑ λ∗

with φT (x
(λk)) ≥ pT . Since the x(λk) belong to the compact set ℵT (see Lemma

3.4), we may assume that x(λk) → x∗. Observe that, since all x(λk) as solutions
o Q(T, l0, λk) satisy the endpoint condition ElT = l(δ), the same holds true or
x∗. Let x be arbitrary such that ElT = l(δ). Then, since x(λk) is the solution o
Q(T, l0, λk) and the objective o that problem is lower semicontinuous, we obtain

λ∗JT (x
∗)− (1− λ∗)φT (x

∗) ≤ lim inf
k

λkJT (x
(T,λk))− (1− λk)φT (x

(T,λk))

≤ lim inf
k

λkJT (x)− (1− λk)φT (x) = λ∗JT (x)− (1− λ∗)φT (x).

This means that x∗ is the solution o Q(T, l0, λ
∗), i.e., x∗ = x(λ∗). Now, the upper

semicontinuity o φT yields the desired inequality

pT ≤ lim sup
k

φT (x
(λk)) ≤ φT (x

∗) = φT (x
(λ∗)).

As a consequence, λ∗ < 1 because φT (x
(1)) < pT . Summarizing, we have that

λ∗ ∈ (0, 1) and φT (x
(λ∗)) ≥ pT .

In the last step we show that actually φT (x
(λ∗)) = pT . For k ∈ N suciently large

it holds that λ∗ + 1/k ≤ 1 and, hence, by denition o λ∗, or k large enough,
φT (x

(λ∗+1/k)) < pT . Then, by optimality o x(λ∗+1/k) and by easibility o x(λ∗)
or

problem Q(T, l0, λ
∗ + 1/k), it ollows that

(λ∗ + 1/k) JT (x
(λ∗+1/k))− (1− λ∗ − 1/k) ln pT

< (λ∗ + 1/k) JT (x
(λ∗+1/k))− (1− λ∗ − 1/k) lnφT (x

(λ∗+1/k))

≤ (λ∗ + 1/k) JT (x
(λ∗))− (1− λ∗ − 1/k) lnφT (x

(λ∗))

or all k suciently large. Repeating an argument, already used beore in this
proo, we may assume that x(λ∗+1/kl) →l x

(λ∗)
or a subsequence. Invoking now the

continuity o JT , we end up, ater passing to the limits above, at φT (x
(λ∗)) ≤ pT

which nally yields the desired relation φT (x
(λ∗)) = pT .
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3.3. A turnpike result for the case that the probabilistic constraint is

active

In the sequel we denote by λT the multiplier λ∗
rom Theorem 3.5 associated with

an arbitrary T ∈ N. Accordingly we dene the ollowing sequence o problems with
ree initial state and ree terminal state

Q̂(T ) : min
(l̂0, x)∈Rn×XT

λT JT (x)− (1− λT ) ln (φT (x)) (T ∈ N), (37)

where now, in contrast to the previous problems, l̂0 is a variable initial state. In
the ollowing, we denote by l̂t (t = 0, . . . , T ) the random states generated by the
optimal solution o Q̂(T ). Next we state a probabilistic turnpike result:

Lemma 3.6. Let the assumptions o Theorem 3.5 be valid or all T ∈ N. Assume
that there exists some constant R such that or all T ∈ N

∥El̂t∥ ≤ R ∀t ∈ {0, . . . , T}. (38)

Moreover, suppose that κ > 0 or

κ := inf
T∈N

P

(

l̂T − El̂T + l(δ) ∈ F | l̂t ∈ F ∀t ∈ {1, ..., T − 1}
)

. (39)

Then, there exists C1 > 0 such that the random states (lt)
T
t=1 generated by the optimal

control o P(T, l0) satisy the estimate
T∑

t=0

∥Elt − El̂t∥
2 ≤

C1

λT

∀T ∈ N. (40)

Proof. Fix an arbitrary T ∈ N. For Z = (z0, ..., zT )
⊤ ∈ XT+1 dene the unction

H1(Z) := ∥z0∥
2 +

T∑

t=1


∥zt∥

2 + γ∥zt − Azt−1∥
2

. (41)

Then H1 is strongly convex in the sense that or all s ∈ [0, 1] and all Z, Y ∈ XT+1

we have the inequality

H1((1− s)Z + sY ) ≤ (1− s)H1(Z) + sH1(Y )− s (1− s)∥Z − Y ∥2. (42)

This can be seen as ollows. For H2(Z) := ∥z0∥
2 +

T

t=1 ∥zt∥
2 we have

H2((1− s)Z + sY ) = (1− s)H2(Z) + sH2(Y )− s (1− s)∥Z − Y ∥2.

