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Abstract

The paper addresses a new class of optimal control problems governed by the dissipative and discon-
tinuous differential inclusion of the sweeping/Moreau process while using controls to determine the best 
shape of moving convex polyhedra in order to optimize the given Bolza-type functional, which depends 
on control and state variables as well as their velocities. Besides the highly non-Lipschitzian nature of 
the unbounded differential inclusion of the controlled sweeping process, the optimal control problems un-
der consideration contain intrinsic state constraints of the inequality and equality types. All of this creates 
serious challenges for deriving necessary optimality conditions. We develop here the method of discrete 
approximations and combine it with advanced tools of first-order and second-order variational analysis and 
generalized differentiation. This approach allows us to establish constructive necessary optimality condi-
tions for local minimizers of the controlled sweeping process expressed entirely in terms of the problem 
data under fairly unrestrictive assumptions. As a by-product of the developed approach, we prove the 
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strong W1,2-convergence of optimal solutions of discrete approximations to a given local minimizer of 
the continuous-time system and derive necessary optimality conditions for the discrete counterparts. The 
established necessary optimality conditions for the sweeping process are illustrated by several examples.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction and problem formulation

This paper is devoted to the study of the sweeping process, a class of models introduced by 
Jean-Jacques Moreau in the 1970s to describe a number of quasistatic mechanical problems; 
see [28,30,31] and the book [22] for more details. Besides the original motivations, models of 
this type have found significant applications to elastoplasticity [15], hysteresis [18], electric cir-
cuits [1], etc. For its own sake, the sweeping process theory has become an important area of 
nonlinear and variational analysis with numerous mathematical achievements and challenging 
open questions; see, e.g., [13,20] and the references therein.

Mathematically the sweeping process is governed by the dissipative differential inclusion

ẋ(t) ∈ −N
(
x(t);C(t)

)
a.e. t ∈ [0, T ], (1.1)

which describes the movement of a point belonging to a continuous moving set C(t) while its 
velocity belongs for a.e. t to the negative normal cone to C(t) at x(t). The Cauchy problem 
x(0) = x0 for the sweeping process (1.1) enjoys a developed well-posedness theory for convex 
and mildly nonconvex moving sets; see, e.g., [13]. Higher-order and state-dependent sweeping 
processes have also been studied (to a much lesser extent) in the literature; see, e.g., the book [9]. 
Let us also mention the recent paper [21], which contains existence and well-posedness results 
obtained via advanced tools of variational analysis and generalized differentiation for a broad 
class of evolution systems including the sweeping process.

Among the central issues of the sweeping process theory is establishing the existence and 
uniqueness of solutions to the Cauchy problem for the sweeping differential inclusion (1.1) under 
reasonable assumptions on the given moving set C(t). This tells us that it does not make any sense 
to optimize the sweeping process generated by the given set C(t) from the standard viewpoint of 
optimal control theory well developed for Lipschitzian differential inclusions and the like; see, 
e.g., [25,40,44] and the references therein.

In our first paper on the sweeping process [11] we suggested to take a new viewpoint on opti-
mizing the dynamical system (1.1) by controlling the moving set C(t) with the usage of control 
actions that change the shape of C(t) and hence the right-hand side of the sweeping differential 
inclusion (1.1). This idea was partly implemented in [11] for the case when the sweeping process 
was driven by a moving affine hyperplane whose normal direction and boundary were acting 
as control variables. Furthermore, it was assumed in [11] the independence of the running cost 
on time, control variables, and control velocities as well as the uniform Lipschitzian continuity 
of feasible controls. Apparently this first attempt was limited from both viewpoints of control 
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theory and possible applications. A much more realistic while significantly more challenging 
case appears when, along with general running costs depending on state, control, and their ve-
locity variables, controlled moving sets are described by convex polyhedra governed by finitely 
many controls in normal directions and polyhedron boundaries under inequality and equality 
constraints. Polyhedral descriptions of moving sets in the (uncontrolled) sweeping process were 
largely explored, e.g., in [15,18,19], where the reader can find interesting applications to partic-
ular models of elastoplasticity and hysteresis.

In the other line of development we mention the recent paper [8] and its subsequent exten-
sion [2], which address a different class of optimal control problems for an equivalent variational 
inequality description of the sweeping process of the rate-independent hysteresis type, where 
the convex moving set is fixed while controls appear in an associated ordinary differential equa-
tion. Another recent paper [10], in the framework of BV solutions of a sweeping process whose 
given moving set is lower semicontinuous with nonempty interior, concerns relaxation issues 
and dynamic programming. Controls appear there via perturbations of the dynamics given by the 
normal cone while being the barycenter of a Borel finite measure. Control problems governed 
by rate-independent evolution systems in infinite dimensions and their applications are studied 
in [34,35], where the existence of optimal solutions is established by using some direct methods 
including finite-difference and �-convergence approximations.

In this paper we study the following optimal control problem (P ) of the generalized Bolza 
type for the sweeping process (1.1) as well as some of its modifications. Given an extended-
real-valued terminal cost function ϕ : Rn → R := (−∞, ∞] and a running cost � : [0, T ] ×
R

2(n+nm+m) →R, minimize the functional

J [x,u, b] : = ϕ
(
x(T )

)+
T∫

0

�
(
t, x(t), u(t), b(t), ẋ(t), u̇(t), ḃ(t)

)
dt (1.2)

over the controlled sweeping dynamics described by

ẋ(t) ∈ −N
(
x(t);C(t)

)
for a.e. t ∈ [0, T ], x(0) := x0 ∈ C(0) (1.3)

with the inequality and equality constraint defined by

C(t) := {
x ∈ R

n
∣∣ 〈ui(t), x〉 ≤ bi(t), i = 1, . . . ,m

}
(1.4)

with ‖ui(t)‖ = 1 for all t ∈ [0, T ], i = 1, . . . ,m, (1.5)

where the control actions u(·) = (
u1(·), . . . , um(·)) and b(·) = (

b1(·), . . . , bm(·)) are absolutely 
continuous on [0, T ], the final time T is fixed, and the absolutely continuous trajectories x(·)
of the differential inclusion are understood in the standard sense of Carathéodory. This class of 
problems contains several novel features, which either have never been investigated or have been 
studied insufficiently in control theory; see more discussions below. Recall now that the normal 
cone to a convex set C ⊂R

n is defined by

N(x;C) := {
v ∈R

n
∣∣ 〈v, y − x〉 ≤ 0, y ∈ C

}
if x ∈ C and N(x;C) := ∅ if x /∈ C. (1.6)
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Hence the sweeping process with a given moving set (1.1) can be considered as an evolution vari-
ational inequality, or a differential variational inequality in the terminology of [32]. On the other 
hand, the control model (1.3)–(1.5) relates rather to evolutionary quasi-variational inequalities
with controlled parameters, which should be determined to optimize the dynamical process.

The main goal of this paper is to derive necessary optimality conditions entirely in terms 
of the problem data for the so-called intermediate local minimizers of (P ) and its modifica-
tions that occupy an intermediate position between the standard notions of weak and strong 
local minima in variational and control problems; see Section 3 for more discussions. Our ap-
proach is based on developing an appropriate version of the method of discrete approximations, 
which largely follows the scheme of [23,25] implemented therein for the case of Lipschitzian 
and uniformly bounded differential inclusions, while now requiring a novel extension to the case 
of totally non-Lipschitzian and unbounded differential inclusions in (1.3). Some results on dis-
crete approximations of feasible trajectories of (1.2) and the convergence of optimal solutions to 
appropriate discretizations of the continuous-time system in (1.2)–(1.5) have been recently ob-
tained in our preceding paper [12]. However, they do not provide enough information for passing 
to the limit in necessary optimality conditions for discrete approximations and thus establishing 
in this way necessary optimality conditions for local minimizers of the original continuous-time 
systems governed by the controlled sweeping process.

In this paper we are going to proceed further in this direction by improving the previous dis-
crete approximation results to make it possible deriving necessary optimality conditions for the 
continuous-time systems by passing to the limit from those for their discrete approximations 
that are proved to satisfy the desired well-posedness and convergence properties. The realization 
of this approach requires overcoming significant difficulties, which have never been addressed
earlier in control theory from this or any other method of deriving necessary optimality con-
ditions even for more simple problems with smooth data. Besides the aforementioned totally 
non-Lipschitzian and unbounded nature of the sweeping process, serious challenges come, in 
particular, from the intrinsic presence of state constraints of the inequality and equality types 
combined with the quasi-variational inequality structure of the controlled sweeping process. In-
deed, we show in Section 3 that problem (P ) can be rewritten in the more conventional form 
of the generalized Bolza problem for a non-Lipschitzian and unbounded differential inclusion 
with a fixed right-hand side, where the relations in (1.4) and (1.5) are treated as state constraints 
of the inequality and equality type, respectively. It is worth mentioning that, in contrast to the 
inequality state constraints well studied for standard control systems and Lipschitzian differen-
tial inclusions (see, e.g., [4,44] and the references therein), the equality state constraints have 
been just very recently addressed in [5] for smooth control systems under regularity assumptions 
formulated via full ranks of the corresponding Jacobians of the constraint functions. Needless to 
say that neither the results nor the approach of [5] can be applied in our setting.

A crucial ingredient of our approach within the method of discrete approximations is applying 
advanced nonconvex tools of first-order and second-order of variational analysis and general-
ized differentiation, which are required even in the case of smooth terminal and running costs 
in the convex cone setting of (1.1). This allows us not only to establish the desired strong con-
vergence of discrete approximations and then to pass to the limit in the necessary optimality 
conditions obtained for discrete problems, but also to derive necessary optimality conditions for 
the continuous-time control system entirely in terms of the problem data and the given local 
optimal solution to the controlled sweeping process.

In fact, our major necessary optimality conditions are derived for a certain parametric pertur-
bation (P τ ) of the original problem (P ) with the control constraints in (1.5) replaced by
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‖ui(t)‖ = 1 on [τ, T − τ ] and
1

2
≤ ‖ui(t)‖ ≤ 3

2
on [0, τ ) ∪ (T − τ, T ], i = 1, . . . ,m, (1.7)

where the time endpoint perturbation parameter τ > 0 is arbitrarily small, and so (P τ ) is not 
much different from (P ). The purpose of the equality constraint relaxation on the small intervals 
adjacent to the time endpoints is to avoid degeneracy of necessary optimality conditions, which 
otherwise may hold for all the feasible solutions under some choice of nontrivial dual elements. 
Such a degeneracy phenomenon for necessary optimality conditions of the Pontryagin Maximum 
Principle (PMP) type has been discovered and well investigated in control theory with inequal-
ity state constraints; in particular, for Lipschitzian and compact-valued differential inclusions 
as in [4,33,44]. Our case is significantly different from the previous studies in both directions 
of the problem setting and the results obtained. We derive nondegenerate necessary optimality 
conditions for intermediate local minimizers of (P τ ) with τ > 0 while the passage to the limit 
therein as τ ↓ 0 leads us to the conditions that generally degenerate. As examples show, even 
the degenerate optimality conditions obtained in this way for (P ) can be useful to find optimal 
controls, but anyway we treat as our main result the more trustworthy ones established for (P τ). 
Of course, there is no difference between problems (P ) and (P τ ) if the equality constraints (1.5)
are not imposed.

Although the obtained necessary optimality conditions for the controlled sweeping process 
are constructively expressed via the problem data and turn out to be efficient as illustrated by 
various examples presented in this paper, they are rather complicated and contain measures, 
which is not surprising for state-constrained systems. However, a crucial advantage of the method 
of discrete approximations and its strong convergence established below is that we can stop, with 
any prescribed accuracy, at a suitable step of discretization and treat the corresponding optimal 
solution to the discrete problem satisfying the (much simpler) discrete optimality conditions as 
an approximate/suboptimal solution to the continuous-time one.

The rest of the paper is organized as follows. The main result of Section 2 shows that the 
class of absolutely continuous controls (u(·), b(·)) and the corresponding absolutely continuous 
trajectories x(·) is a right choice for feasible solutions to (P ) and (P τ ), since such a control 
pair satisfying the polyhedral constraints (1.4) ensures the existence of an absolutely continuous 
solution to the Cauchy problem (1.3) under an appropriate constraint qualification, which is also 
used in deriving necessary optimality conditions.

The major aim of Section 3 is to construct well-posed discrete approximations of the optimal 
control problem (P τ ) for any τ ∈ [0, T ], with P 0 := P , such that they admit optimal solutions 
whose piecewise linear extensions on [0, T ] converges to the given intermediate local minimizer 
(x̄τ (·), ūτ (·), b̄τ (·)) of (P τ ) strongly in W 1,2[0, T ] with some additional properties allowing 
us to derive nondegenerate necessary optimality conditions for (x̄τ (·), ūτ (·), b̄τ (·)) as τ > 0 by 
passing to the limit from discrete approximations. This essentially distinguishes our new results 
in this direction from those obtained in the preceding paper [12] devoted to discrete approxima-
tions of the control sweeping process. As a crucial step of this procedure, we justify the strong 
W 1,2-approximation with the desired additional properties for any feasible solution to the con-
trolled sweeping differential inclusion (1.3) without taking into account the cost functional (1.2).

Since optimal control problems (P τ ) for τ ∈ [0, T ] and its discrete counterparts are intrinsi-
cally nonsmooth due to the sweeping dynamics (1.3) and its finite-difference approximations, we 
need to employ suitable constructions of generalized differentiation satisfying extensive calculus 
rules to obtain necessary optimality conditions first for discrete-time and then for continuous-
time systems. Section 4 is devoted to the description of such constructions and the explicit 
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calculations of the major second-order one—the coderivative of the normal cone mapping—
entirely in terms of the given data of the controlled sweeping process. These second-order 
calculations are certainly of their own interest while playing a crucial role in the efficient re-
alization of our approach to deriving necessary optimality conditions.

Section 5 presents necessary optimality conditions for the discrete-time optimal control prob-
lems appearing in the discrete approximation procedure for (P τ ), τ ∈ [0, T ], developed in 
Section 3. These conditions are obtained by reducing the discrete-time problems to nonsmooth 
mathematical programs with many geometric and functional constraints with the usage of gen-
eralized differential calculus and the second-order calculations from Section 4. The conditions 
obtained are expressed explicitly via the problem data.

Section 6 is a culmination of the paper. It contains the formulation and proof of the main 
nondegenerate necessary conditions for intermediate local minimizers of the sweeping control 
problem (P τ ) whenever τ ∈ (0, T ), their limiting versions as τ ↓ 0, and those for some special 
cases. The proof of the main result is rather involved and significantly depends on the major 
results obtained in the previous sections.

The concluding Section 7 contains some applications to problems of quasistatic elastoplastic-
ity with hardening and also present several examples showing the strength and illustrating specific 
features of the necessary optimality conditions obtained for the controlled sweeping process.

The notation of this paper is standard in variational analysis and optimal control; see, e.g., 
[24,44]. Recall that B stands for the closed unit ball of the space in question, B(x, r) := x + rB, 
and N := {1, 2, . . .}.

2. Feasible solutions to the controlled sweeping process

To begin our study, we want to make sure that the choice of absolutely continuous controls in 
problems (P τ ) as τ ∈ [0, T ] is appropriate from the viewpoint of feasibility, i.e., such a choice 
of (u(·), b(·)) in (1.4) ensures the existence of a solution x(·) to the Cauchy problem in (1.3), 
which is at least absolutely continuous on [0, T ]. Observe that the unbounded polyhedral moving 
set C(t) generated by such a pair (u(·), b(·)) in (1.4) is not absolutely continuous on [0, T ] in 
the Hausdorff sense for set-valued mappings (not even talking about Lipschitz continuity), and 
hence we cannot deduce the existence of an absolutely continuous trajectory x(·) of (1.3) from 
known existence theorem for the sweeping process; see, e.g., [13].

Consider first the general sweeping process (1.3) generated by an arbitrary closed and convex 
moving set C(t) in Rn, which is assumed to be nonempty for all t ∈ [0, T ]. Denote by v(t) :=
πC(t)(0) the unique projection of the origin onto C(t) and define the shifted set K(t) := C(t) −
v(t). The following result has been recently proved in [12, Theorem 2.1] while being our starting 
point in this section.

Lemma 2.1 (Existence of absolutely continuous sweeping trajectories for general moving sets). 
Let the projection v : [0, T ] → R

n be absolutely continuous on [0, T ]. We assume that for any 
positive numbers r, ε there is a number δ = δ(r, ε) > 0 satisfying the estimate

l∑
i=1

max
z∈K(αi)∩rB

dist
(
z;K(βi)

)≤ ε, (2.1)

for every collection of mutually disjoint subintervals
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{[αi,βi]
∣∣ i = 1, . . . , l

}
of [0, T ] with

l∑
i=1

|βi − αi | ≤ δ.

Then there exists an absolutely continuous solution of the Cauchy problem in (1.3).

We now use this result to establish an existence theorem for absolutely continuous trajectories 
of (1.4) generated by absolutely continuous controls in the polyhedral description (1.4) under 
the Linear Independence Constraint Qualification (LICQ). Note that this qualification condition 
was missed in the statement of [12, Corollary 2.2], where the proof was given only in the case of 
m = 1 in (1.4). We are very grateful to Alexander Tolstonogov for observing that an additional 
condition is needed for the validity of the latter result for m > 1 and that the case of m = 1 follows 
from his more general recent existence theorem in [43]. The following result new for the case of 
m > 1 is what we needed to justify well-posedness of the absolutely continuous framework for 
feasible solutions to problems (P τ ) as τ ∈ [0, T ].

Theorem 2.2 (Existence of absolutely continuous sweeping trajectories for controlled poly-
hedra). Let the controls (u(·) = (u1(·), . . . , um(·)) and b(·) = (b1(·), . . . , bm(·)) be absolutely 
continuous on [0, T ], let the inequality system in (1.4) be consistent (i.e., C(t) �= ∅) for all 
t ∈ [0, T ], and let

the vectors
{
ui(t)

∣∣ i ∈ Ix(t)
}

be linearly independent whenever x ∈ C(t), t ∈ [0, T ], (2.2)

where Ix(t) := {i ∈ {1, . . . , m} with 〈ui(t), x〉 = bi(t)}. Then the corresponding Cauchy prob-
lem in (1.3) admits a unique absolutely continuous solution x(·) on [0, T ].

Proof. Let us show first that the (well-defined) projection v(·) is absolutely continuous on [0, T ]. 
Indeed, observe that for each t ∈ [0, T ] the vector v(t) solves a positive-definite parametric pro-
gram under the imposed LICQ (2.2). Then all the assumptions of Robinson’s stability theorem 
from [36, Theorems 2.1 and 4.1] are satisfied. Taking into account that f appearing in the sta-
bility condition [36, formula (2.4)] is the Lagrangian of our quadratic program, x is our v(t), 
C is the first orthant, and the parameter p therein is our t , we conclude from the aforementioned 
stability condition that the modulus of continuity of v(·) is proportional to the modulus of conti-
nuity of the problem data with respect to t . This readily justifies the claimed absolute continuity 
of the projection function.