Since H1 is the sum o H2 and a convex unction, (42) ollows. Dene

H(α) := λT H1(α)− (1− λT ) ln (φ̃T (α)) (α ∈ XT+1),

where φ̃ is as in (30), but now with α0,αT being variables. Note that H is the
objective unction o Q̂(T ) when similarly as in the proo o Theorem 3.1, problem
Q̂(T ) is restated as an optimization problem in terms o α as dened in (14). Due
to (42) our assumptions imply that H is a strongly convex unction in the sense that
or all s ∈ [0, 1] and all Z, Y ∈ XT+1 we have the inequality

H((1− s)Z + sY ) ≤ (1− s)H(Z) + sH(Y )− λT s (1− s)∥Z − Y ∥2,

where we exploited (42), the concavity o ln φ̃ according to Theorem 3.5 (see remark
below (30)) and λT ≤ 1 by the same Theorem.
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For all s ∈ (0, 1] this is equivalent to the inequality

H(Y ) ≥ H(Z) +
H((1− s)Z + sY )−H(Z)

s
+ λT (1− s)∥Z − Y ∥2.

I Z is a point such that H(Ỹ ) ≥ H(Z) or all Ỹ ∈ XT+1, this yields

H(Y ) ≥ H(Z) + λT sup
s∈(0,1]

(1− s)∥Z − Y ∥2 = H(Z) + λT ∥Z − Y ∥2.

Following our previous reormulation o problems in the new variable α, we may
restate Q̂(T ) as

min
α∈XT+1

H(α)

and Q(T, l0, λT ) as the corresponding problem with xed α0 = l0 − l(δ) and
αT = 0 (see remarks below (30)). Let v̂(T ) denote the optimal value o Q̂(T )
and v(T, l0, λT ) the optimal value o Q(T, l0, λT ). Since problems Q(T, l0, λT )
and P(T, l0) are equivalent by Theorem 3.5, we have that

v(T, l0, λT ) ≥ v̂(T ) + λT

T∑

t=0

∥α∗
t − α̂∗

t∥
2 (43)

where α∗
t := Elt − l(δ) and α̂∗

t := El̂t − l(δ) and Elt, El̂t are the expected states
generated by the optimal solutions o Q(T, l0, λT ) and Q̂(T ), respectively.

Since the matrices A,B are regular by our basic assumptions, there exists a control
q̃ ∈ XT that generates or the deterministic dynamics

ηt = Aηt−1 + Bq̃t (44)

the deterministic trajectory (η0, η1, ...., ηT ) = (l0 − l̂0, 0, . . . , 0, l
(δ) − El̂T ).

To be precise, we have q̃ = (−B−1[A(l0 − l̂0)], 0, . . . , 0, B
−1[l(δ) − El̂T ]).

Starting with lu0 := l0 the control u := x̂+ q̃ with the (uncertain) dynamics

lut := A lut−1 + But + ξt (t = 1, . . . , T )

generates the trajectory (lut )
T
t=0 = (l̂t + ηt)

T
t=0 which is equal to

l0, l̂1, . . . , l̂T−1, l̂T + l(δ) − El̂T . (45)

Since E(l̂T + l(δ) − El̂T ) = l(δ), the control u is easible or Q(T, l0,λT ).

Due to the denition o the objective unction o Q(T, l0,λT ) and Q̂(T ), our con-
struction implies the inequality

v(T, l0,λT )− v̂(T ) ≤ λT (JT (u)− JT (x̂))− (1− λT ) (lnφT (u)− lnφT (x̂)) . (46)

First we derive an upper bound or the deterministic part JT (u)−JT (x̂). Given (16)
and with αu

t := Elut − l(δ) or t = 0, . . . , T , we get that

JT (u)− JT (x̂) = ∥αu
0∥

2 − ∥α̂∗
0∥

2 +
T

t=1∥α
u
t ∥

2 − ∥α̂∗
t∥

2

+γ

∥αu

t − Aαu
t−1∥

2 − ∥α̂∗
t − Aα̂∗

t−1∥
2

≤ ∥αu

0∥
2 − ∥α̂∗

0∥
2 (47)

+γ

∥αu

1 − Aαu
0∥

2 − ∥α̂∗
1 − Aα̂∗

0∥
2 + ∥Aαu

T−1∥
2 − ∥α̂∗

T − Aα̂∗
T−1∥

2

,
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because, thanks to (45) one has that αu
t = α̂∗

t or t = 1, . . . , T − 1 and because

o αu
T = E(l̂T + l(δ) − El̂T ) − l(δ) = 0. For the probabilistic part o the objective

unction we proceed in a similar way. By denition o φT , we may write in terms o
conditional probabilities

φT (u) = P(lut ∈ F (t = 1, . . . , T − 1)) · P(luT ∈ F | lut ∈ F (t = 1, . . . , T − 1))

φT (x̂) = P(l̂t ∈ F (t = 1, . . . , T − 1)) · P(l̂T ∈ F | l̂t ∈ F (t = 1, . . . , T − 1)).

By (45), the rst actors coincide. Since also the log o a probability is negative, we
may conclude that

lnφT (u)− lnφT (x̂) ≥ lnP(l̂T + l(δ) − El̂T ∈ F | l̂t ∈ F (t = 1, . . . , T − 1)).

Thus, we may continue (46) by using (47) as

v(T, l0,λT )− v̂(T ) ≤ λT (∥αu
0∥

2 − ∥α̂∗
0∥

2)

+λTγ

∥αu

1 − Aαu
0∥

2 − ∥α̂∗
1 − Aα̂∗

0∥
2 + ∥Aαu

T−1∥
2 − ∥α̂∗

T − Aα̂∗
T−1∥

2


−(1− λT ) lnP(l̂T + l(δ) − El̂T ∈ F | l̂t ∈ F (t = 1, . . . , T − 1))

≤ λT


∥αu

0∥
2 + γ∥αu

1 − Aαu
0∥

2 + γ∥Aαu
T−1∥

2

− (1− λT ) ln κ,

where we we exploited that κ > 0 by assumption. Observing that

∥αu
0∥ ≤ ∥l0∥+ ∥l(δ)∥

∥αu
1 − Aαu

0∥ ≤ R + ∥l(δ)∥+ ∥A∥(∥l0∥+ ∥l(δ)∥)

∥Aαu
T−1∥ ≤ ∥A∥(R + ∥l(δ)∥),

we arrive at v(T, l0,λT )− v̂(T ) ≤ C1, where C1 is independent o T . With (43) the
above inequality implies

T∑

t=0

∥α∗
t − α̂∗

t∥
2 ≤

1

λT

[v(T, l0,λT )− v̂(T )] ≤
C1

λT

.

In Lemma 3.6, the quotient C1

λT

on the right-hand side o (40) becomes arbitrarily
large i λT ∈ (0, 1] converges to zero. In the ollowing we derive a strictly positive
lower bound or the corresponding values o λT . To show that there is a strictly
positive uniorm lower bound or the multipliers or problem P(T, l0) with respect
to T , we have to introduce a normalization with respect to T in the probabilistic
constraint, that is, we adapt the probability level to the time-horizon. For this
purpose or a given parameter ζ ∈ (0, 1) and T ∈ N we dene

pT = ζT pmax(T ) (48)

where pmax(T ) is the optimal value o the probability maximizing problemQ(T, l0, 0).
Since pmax(T ) is decreasing with T , also pT is decreasing as a unction o T .

Lemma 3.7. Assume that the probability levels pT in problems P(T, l0) are given
by (48). Suppose, moreover, that there exists some R̃ such that or all T ∈ N.

∥Elt∥ ≤ R̃ ∀t ∈ {0, . . . , T}, (49)

Then, there is some C2 > 0 such that λT ≥ C2 or all T ∈ N.
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Proof. The probabilistic constraint (7) with the time-dependent probability level
is

φT (x) ≥ pT .

Under the assumptions o Theorem 3.5, dene the convex unction

gT (x) = ln(pT )− ln(φT (x)).

Then the probabilistic constraint (7) is equivalent to the convex constraint

gT (x) ≤ 0. (50)

Let xS(T ) be a solution o Q(T, l0, 0) (i.e. a control that yields the maximum
probability φT (·)). Then or all T ∈ {2, 3, 4, ...} we have the Slater condition (9)
or problem P(T, l0):

φT (xS(T )) = pmax(T ) > ζT pmax(T ) = pT . (51)

Dene the ane subspace

X̃T = {x ∈ XT | ElT = l(δ) under l0 = 0 and the dynamics (1)}.

Then, we can write the dual problem or P(T, l0) as

D(T, l0) : max
µ≥0

inf
x∈X̃T

LT (x, µ)

with the Lagrangian LT (x, µ) = JT (x) + µ gT (x). Let µT (l0) denote the multiplier
that corresponds to the optimal control xT (l0) o problem P(T, l0). Let β(T, l0)
denote the optimal value o P(T, l0). Due to the Slater condition (51) we have
strong duality, which means that the optimal value o P(T, l0) is equal to the optimal
value o D(T, l0), that is

β(T, l0) = inf
x∈X̃T

LT (x, µT (l0)).

This yields the inequality β(T, l0) ≤ LT (xS(T ), µT (l0)), which implies in turn

µT (l0) ≤
β(T, l0)− JT (xS(T ))

gT (xS(T ))
=

JT (xS(T ))− β(T, l0)

|gT (xS(T ))|
=

JT (xS(T ))− β(T, l0)

T | ln(ζ)|
. (52)

Due to the recursion (13) or the expected values, we have

(xS(T ))t = B−1 (Elt − AElt−1 − E) .