To deduce the existence theorem for the sweeping process under consideration from 
Lemma 2.1, it remains to verify the validity of condition (2.1) in this case. Recall that a multi-
function � : [0, T ] ⇒ R

n is absolutely continuous if for any ε > 0 there is some δ (ε) > 0 such 
that the implication ∑

i
|βi − αi | < δ (ε) =⇒

∑
i
dH (� (αi) ,� (βi)) < ε

holds for any finite collection of mutually disjoint intervals 
[
αi,βi

]⊂ [0, T ], where dH refers to 
the Hausdorff distance. For r > 0 and t ∈ [0, T ] define �r(t) := K(t) ∩ rB. Then it follows from 
the definition of K(·) that �r(t) = ∩m

j=1�
(j)
r (t) with the notation

�
(j)
r (t) := (

Cj (t) − v(t)
)∩ rB and Cj (t) := {

x ∈ R
n
∣∣ 〈uj (t), x

〉≤ bj (t)
}
, j = 1, . . . ,m.
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We claim now the validity of the estimate

dist (z,�(j)
r (t)) ≤ r

∥∥uj (t) − uj (s)
∥∥+ |b(t) − b(s)| + ∣∣〈uj (t), v(t)

〉− 〈
uj (s), v(s)

〉∣∣ (2.3)

for all s, t ∈ [0, T ], r > 0, j ∈ {1, . . . ,m} and z ∈ �
(j)
r (s). Note that (2.3) is trivially satisfied for 

z ∈ �
(j)
r (t), and hence we may assume that z /∈ �

(j)
r (t). Now fix such s, t, r, j, z and show first 

that

dist (z,�(j)
r (t)) = γ := 〈

uj (t), z + v(t)
〉− bj (t) ≥ 0. (2.4)

Indeed, (2.4) follows from the easily verifiable fact that ̃z := z− γ uj (t) is a unique minimizer of 
the program

min
y

{‖z − y‖2
∣∣ y ∈ Cj (t) − v(t)

}
(2.5)

by 
∥∥uj (t)

∥∥= 1. Observing that v(t) ∈ C(t) ⊂ Cj (t) and γ ≥ 0 gives us γ ≤ 2 
〈
uj (t), z

〉
, and so

‖̃z‖2 = ‖z‖2 − 2γ
〈
uj (t), z

〉+ γ 2 = ‖z‖2 + γ
(
γ − 2

〈
uj (t), z

〉)≤ ‖z‖2 ≤ r2,

which means that ̃z ∈ rB and thus ̃z solves not just (2.5) but also the program

min
y

{‖z − y‖2
∣∣ y ∈ �

(j)
r (t)

}
over the smaller constraint set. This verifies (2.4). Further, it follows from z ∈ �

(j)
r (s) that

γ = 〈
uj (t) − uj (s), z

〉+ 〈
uj (s), z

〉+ 〈
uj (t), v(t)

〉− bj (t)

≤ 〈
uj (t) − uj (s), z

〉+ bj (s) − 〈
uj (s), v(s)

〉+ 〈
uj (t), v(t)

〉− bj (t),

which implies (2.3) by taking into account that ‖z‖ ≤ r . Interchanging the roles of s and t in 
(2.3) gives us

dH (�
(j)
r (s),�

(j)
r (t)) ≤ r

∥∥uj (t) − uj (s)
∥∥+ |b(t) − b(s)| + ∣∣〈uj (t), v(t)

〉− 〈
uj (s), v(s)

〉∣∣
for the same s, t, r, j, z. On the other hand, the functions ruj (·), b(·), and 

〈
uj (·), v(·)〉 are abso-

lutely continuous on [0, T ] since uj (·) and b(·) were assumed while v was shown to be such. This 

tells us that the multifunction �(j)
r (·) is absolutely continuous for any r > 0 and j ∈ {1, . . . ,m}. 

We want to derive from here that �r(·) is absolutely continuous for any r > 0, which would 
follow from this property of the intersection mapping �(1)

r (·) ∩ �
(2)
r (·). Since this intersection is 

bounded, the desired fact follows from

�(1)
r (t) ∩ int�(2)

r (t) �= ∅ whenever t ∈ [0, T ] (2.6)

by [29, Proposition on p. 274]. To verify (2.6), observe first that the assumed LICQ and nonempti-
ness of C(t) yields the existence of a (time dependent) Slater point ̃x(t) in the description of C(t):
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〈
uj (t), x̃(t)

〉
< bj (t) for all t ∈ [0, T ] , j = 1, . . . ,m.

Recall the inclusion v(t) ∈ Cj (t) for all j = 1, . . . , m on [0, T ], which means that〈
uj (t), v(t)

〉≤ bj (t) whenever t ∈ [0, T ] , j = 1, . . . ,m.

Define xν(t) := νx̃(t) + (1 − ν) v(t) for t ∈ [0, T ] and ν ∈ [0,1] and deduce that 
〈
uj (t), xν(t)

〉
<

bj (t) and ν ∈ int rB as t ∈ [0, T ], j = 1, 2, ν ∈ (0, min{r, 1}). It yields xν(t) ∈ �
(1)
r (t) ∩

int�(2)
r (t) justifying (2.6).

It is proved therefore that �r(·) is absolutely continuous on [0, T ] for any r > 0, which means 
that whenever r, ε > 0 there is δ (r, ε) > 0 such that the implication∑

i
|βi − αi | < δ (r, ε) =⇒

∑
i
dH (�r (αi) ,�r (βi)) < ε

holds for any finite collection of mutually disjoint intervals 
[
αi,βi

]⊂ [0, T ]. This verifies that

l∑
i=1

max
z∈K(αi)∩rB

dist (z,K (βi)) ≤
l∑

i=1

max
z∈K(αi)∩rB

dist (z,K (βi) ∩ rB)

≤
l∑

i=1

dH (�r (αi)�r (βi)) < ε

and thus completes the existence part of the proof of the theorem. Uniqueness follows from a 
well known argument based on the convexity of the moving sets and Gronwall’s lemma. �

The next example demonstrates that just the consistency condition C(t) �= ∅ is not sufficient 
for the existence of absolutely continuous trajectories in (1.3), (1.4) generated by C∞ controls 
(u(·), b(·)) for m = 3.

Example 2.3 (LICQ is essential for the existence of absolutely continuous sweeping trajectories). 
Consider the controlled sweeping system (1.3), (1.4) in R2 generated by the controls

u1(t) := e1, u2(t) := −e1, u3(t) := (− cos t,− sin t
)
,

b1(t) = 1, b2(t) := −1, b3(t) := − cos t − sin t

on [0, π], which are obviously C∞ functions on this intervals while LICQ (2.2) fails. Then we 
have

C(t) =
{

{1} ×R for t = 0,

{1} × [1,∞) for 0 < t < π
and v(t) =

{
(1,0) for t = 0,

(1,1) for 0 < t < π.

Due to the discontinuity of v(t), the assumptions of both Lemma 2.1 and Theorem 2.2 are not 
satisfied although C(t) �= ∅ for all t ∈ [0, π]. Observe further that the corresponding Cauchy 
problem (1.3) with x(0) = (1, 0) cannot have absolutely continuous solutions, since even the 
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requirement x(t) ∈ C(t) on [0, T ] is not met for continuous functions x(t) by the discontinuity 
of C(t).

Remark 2.4 (Lipschitzian sweeping trajectories). It follows from [12, Proposition 2.3] that 
the Lipschitz continuity assumptions on v(·) and K(·) ∩ rB in addition to those imposed in 
Lemma 2.1 ensure the existence of a unique Lipschitzian solution to (1.3) with an explicit es-
timate of its Lipschitz constant. Then the arguments in the proof of Theorem 2.2 allow us to 
conclude under these assumptions that any Lipschitzian control pair (u(·), b(·)) in (1.4) gener-
ates a unique solution to (1.3) with the aforementioned properties. Furthermore, if all the controls 
u(·) and b(·) in (1.4) are uniformly Lipschitzian on [0, T ] with the moduli Lu and Lb, respec-
tively, then we can prove the existence of a constant M > 0 dependent only on T , x0, Lu, and Lb

such that the sweeping process in (1.3) is equivalent to the bounded differential inclusion

−ẋ(t) ∈ N
(
x(t);C(t)

)∩ MB a.e. t ∈ [0, T ] with x(0) = x0 ∈ C(0).

Such a boundedness reduction was first established in [42] for the sweeping process with an ab-
solutely continuous moving set C(t), which is not the case here, and then was further developed 
in [11] for (1.3), (1.4) with m = 1 under uniform Lipschitzian assumptions. In this paper, in con-
trast to [11], we prefer not to require the uniform Lipschitzness of feasible controls that led us in 
[11] to incomplete results on discrete approximations and necessary optimality conditions.

3. Well-posed discrete approximations

In this section we start developing a discretization approach to the study of the optimal control 
problems (P τ ), τ ∈ [0, T ], which will finally result in deriving robust necessary optimality con-
ditions for their local minimizers. As the first step of this device, we construct here well-posed 
discrete approximations for an arbitrary feasible solution to (P τ ) and establish an appropriate 
strong convergence of such approximations.

To begin with, let us represent the controlled sweeping differential inclusion (1.3) under the 
polyhedral constraints (1.4) in an equivalent differential inclusion form for extended trajectories. 
Consider the vectors u := (u1, . . . , um) ∈ R

nm, b := (b1, . . . , bm) ∈ R
m, and z := (x, u, b) ∈

R
n ×R

nm ×R
m and define the set-valued mapping F : Rn ×R

nm ×R
m ⇒R

n by

F(z) := −N
(
x;C(u,b)

)
with C(u,b) := {

x ∈R
n| 〈ui, x〉 ≤ bi, i = 1, . . . ,m

}
. (3.1)

Then the sweeping differential inclusion in (1.3) under constraints (1.4) can be rewritten as

ż(t) ∈ G
(
z(t)

) := F
(
z(t)

)×R
nm ×R

m a.e. t ∈ [0, T ], (3.2)

where the initial condition z(0) = (x0, u(0), b(0)) is such that 〈ui(0), x0〉 ≤ bi(0) for all i =
1, . . . , m. We can see that form (3.2) treats controls (u(·), b(·)) and the corresponding sweeping 
trajectories x(·) symmetrically. Theorem 2.2 tells us that any choice of absolutely continuous 
functions u(·) and b(·) satisfying LICQ (2.2) generates a feasible solution z(·) for the extended 
differential inclusion (3.2).

Now the constrained sweeping system (1.3), (1.4) is written in the conventional form of the 
theory of differential inclusions with fixed right-hand sides as in [25,44] while they do not possess 
major properties under which this theory has been developed. Indeed, the right-hand side of (3.2)
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is described by a highly irregular (discontinuous and unbounded) set-valued mapping. Further, it 
follows from definition (1.6) of the normal cone that (3.2) implicitly contains the state constraints
on the trajectories z(t) given by

x(t) ∈ C
(
u(t), b(t)

)
for all t ∈ [0, T ]. (3.3)

Moreover, besides the more conventional state constraints of the inequality type (1.4), each opti-
mal control problem (P τ ) as τ ∈ [0, T ] contains those (nonsmooth and irregular) of the equality
type given by (1.7), which has not been investigated in optimal control theory even in much sim-
pler settings; see the discussion in Section 1. All of this emphasizes serious challenges we face 
to study these problems.

The next theorem establishes the aforementioned strong W 1,2-approximation of a given feasi-
ble solution to (3.2) subject to the state constraints in (1.7) (those in (3.3) are contained in (3.2)) 
by a sequence of feasible solutions to its discrete counterparts. The underlying difference of this 
theorem from the previous one in [12, Theorem 3.1] is deriving, under additional assumptions, 
new approximation properties that play a crucial role in the subsequent passage to the limit from 
optimality conditions for discrete-time control problems. We check then that the additional as-
sumptions imposed are not actually restrictive.

In what follows the symbol jτ (k) stands for the smallest natural number j such that tkj ≥ τ

whenever τ ∈ [0, T ], while jτ (k) signifies the largest j ∈N with tkj ≤ T − τ .

Theorem 3.1 (Strong discrete approximation of feasible solutions). Let z̄(·) = (x̄(·), ū(·), b̄(·)) ∈
W 1,2[0, T ] := W 1,2([0, T ]; Rn+nm+m) be an arbitrary feasible solution to problem (P τ ) with 
any fixed parameter τ ∈ [0, T ] and define the uniform discrete partitions of [0, T ] by setting


k := {
0 = tk0 < tk1 < . . . < tkk = T

}
with hk := tkj+1 − tkj ↓ 0, j = 0, . . . , k − 1, as k → ∞.

(3.4)

Assume in addition that z̄(·) satisfies the following properties at the mesh points (all these prop-
erties are automatically satisfied if, e.g., z̄(·) ∈ W 2,∞[0, T ]): the differential inclusion (3.2) holds 
for z̄(·) at all tkj , j = 0, . . . , k − 1 for each k ∈N, we have

k−1∑
j=0

hk

∥∥∥ x̄(tkj+1) − x̄(tkj )

hk

− ˙̄x(tkj )

∥∥∥2 → 0 as k → ∞, (3.5)

and there exists a constant M > 0 independent of k such that

k−1∑
j=0

∥∥∥ x̄(tkj+1) − x̄(tkj )

hk

− ˙̄x(tkj )

∥∥∥≤ M,

∥∥∥ ū(tk1 ) − ū(tk0 )

hk

∥∥∥≤ M,

∥∥∥ b̄(tk1 ) − b̄(tk0 )

hk

∥∥∥≤ M, (3.6)

k−2∑∥∥∥ ū(tkj+2) − ū(tkj+1)

hk

− ū(tkj+1) − ū(tkj )

hk

∥∥∥≤ M,
j=0
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k−2∑
j=0

∥∥∥ b̄(tkj+2) − b̄(tkj+1)

hk

− b̄(tkj+1) − b̄(tkj )

hk

∥∥∥≤ M (3.7)

whenever k ∈ N. Then there is a sequence of piecewise linear functions zk(t) := (xk(t), uk(t),

bk(t)) on [0, T ] with 
(
xk(0), uk(0), bk(0)

)= (
x0, ū(0), b̄(0)

)
,⎧⎨⎩ ‖uk

i (t
k
j )‖ = 1 for j = jτ (k), . . . , j τ (k),

1

2
≤ ‖uk

i (t
k
j )‖ ≤ 3

2
for j ≤ jτ (k) − 1 and j ≥ jτ (k) + 1, i = 1, . . . ,m,

(3.8)

satisfying for all k ∈N the extended finite-difference inclusions

xk(t) = xk(tj ) + (t − tj )v
k
j whenever tkj ≤ t ≤ tkj+1 with vk

j ∈ F
(
zk(tkj )

)
, j = 0, . . . , k − 1,

(3.9)

and such that the functions zk(·) converge to z̄(·) in the norm topology of W 1,2[0, T ], i.e.,

zk(t) → z̄(t) uniformly on [0, T ] and

T∫
0

‖żk(t) − ˙̄z(t)‖2 dt → 0 as k → ∞. (3.10)

Moreover, there exists a constant M̃ ≥ M depending only on the total variation of ū(·) on [0, T ]
so that for every k ∈N we have the estimates

∥∥∥uk(tk1 ) − uk(tk0 )

hk

∥∥∥≤ M̃,

∥∥∥bk(tk1 ) − bk(tk0 )

hk

∥∥∥≤ M̃, (3.11)

var
(
u̇k; [0, T ])≤ M̃, and var

(
ḃk; [0, T ])≤ M̃. (3.12)

Finally, the sequence {xk(·)} has uniformly bounded variations on [0, T ] being in addition uni-
formly Lipschitzian on [0, T ] if x̄(·) is Lipschitz continuous on this interval.

Proof. Following the proof of [12, Theorem 3.1], for any k ∈ N we construct the continuous-
time functions yk(t) := (

yk
1 (t), yk

2 (t), yk
3 (t)

)
as the piecewise linear extensions on [0, T ] of the 

discrete-time triples(
yk

1 (tkj ), yk
2 (tkj ), yk

3 (tkj )
) := (

x̄(tkj ), ū(tkj ), b̄(tkj )
)
, j = 0, . . . , k,

and denote by wk(t) = (
wk

1(t), w
k
2(t), w

k
3(t)

) := ẏk(t) their derivatives at non-mesh points. The 
assumptions in (3.7) yield var(wk

i ; [0, T ]) ≤ M for i = 2, 3 whenever k ∈ N. It follows from the 
above that

yk(·) → z̄(·) uniformly on [0, T ] and wk(·) → ˙̄z(·) strongly in L2[0, T ] as k → ∞.

Defining uk(t) := yk
2 (t) on [0, T ], we get uk(0) = yk

2(0) = ū(0) and deduce from (1.7) and the 
constructions above that the constraints on uk(·) in (3.8) and (3.11) hold. Fix k ∈ N, denote tj :=
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tkj as j = 1, . . . , k − 1, and construct the desired functions bk(t), xk(t) on [0, T ] by induction. To 

proceed, put 
(
xk(0), bk(0)

) = (
x0, b̄(0)

)
, suppose that the value of xk(tj ) is known, and define 

bk
i (t) at the mesh points so that

bk
i (tj ) := 〈

xk(tj ), u
k
i (tj )

〉
if yk

3i (tj ) = 〈
yk

1 (tj ), y
k
2i (tj )

〉
,

bk
i (tj ) >

〈
xk(tj ), u

k
i (tj )

〉
if yk

3i (tj ) >
〈
yk

1 (tj ), y
k
2i (tj )

〉
.

We can clearly arrange bk
i (tj ) − b̄i (tj ) = bk

i (tj ) − yk
3i (tj ) = 〈xk(tj ), uk

i (tj )〉 −〈yk
1 (tj ), y

k
2i (tj )〉 =

〈xk(tj ) − yk
1 (tj ), ūi (tj )〉. Using the projection vk

j = πF(xk(tj ),uk(tj ),bk(tj ))(w
k
1j ), define next xk(t)

on (tj , tj+1] by (3.9), then construct bk
i (ti+1) as above and extend it linearly to [tj , tj+1]. Observe 

that our construction yields

∣∣∣bk
i (tj+1) − bk

i (tj )

hk

− b̄i (tj+1) − b̄i (tj )

hk

∣∣∣= ∣∣∣bk
i (tj+1) − b̄(tj+1)

hk

− bk
i (tj ) − b̄(tj )

hk

∣∣∣
=
∣∣∣〈xk(tj+1) − x̄(tj+1)

hk

, ūi(tj+1)
〉
−
〈xk(tj ) − x̄(tj )

hk

, ūi(tj )
〉∣∣∣

≤ 3

2

∥∥∥xk(tj+1) − xk(tj )

hk

− x̄(tj+1) − x̄(tj )

hk

∥∥∥+
∥∥∥xk(tj ) − x̄(tj )

hk

∥∥∥ · ∥∥ūi (tj+1) − ūi (tj )
∥∥

(3.13)

for all j = 0, . . . , k − 1. We also have the equalities

∥∥∥xk(tj+1) − xk(tj )

hk

− x̄(tj+1) − x̄(tj )

hk

∥∥∥=
∥∥∥vk

j − x̄(tj+1) − x̄(tj )

hk

∥∥∥= ‖vk
j − wk

1j‖. (3.14)

Furthermore F
(
xk(tj ), uk(tj ), bk(tj )

) = F(x̄(tj ), ū(tj ), b̄(tj )), vk
j = πF(x̄(tj ),ū(tj ),b̄(tj ))(w

k
1j ), 

and

k−1∑
j=0

‖vk
j − wk

1j‖ =
k−1∑
j=0

dist
( x̄(tj+1) − x̄(tj )

hk

;F(x̄(tj ), ū(tj ), b̄(tj ))
)

≤
k−1∑
j=0

∥∥∥ x̄(tj+1) − x̄(tj )

hk

− ˙̄x(tj )

∥∥∥≤ M. (3.15)

Employing this together with (3.14) gives us

k−1∑
j=0

∥∥∥xk(tj+1) − xk(tj )

hk

− x̄(tj+1) − x̄(tj )

hk

∥∥∥≤ M, (3.16)

which readily implies the estimates
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∥∥∥xk(tj ) − x̄(tj )

hk

∥∥∥≤
j−1∑
i=0

∥∥∥xk(ti+1) − x̄(ti+1)

hk

− xk(ti) − x̄(ti )

hk

∥∥∥+
∥∥∥xk(t0) − x̄(t0)

hk

∥∥∥≤ M

(3.17)

for every j = 0, . . . , k − 1 as k ∈ N. As a result, it follows from (3.13), (3.14), (3.15), and (3.17)
that

k−1∑
j=0

∣∣∣bk
i (tj+1) − bk

i (tj )

hk

− b̄k
i (tj+1) − b̄k

i (tj )

hk

∣∣∣≤ M + Mvar
(
ū; [0, T ]).