This implies with (49)

sup
T∈N

max
t∈{1,...,T}

∥(x
(T )
S )t∥ < ∞. (53)

Note that by (6) JT attains only values greater than or equal to zero. This yields
β(T, l0) ≥ 0. Hence we obtain

sup
T∈N

JT (xS(T ))− β(T, l0)

T
≤ sup

T∈N

JT (xS(T ))

T
.
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The objective unction JT is dened as the sum o T + 1 terms each o which can
be bounded by some common constant M̂ thanks to (49). Hence (53) yields

sup
T∈N

JT (xS(T ))

T
≤ sup

T∈N

(T + 1) M̂

T
≤ 2 M̂ < ∞.

Due to (52) we have sup
T∈N

µT (l0) ≤
2 M̂

| ln(ζ)|
< ∞.

Due to the relation (36), we have that µT = (1− λT )/λT , whence

λT ≥
| ln(ζ)|

| ln(ζ)|+ 2 M̂
=: C2 ∀T ∈ N.

Now, we are in a position to ormulate our main result on the probabilistic turnpike
property o the expected states or the optimal control o problem P(T, l0):

Theorem 3.8. Under the assumptions o Lemma 3.6 and Lemma 3.7, the expected
states (Elt)

T
t=1 generated by the optimal controls o the sequence o problems P(T, l0)

or T ∈ N have a turnpike structure near the expected states (El̂t)
T
t=1 generated by

the optimal solutions o the sequence o problems Q̂(T ) in the sense that there exists
a constant C such that

T∑

t=0

∥Elt − El̂t∥
2 ≤ C ∀T ∈ N. (54)

For the optimal control x ∈ XT o P(T, l0) and x̂ o Q̂(T ) we have the turnpike
inequality

T∑

t=1

∥xt − x̂t∥
2 ≤ 2C ∥B−1∥2


1 + ∥A∥2


∀T ∈ N, (55)

where ∥B−1∥ and ∥A∥ denote the spectral norms. Also here the control values xt

and x̂t (t ∈ {1, ..., T}) depend on the problem parameter T o P(T, l0).

Proof. Combine Lemmas 3.6 and 3.7 and put C := C1/C2. For the controls, (15)
implies

xt − x(δ) = B−1α∗
t −B−1Aα∗

t−1, x̂t − x(δ) = B−1α̂∗
t −B−1A α̂∗

t−1 (t ∈ {1, . . . , T}).

Hence we have

xt − x̂t = B−1(α∗
t − α̂∗

t )− B−1A(α∗
t−1 − α̂∗

t−1).

Hence due to the denition o α∗
t and α̂∗

t (54) yields

T∑

t=1

∥xt − x̂t∥
2 ≤

T∑

t=1

(

∥B−1∥ ∥Elt − El̂t∥+ ∥B−1∥ ∥A∥ ∥Elt−1 − El̂t−1∥
)2

≤ 2∥B−1∥2

1 + ∥A∥2


T∑

t=0

∥Elt − El̂t∥
2 ≤ 2∥B−1∥2


1 + ∥A∥2


C ∀T ∈ N.

Then (55) ollows.
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3.4. Discussion of assumptions

The assumptions o Theorem 3.8 (via those o Lemmas 3.6 and 3.7) concern, on
the one hand, the uniorm boundedness o expected states generated by the optimal
solutions o the original problem and the problem with ree initial and terminal state,
and on the other hand the sequence o conditional probabilities in (39). While the
ormer ones are intuitively clear, the latter one is purely technical. Conversely, the
ormer ones are hard to ensure by reasonable conditions on the initial data whereas
we will show in the ollowing how (39) can be guaranteed in a standard setting.
We note that the uniorm boundedness o the respective optimal expected states
might be veried empirically as in the numerical results o Fig. 4.5, where both
trajectories stay within the desired region no matter how large the time horizon has
been chosen.

Now, we address the verication o (39). We start with a technical preparation. Fix
an arbitrary T ∈ N. We consider the time-discrete dynamic system o the random
states l̂0, l̂ = (l̂1, . . . , l̂T )

⊤ that are generated by the optimal solution x̂ o the ree
terminal state problem Q̂(T ) in (35). Together with the recursion in (1) we obtain

l̂t = Al̂t−1 + Bx̂t + ξt, t = 1, . . . , T.

Let be x̂ = (x̂1, . . . , x̂T )
⊤ and ξ = (ξ1, . . . , ξT )

⊤. Denine the lower triangular block
matrix ∆ ∈ R

nT×nT and the matrices Ā ∈ R
nT×n, B̄ ∈ R

nT×nT such that

∆ :=



















I 0
A I
...

...

AT−1 · · · A I



















, Ā :=



















A
A2

...

AT



















, B̄ :=













B 0
...

0 B













.