Combining the latter with (3.7), we arrive at

k−2∑
i=0

∣∣∣bk(tj+2) − bk(tj+1)

hk

− bk(tj+1) − bk(tj )

hk

∣∣∣≤ 3M + 2Mvar
(
ū; [0, T ]),

with verifies the validity of (3.12) for ḃk . Observe simultaneously the fulfillment of the estimate 
for bk in (3.11), which follows from (3.17) and the representation bk

i (t1) − b̄i (t1) = 〈xk(t1) −
yk

1 (t1), ūi (t1)〉.
Next we justify the W 1,2-convergence in (3.10) for which it suffices in fact to check the 

L2-convergence of ẋk and ḃk . To verify the former one, observe by (3.5) that

T∫
0

‖ẋk(t) − wk
1(t)‖2dt =

k−1∑
j=0

hk‖vk
j − wk

j‖2 ≤
k−1∑
j=0

hk

∥∥∥ x̄(tkj+1) − x̄(tkj )

hk

− ˙̄x(tkj )

∥∥∥2 → 0

as k → ∞. The claimed convergence for ḃk follows from (3.13) and

T∫
0

‖ḃk(t) − wk
3(t)‖2dt ≤ 9

2

T∫
0

‖ẋk(t) − wk
1(t)‖2dt + 2M2

k−1∑
j=0

hk‖ūi (tj+1) − ūi (tj )‖2

by the absolute continuity of ū(·) on [0, T ]. The last statement of the theorem on {xk(·)} follows 
immediately from (3.6), (3.16), and the fact that x̄(·) has bounded variation on [0, T ]. To com-
plete the proof of the theorem, it remains to observe that the validity of all the assumptions in 
(3.5)–(3.7) for the case of z̄(·) ∈ W 2,∞[0, T ]) is a direct consequence of the definitions. �

It is not hard to check that all the assumptions of Theorem 3.1 are satisfied if z̄(·) is piecewise 
C1[0, T ] with ˙̄z(·) ∈ BV([0, T ]). In this case, more general than z̄(·) ∈ W 2,∞[0, T ], the deriva-
tives appearing in (3.2) and in the subsequent formulas are the right derivatives.

Our next goal is to construct a well-posed discrete approximation for a given local optimal so-
lution of the control problem (P τ ) as τ ∈ [0, T ], which satisfies the assumptions of Theorem 3.1. 
We consider a rather broad class of local minimizers introduced and first studied for differential 
inclusions in [23] under the name of intermediate local minimizers (i.l.m.). This notion obviously 
covers strong local minimizers (corresponding to α = 0 in the definition below) and occupies an 
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intermediate position between weak and strong minimizers in dynamic optimization and optimal 
control; see [23] and [25, Chapter 6] for more details. Note that a related class of local minimiz-
ers in optimal control problems for differential inclusions has been studied later under the name 
of W 1,1-minimizers; see, e.g., [44]. We now present an adaptation of the i.l.m. notion to the case 
of the sweeping control problems (P τ ) under consideration.

Definition 3.2 (Intermediate local minimizers for the controlled sweeping process). Fix any τ ∈
[0, T ] and consider a feasible solution z̄(·) = (

x̄(·), ū(·), b̄(·)) ∈ W 1,2[0, T ] to (P τ ). We say that 
z̄(·) is an INTERMEDIATE LOCAL MINIMIZER for this problem if there are numbers α ≥ 0 and 
ε > 0 such that J [z̄] ≤ J [z] for any feasible solution z(·) = (

x(·), u(·), b(·)) to (P τ ) satisfying∥∥(x(t), u(t), b(t)
)− (

x̄(t), ū(t), b̄(t)
)∥∥< ε as t ∈ [0, T ], and

α

T∫
0

(∥∥∥ẋ(t) − ˙̄x(t)

∥∥∥2 +
∥∥∥u̇(t) − ˙̄u(t)

∥∥∥2 +
∥∥∥ḃ(t) − ˙̄b(t)

∥∥∥2)
dt < ε. (3.18)

It is easy to see that the general setting of α ≥ 0 in (3.18) reduces to the cases when either 
α = 1 or α = 0, and that from the viewpoint of necessary optimality conditions it suffices to 
examine only the case of intermediate local minimizers with α = 1, which we do in what follows.

Given a number τ ∈ [0, T ] and an i.l.m. z̄(·) for (P τ ), construct now the family of discrete 
approximation problems (P τ

k ), k ∈ N, having optimal solutions that converge to z̄(·) in some 
strong sense, which eventually allows us to derive eventually necessary optimality conditions for 
z̄(·) by passing to the limit from those in discrete approximations. Suppose that for the given 
i.l.m. z̄(·) and the discrete mesh 
k in (3.4) all the assumptions (and hence conclusions) of 
Theorem 3.1 are satisfied and then define each problem (P τ

k ) by:

minimize Jk[zk] := ϕ(xk
k ) + hk

k−1∑
j=0

�
(
tkj , xk

j , uk
j , b

k
j ,

xk
j+1 − xk

j

hk

,
uk

j+1 − uk
j

hk

,
bk
j+1 − bk

j

hk

)

+
k−1∑
j=0

tkj+1∫
tkj

(∥∥∥xk
j+1 − xk

j

hk

− ˙̄x(t)

∥∥∥2 +
∥∥∥uk

j+1 − uk
j

hk

− ˙̄u(t)

∥∥∥2

+
∥∥∥bk

j+1 − bk
j

hk

− ˙̄b(t)

∥∥∥2)
dt

+ dist2
(∥∥∥uk

1 − uk
0

hk

∥∥∥, (−∞, M̃]
)

+ dist2
( k−2∑

j=0

∥∥∥bk
1 − bk

0

hk

∥∥∥, (−∞, M̃]
)

+ dist2
( k−2∑

j=0

∥∥∥uk
j+2 − 2uk

j+1 + uk
j

hk

∥∥∥, (−∞, M̃]
)

+ dist2
( k−2∑∥∥∥bk

j+2 − 2bk
j+1 + bk

j

hk

∥∥∥, (−∞, M̃]
)

(3.19)

j=0
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over collections zk := (xk
0 , . . . , xk

k , uk
0, . . . , u

k
k, b

k
0, . . . , b

k
k) with uk

j := (uk
j1, . . . , u

k
jm) ∈ R

nm for 
every index j = 0, . . . , k subject to the constraints in (3.8) together with

xk
j+1 ∈ xk

j + hkF (xk
j , uk

j , b
k
j ) for j = 0, . . . , k − 1 with

(
xk

0 , uk
0, b

k
0

)= (
x0, ū(0), b̄(0)

)
,

(3.20)

〈uk
ki, x

k
ik〉 ≤ bk

ki for i = 1, . . . ,m, (3.21)∥∥(xk
j , uk

j , b
k
j ) − (

x̄(tkj ), ū(tkj ), b̄(tkj )
)‖ ≤ ε/2 for j = 0, . . . , k, (3.22)

k−1∑
j=0

tkj+1∫
tkj

(∥∥∥xk
j+1 − xk

j

hk

− ˙̄x(t)

∥∥∥2 +
∥∥∥uk

j+1 − uk
j

hk

− ˙̄u(t)

∥∥∥2 +
∥∥∥bk

j+1 − bk
j

hk

− ˙̄b(t)

∥∥∥2)
dt ≤ ε

2
,

(3.23)∥∥∥uk
1 − uk

0

hk

∥∥∥≤ M̃ + 1,

∥∥∥bk
1 − bk

0

hk

∥∥∥≤ M̃ + 1, (3.24)

k−2∑
j=0

∥∥∥uk
j+2 − 2uk

j+1 + uk
j

hk

∥∥∥≤ M̃ + 1, and
k−2∑
j=0

∥∥∥bk
j+2 − 2bk

j+1 + bk
j

hk

∥∥∥≤ M̃ + 1, (3.25)

where M̃ is taken from in Theorem 3.1 while ε > 0 is taken from Definition 3.2 with α = 1. Note 
that the index j plays the role of the discrete time in (P τ

k ) and that inclusions (3.20) correspond 
to those in (3.9) at the mesh points of 
k . Observe that, in contrast to part (3.8) of the state 
constraints, the other part (3.21) needs to be imposed only at the endpoints (xk

k , u
k
k, b

k
k) while the 

counterparts of (3.21) at (xk
j , uk

j , b
k
j ) for j = 0, . . . , k −1 follows from (3.20) due to the structure 

of F in (3.1) by the definition of the normal cone in (1.6). It is important to emphasize that the 
set of feasible solutions to each problem (P τ

k ) with τ ∈ [0, T ] and k ∈ N sufficiently large is 
nonempty by Theorem 3.1.

To employ and justify the method of discrete approximations in deriving necessary optimality 
conditions for the control sweeping process, we need to make sure that for all τ ∈ [0, T ] and 
all k ∈ N sufficiently large each problem (P τ

k ) admits an optimal solution. Despite the finite-
dimensionality, this issue is nontrivial for (P τ

k ) due to the possible nonclosedness of the feasible 
solution set to this problem because of the dynamic constraints (3.20) generated by the normal 
cone to the moving set in (3.1); see [12, Example 4.5]. To overcome such a possibility, we em-
ployed in [12] the Positive Linear Independence Constraint Qualification (PLICQ) for the given 
i.l.m. z̄(·) in the original problem (P ) formulated as follows:

[ ∑
i∈I (x̄(t),ū(t),b̄(t))

αi ūi (t) = 0, αi ≥ 0
]

=⇒ αi = 0 as i ∈ I
(
x̄(t), ū(t), b̄(t)

)
on [0, T ], (3.26)

where the collection of the active constraint indices i ∈ I (x̄(t), ū(t), b̄(t)) is defined by

I (x,u, b) := {
i ∈ {1, . . . ,m}∣∣ 〈ui, x〉 = bi

}
. (3.27)
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This condition, which permits the linearly dependence of active gradients, is obviously weaker 
than the classical LICQ for z̄(·) on [0, T ] that has already be used in Theorem 2.2. It is worth 
mentioning that in our polyhedral setting (1.4) under the additional assumption of C(t) �= ∅ it 
follows that (3.26) corresponds to Slater’s condition, while we keep the term PLICQ here since 
a more general framework of moving sets described by smooth inequalities will be considered in 
Section 4 and further developments.

In [12, Theorem 4.4] we proved the existence of optimal solutions to problem (Pk) with 
Pk := P 0

k for all large numbers k ∈ N under the validity of PLICQ (3.26) by using the normal 
cone/subdifferential structure of the constraints in (3.20) and employing Attouch’s theorem on 
the subdifferential convergence (see, e.g., [6, Theorem 12.35]) as well as the extremal principle 
of variational analysis from [25, Theorem 2.8]. The given proof holds without any change in the 
case of problems (P τ

k ) with τ > 0 by taking into account the existence of feasible solutions to 
(P τ

k ) justified in Theorem 3.1. This brings us to the following result.

Proposition 3.3 (Existence of discrete optimal solutions). Let the cost functions ϕ and �(t, ·, ·) be 
lower semicontinuous around the given i.l.m. z̄(·) satisfying PLICQ (3.26) whenever t ∈ [0, T ]. 
Then for all τ ∈ [0, T ] and all k ∈ N sufficiently large there exist optimal solutions to the discrete 
problems (P τ

k ).

To proceed next with establishing the concluding result of this section on the desired strong 
convergence of optimal solutions for (P τ

k ) to the given local minimizer z̄(·), we need to impose 
one more requirement on z̄(·). Fix any quadruple (t, x, u, b) and denote �̂F (t, x, u, b, v, w, ν)

the convexification of the integrand in (1.2) on the set F(x, u, b) from (3.1) with respect to 
the velocity variables (v, w, ν), i.e., the largest convex and lower semicontinuous (l.s.c.) function 
majorized by �(t, x, u, b, ·, ·, ·) on this set. Then for all τ ≥ define the relaxation (Rτ ) of problem 
(P τ ) as follows:

minimize Ĵ [z] := ϕ
(
x(T )

)+
T∫

0

�̂F

(
t, x(t), u(t), b(t), ẋ(t), u̇(t), ḃ(t)

)
dt (3.28)

over the triples z(t) = (x(t), u(t), b(t)) of absolutely continuous functions on [0, T ] satisfying 
the constraints in (1.3)–(1.5) and (1.7). It follows from the construction of ̂�F and the convexity 
of the set on the right-hand side of (1.3) that the relaxed problem (Rτ ) reduces to the original one 
(P τ ) if the integrand � in (1.2) is convex and l.s.c. with respect to the velocity variables (v, w, ν). 
In the general case we say that z̄(·) is a relaxed intermediate local minimizer (r.i.l.m.) for (P τ )

if it is an i.l.m. for this problem with J [z̄] = Ĵ [z̄].
A remarkable phenomenon well-recognized in control theory for continuous-time systems re-

veals that in many nonconvex settings the value of the cost functional does not change under the 
integrand convexification with respect to velocity variables. It is known as “hidden convexity” 
being related to Bogolyubov-type relaxation results and Lyapunov’s convexity theorem for inte-
grals of set-valued mappings; see, e.g., [7,25,44]. To the best of our knowledge, the most general 
Bogolyubov-type theorem is obtained in [14] for optimal control problems governed by differen-
tial inclusions satisfying the so-called “modified one-sided Lipschitzian” condition with respect 
to state variables. However, the latter condition does not hold for the sweeping inclusion (1.3). 
Thus we cannot drop so far the relaxation property of intermediate local minimizers in the fol-
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lowing theorem, which is crucial for justifying the method of discrete approximations to derive 
necessary optimality conditions for the sweeping control problems under consideration.

Theorem 3.4 (Strong convergence of discrete optimal solutions). Given an arbitrary number 
τ ∈ [0, T ], let z̄(·) = (x̄(·), ū(·), b̄(·)) be a r.i.l.m. for problem (P τ ) satisfying the assumptions 
of Theorem 3.1 and Proposition 3.3 and such that ϕ is continuous around x̄(T ), �(t, ·, ·) is 
continuous around (z̄(t), ̇̄z(t)) uniformly on [0, T ] while �(·, z, ̇z) is a.e. continuous on [0, T ]
being uniformly majorized by a summable function near the given local minimizer. Then any 
sequence of piecewise linear extensions of the optimal solutions z̄k = (x̄k, ūk, b̄k) to the discrete 
problems (P τ

k ) converges to z̄(·) in the norm topology of W 1,2[0, T ]. Furthermore, we have the 
following estimates:

lim sup
k→∞

∥∥∥ ūk
1 − ūk

0

hk

∥∥∥≤ M̃, lim sup
k→∞

∥∥∥ b̄k
1 − b̄k

0

hk

∥∥∥≤ M̃ for all k ∈N, (3.29)

lim sup
k→∞

k−2∑
j=0

∥∥∥ ūk
j+2 − 2ūk

j+1 + ūk
j

hk

∥∥∥≤ M̃, and lim sup
k→∞

k−2∑
j=0

∥∥∥ b̄k
j+2 − 2b̄k

j+1 + b̄k
j

hk

∥∥∥≤ M̃, (3.30)

where the constant M̃ ≥ M is taken from (3.12).

Proof. Fix any sequence of the (well-defined by Proposition 3.3) extended optimal solutions 
z̄k(·) to problems (P τ

k ) and observe that strong W 1,2-convergence to z̄(·) on [0, T ] as well as the 
properties (3.29) and (3.30) follow directly from the equality

lim
k→∞

( T∫
0

(∥∥∥ ˙̄xk(t) − ˙̄x(t)

∥∥∥2 +
∥∥∥ ˙̄uk(t) − ˙̄u(t)

∥∥∥2 +
∥∥∥ ˙̄bk(t) − ˙̄b(t)

∥∥∥2)
dt

+ dist2
(∥∥∥uk

1 − uk
0

hk

∥∥∥, (−∞, M̃]
)

+ dist2
( k−2∑

j=0

∥∥∥bk
1 − bk

0

hk

∥∥∥, (−∞, M̃]
)

+ dist2
( k−2∑

j=0

∥∥∥ ūk
j+2 − 2ūk

j+1 + ūk
j

hk

∥∥∥, (−∞, M̃]
)

+ dist2
( k−2∑

j=0

∥∥∥ b̄k
j+2 − 2b̄k

j+1 + b̄k
j

hk

∥∥∥, (−∞, M̃]
))

= 0 (3.31)

due to the initial conditions 
(
x̄k(0), ūk(0), b̄k(0)

)= (
x̄(0), ū(0), b̄(0)

)
as k ∈N. To justify (3.31), 

suppose the contrary, i.e., the limit along a subsequence therein (no relabeling) equals to some 
γ > 0. By the weak compactness of the unit ball in L2[0, T ] := L2([0, T ]; Rn × R

nm × R
m), 

find (v(·), w(·), ν(·)) ∈ L2[0, T ] and (if necessary) another subsequence of {z̄k(·)} so that( ˙̄xk(·), ˙̄uk(·), ˙̄bk(·))→ (
v(·),w(·), ν(·)) weakly in L2[0, T ].

Next we define the absolutely continuous triple ̃z(·) := (̃x(·), ̃u(·), ̃b(·)) : [0, T ] → R
n+nm+m by
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z̃(t) := (
x0, ū(0), b̄(0)

)+
t∫

0

(
v(s),w(s), ν(s)

)
ds, t ∈ [0, T ],

for which ˙̃z(t) = (v(t), w(t), ν(t)) a.e. on [0, T ]. Applying Mazur’s weak closure theorem gives 
us a sequence of convex combinations of ( ˙̄xk(·), ˙̄uk(·), ˙̄bk(·)) converging to (v(·), w(·), ν(·))
strongly in L2[0, T ] and thus a.e. on [0, T ] along a subsequence. Then passing to the limit as 
k → ∞ in the discrete inclusions (3.20) with the convex normal structure of the mapping F
from (3.1) and employing the aforementioned Attouch’s theorem tell us that x̃(·) satisfies the 
sweeping inclusion (1.3) with the set C(t) in (1.4) defined via ũ(·) and b̃(·). The validity of 
the τ -constraints in (1.7) for ũ(·) follows, whenever τ ∈ [0, T ], from the uniform convergence 
on [0, T ] of the designated sequence of convex combinations of ūk(·) to the limiting control 
function ̃u(·). It also follows from the strong L2-convergence of the above convex combinations 
of ( ˙̄xk(·), ˙̄uk(·), ˙̄bk(·)) that the limiting triple ̃z(·) belongs to the prescribed ε-neighborhood (in 
W 1,2) of the i.l.m. z̄(·) from Definition 3.2.

It remains to pass to the limit in the discrete cost functional (3.19) along the optimal triple 
z̄k(·) for (P τ

k ) as k → ∞. We can directly deduce from the construction of ̂�F and its convexity 
in velocities that

T∫
0

�̂F

(
t, x̃(t), ũ(t), b̃(t), ˙̃x(t), ˙̃u(t), ˙̃b(t)

)
dt

≤ lim inf
k→∞ hk

k−1∑
j=0

�
(
tkj , x̄k

j , ūk
j , b̄

k
j ,

x̄k
j+1 − x̄k

j

hk

,
ūk

j+1 − ūk
j

hk

,
b̄k
j+1 − b̄k

j

hk

)
.

By the structure of (3.19), the lower semicontinuity of the total variation, and the choice of γ
above we get

Ĵ [̃z] + γ = ϕ
(̃
x(T )

)+
T∫

0

�̂F

(
t, x̃(t), ũ(t), b̃(t), ˙̃x(t), ˙̃u(t), ˙̃b(t)

)
dt + γ ≤ lim inf

k→∞ Jk[z̄k]

(3.32)

by using the Lebesgue dominated convergence theorem due to the assumptions made. On the 
other hand, applying Theorem 3.1 to the local minimizer z̄(·) under consideration gives us a 
sequence {zk(·)} of the feasible solutions to (P τ

k ) that approximates z̄(·) in the norm topology 
of W 1,2[0, T ]. Since z̄k(·) is an optimal solution to problem (P τ

k ) while zk(·) is feasible to it for 
each k, we have

Jk[z̄k] ≤ Jk[zk] whenever k ∈ N. (3.33)

It now follows from the structure of the cost functional (3.19) in (P τ
k ) with M̃ ≥ M , the strong 

W 1,2-convergence in Theorem 3.1, and the assumed continuity of ϕ and � that Jk[zk] → J [z̄] as 
k → ∞. Thus by taking (3.33) into account we obtain
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lim sup
k→∞

Jk[z̄k] ≤ J [z̄]. (3.34)

The obtained relationships (3.32) and (3.34) together with the assumption on γ > 0 imply that 
Ĵ [̃z] < Ĵ [z̄] contradicting therefore the choice of z̄(·) as a r.i.l.m. for (P τ ). Hence γ = 0, which 
shows that (3.31) holds and thus completes the proof of the theorem. �
4. Generalized differentiation and second-order calculations

After establishing well-posedness of the discrete approximation problems (P τ
k ) and the de-

sired strong convergence of their optimal solutions to the given r.i.l.m. z̄(·) for the sweeping 
control problem (P τ ) with any fixed τ ∈ [0, T ], our further strategy is as follows: obtain neces-
sary optimality conditions for finite-dimensional discrete-time problems (P τ

k ) whenever k ∈ N

and then justify the possibility of passing to the limit as k → ∞ in the obtained discrete rela-
tionships as to derive necessary optimality conditions for z̄(·) in (P τ ). Since problems (P τ

k ) and 
(P τ ) are always nonsmooth due to the dynamic constraints independently on the smoothness of 
the cost functions ϕ and � in (1.2), we have to employ appropriate generalized differential con-
structions of variational analysis enjoying comprehensive calculus and robustness properties. In 
our setting not only first-order but also second-order generalized differentiation is needed.

The main results of this section give upper estimates as well as precise formulas for calculating 
the coderivative of the normal cone mapping to moving sets as in (3.1), which is a second-order 
object playing a decisive role in the subsequent results of this paper. We begin with some basic 
definitions from generalized differentiation while referring the reader to [24,38] for more details 
on the first-order constructions and to [24] and the papers mentioned below for the second-order 
ones and their equivalent descriptions.

Recall that, for a set-valued mapping/multifunction F : Rn ⇒R
m, the symbol

Lim sup
x→x̄

F (x) := {
y ∈ R

m
∣∣ ∃ sequences xk → x̄, yk → y with yk ∈ F(xk) for all k ∈ N

}
(4.1)

signifies the (Kuratowski–Painlevé) outer limit of F at x̄. Given a subset � ⊂ R
n locally closed 

around x̄ ∈ �, the normal cone to � at x̄ (known also as the limiting/basic/Mordukhovich one) 
is defined by

N(x̄;�) = N�(x̄) := Lim sup
x→x̄

{
cone

[
x − �(x;�)

]}
(4.2)

via the outer limit (4.1), where �(x; �) stands for the Euclidean projection of x onto �, and 
where ‘cone’ denotes the conic hull of the set. When � is convex, the normal cone (4.2) reduces 
to the classical one of convex analysis, while in general the cone (4.2) is nonconvex even for 
simple sets �, e.g., for � := {(x1, x2) ∈ R

2| x2 = |x1|}. Nevertheless, the normal cone and asso-
ciated subdifferential and coderivative constructions for functions and multifunctions enjoy full 
calculi based on variational principles; see [24,38].

Given a set-valued mapping F : Rn ×R
m whose graph

gphF := {
(x, y) ∈R

n ×R
m
∣∣ y ∈ F(x)

}
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is locally closed around (x̄, ȳ), the coderivative of F at (x̄, ȳ) is defined by

D∗F(x̄, ȳ)(u) := {
v ∈R

n
∣∣ (v,−u) ∈ N

(
(x̄, ȳ);gphF

)}
, u ∈ R

m, (4.3)

where ȳ = F(x̄) is omitted if F is single-valued. When F : Rn → R
m is smooth around x̄, we 

have

D∗F(x̄)(u) = {∇F(x̄)∗u
}

for all u ∈R
n,

with A∗ standing for adjoint operator/matrix transposition of the Jacobian A = ∇F(x̄).
For a l.s.c. extended-real-valued function ϕ : Rn → R with the domain and epigraph

domϕ := {
x ∈R

n
∣∣ ϕ(x) < ∞}

and epiϕ := {
(x,μ) ∈R

n+1
∣∣ μ ≥ ϕ(x)

}
its (first-order) subdifferential at x̄ ∈ domϕ is generated by (4.2) as

∂ϕ(x̄) := {
v ∈ R

m
∣∣ (v,−1) ∈ N

(
(x̄, ϕ(x̄); epiϕ

)}
. (4.4)

Our main objects here are the second-order generalized differential constructions defined by 
the scheme of [24] as follows. Given v̄ ∈ ∂ϕ(x̄) from (4.4), the second-order subdifferential (or 
generalized Hessian) of ϕ at x̄ relative to v̄ is the mapping ∂2ϕ(x̄, v̄) : Rn ⇒R

n with the values

∂2ϕ(x̄, v̄)(u) := (D∗∂ϕ)(x̄, v̄)(u), u ∈R
n. (4.5)

Having an extended real-valued function ϕ : Rn × R
d → R of two variables (x, w) ∈ R

n × R
d

and its partial (in x) first-order subdifferential mapping

∂xϕ(x,w) := {
set of subgradients v of ϕw := ϕ(·,w) at x

}
, (x,w) ∈ domϕ,

define the partial second-order subdifferential of ϕ in x at (x̄, w̄) relative to v̄ ∈ ∂xϕ(x̄, w̄) by

∂2
xϕ(x̄, w̄, v̄)(u) := (D∗∂xϕ)(x̄, w̄, v̄)(u), u ∈R

n. (4.6)

Note that for C2-smooth functions ϕ the constructions in (4.5) and (4.6) reduce, respectively, to

∂2ϕ(x̄)(u) = {∇2
xxϕ(x̄)u

}
, ∂2ϕ(x̄, w̄)(u) = {(∇2

xxϕ(x̄, w̄),∇2
xwϕ(x̄, w̄)

)}
, u ∈R

n,

expressed in terms of the classical (symmetric) Hessian matrices. The partial second-order con-
struction (4.6) has been studied in [27] under the name of “extended partial second-order subdif-
ferential” with the notation ̃∂2

xϕ. Since no other partial second-order constructions are used here, 
we drop both the word “extended” and the tilde-notation for (4.6). Our goal is to estimate and 
calculate this second-order construction for the special class of functions arising in the controlled 
sweeping process (1.3).

To proceed further, consider the smooth parametric inequality system

S(w) := {x ∈ R
n
∣∣ g(x,w) ∈ R

m
}
, (4.7)
−
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where Rm− is the nonpositive orthant of Rm and g : Rn × R
d → R

m is an arbitrary C2-smooth 
vector function. Associate with (4.7) the normal cone mapping N : Rn ×R

d ⇒R
n defined by

N (x,w) := N
(
x;S(w)

)
for x ∈ S(w) (4.8)

via the normal cone (4.2) to the moving set S(w), which we denote as NS(w)(x) for convenience. 
It is easy to see that the mapping N in (4.8) admits the composite representation

N (x,w) = ∂xϕ(x,w) with ϕ(x,w) := (
δRm− ◦ g

)
(x,w)

by using the indicator function δRm− of the orthant Rm−. Thus we get by definition (4.6) that

∂2
xϕ(x̄, w̄, v̄)(u) = D∗N (x̄, w̄, v̄)(u) for any v̄ ∈N (x̄, w̄) and u ∈ R

n. (4.9)

Dealing with the moving set (4.7), we use in what follows the coderivative form (4.9) of the 
partial second-order subdifferential of the function ϕ in question.

The main issue is to evaluate this construction entirely via the given data of (4.7). The next 
lemma based on the second-order chain rules from [26,27] plays an important role in the subse-
quent calculations. Recall that the mapping M : Rs ⇒ R

q is calm at (s̄, q̄) ∈ gphM if there are 
numbers μ ≥ 0 and η > 0 with

M(s) ∩ (q̄ + ηB) ⊂ M(s̄) + μ‖s − s̄‖B whenever s ∈ s̄ + ηB. (4.10)

Lemma 4.1 (Coderivative of the normal cone mapping for smooth inequality systems). Let 
(x̄, w̄) ∈ R

n ×R
d be such that g(x̄, w̄) ∈ R

m−, let v̄ ∈N (x̄, w̄), and let

I (x̄, w̄) := {
i ∈ {1, . . . ,m}∣∣ gi(x̄, w̄) = 0

}
be the collection of active indices for (4.7) at (x̄, w̄). The following assertions hold:

(i) Assume that the partial gradients {∇xgi(x̄, w̄)| i ∈ I (x̄, w̄)} are positively linearly in-
dependent and that the mapping ϑ �→ {(x, w, p)| (g(x, w), p) + ϑ ∈ gphNR

m−} is calm at 
(0, x̄, w̄, p) for all p ∈ NR

m−(g(x̄, w̄)) with ∇xg(x̄, w̄)∗p = v̄. Then for all u ∈ R
n we have the 

upper estimate

D∗N (x̄, w̄, v̄)(u) ⊂⋃
p∈N

R
m− (g(x̄,w̄))

∇xg(x̄,w̄)∗p=v̄

{[ ∇2
xx〈p,g〉(x̄, w̄)

∇2
xw〈p,g〉(x̄, w̄)

]
u + ∇g(x̄, w̄)∗D∗NR

m−
(
g(x̄, w̄),p

)(∇xg(x̄, w̄)u
)}

.

(ii) Assume that the partial gradients {∇xgi(x̄, w̄)| i ∈ I (x̄, w̄)} are linearly independent, and 
let the vector p̄ ∈R

m be uniquely defined by

p̄ ∈ NR
m−
(
g(x̄, w̄)

)
, ∇xg(x̄, w̄)∗p̄ = v̄.

Then for all u ∈R
n we have the precise coderivative formula
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D∗N (x̄, w̄, v̄)(u) =
[ ∇2

xx〈p̄, g〉(x̄, w̄)

∇2
xw〈p̄, g〉(x̄, w̄)

]
u + ∇g(x̄, w̄)∗D∗NR

m−
(
g(x̄, w̄), p̄

)(∇xg(x̄, w̄)u
)
.

Proof. We derive (i) from the second-order chain rule of the inclusion type established in 
[26, Corollary 3.2(b)], where the first-order qualification condition follows from the positive lin-
ear independence of the active constraint gradients in (4.7). Assertion (ii) is a direct consequence 
of the precise (equality type) second-order chain rule obtained in [27, Theorem 3.1] under the full 
rank condition, which is ensured here by the assumed linear independence of the active constraint 
gradients. �

Next we apply these results to the case of bilinear vector function g(x, w) in (4.7), which 
covers our controlled sweeping setting in (1.3). Define

g(x,w) := Ax − b with w := (A,b) for x ∈ R
n and b ∈R

m, (4.11)

where A is an m × n-matrix, and both A and b are variable. In this case system (4.7) is written 
as

S(A,b) := {
x ∈R

n
∣∣Ax ≤ b

}
. (4.12)

Taking into account that the values of S(·, ·) are polyhedral sets, we refer to (4.12) as to the 
polyhedral system. Note that the graph of S may not be a convex polyhedron in Rn ×R

nm ×R
m. 

For any fixed (Ā, b̄) the active index set from Lemma 4.1 reduces to

I (x̄, Ā, b̄) := {
i ∈ {1, . . . ,m}∣∣ Āi x̄ = b̄i

}
,

and we label {Āi | i ∈ I (x̄, Ā, b̄)} as active rows. Based on Lemma 4.1 and the affine structure of 
(4.11), we arrive at the next lemma, which relates the coderivative of N with that of NR

m− .

Lemma 4.2 (Coderivative of the normal cone mapping for polyhedral systems). Let (x̄, Ā, b̄) ∈
R

n × R
nm × R

m be such that Āx̄ ≤ b̄, and let v̄ ∈ N (x̄, Ā, b̄) for the corresponding normal 
cone mapping (4.8) generated by the polyhedral system (4.12). Assume that the active rows 
{Āi | i ∈ I (x̄, Ā, b̄)} are positively linearly independent. Then we have the upper estimate

D∗N (x̄, Ā, b̄, v̄)(u) ⊂

⋃
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝

Ā∗q
p1u + q1x̄

...

pmu + qmx̄

−q

⎞⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
p ∈ NR

m−(Āx̄ − b̄), Ā∗p = v̄, q ∈ D∗NR
m−(Āx̄ − b̄, p)(Āu)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, u ∈R

n,

for all u ∈R
n. If moreover the active rows {Āi | i ∈ I (x̄, Ā, b̄)} are linearly independent, then we 

have the precise formula for the coderivative calculation
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D∗N (x̄, Ā, b̄, v̄)(u) =
⋃

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝

Ā∗q
p̄1u + q1x̄

...

p̄mu + qmx̄

−q

⎞⎟⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣∣
q ∈ D∗NR

m−(Āx̄ − b̄, p̄)(Āu)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
, u ∈R

n,

where the vector p̄ ∈ N
R

m−(Āx̄−b̄) is uniquely determined by Ā∗p̄ = v̄.

Proof. Applying Lemma 4.1 to g(x, w) from (4.11) and using x̄T for the corresponding vector 
row yield

∇g
(
x̄, Ā, b̄

)=
⎛⎜⎝ Ā

x̄T 0 0

0
. . . 0

0 0 x̄T

−I

⎞⎟⎠ ,

∇2
xx〈p,g〉 = 0, ∇2

x,(A,b)〈p,g〉 = (
p1I

∣∣ . . . | pmI | 0
)∗

for any fixed (x̄, w̄) with w̄ = (Ā, b̄) and any p ∈R
m. Observe that the mapping

M(ϑ) := {
(x,w,p)

∣∣ (Ax − b,p) + ϑ ∈ gphNR
m−
}
, ϑ = (ϑ1, ϑ2) ∈R

2m,

is automatically calm at (0, x̄, Ā, b̄, p) for any p as required in Lemma 4.1. This is a conse-
quence of the polyhedrality of M by the classical Robinson theorem from [37]. Thus the asserted 
formulas follow immediately from Lemma 4.1 and the Jacobian and Hessian calculations given 
above. �

Now we are ready to derive from Lemma 4.2 the desired results for evaluating the coderivative 
D∗N of (4.8) entirely via the given data of (4.12) by using the calculations of D∗NR

m− available 
in the literature. Consider the mapping F(x, A, b) := −N (x, A, b), which actually appears in 
the sweeping inclusion.

Theorem 4.3 (Coderivative of the normal cone mapping via the given data). In the setting of 
Lemma 4.2, suppose that the active rows {Āi | i ∈ I (x̄, Ā, b̄)} are positively linearly independent. 
For all u ∈R

n and p ∈R
m, respectively, define the sets

P(u) := {p ∈ NR
m−(Āx̄ − b̄) | Ā∗p = −v̄} if u ∈

⋂
{i| pi>0}

Ā⊥
i and P(u) := ∅ otherwise,

Q(p) :=
{
q ∈R

m

∣∣∣∣ qi = 0 if Āi x̄ < b̄i or if Āi x̄ = b̄i , pi = 0, Āiu > 0
qi ≥ 0 if Āi x̄ = b̄i , pi = 0, Āiu < 0

}
.

Then for all u ∈R
n we have the upper estimate
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D∗F(x̄, Ā, b̄, v̄)(u) ⊂
⋃

p∈P(u)

q∈Q(p)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝

Ā∗q
q1x̄ − p1u

...

qmx̄ − pmu

−q

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (4.13)

If furthermore the active rows {Āi| i ∈ I (x̄, Ā, b̄)} are linearly independent, then either

D∗F(x̄, Ā, b̄, v̄)(u) =
⋃

q∈Q(p̄)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝

Ā∗q
q1x̄ − p̄1u

...

qmx̄ − p̄mu

−q

⎞⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
if u ∈

⋂
{i|p̄i>0}

[
Āi

]⊥
, (4.14)

or D∗F(x̄, Ā, b̄, v̄)(u) = ∅ otherwise. Here the vector p̄ ∈ N
R

m−(Āx̄−b̄) is uniquely defined by 

Ā∗p̄ = −v̄.

Proof. Observe that D∗F(x̄, Ā, b̄, v̄)(u) = D∗N (x̄, Ā, b̄, −v̄)(−u). The claimed results follow 
from Lemma 4.2 by substituting therein the precise coderivative calculation

D∗NR
m−(α,β)(γ ) =

{ ∅ if βiγi �= 0 for some i,{
η ∈R

m
∣∣ ηi = 0 if i ∈ I1 and ηi ≥ 0 for i ∈ I2

}
otherwise

given in [16, p. 1215], where the index subsets of {1, . . . , m} are defined by

I1 := {
i
∣∣ αi < 0} ∪ {

i
∣∣ αi = βi = 0, γi < 0

}
, I2 := {

i
∣∣ αi = βi = 0, γi > 0

}
.

This verifies both coderivative formulas (4.13) and (4.14) of the theorem. �
5. Necessary optimality conditions for discrete approximations

The aim of this section is to obtain necessary conditions for optimal solutions of the discrete 
approximation problems (P τ

k ) for any fixed τ ∈ [0, T ] and k ∈ N. First we derive optimality 
conditions for a generalized version of (P τ

k ), where the dynamic constraints (3.20) are described 
by an arbitrary closed-graph mapping F . Then, by using the coderivative calculations of Sec-
tion 4, we arrive at optimality conditions expressed entirely via the problem data of (P τ

k ) with 
F given in the particular normal cone form (3.1) of the sweeping process under consideration. 
Our standing assumptions in this and next sections are that the cost functions ϕ and �(t, ·, ·, ·, ·, ·)
are locally Lipschitzian around the points in question. Note that the subdifferential (4.4) of the 
running cost � is taken with respect to its all but t variables. In what follows we drop indicating 
the time-dependence of � for brevity and use the notation

[
c, q

] := (
c1q1, . . . , cmqm

) ∈R
nm and repm(x) := (

x, . . . , x
) ∈R

nm (5.1)
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for vectors c = (c1, . . . , cm) ∈ R
m, x ∈ R

n, and q = (q1, . . . , qm) ∈ R
nm with qi ∈ R

n as i =
1, . . . , m.