Then the evolution o the states can be represented in closed orm by

l̂ = ∆ξ + Āl̂0 +∆B̄x̂. (56)

Assuming that ξt ∼ N (E,Σ) or t = 1, . . . , T are independently and identically
distributed Gaussian random variables, and by dening

Ē :=













E
...

E













and Σ̄ :=













Σ 0
...

0 Σ













,

we obtain that

ξ ∼ N (Ē, Σ̄) and l̂ ∼ N (∆Ē + Āl̂0 +∆B̄x̂,∆Σ̄∆
⊤).

Now, we are able to represent the joint density unction or l̂. Setting

µ̄ := ∆Ē + Āl̂0 +∆B̄x̂,

the density unction reads

fl̂(z) =
1



(2π)nT det(Σ)T
e−

1
2
(z−µ̄)⊤(∆Σ̄∆⊤)−1(z−µ̄). (57)
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Both, ∆ and Σ̄ involve special structures that allow or a simple representation o
their inverses. It is easy to see that the inverse o ∆ is o the orm

∆
−1 =



















I 0
−A I

... ...

0 −A I



















.

We assume that Σ has the Cholesky actorization Σ = LL⊤. Now let L̄ ∈ R
nT×nT

be dened as

L̄ :=













L 0
...

0 L













with L̄−1 =













L−1 0
...

0 L−1













.

Thereore, due to Σ̄
−1 = (L̄L̄⊤)−1 = L̄−⊤L̄−1, we obtain or any z ∈ R

nT that

z⊤(∆Σ̄∆
⊤)−1z = z⊤∆−⊤

Σ̄
−1
∆

−1z = (L̄−1
∆

−1z)⊤L̄−1
∆

−1z. (58)

The matrix L̄−1
∆

−1 is o the orm

MT := L̄−1
∆

−1 =



















L−1 0
−L−1A L−1

... ...

0 −L−1A L−1



















. (59)

Applying (58) and (59), (57) reads

fl̂(z) =
1



(2π)nT det(Σ)T
e−

1
2
(MT (z−µ̄))⊤MT (z−µ̄). (60)

Proposition 3.9. Let (l̂0, x̂) be the solution o the ree initial state problem Q̂(T ),
where T ∈ N is arbitrarily fxed, and denote by l̂ = (l̂1, . . . , l̂T )

⊤ the random states
generated by this solution. Under the assumption that ξt ∼ N (E,Σ), t = 1, 2, . . .
are i.i.d. Gaussian random variables and under assumption (38) o Lemma 3.6, it
holds that

P

(

l̂T − El̂T + l(δ) ∈ F
∣
∣
∣ l̂t ∈ F ∀t ∈ {1, . . . , T − 1}

)

≥ C,

where C > 0 is a constant independent o T .

Proof. To determine the ormulated conditional probability or a given T ∈ N we
want to apply the joint density unction (60) o l̂. To do this we consider the random
variable

η := (l̂1, . . . , l̂T−1, l̂T − El̂T )
⊤

that is obtained rom l̂ by shiting the T th component by the constant El̂T to
zero mean. Note that the covariance matrix does not change by this shit. In the
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ollowing argumentation, or any vector z = (z1, . . . , zT )
⊤ ∈ R

nT we will denote by
z′ = (z1, . . . , zT−1)

⊤ ∈ R
n(T−1) its rst T − 1 entries (each o dimension n). Having

MT =



















0

MT−1

...

0
0 · · · 0 −L−1A L−1



















,

the joint density unction o η can be derived rom the density o l̂ given in (60).
Since Eη = (µ̄1, . . . , µ̄T−1, 0), we obtain

fη(z) =
1

√

(2π)nT det(Σ)T
e−

1
2
(∥MT−1(z

′−µ̄′)∥2+∥L−1zT−L−1A(zT−1−µ̄T−1)∥
2), (61)

where ∥ · ∥ denotes the respective Euclidean norm. Moreover, the density unction
o the reduced vector η′ = (l̂1, . . . , l̂T−1) is obtained by

fη′(z
′) =

1
√

(2π)n(T−1) det(Σ)(T−1)

e−
1
2
∥MT−1(z

′−µ̄′)∥2 . (62)

For the wanted conditional probability we have now (with F T−1 := F × · · · × F
  

T−1 times

)

pcondT := P

(

l̂T − El̂T + l(δ) ∈ F
∣
∣
∣ l̂t ∈ F ∀t ∈ {1, . . . , T − 1}

)

= P

ηT ∈ F − l(δ)

∣
∣ η′ ∈ F T−1


.

The latter conditional expression can be represented in terms o the above densities
(61) and (62). More precisely, with

√

(2π)n(T−1) det(Σ)(T−1)

√

(2π)nT det(Σ)T
=

1
√

((2π)n det(Σ))
=: θ

it turns out that

pcondT = θ

∫

x∈FT−1

∫

y∈F−l(δ)
e−

1
2
(∥MT−1(x−µ̄′)∥2+∥L−1y−L−1A(xT−1−µ̄T−1)∥

2)dydx
∫

x∈FT−1 e
− 1

2
(∥MT−1(x−µ̄′)∥2dx

. (63)

Since F and thereore F − l(δ) are compact and because µ̄T−1 = El̂T−1 and thereore
µ̄T−1 ≤ R due to assumption (38) (independently o T ), or any (z, y) ∈ F×(F−l(δ))
we can uniormly estimate

∥L−1y − L−1A(z − µ̄T−1)∥ ≤ ∥L−1∥∥y∥+ ∥L−1A∥(∥z∥+ ∥µ̄T−1∥)

≤ Ĉ∥L−1∥+ Ĉ∥L−1A∥+R∥L−1A∥. (64)

Here, Ĉ is a constant such that the unit ball BĈ(0) contains both F and F − l(δ).
Applying inequality (64) to (63) we can bound the conditional probability pcondT
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uniormly rom below. Let λ denote the Lebesgue measure. Then we observe rom
(63) that

pcondT ≥ θ
λ(F − l(δ))e−

1
2
(Ĉ∥L−1∥+Ĉ∥L−1A∥+R∥L−1A∥)2

∫

x∈FT−1 e
− 1

2
(∥MT−1(x−µ̄′)∥2dx

∫

x∈FT−1 e
− 1

2
(∥MT−1(x−µ̄′)∥2dx

= θλ(F − l(δ))e−
1
2
(Ĉ∥L−1∥+Ĉ∥L−1A∥+R∥L−1A∥)2 =: C > 0.

Since the constants Ĉ, θ and R rom Lemma 3.6 do not depend on T , so C does not
either, which completes the proo.

In the numerical experiments presented in the next section the turnpike property
stated in Theorem 3.8 is clearly visible and in particular or suciently large time
horizons close to the middle o the time inteval the two expected trajectories almost
coincide.

4. Numerical experiments for the probabilistic turnpike

In this section we present numerical experiments or the probabilistic turnpike or
here-and-now decisions. For studying the turnpike phenomenon in a probabilistic
setup, as an instance or a time-discrete system (1), we consider the linear recursion

lt = lt−1 + xt + ξt (65)

or t ∈ {1, . . . , T}. Here, equation (65) models the state level in a reservoir prob-
lem, or example the water level or hydroelectricity generation. For any time step
t ∈ {1, . . . , T} the scalar state variable lt ∈ R denotes the water level in the reservoir,
the control variable xt ∈ R is the amount o water to be lled or released at t, and
ξt ∈ R is some random water infow to the reservoir. We assume that the infows
ξt describe a sequence o identically distributed Gaussian random numbers with
Eξt = E or t = 1, . . . , T .

Instead o computing policies or optimal water releases or power generation, in our
numerical tests we are rather interested in turning a given water level l0 back to a
desired level l(δ) ∈ F := [a, b] in a cost optimal way. According to (5) we have

x(δ) = −E

and dene the objective unction o the optimal control problem by

JT (x) =
T∑

t=0

(E(lt)− l(δ))2 + γ

T∑

t=1

(xt − x(δ))2,

where γ is some non-negative weighting actor concerning the control cost. Intro-
ducing the probabilistic constraint

φT (x, l0) = P(lt ∈ [a, b] or all t ∈ {1, . . . , T}),

nally, the optimization problem P(T, l0) introduced in Section 2 reads

min
x∈RT

JT (x) subject to ElT = l(δ) and φT (x, l0) ≥ p (66)

or a given and xed probability level p ∈ [0, 1].
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4.1. Turnpike study for a short time horizon

In a rst test series we want to study numerical examples, where we consider a
short xed time horizon T , varying initial water levels l0 compared to dierent
desired levels l(δ) and a given xed condence interval [a, b]. In particular, we solve
(66) numerically with the ollowing data:

Condence interval: [a, b] = [11, 25]
Initial level: l0 = 5, 13
Desired level: l(δ) = 16, 20
Time horizon: T = 10
Control cost actor: γ = 5
Distribution o infow t: ξt ∼ N (E, 1); E = −1
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Figure 4.1: Solution o the turnpike problem or two examples with dierent initial
level l0 = 5 (let) and l0 = 13. The level trajectories are computed or a xed desired
level l(δ) = 16 as well as probability levels p = 0.70 (let) and p = 0.91.