Theorem 5.1 (Necessary optimality conditions for general discrete inclusions). For fixed k ∈
N and τ ∈ [0, T ] let z̄k = (x0, x̄k

1 . . . , x̄k
k , ūk

0, . . . , ū
k
k, b̄

k
0, . . . , b̄

k
k) be an optimal solution to the 

discrete problem (3.19)–(3.25) written in the format of (P τ
k ) but with the discrete inclusion (3.20)

governed by a general closed-graph mapping F . For each j = 0, . . . , k − 1 we denote

(
θxk
j , θuk

j , θbk
j

)
:= 2

tkj+1∫
tkj

( x̄k
j+1 − x̄k

j

hk

− ˙̄x(t),
ūk

j+1 − ūk
j

hk

− ˙̄u(t),
b̄k
j+1 − b̄k

j

hk

− ˙̄b(t)
)
dt. (5.2)

Then there exist dual elements λk ≥ 0, αk ∈ R
m+, ξk = (ξk

0 , . . . , ξk
k ) ∈ R

(k+1)m, pk
j = (pxk

j , puk
j ,

pbk
j ) ∈ R

n+nm+m as j = 0, . . . , k and subgradient vectors

(
wxk

j ,wuk
j ,wbk

j , vxk
j , vuk

j , vbk
j

) ∈ ∂�

(
z̄k
j ,

z̄k
j+1 − z̄k

j

hk

)
, j = 0, . . . , k − 1, (5.3)

such that the following conditions are satisfied:

λk + ‖αk‖ + ‖ξk‖ +
k−1∑
j=0

‖pxk
j ‖ + ‖puk

0 ‖ + ‖pbk
0 ‖ �= 0, (5.4)

αk
i

(〈ūk
ki , x̄

k
k 〉 − b̄k

ki

)= 0, i = 1, . . . ,m, (5.5)

ξk
ji ∈ N

(‖ūk
j i‖; [1/2,3/2]) for j = 0, . . . , jτ (k) − 1 and j = jτ (k) + 1, . . . , k, i = 1, . . . ,m,

(5.6)

−pxk
k ∈ λk∂ϕ(x̄k

k ) +
m∑

i=1

αk
i ū

k
ki; puk

k = −[αk, repm(x̄k
k )
]− 2

[
ξk
k , ūk

k

]
, pbk

k = αk, (5.7)

puk
j+1 = λk(vuk

j + h−1
k θuk

j ), pbk
j+1 = λk(vbk

j + h−1
k θbk

j ), j = 0, . . . , k − 1, (5.8)

(
pxk

j+1 − pxk
j

hk

− λkwxk
j ,

puk
j+1 − puk

j

hk

− λkwuk
j ,

pbk
j+1 − pbk

j

hk

− λkwbk
j ,

pxk
j+1 − λk

(
vxk
j + 1

hk

θxk
j

))

∈
(

0,
2

hk

[
ξk
j , ūk

j

]
,0,0

)
+ N

((
x̄k
j , ūk

j , b̄
k
j ,

x̄k
j+1 − x̄k

j

hk

)
;gphF

)
, j = 0, . . . , k − 1.

(5.9)
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Proof. Throughout the proof we omit indicating the (fixed) upper index ‘k’ from the statement 
of this theorem; the dependence of the result on k will be needed in Section 6. Let

y := (x0, . . . , xk, u0, . . . , uk, b0, . . . , bk,X0, . . . ,Xk−1,U0, . . . ,Uk−1,B0, . . . ,Bk−1),

where x0 is fixed. Take ε > 0 from the construction of (P τ
k ) and define the mathematical pro-

gram (MP):

minimize ϕ0[y] := ϕ(xk)+hk

k−1∑
j=0

�(xj , uj , bj ,Xj ,Uj ,Bj )+
k−1∑
j=0

tj+1∫
tj

∥∥∥(Xj ,Uj ,Bj )− ˙̄z(t)
∥∥∥2

dt

+ dist2
(∥∥∥u1 − u0

hk

∥∥∥, (−∞, M̃]
)

+ dist2
(∥∥∥b1 − b0

hk

∥∥∥, (−∞, M̃]
)
,

+ dist2
( k−2∑

j=0

∥∥∥Uj+1 − Uj

∥∥∥, (−∞, M̃]
)

+ dist2
( k−2∑

j=0

∥∥∥Bj+1 − Bj

∥∥∥, (−∞, M̃]
)

subject to equality, inequality, and geometric constraints

f x
j (y) := xj+1 − xj − hkXj = 0 for j = 0, . . . , k − 1,

f u
j (y) := uj+1 − uj − hkUj = 0 for j = 0, . . . , k − 1,

f b
j (y) := bj+1 − bj − hkBj = 0 for j = 0, . . . , k − 1,

gi(y) := 〈uki, xk〉 − bki ≤ 0 for i = 1, . . . ,m,

dji(y) := ‖uji‖2 − 1 = 0 for j = jτ (k), . . . , j τ (k), i = 1, . . . ,m,

y ∈ �ji := {
y
∣∣ 1/2 ≤ ‖uji‖ ≤ 3/2

}
for j = 0, . . . , jτ (k) − 1 and

j = jτ (k) + 1, . . . , k, i = 1, . . . ,m,

φj (y) := ∥∥(xj , uj , bj ) − z̄(tj )
∥∥− ε/2 ≤ 0 for j = 0, . . . , k,

φk+1(y) :=
k−1∑
j=0

tkj+1∫
tkj

(∥∥∥(Xj ,Uj ,Bj ) − ˙̄z(t)
∥∥∥2)

dt − ε

2
≤ 0,

φk+2(y) :=
k−2∑
j=0

∥∥∥Uj+1 − Uj

∥∥∥≤ M̃ + 1,

φk+3(y) :=
k−2∑∥∥∥Bj+1 − Bj

∥∥∥≤ M̃ + 1,
j=0
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φk+4(y) :=
∥∥∥u1 − u0

∥∥∥≤ (M̃ + 1)hk,

φk+5(y) :=
∥∥∥b1 − b0

∥∥∥≤ (M̃ + 1)hk,

y ∈ �j := {
y
∣∣Xj ∈ F(xj ,uj , bj )

}
for j = 0, . . . , k − 1,

y ∈ �k := {
y
∣∣ x0 is fixed, (u0, b0) = (

ū(0), b̄(0)
)}

.

It is easy to see that (MP) and (P τ
k ) with an arbitrary mapping F are equivalent. Thus ȳ := (z̄, Z̄)

is an optimal solution to (MP), where z̄ := z̄k is the solution of (P τ
k ) fixed in the theorem, 

and where Z̄ := (X̄0, . . . , X̄k−1, Ū0, . . . , Ūk−1, B̄0, . . . , B̄k−1). Necessary optimality conditions 
for this type of mathematical programs in terms of the first-order generalized differential con-
structions of Section 4 are well known; see, e.g., [25, Theorem 5.24]. Furthermore, it follows 
from Theorem 3.4 above that all the inequality constraints in (MP) associated with functions φj

(j = 0, . . . , k + 5) are inactive for all k sufficiently large, and so the corresponding multipliers 
do not appear in the optimality conditions. Taking this into account, we find λ ≥ 0, α ∈ R

m+, 
ξ = (ξ0, . . . , ξk) ∈ R

m(k+1), pj = (px
j , pu

j , pb
j ) ∈ R

n+nm+m as j = 1, . . . , k, and

y∗
j = (

x∗
0j , . . . , x

∗
kj , u

∗
0j , . . . , u

∗
kj , b

∗
0j , . . . , b

∗
kj ,X

∗
0j , . . . ,X

∗
(k−1)j ,

U∗
0j , . . . ,U

∗
(k−1)j ,B

∗
0j , . . . ,B

∗
(k−1)j

)
for j = 0, . . . , k, which are not all zero and satisfy the conditions (5.6) together with

y∗
j ∈ N(ȳ;�j) for j = 0, . . . , k, (5.10)

−y∗
0 − . . . − y∗

k ∈ λ∂ϕ0(ȳ) +
m∑

i=1

αi∇gi(ȳ) +
k∑

j=0

m∑
i=1

ξji∇dji(ȳ) +
k−1∑
j=0

(∇fj (ȳ)
)∗

pj+1, (5.11)

αigi(ȳ) = 0 for i = 1, . . . ,m. (5.12)

It follows from the definition of �j and from f x
j (ȳ) = 0 that the inclusions in (5.10) are equiva-

lent to

(x∗
jj , u

∗
jj , b

∗
jj ,X

∗
jj ) ∈ N

((
x̄j , ūj , b̄j ,

x̄j+1 − x̄j

hk

)
;gphF

)
, j = 0, . . . , k − 1. (5.13)

Note that every other component of y∗
j , which does not appear in (5.13), is zero. Similarly 

(x∗
0k, u

∗
0k, b

∗
0k) can be the only nonzero component of y∗

k . Therefore we have

−y∗
0 − . . . − y∗

k = (− x∗
00 − x∗

0k,−x∗
11, . . . ,−x∗

k−1,k−1,0,−u∗
00 − u∗

0k, . . . ,−u∗
k−1,k−1,0,

− b∗
00 − b∗

0k, . . . ,−b∗
k−1,k−1,0,−X∗

00, . . . ,−X∗
k−1,k−1,0, . . . ,0

)
. (5.14)

Let us now calculate the three sums on the right-hand side of (5.11). For notational convenience 
we just specify the nonzero components, which are indexed according to the partition of the 
vector y introduced at the beginning of this proof. This gives us the equalities
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(
m∑

i=1

αi∇gi(ȳ)

)
(xk,uk,bk)

=
(

m∑
i=1

αiūki ,
[
α, repm(x̄k)

]
,−α

)
,

⎛⎝ k∑
j=0

m∑
i=1

ξji∇dji(ȳ)

⎞⎠
uj

= 2
[
ξj , ūj

]
, j = 0, . . . , k,

⎛⎝k−1∑
j=0

(∇fj (ȳ)
)∗

pj+1

⎞⎠
(xj ,uj ,bj )

=
⎧⎨⎩

−p1 if j = 0
pj − pj+1 if j = 1, . . . , k − 1

pk if j = k

, j = 0, . . . , k,

⎛⎝k−1∑
j=0

(∇fj (ȳ)
)∗

pj+1

⎞⎠
(X,U,B)

= −hkp.

Introducing the auxiliary Lipschitzian functions (where the first ones are actually smooth 
around ȳ)

ρj (y) :=
tj+1∫
tj

∥∥∥(Xj ,Uj ,Bj ) − ˙̄z(t)
∥∥∥2

dt, j = 0, . . . , k − 1,

σ (y) := dist2
(∥∥∥u1 − u0

hk

∥∥∥, (−∞, M̃]
)

+ dist2
(∥∥∥b1 − b0

hk

∥∥∥, (−∞, M̃]
)
,

+ dist2
( k−2∑

j=0

∥∥∥Uj+1 − Uj

∥∥∥, (−∞, M̃]
)

+ dist2
( k−2∑

j=0

∥∥∥Bj+1 − Bj

∥∥∥, (−∞, M̃]
)

and then employing the subdifferential sum rule from [24, Theorem 2.33(c)], we arrive at the 
inclusion

∂ϕ0(ȳ) ⊂ ∂ϕ(x̄k) + hk

k−1∑
j=0

∂�(x̄j , ūj , b̄j , X̄j , Ūj , B̄j ) +
k−1∑
j=0

∇ρj (ȳ) + ∂σ (ȳ).

Since the function dist2(x; (−∞, M̃]) has the null derivative at all x ≤ M̃ , it implies together with 
(3.30) that ∂σ (ȳ) = {0}. Furthermore, the nonzero part of ∇ρj(ȳ) is given by ∇(Xj ,Uj ,Bj )ρj (ȳ) =
(θx

j , θu
j , θb

j ) with the triple from (5.2), and thus any element of the set λ∂ϕ0(ȳ) can be represented 
in the form

λ
(
hkw

x,ϑ,hkw
u,0, hkw

b,0, hkv
x + θx,hkv

u + θu,hkv
b + θb

)
,

where ϑ ∈ ∂ϕ(x̄k) and the components of (wx, wu, wb, vx, vu, vb) satisfy (5.3). Combining this 
with the gradient expressions above, we deduce from (5.13) via (5.14) the componentwise rela-
tionship:
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−x∗
00 − x∗

0k = λhkw
x
0 − px

1 (5.15)

−x∗
jj = λhkw

x
j + px

j − px
j+1, j = 1, . . . k − 1, (5.16)

0 = λϑ +
m∑

i=1

αiūki + px
k , (5.17)

−u∗
00 − u∗

0k = λhkw
u
0 + 2

[
ξ0, ū0

]− pu
1 , (5.18)

−u∗
jj = λhkw

u
j + 2[ξj , ūj ] + pu

j − pu
j+1, j = 1, . . . k − 1, (5.19)

0 = [
α, repm(x̄k)

]+ 2
[
ξk, ūk

]+ pu
k , (5.20)

−b∗
00 − b∗

0k = λhkw
b
0 − pb

1, (5.21)

−b∗
jj = λhkw

b
j + pb

j − pb
j+1, j = 1, . . . k − 1, (5.22)

0 = −α + pb
k , (5.23)

−X∗
jj = λ(hkv

x
j + θx

j ) − hkp
x
j+1, j = 0, . . . k − 1, (5.24)

0 = λ(hkv
u
j + θu

j ) − hkp
u
j+1, j = 0, . . . k − 1, (5.25)

0 = λ(hkv
b
j + θb

j ) − hkp
b
j+1, j = 0, . . . k − 1. (5.26)

Now let us derive from the obtained relationships the necessary optimality conditions of 
the theorem with p0 := (x∗

0k, u
∗
0k, b

∗
0k). We have already got (5.6). Observe now that (5.5)

is obviously implied by (5.12), the conditions in (5.7) follow from (5.17), (5.20), and (5.23)
while those in (5.8) are a consequence of (5.25) and (5.26). Arguing by contradiction, sup-
pose that the nontriviality condition (5.4) fails. Then it follows from (5.17) that px

k = 0 as well. 
Since x∗

0k = px
0 = 0, we deduce from (5.15), (5.16), and (5.24) that x∗

jj = 0 and X∗
jj = 0 for 

j = 0, . . . , k − 1. Furthermore, (5.25) and (5.26) yield that pu
j = 0 and pb

j = 0 for j = 1, . . . , k
which in turn implies by (5.18), (5.19), (5.21), and (5.22), that also u∗

jj = 0 and b∗
jj = 0 for 

j = 0, . . . , k −1. As already mentioned, the components of y∗
j different from (x∗

jj , u
∗
jj , b

∗
jj , X

∗
jj )

are zero for j = 0, . . . , k − 1, and hence y∗
j = 0 for j = 0, . . . , k − 1. We similarly conclude 

that y∗
k = 0 due to x∗

0k = px
0 = 0. Getting all this together contradicts the nontriviality conditions 

in the mathematical program (MP) formulated above and thus verifies the claimed nontrivial-
ity (5.4).

It remains to justify of the validity of the discrete-time adjoint conditions in (5.9), which give 
us a discrete-time version of the extended Euler–Lagrange inclusion [23] for the discrete optimal 
control problems under consideration. To get (5.9), we substitute the expressions in (5.15), (5.16), 
(5.18), (5.19), (5.21), (5.22), and (5.24) into the left-hand side of (5.13) and deduce from it that 
the vector(

px
j+1 − px

j − λhkw
x
j ,pu

j+1 − pu
j − λhkw

u
j ,pb

j+1 − pb
j − λhkw

b
j ,hkp

x
j+1 − λ(hkv

x
j + θx

j )
)

− (
0,2

[
ξj , ūj

]
,0,0

)
for each j = 0, . . . , k − 1 belongs to the normal cone N

(
(x̄j , ūj , b̄j , 

x̄j+1−x̄j

hk
); gphF

)
. Dividing 

the obtained inclusions by hk > 0, we arrive at (5.9) and thus complete the proof of the theo-
rem. �
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The next theorem directly addresses the discrete approximation problems (P τ
k ) for the con-

trolled sweeping process, where the mapping F in (3.20) in given in the particular form (3.1). 
In this main case of our interest we are able to derive, based on the second-order calculations of 
Section 4, effective necessary optimality conditions for (P τ

k ) expressed entirely via the problem 
data.

Theorem 5.2 (Necessary optimality conditions for the discretized sweeping process). In the set-
ting of Theorem 5.1 consider the discretized sweeping control problem (P τ

k ), where now the 
mapping F in (3.20) is defined by (3.1). Assume that for the given r.i.l.m. z̄(·) = (x̄(·, ū(·), b̄(·))
of (P τ ), which is included in (P τ

k ), the PLICQ property (3.26) holds and that all the com-
ponents of ū(t) are not zero on [0, T ]. Then, in addition to the dual elements λk ≥ 0, ξk =
(ξk

0 , . . . , ξk
k ) ∈ R

(k+1)m, pk
j = (pxk

j , puk
j , pbk

j ) ∈ R
n+nm+m as j = 0, . . . , k and subgradients 

wxk
j , wuk

j , wbk
j , vxk

j , vuk
j , vbk

j from (5.3) satisfying the relationships in (5.6) and (5.8) of Theo-
rem 5.1 with the enhanced nontriviality condition

λk + ‖puk
0 ‖ + ‖pbk

0 ‖ �= 0, (5.27)

there exist vectors ηk
j ∈ R

m+ as j = 0, . . . , k − 1 and γ k
j ∈ R

m as j = 0, . . . , k − 1 such that we 
have the primal and dual/adjoint dynamic relationships

x̄k
j+1 − x̄k

j

hk

= −
m∑

i=1

ηk
ji ū

k
ji , (5.28)

pxk
j+1 − pxk

j

hk

− λkwxk
j =

m∑
i=1

γ k
ji ū

k
ji , (5.29)

puk
j+1 −puk

j

hk

−λkwuk
j − 2

hk

[
ξk
j , ūk

j

]= [
γ k
j , repm(x̄k

j )
]−[

ηk
j , repm

(
λk
(
vxk
j + 1

hk

θxk
j

)−pxk
j+1

)]
,

(5.30)

γ k
j = λkwbk

j − pbk
j+1 − pbk

j

hk

(5.31)

for all j = 0, . . . , k − 1 together with the implications

〈ūk
j i , x̄

k
j 〉 < b̄k

ji =⇒ ηk
ji = 0 when j = 0, . . . , k, i = 1, . . . ,m, (5.32)

ηk
ji > 0 =⇒

〈
ūk

j i , λ
k

(
vxk
j + 1

hk

θxk
j

)
− pxk

j+1

〉
= 0 when j = 0, . . . , k − 1, i = 1, . . . ,m,

(5.33)[〈ūk
j i , x̄

k
j 〉 < b̄k

ji for all i = 1, . . . ,m
]=⇒ γ k

j = 0, j = 0, . . . , k − 1, (5.34)
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as well as the transversality conditions

−pxk
k ∈ λk∂ϕ(x̄k

k ) +
m∑

i=1

pbk
ki ū

k
ki , (5.35)

puk
k = −[pbk

k , repm(x̄k
k )
]− 2

[
ξk
k , ūk

k

]
, (5.36)

pbk
ki ≥ 0, and 〈ūk

ki , x̄
k
k 〉 < b̄k

ki =⇒ pbk
ki = 0 for all i = 1, . . . ,m. (5.37)

Proof. In terms of the coderivative construction (4.3) we can rewrite (5.9) in the equivalent form(
pxk

j+1 − pxk
j

hk

− λkwxk
j ,

puk
j+1 − puk

j

hk

− λkwuk
j − 2

hk

[ξk
j , ūk

j ],
pbk

j+1 − pbk
j

hk

− λkwbk
j

)

∈ D∗F
(
x̄k
j , ūk

j , b̄
k
j ,

x̄k
j+1 − x̄k

j

hk

)(
λk(vxk

j + 1

hk

θxk
j ) − pxk

j+1

)
, j = 0, . . . , k − 1. (5.38)

Using the notation of Theorem 4.3 and employing the coderivative upper estimate (4.13) therein, 
we deduce from (5.38) the existence of vectors ηk

j ∈ R
m and γ k

j ∈ Q(ηk
j ) for which all the rela-

tionships in (5.29), (5.30), (5.31), (5.33), and (5.34) are satisfied together with the conditions

−(Āk
j )

∗ηk
j = x̄k

j+1 − x̄k
j

hk

, where ηk
j ∈ NR

m−(Āk
j x̄

k
j − b̄k

j ), j = 1, . . . , k − 1. (5.39)

It obviously follows from the conditions on ηk
j in (5.39) that ηk

j ∈ R
m+ and the implications in 

(5.32) hold for j = 0, . . . , k − 1. Defining ηk
k := αk with αk taken from Theorem 5.1, we de-

duce from (5.5) that ηk
k ∈ R

m+ and (5.32) holds for j = k as well. The equations in (5.28) are 
consequences of those in (5.39) due to the definition of Āk

j given right before Lemma 4.2. The 
transversality conditions in (5.35)–(5.37) are direct consequences of (5.7) due to the relationships 
in (5.5) and (5.6).

It remains to verify the enhanced nontriviality condition (5.27). To proceed, suppose that 
λk = 0, puk

0 = 0, and pbk
0 = 0. Then we get from (5.8) that puk

j = 0 and pbk
j = 0 for all 

j = 0, . . . , k. This ensures that γ k
j = 0 for j = 0, . . . , k − 1 by (5.31), pxk

k = 0 by (5.35), 

and consequently pxk
j = 0 for j = 0, . . . , k by (5.29). Furthermore, it follows from (5.30) that 

[ξk
j , ūk

j ] = 0 for j = 0, . . . , k − 1 and from (5.36) that [ξk
k , ūk

k] = 0. By recalling the definition of 

[·, ·] in (5.1), the latter conditions readily implies that ξk
j = 0 for all j = 0, . . . , k. This is due to 

the assumption of ūi(t) �= 0 on [0, T ] made in the theorem, which implies that ūk
ij �= 0 for the 

discrete approximation due to the uniform convergence of ūk(t) → ū(t) in Theorem 3.4. There-
fore λk = 0, ξk = 0, αk = pbk

k = 0 by (5.7), and so pxk
j = 0 for j = 0, . . . , k −1. This contradicts 

the nontriviality condition (5.4) in Theorem 5.1 and thus verifies the enhanced one in (5.27). �
6. Optimality conditions for the controlled sweeping process

In this section we proceed with the passage to the limit as k → ∞ in the necessary optimality 
conditions of Theorem 5.2 for problems (P τ

k ) and deriving in this way, with the help of Theo-
rem 3.4 and the developed tools of generalized differentiation, necessary optimality conditions 
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in the original optimal control problem(s) for the sweeping process formulated in Section 1. Our 
major case is problem (P τ ) with 0 < τ < T , but we also consider the situation when τ = 0, 
which is the same as τ = T . The results obtained for (P τ ) are explicit, i.e., they involve only the 
problem data and the given local minimizers z̄(·) while not requiring calculations of any auxiliary 
objects as, e.g., coderivatives.

Keeping the assumptions above, we impose here some additional ones on the problem data, 
which seem to be reasonable for the controlled sweeping model under consideration and are 
illustrated below by examples. The next theorem uses notation (5.1) together with the symbol 
‘co’ for the convex hull.

One more remark is needed before the formulation of our main result. Since it is derived by 
passing to the limit in the optimality conditions for the discrete problems (P τ

k ), the subdifferential 
construction used in Theorem 5.2 in the case of the nondifferentiable running cost �(t, ·, ·) has 
to be robust, i.e., outer semicontinuous with respect to perturbations of the reference point. As 
well known, this important property holds for our subdifferential (4.4); see, e.g., [24, p. 11]. In 
the general nonautonomous setting under consideration, the robustness of the subdifferential of �
with respect to the time parameter is also required, and we postulate it in what follows. It does not 
seem to be restrictive (see the discussion in [23]) and can be completely avoided by considering 
the extended subdifferential of � as in [25, Sec. 6.1.5].

Theorem 6.1 (Nondegenerate necessary optimality conditions for the controlled sweeping pro-
cess). Let z̄(·) = (x̄(·), ū(·), b̄(·)) be a r.i.l.m. for problem (P τ ) as τ ∈ (0, T ) under the as-
sumptions of Theorem 3.4, and let LICQ hold on [0, T ]. Suppose in addition that ϕ is locally 
Lipschitzian around x̄(T ) and the running cost � is represented as

�(t, z, ż) = �1(t, z) + �2(ẋ) + �3(t, u̇, ḃ), (6.1)

where the functions �1 and �2 are locally Lipschitzian around the given local minimizer z̄(·) in 
all but time variables with the Lipschitz modulus of �1 being Riemann integrable on [0, T ], and 
where �3 is differentiable in (u̇, ḃ) on Rmn ×R

m under the validity of the estimates

‖∂�2(t, ẋ)‖ ≤ L‖ẋ‖, ‖∇�3(t, u̇, ḃ)‖ ≤ L
(‖u̇‖ + ‖ḃ‖), and

‖∇�3(t, u̇1, ḃ1) − ∇�3(s, u̇2, ḃ2)‖ ≤ L(|t − s| + ‖u̇1 − u̇2‖ + ‖ḃ1 − ḃ2‖) (6.2)

with some L > 0 and all t, s ∈ [0, T ], (ẋ, u̇, ḃ) ∈ R
n+mn+m, (u̇i , ḃi ) ∈ R

mn+n as i = 1, 2.
Then there exist a multiplier λ ≥ 0, an adjoint arc p(·) = (px, pu, pb) ∈ W 1,2([0, T ];

R
n+nm+m), signed vector measures γ = (γ1, . . . , γm) ∈ C∗([0, T ]; Rm) and ξ = (ξ1, . . . , ξm) ∈

C∗([0, T ]; Rm), as well as functions 
(
w(·), v(·)) ∈ L2((0, T ); Rn+mn+m) × L∞((0, T );

R
n+mn+m) with (

w(t), v(t)
) ∈ co ∂�

(
t, z̄(t), ˙̄z(t)) for a.e. t ∈ [0, T ] (6.3)

such that the following conditions are satisfied:
• The PRIMAL-DUAL DYNAMIC RELATIONSHIPS:〈

ūi (t), x̄(t)
〉
< b̄i(t) =⇒ ηi(t) = 0 for a.e. t ∈ [0, T ], i = 1, . . . ,m, (6.4)

ηi(t) > 0 =⇒ 〈
λvx(t) − qx(t), ūi(t)

〉= 0 for a.e. t ∈ [0, T ], i = 1, . . . ,m, (6.5)
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ṗ(t) = λw(t) + (
0,
[− η(t), λvx(t) − qx(t)

]
,0
)

for a.e. t ∈ [0, T ], (6.6)

qu(t) = λ
∂

∂u̇
�2
( ˙̄u(t), ˙̄b(t)

)
, and qb(t) = λ

∂

∂ḃ
�2
( ˙̄u(t), ˙̄b(t)

)
for a.e. t ∈ [0, T ], (6.7)

where η(·) = (η1(·), . . . , ηm(·)) with the components ηi(·) ∈ L2([0, T ]; R+), i = 1, . . . , m, is a 
uniquely defined vector function determined by the representation

˙̄x(t) = −
m∑

i=1

ηi(t)ūi (t) for a.e. t ∈ [0, T ], (6.8)

and where q : [0, T ] → R
n+nm+m is a function of bounded variation on [0, T ] with its left-

continuous representative given, for all t ∈ [0, T ] excepting at most a countable subset, by

q(t) = p(t) −
( ∫
[t,T ]

m∑
i=1

ūi (s)dγi(s),

∫
[t,T ]

[
repm(x̄(s)), dγ (s)

]+ 2
∫

[t,T ]

[
ū(s), dξ(s)

]
,

−
∫

[t,T ]
dγ (s)

)
. (6.9)

• The TRANSVERSALITY CONDITIONS at the right endpoint:

−px(T ) ∈ λ∂ϕ
(
x̄(T )

)+
m∑

i=1

pb
i (T )ūi(T ), (6.10)

pu
i (T ) + pb

i (T )x̄(T ) =
〈
pu

i (T ) + pb
i (T )x̄(T ), ūi(T )

〉
ūi (T ), i = 1, . . . ,m, (6.11)

pb(T ) ∈R
m+ and

〈
ūi (T ), x̄(T )

〉
< b̄i(T ) =⇒ pb

i (T ) = 0, i = 1, . . . ,m. (6.12)

• The MEASURE NONATOMICITY CONDITIONS:
(a) If t ∈ [0, T ) and 〈ūi (t), x̄(t)〉 < b̄i(t) for all i = 1, . . . , m, then there is a neighborhood 

Vt of t in [0, T ] such that γ (V ) = 0 for any Borel subset V of Vt .
(b) If t ∈ [0, τ) ∪ (T − τ, T ] and 1/2 < ‖ūi (t)‖ < 3/2 for all i = 1, . . . , m, then there is a 

neighborhood Wt of t in [0, τ) ∪ (T − τ, T ] such that ξ(W) = 0 for any Borel subset W of Wt .
• NONTRIVIALITY CONDITIONS: We always have

λ + ‖q(0)‖ + ‖p(T )‖ �= 0. (6.13)

Furthermore, the additional assumptions on 〈ūi(0), x̄(b)〉 < b̄i(0) and 1/2 < ‖ūi (0)‖ < 3/2
whenever i = 1, . . . , m ensure the validity of the enhanced nontriviality condition (λ, p(T )) �= 0.

Proof. First we construct all the functions with the claimed properties satisfying the primal-dual 
dynamic relationships of the theorem. Fix any τ ∈ (0, T ) and for the given r.i.l.m. z̄(·) in (P τ )

consider the discrete approximation problems (P τ
k ) whose optimal solutions z̄k = (x̄k, ūk, b̄k)

exist by Proposition 3.3 with their piecewise linear extensions z̄k(·), 0 ≤ t ≤ T , converging to 
z̄(·) in the sense of Theorem 3.4. Our aim is to derive the claimed necessary optimality conditions 
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for z̄(·) by passing to the limit from those for z̄k(·) obtained in Theorem 5.2. To proceed, for 
each k ∈ N denote by wk(·) and vk(·) the piecewise constant extensions to [0, T ] of the discrete 
functions wk

j and vk
j , respectively, satisfying (5.3). It follows from (5.3) and (6.2) due to the 

strong W 1,2-convergence of the sequence {z̄k} to z̄ and the local Lipschitz continuity of �(t, ·, ·)
that {(wk(t), vk(t))} is weakly compact in L2([0, T ]; R2(n+nm+m)) =: L2[0, T ]. Hence we have(

wk(·), vk(·))→ (
w(·), v(·))) weakly in L2[0, T ] as k → ∞

with some pair 
(
w(·), v(·)) ∈ L2[0, T ]. Employing the aforementioned robustness property of the 

subdifferential together with the well-known weak convergence result based on Mazur’s theorem 
(see, e.g., [7, Theorem 1.4.1]) allows us to deduce from (5.3) that the convexified inclusion in 
(6.3) holds. Note also that v(·) belongs actually to L∞[0, T ] by the assumptions made.

Further, based on (5.2) for all k ∈N we define the functions

θxk(t) := θxk
j

hk

for t ∈ [tkj , tkj+1), j = 0, . . . , k − 1,

on [0, T ] and easily observe by the convexity of the integrand that

T∫
0

‖θxk(t)‖2dt =
k−1∑
j=0

‖θxk
j ‖2

hk

≤ 4

hk

k−1∑
j=0

⎛⎜⎜⎝
tkj+1∫
tkj

∥∥∥ ˙̄x(t) − x̄k
j+1 − x̄k

j

hk

∥∥∥dt

⎞⎟⎟⎠
2

≤ 4
k−1∑
j=0

tkj+1∫
tkj

∥∥∥ ˙̄x(t) − x̄k
j+1 − x̄k

j

hk

∥∥∥2
dt = 4

T∫
0

‖ ˙̄x(t) − ˙̄xk(t)‖2 dt → 0 as k → ∞,

(6.14)

where the convergence is due to Theorem 3.4. This implies that a subsequence of {θxk(t)} con-
verges to zero a.e. on [0, T ]. The same conclusions hold for the similarly defined functions θuk(t)

and θbk(t) on [0, T ].
It follows from (5.28) that for the piecewise linear interpolations of x̄k(·) and ūk(·) on [0, T ]

we have

˙̄xk (t) = −
m∑

i=1

ηk
ji ū

k
i (t

k
j ) for all t ∈ (tkj , tkj+1), j = 0, . . . , k − 1. (6.15)

Now extend ηk
j to [0, T ] by ηk (t) := ηk

j for t ∈ [tkj , tkj+1) and define the functions

ϑk(t) := max
{
tkj

∣∣ tkj ≤ t, 0 ≤ j ≤ k
}

for all t ∈ [0, T ] , k ∈N. (6.16)

We clearly have ϑk(t) = tkj for all t ∈ [tkj , tkj+1), j = 0, . . . , k − 1, and ϑk(t) → t uniformly in 

[0, T ] as k → ∞. The uniform convergence of z̄k(·) to z̄(·) on [0, T ] readily implies that
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z̄k
(
ϑk(t)

)→ z̄(t) uniformly on [0, T ] as k → ∞. (6.17)

This notation allows us to rewrite (6.15) as

˙̄xk (t) = −
m∑

i=1

ηk
i (t) ūk

i (ϑ
k(t)) for all t ∈ [0, T ]\{tk0 , . . . , tkk

}
. (6.18)

Consider further the subset of [0, T ] given by

T := [0, T ]\
⋃
k∈N

{
tk0 , . . . , tkk

}
.

For any fixed t ∈ T denote by J := I (x̄(t), ū(t), b̄(t)) the collection of active constraint indices 
from (3.27) and by ũk(t) the matrix consisting of the rows ūk

i (ϑ
k(t)), i ∈ J , while ũ(t) stands 

for the matrix consisting of the rows ūi(t) as i ∈ J . More precisely, this means that ũk
i (t) =

ūk
φ(i)(ϑ

k(t)) and ũi = ūφ(i)(t) for all i ∈ {1, . . . , |J |}, where |J | signifies the cardinality of J , 
and where the mapping φ : {1, . . . , |J |} −→ J is a bijection. The assumed LICQ condition tells 
us that the rows of ūi(t) are linearly independent for i ∈ J , and consequently we can build the 
generalized inverse matrix

û(t) := [̃
u(t )̃u(t)∗

]−1
ũ(t) for each t ∈ T .

It follows from (6.17) that ūk
i (ϑ

k(t)) →k ūi(t) for i ∈ J , and so the generalized inverse

ûk(t) := [̃
uk(t )̃uk(t)∗

]−1
ũk(t) (6.19)

is well defined for all k sufficiently large with ̂uk(t) → û(t) as k → ∞. We have by the definition 
of J that 〈ūi (t), x̄(t)〉 < b̄i(t) whenever i ∈ {1, . . . , m} \ J , and hence (6.17) tells us that〈

ūk
i (ϑ

k(t)), x̄k(ϑk(t))
〉
< b̄k

i

(
ϑk(t)

)
for i ∈ J c := {

1, . . . ,m} \ J

when k is large. Since ϑk(t) = tkj for some j ∈ {0, . . . , k}, we deduce that 
〈
ūk

j i , x̄
k
j

〉
< b̄k

ji for 

all i ∈ J c , and so (5.32) yields ηk
ji = 0 for this j and all i ∈ J c. Remembering that ηk

ji = ηk
i (t)

by construction, we conclude that ηk
i (t) = 0 for all i ∈ J c and large k. This allows us to rewrite 

(6.18) as

˙̄xk (t) = −
∑
i∈J

ηk
i (t) ūk

i (ϑ
k(t)) = −ũk(t)∗η̃k (t) for large k, (6.20)

where η̃k (t) collects the components ηk
i (t) for i ∈ J , i.e., η̃k

i (t) = ηk
φ(i) (t) for i ∈ {1, . . . , |J |}

via the above bijection φ. Thus (6.19) and (6.20) ensure the representation

η̃k (t) = −ûk(t) ˙̄xk (t) for large k, (6.21)
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and the passage to the limit implies that ̃ηk (t) → −û(t) ˙̄x (t) as k → ∞. Define now the required 
function η(t) = (η1(t), . . . , ηm(t)) for all t ∈ J of full measure on [0, T ] by

ηφ(i) (t) := −ûi (t) ˙̄x (t) for i ∈ {1, . . . , |J |} and ηi (t) := 0 for i ∈ J c (6.22)

and observe from the constructions above that ηk (t) → η (t) as k → ∞. Since ηk
i (t) = 0 for 

i ∈ J c and large k, we get (6.4) by the definition of J and also ηi(t) ≥ 0 for all i = 1, . . . , m due 
to ηk

j ∈ R
m+ in Theorem 5.2. It follows from (6.20) by passing to the limit that (6.8) holds. The 

uniqueness of η(t) in (6.8) for a.e. t ∈ [0, T ] follows from the imposed LICQ condition.
To justify the claimed properties of η(·) in (6.4), it remains to show that η(·) ∈ L2[0, T ]. To see 

it, let us rearrange for each t ∈ T the active components of η(t) by putting ̃ηi(t) := ηφ(i)(t) for 
i ∈ {1, . . . , |J |} and ̃ηi(t) = 0 otherwise. Since ̃ηi(t) = −ûi (t) ˙̄x(t) whenever i ∈ {1, . . . , |J |} by 
(6.22) and the convergence ̂uk(t) → û(t) is uniform on [0, T ] by (6.17), it follows that ̃ηk(·) →
η̃(·) and hence ηk(·) → η(·) strongly in L2[0, T ]. This not only verifies that η(·) ∈ L2[0, T ], but 
also allows us to get the estimate

hk

k∑
j=0

‖ηk
j‖2 =

T∫
0

‖ηk(t)‖2dt ≤ M (6.23)

with some constant M > 0 independent of k. It immediately follows from (6.23) and (6.14) that

T∫
0

∥∥ηk
i (t)θ

xk(t)
∥∥dt → 0 as k → ∞ for all i = 1, . . . ,m. (6.24)