Computed solutions o the optimal control problem (66) or the rst two numerical
examples are shown in Fig. 4.1. The expected level trajectories o the reservoir or
the given data are displayed or two dierent situations, where the initial level is
located outside and inside the condence interval, respectively. Beside the expected
level, the gure also shows realizations o the level curves realizing the computed
optimal control or randomly selected infow scenarios (light gray) or the given time
horizon. The expected level (shown by purple lines) are observed or probability
levels p = 0.70 and p = 0.91, respectively. Clearly, in both example, by the optimal
solution the system is controlled towards the desired level. However, i the initial
level as in the rst example is located outside the condence interval, we observe a
jump o the expected level into the condence interval in the rst time step in order
to satisy the probabilistic constraint. Aterwards, similar to the second example,
the system is smoothly turned to the desired level, which is a consequence to the
chosen parameter γ > 0. By this setting, due to the control cost within the objective
unction, abrupt rises o the reservoir levels will be avoided.

Next, we want to study the behavior o the reservoir levels when increasing the
probability level inside the probabilistic constraint. With the same setup as in the
two examples beore we just change the probabilities to p = 0.91 and p = 0.93,
respectively.
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Figure 4.2: Solution o the turnpike problem or two examples with dierent initial
level l0 = 5 (let) and l0 = 13, but, with increased probability levels p = 0.91 (let)
and p = 0.93. The level trajectories are computed or the xed desired level l(δ) = 16.
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Figure 4.3: Solution o the turnpike problem or pmax. Displayed are level trajectories
or dierent desired levels l(δ) = 16 (let) and l(δ) = 20.

The results are shown in Fig. 4.2. The new observation is the ollowing: When
increasing the probability the expected reservoir level will be orced to leave the
desired state in order to increase the probability that the state curves remain within
the condential bounds. As consequence, within intermediate time steps the ex-
pected state o the system exceeds the desired level and turns toward the center
line o the condence interval. However, as required by the constraints, at the end
o the time horizon in both examples the expected value o the reservoir level turns
back and reaches the desired level again.

As typical or optimization problems with probabilistic constraints there exists a
maximum probability level pmax such that the easibility set becomes empty or
higher probability p, i.e. or pmax < p ≤ 1. The previous results are obtained or
probability levels below the maximum probability. Now, we want to look at the
turnpike behavior when reaching pmax. I p = pmax, the reservoir problem solution
approaches the level state that maximizes the probability p in one step. This is
shown in Fig. 4.3 or two instances, where we compare two dierent desired levels.
In both cases it turns out that the expected reservoir levels almost ignore the desired
level, because they are orced towards the center o condence in order to match the
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maximum probability. They both turn to the desired level only to the end o the
time horizon that is due to the terminal condition.

4.2. The turnpike property for increasing time horizons

Finally, we want to illustrate the probabilistic turnpike property or a increasing
time horizon. The turnpike result rom Section 3 describes the turnpike behavior
o the system state with increasing time horizon T . In order to show this specic
probabilistic turnpike phenomenon by the numerical example we want to setup the
time horizon sequentially by T = 40 / 60 / 80 / 100. In addition, we adjust the stan-
dard deviation o the random vectors ξt and we want to allow correlations between
dierent time steps.
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Figure 4.4: Bounding maximal and minimal probability curves pmax(·) and pmin(·)
as unction o the time horizon such that the level problem (66) is easible and such
that the probabilistic constraint is active. The graphic also shows a suitable time
dependent choice o probabilities p(T ), where p(T ) = ζT · pmax(T ) with constant
ζ = 0.99996.

In particular, we assume an infow process ξ = (ξ1, . . . , ξT ) that ollows a multivariate
Gaussian distribution with tridiagonal covariance matrix o the orm

ξ ∼ N (−IT ,ΣT ) and ΣT =
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with σ1 = 0.05, σ2 = 0.03, σ3 = 0.015, and where IT denotes the T -dimensional
identity matrix. All other xed problem data o the level problem (66) ollow the
general setup above with initial level l0 = 13 and desired level l(δ) = 20.

When increasing the number o time steps, the probability that the system remains
within some given bounds drops down. This is due to the increasing variance o
perturbations caused by the random infow process. More precisely, the probability
pmax(T ) as unction o the time horizon is strictly monotonic decreasing. On the
other hand, or small enough probability levels the probabilistic constraint becomes
inactive.



M.Gugat et al. / A Turnpike Property or Optimal Control Problems ... 1049

 0  10  20  30  40  50  60  70  80  90  100

11

25

13

18

20

γ = 30, p = 0.9814

T = 40

L
e

v
e

l

Interval [0,T]

desired level
free initial/terminal state

expected level

 0  10  20  30  40  50  60  70  80  90  100

11

25

13

18

20

γ = 30, p = 0.9497

T = 60

L
e

v
e

l

Interval [0,T]

desired level
free initial/terminal state

expected level

 0  10  20  30  40  50  60  70  80  90  100

11

25

13

18

20

γ = 30,  p = 0.9131

T = 80

L
e

v
e

l

Interval [0,T]