Next we use the notation of Theorem 5.2 and define qk(·) = (qxk(·), quk(·), qbk(·)) by extend-
ing pk

j piecewise linearly to [0, T ] with qk(tkj ) := pk
j for j = 0, . . . , k. Construct γ k(·), ξk(·) on 

[0, T ] by

γ k(t) := γ k
j , ξk(t) := 1

hk

ξk
j for t ∈ [tkj , tkj+1) and j = 0, . . . , k − 1 (6.25)

with γ k(T ) := 0 and ξk(T ) := ξk
k . Appealing to ϑk(·) in (6.16), equations (5.29)–(5.31) can be 

rewritten as

q̇xk(t) − λkwxk(t) =
m∑

i=1

γ k
i (t)ūk

i

(
ϑk(t)

)
, (6.26)

q̇uk
i (t) − λkwuk

i (t) = 2ξk
i (t)ūk

i

(
ϑk(t)) + γ k

i (t)x̄k(ϑk(t)
)

− ηk
i (t)

(
λkvxk(t) + λkθxk(t) − qxk(ϑk+(t))

)
, (6.27)

q̇bk(t) − λkwbk(t) = −γ k(t) (6.28)

for every t ∈ (tk, tk ), j = 0, . . . , k−1, and i = 1, . . . , m, where ϑk+(t) := tk for t ∈ [tk, tk ).
j j+1 j+1 j j+1
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Now we define pk(·) =
(
pxk(·), puk(·), pbk(·)

)
on [0, T ] by setting

pk(t) := qk(t) +
T∫

t

( m∑
i=1

γ k
i (s)ūk

i

(
ϑk(s)

)
, 2
[
ξk(s), ūk

(
ϑk(s)

)]
+ [

γ k(s), repm

(
x̄k(ϑk(s))

)]
, −γ k(s)

)
ds (6.29)

for every t ∈ [0, T ]. This gives us pk(T ) = qk(T ) with the differential relation

ṗk(t) = q̇k(t)−
( m∑

i=1

γ k
i (t)ūk

i

(
ϑk(t)

)
,2
[
ξk(t), ūk

(
ϑk(t)

)]+ [
γ k(t), repm

(
x̄k(ϑk(t))

)]
,−γ k(t)

)
(6.30)

holding for a.e. t ∈ [0, T ]. Using this notation, equations (6.26)–(6.28) can be rewritten as

ṗxk(t) = λkwxk(t), (6.31)

ṗuk
i (t) = λkwuk

i (t) − ηk
i (t)

(
λkvxk(t) + λkθxk(t) − qxk

(
ϑk+(t)

))
, (6.32)

ṗbk(t) = λkwbk(t) (6.33)

for every t ∈ (tkj , tkj+1), j = 0, . . . , k − 1, and i = 1, . . . , m. Define the vector measures γ k
mes and 

ξk
mes by∫

B

dγ k
mes :=

∫
B

γ k(t) and
∫
B

dξk
mes :=

∫
B

ξk(t)dt for every Borel subset B ⊂ [0, T ]. (6.34)

From now on we drop for simplicity the index ‘mes’ in the measure notation if no confusion 
arises.

Observe next that all the expressions in the statement of Theorem 5.2 are positively homoge-
neous of degree 1 with respect to λk , pk , γ k , and ξk . Therefore the nontriviality condition (5.27)
allows us to normalize them by imposing the following relationships whenever k ∈ N:

λk + ‖quk(0)‖ + ‖qbk(0)‖ + ‖pk(T )‖ +
T∫

0

‖γ k(t)‖dt +
T∫

0

‖ξk(t)‖dt = 1, (6.35)

which tell us that all the sequential terms in (6.35) are uniformly bounded. Passing below to sub-
sequences of k → ∞ if necessary, we can immediately conclude that λk → λ for some λ ≥ 0. 
Then the equality pk(T ) = qk(T ), the uniform boundedness of the first integral terms in (6.35)
and of {wk(·)} in L∞[0, T ] implies via (6.26) that the sequence {qxk(·)} has uniformly bounded 
variations on [0, T ], and so it is bounded in L∞[0, T ]. Observe further that the right-hand sides 
of (6.31) and (6.33) are obviously uniformly bounded in L∞[0, T ]. Concerning the right-hand 
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sides of (6.32), observe that the sequence {ληkvk} is uniformly bounded in L2, while the remain-
ing summands are uniformly bounded in L1 due to (6.24) and the uniform boundedness of {qxk}. 
Since we also have their uniform integrability by the arguments above, the classical Dunford–
Pettis theorem on the weak compactness in L1 allows us a subsequence of {ṗk(·)}, which weakly 
converges in L1 to some function generating by the Newton–Leibniz formula an absolutely con-
tinuous function p(·) such that pk(t) → p(t) uniformly on [0, T ]. Moreover, the aforementioned 
Mazur’s theorem gives us a subsequence of convex combinations of ṗk(t) converging to ṗ(t) a.e. 
pointwise on [0, T ].

Using the uniform boundedness of 
∫ T

0 ‖γ k(t)‖dt and 
∫ T

0 ‖ξk(t)‖dt by (6.35), the relation-
ships in (6.26)–(6.28) together with pk(T ) = qk(T ) and (6.24) ensures that {qk(·)} is of uni-
formly bounded variation. This allows us to employ Helly’s selection theorem and find measures 
γ ∈ C∗([0, T ]; Rm), ξ ∈ C∗([0, T ]; Rm) and a function of bounded variation q(·) on [0, T ] such 
that a subsequence of {qk(·)} pointwise converges to q(·) while some of {(γ k, ξk)} weak∗ con-
verges to (γ, ξ) in BV[0, T ]; see [3, Definition 3.11, Theorem 3.23, and Proposition 3.21]. Thus 
having q(T ) = p(T ) and combining it with the a.e. pointwise convergence of convex combi-
nations of ṗk(·) to ṗ(·) justify the possibility of passing to the limit in (6.31)–(6.33) and to 
verify (6.6). Combining (5.33) and (6.14) gives us (6.5) while (6.7) follows from (5.8) and (6.14).

Now we intend to prove the representation (6.9) for q(·) by passing to the limit in (6.29). 
It follows from the norm convergence of z̄k(·) → z̄(·) in W 1,2[0, T ] that { ˙̄xk(·)} is bounded in 
L2[0, T ] and also that

supt∈[0,T ]
∥∥ūk

(
ϑk(t)

)− ūk(t)
∥∥= max

0≤j≤k−1

∥∥ūk
j+1 − ūk

j

∥∥→ 0 as k → ∞

with the same for the b-components. Furthermore, for any fixed i ∈ {1, . . . , m} we have the 
estimate

∥∥∥ T∫
t

γ k
i (s)ūk

i

(
ϑk(s)

)
ds −

T∫
t

ūi (s)dγi(s)

∥∥∥
≤
∥∥∥ T∫

t

γ k
i (s)ūk

i

(
ϑk(s)

)
ds −

T∫
t

γ k
i (s)ūi (s)ds

∥∥∥+
∥∥∥ T∫

t

γ k
i (s)ūi (s)ds −

T∫
t

ūi (s)dγi(s)

∥∥∥
=
∥∥∥ T∫

t

γ k
i (s)

(
ūk

i (ϑ
k(s)) − ūi (s)

)
ds

∥∥∥+
∥∥∥ T∫

t

ūi (s)γ
k
i (s)ds −

T∫
t

ūi (s)dγi(s)

∥∥∥,
where the first summand vanishes as k → ∞ on [0, T ] due to the uniform convergence of ūk

i (·)
to ūi (·) and the uniform boundedness of 

∫ T

0 ‖γ k(t)‖dt , while the second one vanishes for all 
t ∈ [0, T ] except for at most countably many points because the measures γ k converge weak∗ to 
γ ; see, e.g., [44, p. 325]. Hence

T∫
γ k
i (s)ūk

i

(
ϑk(s)

)
ds →

T∫
ūi (s)dγi(s) as k → ∞
t t
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except for at most countably many t . Proceeding in the same way with the rest of (6.29) gives 
us (6.9), which is the left-continuous representative of the limiting function q(·) of bounded vari-
ation on [0, T ]; see, e.g., [3, Theorem 3.8]. Using this and the properties of w(·), v(·) and η(·)
established above we complete proving all the statements in the primal-dual dynamic relation-
ships of the theorem.

Next we justify the transversality conditions, which is a much easier task. Indeed, the validity 
of (6.10) and (6.12) follows by passing to the limit in (5.35) and (5.37), respectively, with tak-
ing into account that {pk(·)} converges uniformly to p(·) and that pk(T ) = qk(T ) = pk

k . Then 
observe from (5.36) that

puk
ki + pbk

ki x̄
k
k = 〈

puk
ki + pbk

ki x̄
k
k , ūk

k

〉
ūk

k for all i = 1, . . . ,m,

which gives us (6.11) by passing to the limit as k → ∞.
Now we proceed with verifying the measure nonatomicity conditions of the theorem. To check 

the one in (a), fix t ∈ [0, T ) with 〈ūi (t), x̄(t)〉 < b̄i(t) for i = 1, . . . , m and find a neighborhood 
Vt of t in [0, T ] such that for any s ∈ Vt we have 〈ūi(s), x̄(s)〉 < b̄i(s), i = 1, . . . , m. This 
yields 〈ūk

i (t
k
j ), x̄k(tkj )

〉
< b̄k

i (t
k
j ), i = 1, . . . , m, when k is sufficiently large and so tkj ∈ Vt . Thus it 

follows from (5.34) that for any Borel subset V ⊂ Vt we have γ k(t) = 0 on V , which implies in 
turn that ‖γ k

mes‖(V ) = ∫
V

d‖γ k
mes‖ = ∫

V
‖γ k(t)‖dt = 0. Letting k → ∞ shows that ‖γ ‖(V ) = 0. 

The measure nonatomicity condition (b) for ξ is justified similarly.
Our final step is to prove the nontriviality conditions starting with (6.13). Arguing by con-

tradiction, suppose that λ = 0, q(0) = 0, and p(T ) = 0 and hence get λk → 0, qk(0) → 0, 
and pk(T ) = pk

k → 0 as k → ∞. Substituting (5.8) into (5.31) with the usage of (5.2), (5.3), 
and (6.1), we get

T∫
0

‖γ k(t)‖dt =
k−1∑
j=0

hk‖γ k
j ‖ ≤

k−1∑
j=1

∥∥∥pbk
j+1 − pbk

j

∥∥∥+ λk

k−1∑
j=0

hk‖wbk
j ‖ + ‖pbk

1 − pbk
0 ‖

≤ λk

k−1∑
j=1

∥∥∥θbk
j − θbk

j−1

hk

∥∥∥+λk

k−1∑
j=1

‖vbk
j −vbk

j−1‖+λk

k−1∑
j=0

hk‖wbk
j ‖+‖pbk

1 ‖+‖pbk
0 ‖.

(6.36)

It follows from the definition of θbk
j in (5.2) that

k−1∑
j=1

∥∥∥θbk
j − θbk

j−1

hk

∥∥∥≤ 2

(
k−2∑
j=0

∥∥∥ b̄k
j+2 − 2b̄k

j+1 + b̄k
j

hk

∥∥∥+
k−2∑
j=0

∥∥∥ b̄(tkj+2) − 2b̄(tkj+1) + b̄(tkj )

hk

∥∥∥).

Now using the estimate for b̄(tkj ) in (3.7), imposed on the r.i.l.m. z̄(·), and then the estimate for 

b̄k
j established in (3.30) allows us to arrive at the boundedness condition

k−1∑∥∥∥θbk
j − θbk

j−1

hk

∥∥∥≤ 2(M + M̃).
j=1
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To establish now the boundedness of the term with vbk
j in (6.36), observe that

vbk
j = ∇ḃ�3

(
tj ,

ūk
j+1 − ūk

j

hk

,
b̄k
j+1 − b̄k

j

hk

)
,

which ensures the boundedness of 
k−1∑
j=1

‖vbk
j − vbk

j−1‖ by the last estimate in (6.2) and (3.30). The 

boundedness of 
k−1∑
j=0

hk‖wbk
j ‖ in (6.36) follows from (5.3) due the assumed Riemann integrabil-

ity on [0, T ] of the Lipschitz modulus of �1. Thus all the sums in the rightmost part of (6.36)
converge to zero being multiplied by λk.

Since pbk
0 = qk(0) → 0 in our arguing by contradiction, it remains to show that ‖pbk

1 ‖ → 0 in 

order to conclude that 
∫ T

0 ‖γ k(t)‖dt → 0 as k → ∞. To proceed, we deduce from (5.8) that

‖pbk
1 ‖ ≤ λk‖vbk

0 ‖ + λkh−1
k |θbk

0 |.

Then the structure of � in (6.1) with the Lipschitz continuity of �2 together with (5.3) and the 
corresponding estimates in (3.29) and (6.2) ensures the boundedness of {vbk

0 }; hence λk‖vbk
0 ‖ →

0. Furthermore, it follows from (3.29), (5.2) and estimate (3.6), imposed for the r.i.l.m. z̄(·), that 
{h−1

k θbk
0 } is bounded and thus λkh−1

k |θbk
0 | → 0. This justifies the claimed convergence to zero of 

pbk
1 and so of 

∫ T

0 ‖γ k(t)‖dt → 0 as k → ∞.
Considering now the functions ξk(t) from (6.25), we have

T∫
0

‖ξk(t)‖dt =
k−1∑
j=0

hk

1

hk

‖ξk
j ‖ =

k−1∑
j=0

‖ξk
j ‖, k ∈N.

It follows from (5.30) due to (3.8) that the estimate

k−1∑
j=0

‖ξk
ji‖ ≤

k−1∑
j=0

∥∥∥puk
(j+1)i − puk

ji

∥∥∥+
k−1∑
j=0

λkhk‖wuk
ji ‖

+
k−1∑
j=0

hk|ηk
ji |
∥∥∥λkvxk

j + λkθxk
j

hk

− pxk
j+1

∥∥∥+
k−1∑
j=0

hk‖γ k
ji‖ · ‖x̄k

j ‖ (6.37)

holds whenever i = 1, . . . , m. Furthermore, it follows from (5.8) that

k−1∑
j=0

∥∥∥puk
j+1 − puk

j

∥∥∥≤ λk
k∑

j=1

∥∥∥θuk
j − θuk

j−1

hk

∥∥∥+ λk
k∑

j=1

‖vuk
j − vuk

j−1‖ + ‖puk
1 − puk

0 ‖. (6.38)

Recalling that ‖qk(T )‖ = ‖pk(T )‖ → 0 and 
∫ T

0 ‖γ k(t)‖dt → 0, we get qx(·) = 0 on [0, T ] by 
passing to the limit in (6.26) due to the weak∗ convergence of γ k(·) in BV[0, T ]. Then (6.29)
yields px(·) = 0, and so
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max
t∈[0,T ]

‖qxk(t)‖ = max
j=0,...,k

‖pxk
j ‖ → 0 as k → ∞. (6.39)

Combining (6.39) with (5.2), (6.14), (6.23), and the L2-boundedness of {vxk}, which follows 
from (6.2) and the strong W 1,2-convergence of Theorem 3.4, tells us that the third summand in 
(6.37) vanishes as k → ∞. Using the same arguments allowing us to prove that 

∫ T

0 ‖γ k(t)‖dt →
0 as k → ∞, we get by (6.38) that the first summand in (6.37) vanishes as well, which therefore 
verifies that 

∫ T

0 ‖ξk(t)‖dt → 0. All of this leads us to the violation of (6.35) and thus justifies 
the nontriviality condition (6.13).

To verify finally the enhanced nontriviality condition under the additional assumptions made, 
suppose by contradiction that (λ, p(T )) = 0. By (6.6), px(t) = 0, pb(t) = 0 for all t ∈ [0, T ]. 
By (6.7), qu(t) = 0, qb(t) = 0 for almost all t ∈ [0, T ]. Combining those arguments and (6.9), 
we get that also qx(t) = 0 for almost all t ∈ [0, T ]. Using (6.6) again yields that pu(t) = 0 for all 
t ∈ [0, T ]. Therefore, p(t) = 0 for all t ∈ [0, T ] and q(t) = 0 for almost all t ∈ [0, T ]. By using 
the measure nonatomicity condition, we get also q(0) = 0, hence contradicting the nontriviality 
condition (6.13) and thus completing the proof. �

It is worth mentioning (as used in Example 7.5 below) that the differentiability assumption on 
� with respect to (u̇, ḃ) can be replaced in the proof of Theorem 6.1 by the following: there is M >

0 such that for all the partitions 0 < t0 < t1 < . . . < tk < T and (vu
j , vb

j ) ∈ ∂u̇,ḃ�(tj , ̄z(tj ), ̇̄z(tj )), 
j = 0, . . . , k, we have

k−1∑
j=0

‖vu
j+1 − vu

j ‖ ≤ M and
k−1∑
j=0

‖vb
j+1 − vb

j ‖ ≤ M. (6.40)

Indeed, (6.40) is exactly the condition employed above to justify nontriviality (6.13).

Remark 6.2 (Optimality conditions for problem (P )). It is not hard to observe while following 
the limiting procedures developed in Theorems 3.4 and 6.1 that the passage to the limit as τ ↓ 0
in the optimality conditions obtained for (P τ ) in Theorem 6.1 leads us to necessary optimality 
conditions for intermediate local minimizers in problem (P ) with the validity of all the relation-
ships (6.3)–(6.13) of this theorem but the second measure nonatomicity condition (b). However, 
the optimality conditions for (P ) derived in this way may degenerate in the sense that for any 
given feasible solution to (P ) we can find some collection of dual elements satisfying the non-
triviality condition (6.13) such that all the conditions (6.3)–(6.13) hold for them. Indeed, this 
happens when

λ = 0, p(·) = 0, γ (·) = 0, ξ = δ{0} (Dirac measure at 0)

and the adjoint arc q(·) of bounded variation on [0, T ] is constructed as follows:

q(t) :=
{ (

0,−2ū(0),0) for t = 0,

0 for t ∈ (0, T ],

where ū(·) is the u-part of the given feasible solution z̄(·) to (P ). Nevertheless, it is important 
to emphasize as illustrated by the examples in Section 7 that, even in the degenerate case, the 
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aforementioned necessary optimality conditions allow us to eliminate nonoptimal solutions and 
find optimal ones.

Finally in this section, we consider yet another sweeping optimal control problem much re-
lated to (P ), where the control actions ūi(·) in normal directions are fixed and the optimization 
is provided by b-controls changing the position of the moving polyhedron. This problem can be 
modeled in the following form (P̃ ):

minimize J̃ [x, b] := ϕ
(
x(T )

)+
T∫

0

(
�1
(
t, x(t), b(t), ẋ(t)

)+ �2
(
ḃ(t)

))
dt

subject to the constraints in (1.3) and (1.4), where ui(·) = ūi (·), i = 1, . . . , m, are fixed absolutely 
continuous functions on [0, T ]. Since the equality constraints (1.5) or (1.7) are not imposed, there 
is no difference between problem (P̃ ) and its τ -perturbations as before.

We have the following necessary optimality conditions for the new problem under considera-
tion.