desired level
free initial/terminal state

expected level

 0  10  20  30  40  50  60  70  80  90  100

11

25

13

18

20

γ = 30,  p = 0.8715

T = 100

L
e

v
e

l

Interval [0,T]

desired level
free initial/terminal state

expected level

Figure 4.5: Probabilistic turnpike property or increasing time horizons T = 40,
60, 80, 100. Shown here are the expected state trajectories compared to the corres-
ponding ree initial and terminal state curves.
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Figure 4.6: Probabilistic turnpike property disclosed by the optimal controls. Shown
here are the computed optimal controls o the turnpike problems compared to the
computed corresponding ree initial and terminal state controls.
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In consequence, the probability level p in (66) should be chosen between the upper
bound pmax(T ) and some lower bound pmin(T ). Otherwise, the problem (66) is
getting ineasible or it turns to a pure deterministic turnpike problem. Fig. 4.4
shows the bounding maximal and minimal probability curves pmax(·) and pmin(·) as
unction o the time horizon or the numerical example. In order to get a suitable
probability levels or (66) we setup the probability p as unction o pmax. In the
ollowing we apply p according to the denition

p(T ) := ζT · pmax(T ) ,

where ζ ∈ (0, 1) is some constant number that is chosen sucient close to 1. In
the numerical example ζ is assigned to ζ = 0.99996 (c. Fig. 4.4). The related
probabilistic turnpike property or an increasing time horizon is studied in Fig. 4.5
and Fig. 4.6. The numerical results are shown or time horizons T = 40 / 60 / 80 / 100
or both the expected states (Fig. 4.5) and the optimal controls (Fig. 4.6). On the
one hand we compare the expected state o the system, observed when applying the
optimal control as solution o (66), with the expected state according to the optimal
solution o the ree initial state and ree terminal state problem Q̂(T ) dened in (37).
On the other hand we show the turnpike phenomenon as stated in Theorem 3.8 or
the optimal controls themselves.

The pictures in Fig. 4.5 reveal that at the beginning o the time horizon the ex-
pected system state (when applying the problem with bounding conditions) turns
rom the dened initial state smoothly towards the expected state o the problem
with ree initial and ree terminal state. Beore reaching the end o the time horizon
the expected level leaves the ree initial/terminal state solution in order to match
the deterministic terminal state condition, i.e. the expected system state o the
bounded problem terminates with the desired level. The eect becomes more evi-
dent with a prolongation o the time horizon. The longer the time horizon the more
intermediate time steps can be observed, where the computed expected level accord-
ing to (66) is close to the expected level o the corresponding ree initial/terminal
solution. According to Fig. 4.6 a similar observation can be made or the optimal
controls computed or the example problems on the dierent time scales. The nu-
merical results conrm empirically the turnpike properties (54) and (55) stated in
Theorem 3.8.

5. Conclusion

Motivated by the application o probabilistic constraints in dynamic optimal plan-
ning problems or the operation o gas networks, we have studied the turnpike prop-
erty or time-discrete systems with an additive random perturbation. We have con-
sidered optimal control problems where the quadratic objective unctional is stated
in terms o expected values and a probabilistic constraint is prescribed. We have
shown that under suitable assumptions we obtain a turnpike structure or the ex-
pected optimal state also or problems with probabilistic constraints. We have shown
that or large time horizons the optimal expected trajectories approach the optimal
expected trajectories o the problem with ree initial and ree terminal states in the
majority o time steps.
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In our analysis we consider problem Q(T, l0, λ) where the probability that a given
inequality constraint is satised appears in a penalty term in the objective unctional
with a certain weight that is parameterized by λ ∈ [0, 1]. We show that there exists
a parameter λ or which the solution o the problem P(T, l0) with a probabilistic
constraint and given terminal state and prescribed expected terminal state coincides
with the solution o problemQ(T, l0, λ). This yields a turnpike result o a new type,
where the turnpike trajectory is obtained as the solution o an auxiliary problem
that depends on the parameter λ and thus indirectly (via the value o the parameter
λ) also on the given initial state. It is important to emphasize that or the problem
with the probabilistic contraint, this specic parameter is not known a priori and
is not indpendent o the initial state. Since the parameter λ varies in a bounded
set, this new type o turnpike result yields a amily o limit trajectories that is
parameterized by λ, whereas in the classical turnpike results only a single turnpike
trajectory appears.

There are some open questions let, in particular about the verication o our as-
sumptions in terms o the problem data, in particular the underlying probability
distributions. We have considered a special nite-dimensional setting with ane
linear dynamics. In the applications, in contrast to our setting the dynamics are
oten nonlinear, in act oten given by partial dierential equations. In this innite-
dimensional setting specic probabilistic box-constraints are required or the easible
states. How the results can be generalized to this setting is a topic or uture re-
search. Such an analysis could be based upon the recent paper [13].
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