Theorem 6.3 (Necessary conditions for problem with fixed normal directions). Let z̄(·) =
(x̄(·), b̄(·)) be a given r.i.l.m. for problem (P̃ ), and let the LICQ condition hold at z̄(·). Sup-
pose that the assumptions of Theorem 6.1 hold whenever appropriate. Then there exist λ ≥ 0, 
an adjoint arc p(·) = (px, pb) : [0, T ] → R

n+m absolutely continuous on [0, T ], L∞-functions 
(w(·), v(·)) satisfying (w(t), v(t)) ∈ co ∂�(t, ̄z(t), ̇̄z(t)) for a.e. t ∈ [0, T ] with � = �1 + �2, and 
a measure γ ∈ C∗([0, T ]; Rm) such that for all i = 1, . . . we have the optimality relation-
ships (6.4), (6.5), (6.7), (6.8), (6.10), (6.12), and (6.13) holding together with the first measure 
nonatomicity condition (a). Moreover, (6.6) and (6.9) read as

ṗ(t) = λw(t) for a.e. t ∈ [0, T ],

q(t) = p(t) −
( ∫
[t,T ]

m∑
i=1

ūi (s)dγi(s),−
∫

[t,T ]
dγ (s)

)
for a.e. t ∈ [0, T ].

If finally 〈ūi (0), x̄(0)〉 < b̄i(0) as i = 1, . . . , m, we have the enhanced nontriviality (λ,

p(T )) �= 0.

Proof. Following the proof of Theorem 5.1 shows that (5.2)–(5.8) hold with θuk
j = 0, wuk

j = 0, 

vuk
j = 0 for all j = 0, . . . , k − 1, ξk = 0, and puk = 0. Inclusion (5.9) reads now as(

pxk
j+1 − pxk

j

hk

− λkwxk
j ,

pbk
j+1 − pbk

j

hk

− λkwbk
j ,pxk

j+1 − λk
(
vxk
j + 1

hk

θxk
j

))

∈ N
((

x̄k
j , ūk

j , b̄
k
j ,

x̄k
j+1 − x̄k

j

hk

)
;gphF(·, ū(tkj ), ·)

)
, j = 0, . . . , k − 1. (6.41)

Note that F satisfies the qualification condition in [25, Corollary 3.17], which allows us to de-
duced that
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D∗Fu(x̄
k
j , ū(tkj ), b̄k

j )(v) ⊂ projRn×RmD∗F(x̄k
j , ū(tkj ), b̄k

j )(v),

where v := −pxk
j+1 + λk

(
vxk
j + 1

hk
θxk
j

)
. Employing the coderivative estimate (4.13) gives us 

(5.27)–(5.29), (5.31)–(5.35), and (5.37). Then the proof is completed by using the same argu-
ments as in Theorem 6.1. �
7. Examples and applications

We split this section into six examples, which are of a different scale. The first one describes an 
application of the obtained results to a class of elastoplasticity problems, which can be modeled 
via the sweeping process over controlled polyhedral moving sets. The second example addresses 
a particular sweeping process known as the play-and-stop operator, which has various applica-
tions to practical models in physics, mechanics, engineering, etc. The other examples illustrate 
special features of the established necessary conditions in determining optimal solutions to the 
controlled sweeping process in one- or two-dimensional settings.

Example 7.1 (Quasistatic elastoplasticity with hardening). We refer the reader to the book [15, 
Chapters 2–4] for models of this type (with no control) and mechanical processes they describe 
with the notation therein; see also some related models in [18]. This example is particularly 
inspired by models in quasistatic small-strain elastoplasticity with hardening. Note that an opti-
mization problem of static plasticity with linear kinematic hardening was studied in [17], where 
the external forces are taken as static controls. Here we adopt an essentially different dynamic
approach, which seems to be more realistic from the viewpoint of mechanical applications. Be-
sides allowing the natural time evolution, we also treat the underlying yield criterion as a control 
action. This leads us to the following optimal control model of dynamic elastoplasticity optimiza-
tion: to design an elastoplastic material by (dynamically) adjusting its yield criterion in order to 
minimize an appropriate cost.

To proceed in more detail, consider a body in R3 whose displacement from the initial position 
is u(t, x). The strain ε is the symmetric part of the gradient of u, i.e.,

ε = 1

2

(
∇u + ∇∗u

)
.

It can be decomposed into the sum of the plastic strain p and of the elastic strain e by e = ε − p. 
The stress σ depends on the elastic strain as σ = Ce, where C is the elasticity tensor and σ
satisfies the equilibrium equation divσ + d = 0 on an open set � with smooth boundary that 
contains all the possible positions of the body together with the boundary condition σ · n = c
on ∂�. Here n denotes the external normal to � while d and c represent the external forces 
that are taken as control actions. We assume that σ = σ (t) and p are independent of x. This 
corresponds to the so-called pseudo-rigid body; see, e.g., [41]. Of course, a more realistic model 
requires dependence on x, but this would lead us to considering the sweeping process with an 
infinite-dimensional state space, which is beyond the scope of this paper.

If the material undergoes a linear kinematic hardening, then the “plastic flow law” is given by

ṗ ∈ N(σ − kp;K) (7.1)
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(see, e.g., [15, pp. 89–90]), where k is a positive constant, and where K is a compact convex 
subset of R3 called the “region of admissible stresses.” There is a number of interesting practical 
models of this type with a polyhedral region of admissible stresses; e.g., it is a hexagon in the 
model with the Tresca yield criterion described in [15, p. 63]. Denoting q := −kp, we have

K := {
q ∈R

3
∣∣ 〈σ + q,ui〉 ≤ bi, i = 1, . . . ,m

}
,

which induces the polyhedral moving set

C(t) := {
q ∈ R

3
∣∣ 〈q,ui(t)〉 ≤ bi(t) − 〈σ(t), ui(t)〉, i = 1, . . . ,m

}
.

This allows us to reformulate model (7.1) as the controlled sweeping process

−q̇(t) ∈ N
(
q(t);C(t)

)
over the moving polyhedron C(t) with the control functions ui(t), bi(t), and σ(t). The theory 
developed in this paper can be readily applied to optimize the class of models under consideration 
with respect to general cost functions depending on the state and control variables as well as their 
velocities. Observe that our necessary conditions do not involve d and c directly, but only σ .

The next example concerns a particular model, which appears in the literature is several con-
texts.

Example 7.2 (Play-and-stop operator). This name is associated with the sweeping process given 
by

−ẋ(t) ∈ N
(
x(t);b(t) − Z

)
, x(0) ∈ b(0) − Z, (7.2)

where x ∈ R
n (in general x belongs to a Hilbert space), where Z is a closed and convex set 

(polyhedron in our case), and where b : [0, T ] → R
n is absolutely continuous. We refer the reader 

to, e.g., [39, Section 7] and the bibliographies therein for more details on such operators and their 
applications.

To describe the possibility of applying our results, consider for simplicity the case when Z is 
the symmetric rectangle centered at the origin

Z := {
(x1, x2) ∈R

2
∣∣ |x1| ≤ β1, |x2| ≤ β2} with β1, β2 > 0

and the control is provided by b(t) = (b1(t), b2(t)) for t ∈ [0, T ] under the fixed constant 
u-components u1 := (1, 0), u2 := (0, 1), u3 := −u1, u4 := −u2. Then we have

C(t) = {
x ∈ R

2
∣∣ 〈x,u1〉 ≤ β1 + b1(t), 〈x,u2〉 ≤ β2 + b2(t), 〈x,u3〉 ≤ β1 + b1(t),

〈x,u4〉 ≤ β2 + b2(t)
}

and are in a position to apply the necessary optimality conditions of Theorem 6.3 to the optimal 
control problem described by (1.2) and (7.2) with the moving set C(t) given above.
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Now we present several examples illustrating some characteristic features of the necessary 
optimality conditions derived in Theorem 6.1 and also showing how to use these conditions to 
determine intermediate local minimizes. Note that in the examples below the running cost is 
convex in velocity variables, and so there are no difference between intermediate and relaxed 
intermediate local minimizers.

The following simple one-dimensional example (as well as the more involved subsequent 
ones) illustrates the procedure of solving problems (P τ ) whenever 0 ≤ τ ≤ T by using Theo-
rem 6.1, even in the case of the possible degeneracy for (P ) as discussed in Remark 6.2.

Example 7.3 (Calculating optimal controls in one-dimensional problems). Let (P ) be given by

n = m = T = 1, x0 = 0, ϕ(x) := (x − 1)2

2
, and �(t, x,u, b, ẋ, u̇, ḃ) := 1

2
ḃ2. (7.3)

It follows from the structure of (P ) that we can put ū(t) = −1 on [0, 1] and thus consider the 
minimization of the cost functional (1.2) with data (7.3) subject to the dynamic constraint

−ẋ(t) ∈ N
(
x(t);C(t)

)
, where C(t) := {

x ∈R
∣∣ − x(t) ≤ b(t)

}
for a.e. t ∈ [0,1]. (7.4)

It is easy to see that the variational problem in (7.3) and (7.4) admits an optimal solution; it also 
follows from the general theory due to the convexity and coercivity of the integrand � in (7.3)
with respect to velocity. Thus we can apply the necessary optimality conditions of Theorem 6.1 to 
the problem in (7.3), (7.4) and determine in this way its local solution. Employing (6.3)–(6.13)
with taking into account that (6.11) carries no information in this case give us the following 
relationships valid for a.e. t ∈ [0, 1]:

(1) w = 0, v = (0,0, ˙̄b); (2) − x̄(t) < b̄(t) =⇒ η(t) = 0;
(3) η(t) > 0 =⇒ qx(t) = 0; (4) ˙̄x(t) = η(t);
(5) (ṗx, ṗu, ṗb)(t) = (

0, η(t)qx(t),0
); (6) qu(t) = 0, qb(t) = λ ˙̄b(t);

(7) (qx, qu, qb)(t) = (px,pu,pb)(t) −
(

−
1∫

t

dγ,

1∫
t

x̄(s)dγ − 2

1∫
t

dξ,−
1∫

t

dγ
)
;

(8) pb(1) ≥ 0, −x̄(1) < b(1) =⇒ pb(1) = 0; (9) − px(1) = λ
(
x̄(1) − 1

)− pb(1);
(10) λ + ‖q(0)‖ + ‖p(1)‖ �= 0.

We consider first that case where ˙̄x(t) �= 0 for a.e. t ∈ [0, 1]. Then it is evident that ˙̄x(t) =
− ˙̄b(t) > 0 and hence it follows from (4) that qx(t) = 0 for a.e. t . Observe furthermore that (5) 
implies that p(·) is constant, which ensures by (7) that 

∫
[t,1] dγ is constant on (0, T ] as well. The 

latter means that either γ is zero or it is a Dirac measure concentrated at t = 1. In both cases 
we have that qb(t) is constant by (5) and (7), and so ˙̄b(·) is constant by (6) provided that λ �= 0; 
otherwise we do not have enough information to proceed. Assuming λ �= 0 yields in this case 
that there is only one feasible trajectory satisfying the necessary optimality conditions; namely 
(x̄(t), ū(t), b̄(t)) = (t/2, −1, −t/2) with the cost value of 1/4. The case of λ = 0, where no 
information can be deduced on x̄, cannot be ruled out. To examine finally the opposite case of 
x̄(·) = b̄(·) = 0, we see by the same arguments as above that q(·) is constant on (0, T ] with 
qx(t) = λ − pb(1). This choice satisfies necessary optimality conditions with the cost value of 
1/2 > 1/4, and thus we found a reasonable candidate to be an optimal solution to this problem.
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Observe that the problem in Example 7.3 can be also treated by necessary optimality con-
ditions of the Pontryagin Maximum Principle from conventional control theory by taking into 
account that the state constraint therein is active, i.e., x(t) = −b(t), and so we can consider 
ḃ(t) as the new control. In fact, PMP allows us to show in this setting that (x̄(t), ū(t), b̄(t)) =
(t/2, −1, −t/2) is a global minimizer. However, it is not the case in the following modification 
of the previous example, where the moving constraint is not active, and we cannot reduce the 
sweeping process to a conventional control system.

Example 7.4 (Necessary conditions for the controlled sweeping process versus PMP). The only 
difference of this example in comparison with Example 7.3 is that the running cost is given now 
by

�(t, x,u, b, ẋ, u̇, ḃ) := 1

2

(
(b − 1)2 + |ḃ|2).

The trivial choice of b(t) = 1 for all t ∈ [0, T ], gives us the value 1/2 of the cost function (1.2). 
If instead the moving constraint is active, then obviously u(t) ≡ −1 and x(t) = −b(t) ≥ 0 on 
[0, T ], which shows that

(x(1) − 1)2

2
+ 1

2

1∫
0

(
(−x(t) − 1)2 + |ḃ(t)|2)dt >

(x(1) − 1)2

2
+ 1

2
≥ 1

2
.

It is easy to see that the trivial solution above satisfies the necessary conditions in Theorem 6.1
(take qx(·) = px(·) = λ = 1 and let the other dual elements vanish). Since in this case the sweep-
ing state constraint is not active, we cannot employ PMP as in Example 7.3.

The next example shows how to exclude nonoptimal solutions by using necessary optimality 
conditions from Theorem 6.3. Observe that in this example the measure γ has an atom and the 
corresponding adjoint arc q(·) is discontinuous inside the time interval.

Example 7.5 (Excluding nonoptimal solutions). Consider problem (P̃ ) with ū ≡ −1 on [0, 1], 
n, m, T as in (7.3), x0 = 1/5, ϕ(x) := (x − 1)2, and the running cost given by

�(t, x, b, ẋ, ḃ) := (
b + t − s0(t)

)2 + α|ḃ + 4t − 2|

with α ≥ 0, s0(t) :=

⎧⎪⎪⎨⎪⎪⎩
(
t − 1

5

)2
if t < 1

5 ,

0 if 1
5 ≤ t ≤ 4

5 ,(
t − 4

5

)(
t + 1

5

)
otherwise.

It is easy to see that the couple (x̄(t), b̄(t)
) = (

v0(t), −t + s0(t)) on [0, T ] is optimal for this 
problem if α = 0, where

v0(t) :=

⎧⎪⎨⎪⎩
1
5 if t < 1

5 ,

t if 1
5 ≤ t ≤ 4

5 ,
4 otherwise.
5
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Let us show it is not (at least in the intermediate local sense) if α > 0. It can done it by applying 
the necessary optimality conditions of Theorem 6.1 while observing that all its assumptions are 
satisfied with the validity of (6.40) for �2 nondifferentiable in ḃ. Furthermore, due to x̄(0)ū =
−1/5 < 1/25 = b̄(0) we can employ the enhanced nontriviality condition (λ, p(1)) �= 0.

To proceed, deduce from (6.8) and (6.5) that qx(t) = 0 for a.e. t ∈ [1/5, 4/5]. Moreover, since 
η ≡ 0 both in [0, 1/5] and in [4/5, 1] thanks to (6.4), we deduce from (6.6) that ṗ(·) = 0, and 
so p(t) = p(1) for all t ∈ [0, 1]. Assuming by contradiction that λ �= 0, we get from (6.7) that 
qb(t) = αλ for t > 3/4 and qb(t) = −αλ for t < 3/4. Then (6.9) tells us that

qx(t) =
∫

[t,1]
dγ (s) and qb(t) = −

∫
[t,1]

dγ (s) for a.e. t ∈ [0,1].

Therefore, on one hand the measure γ is zero on (1/5, 4/5), while on the other it must have a 
nonzero mass at t = 3/4. This is a contradiction, which shows that λ = 0. At the same time we 
get p(1) = 0 by the transversality conditions (6.10)–(6.12) due to x̄(1)ū = −4/5 < −1 +6/25 =
b̄(1). This contradicts the enhanced nontriviality and thus verifies that (x̄(·), b̄(·)) is not optimal 
for (P̃ ) if α > 0.

Finally, we present a two-dimensional example that can be analyzed on the basis of Theo-
rem 6.3.

Example 7.6 (Controlled sweeping process in two dimensions). Let the data of (P ) be:

n = m = 2, x0 = (1,1), T = 1, ϕ(x) = ‖x‖2

2
, and �(t, x,u, b, ẋ, u̇, ḃ) := 1

2

(
ḃ2

1 + ḃ2
2

)
. (7.5)

Consider the version (P̃ ) of this problem with the fixed normal vectors u1 ≡ (1, 0) and 
u2 ≡ (0, 1) and apply Theorem 6.3 to determine optimal solutions b̄(t) = (b̄1(t), b̄2(t)) and 
x̄(t) = (x̄1(t), x̄2(t)) on [0, 1]. The necessary optimality conditions of Theorem 6.3 give us the 
relationships on [0, 1]:

(1) w(·) = 0, vx(·) = 0, vb(·) = (
ḃ1(·), ḃ2(·)

)
; (2) ˙̄xi(t) �= 0 =⇒ qx

i (t) = 0, i = 1, 2.
(3) pb(·) is constant with nonnegative components, and −px

i (·) = λx̄(1) + pb
i (·)ui , i = 1, 2 is 

also constant.
(4) qx(t) = px − γ ([t, 1]), qb(t) = λ ˙̄b(t) = pb + γ ([t, 1]) for a.e. t ∈ [0, T ].
(5) λ + ‖q(0)‖ + ‖p(1)‖ �= 0 with λ ≥ 0.

Observe first that the trivial solution with x̄(t) = (1, 1) and ˙̄b(t) = 0 on [0, 1] satisfies necessary 
conditions (take px

1 = px
2 = −1, pb

1 = pb
2 = γ1 = γ2 = 0, and λ = 1). In this case the cost value 

is 1. If the i-th constraint is pushing (i.e., ˙̄xi(t) < 0 on a set of positive measure), it follows from 
(4) that γi([t, 1]) is constant on that set and also ˙̄bi is constant for i = 1, 2 provided that λ �= 0, 
which is supposed to hold. We consider only the simplified case where pushing occurs on at most 
one interval. There are the following three possibilities in this case:

(a) Both constraints are pushing with constant speed at the same time in the interval [0, ϑ], 
where 0 < ϑ ≤ 1 is to be determined.
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(b) The constraints are pushing alternatively (with constant speed); by symmetry we may 
assume that they push for the same time, say first u1 in the interval [0, ϑ] and then u2 in the 
interval [ϑ, 2ϑ], where 0 < ϑ ≤ 1/2 is to be determined.

(c) Only one constraint is pushing in the interval [0, ϑ], again with constant speed; by sym-
metry we may assume that the first one is active.

To proceed further, denote the constant speed of the i-th moving constraint by βi < 0. Then 
in case (a) the cost value is calculated by

1

2
(ϑ2 + ϑ)(β2

1 + β2
2 ) + ϑ(β1 + β2) + 1,

and it is subject to minimization over β1, β2 < 0 with 0 < ϑ ≤ 1. Straightforward calculations 
show that

β1 = β2 = −1

1 + ϑ
,

and in this case the ϑ -component of the gradient of the cost function is negative, and so ϑ = 1. 
Thus β1 = β2 = − 1

2 , which gives us the cost value 1
2 .

In case (b) we have the same cost value as in (a) while ϑ ∈ (0, 1/2]. The same calculations tell 
us that the optimal cost with this strategy is obtained for ϑ = 1

2 and β1 = β2 = − 1
2 and its value 

is 11
16 . In case (c) the cost value is 3

4 with the choice of ϑ = 1, β1 = − 1
2 , and β2 = 0. Combining 

all the above allows us to conclude that the strategy in case (a) is the most appropriate when 
λ �= 0. Finally, observe that if λ = 0, we do not have enough information to proceed.
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