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Abstract Probability functions figure prominently in optimization problems of engi-
neering. They may be nonsmooth even if all input data are smooth. This fact motivates
the consideration of subdifferentials for such typically just continuous functions. The
aim of this paper is to provide subdifferential formulae of such functions in the case of
Gaussian distributions for possibly infinite-dimensional decision variables and nons-
mooth (locally Lipschitzian) input data. These formulae are based on the spheric-radial
decomposition of Gaussian random vectors on the one hand and on a cone of direc-
tions of moderate growth on the other. By successively adding additional hypotheses,
conditions are satisfied under which the probability function is locally Lipschitzian or
even differentiable.
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1 Introduction

The aimof this paper is to investigate subdifferential properties ofGaussian probability
functions induced by not necessarily smooth initial data. This topic combines aspects
of stochastic programming with arguments from variational analysis, two areas which
have been crucially influenced by the fundamental work of Prof. Roger J-BWets (see,
e.g., [16,21] and many other references). The motivation to study analytical properties
of probability functions comes from their importance in the context of engineering
problems affected by randomparameters. They are at the core of probabilistic program-
ming (i.e., optimization problems subject to probabilistic constraints) (e.g., [14,17])
or of reliability maximization (e.g., [6]).

A probability function assigns to a control or decision variable the probability that a
certain random inequality system induced by this decision variable be satisfied (see (1)
below). Since such functions are typical constituents of optimization problems under
uncertainty, it is natural to ask for their analytical properties, first of all differentiability.
Roughly speaking, this can be guaranteed under three assumptions: the differentiability
of the input data, an appropriate constraint qualification for the given random inequality
system and the compactness of the set of realizations of the random vector for the
fixed decision vector (e.g., [10,13,18]). While the first two assumptions are quite
natural, the last one appears to be restrictive in problems involving random vectors
with unbounded support. Failure of the compactness condition, however, may result in
general in nonsmoothness of the probability function despite the fact that all input data
are smooth and a standard constraint qualification is satisfied (see [19, Prop. 2.2]). In
order to keep the differentiability while doing without the compactness assumption,
onemay restrict to special distributions such asGaussian orGaussian-like as in [19,20].
The workhorse for deriving differentiability and gradient formulae in these cases is
the so-called spheric-radial decomposition of Gaussian random vectors [7, p. 29].
The resulting formulae for the gradient of the probability function are represented
- similar to the formulae for the probability values themselves - as integrals over
the unit sphere with respect to the uniform measure. The latter can be efficiently
approximated by QMC methods tailored to this specific measure (e.g., [1]). Such
approach, by exploiting special properties of the distribution, promisesmore efficiency
in the solution of probabilistic programs than general gradient formulae in terms
of possibly complicated surface or volume integrals. Successful applications of this
methodology in the context of probabilistic programming in gas network optimization
is demonstrated in [8,9].

The aim of this paper is to substantially extend the earlier results in [19,20] in
two directions: first, decisions will be allowed to be infinite-dimensional and second,
the random inequality may be just locally Lipschitzian rather than smooth. As the
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resulting probability function can be expected to be continuous only (rather than locally
Lipschitzian or even smooth), appropriate tools (subdifferentials) from variational
analysis will be employed for an analytic characterization.

We consider a probability function ϕ : X → R defined by

ϕ(x) := P (g (x, ξ) ≤ 0) , (1)

where X is a Banach space, g : X × R
m → R is a function depending on the

realizations of an m-dimensional random vector ξ . Such probability functions are
important in many optimization problems dealing with reliability maximization or
probabilistic constraints. The latter one refers to an inequality ϕ(x) ≥ p constraining
the set of feasible decisions in an optimization problem, in order to guarantee that
the underlying random inequality g (x, ξ) ≤ 0 is satisfied under decision x with
probability at least p ∈ (0, 1], referred to as a a probability level (or safety level).
Since we allow in our paper the function g to be locally Lipschitzian, there is no loss
of generality in considering a single random inequality only because in a finite system
of such inequalities one could pass to the maximum of components.

Throughout the paper, we shall make the following basic assumptions on the data
of (1):

1. X is a reflexive and separable Banach space.
2. Function g is locally Lipschitzian as a function of both arguments (H) simulta-

neously, and convex as a function of the second argument.

3. The random vector ξ is Gaussian of type ξ ∼ N
(
0, R̃

)
, where R̃ is a correlation

matrix.

A brief discussion of these assumptions is in order here: reflexivity of X is imposed
in order to work with the limiting (Mordukhovich) subdifferential as introduced in
Definition 2 below (actually, one could consider the more general case of Asplund
spaces). The separability of X is needed in order tomake use of an interchange formula
for the limiting subdifferential and integration sign (see Proposition 3 below). For the
same reason, g is required to be locally Lipschitzian. As already mentioned above, it
is not restrictive to consider just one inequality rather than a system. In particular, the
single inequality g (x, z) ≤ 0 could represent a finite or (compactly indexed) infinite
system of smooth inequalities. Considering a Gaussian random vector ξ allows one to
pass to a whole class of Gaussian-like multivariate distributions (e.g., Student, Log-
normal, truncated Gaussian, χ2 etc.) upon shifting their nonlinear transformations to
a Gaussian one into a modified function g̃ satisfying the same assumptions as required
for g here (e.g. [19, Section 4.3]).Moreover, assuming a centeredGaussian distribution
with unit variances isn’t a restriction either, because in the general case ξ ∼ N (μ,�),
we may pass to the standardized vector ξ̃ := D(ξ −μ), where D is the diagonal matrix

with elements Dii := 1/
√

�i i . Then, as required above, ξ̃ ∼ N
(
0, R̃

)
, with R̃ being

the correlation matrix associated with � and so

ϕ(x) = P (g (x, ξ) ≤ 0) = P

(
g̃
(
x, ξ̃
)

≤ 0
)

; g̃ (x, z) := g
(
x, D−1z + μ

)
.
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170 A. Hantoute et al.

Clearly, g̃ is locally Lipschitzian and is convex in the second argument if g is so.

Hence, there is no loss of generality in assuming that ξ ∼ N
(
0, R̃

)
from the very

beginning.
Our first observation is that our basic assumptions above do not guarantee the

continuity of ϕ even if g is continuously differentiable. A simple two-dimensional
example is given by g(r, s) := r · s (which is convex in the second argument) and
ξ ∼ N (0, 1). Then, ϕ(r) = 0.5 for r �= 0 and ϕ(0) = 1. Since we want to have
the continuity as a minimum initial property of ϕ in our analysis, we will add the
additional assumption that g (x̄, 0) < 0 holds true at a point of interest x̄ (at which a
subdifferential ofϕ is computed). In otherwords, given the convexity of g in the second
argument, zero is a Slater point for the inequality g (x, z) ≤ 0, z ∈ R

m . As shown in
[19, Proposition 3.11], the opposite case would entail that ϕ(x̄) ≤ 0.5. Since one deals
in typical applications like probabilistic programming or reliability maximization with
probabilities close to one, it follows that the assumption g (x̄, 0) < 0 can be made
without any practical loss of generality.

The paper is organized as follows: In Sects. 3 and 4, we provide all the auxil-
iary results (continuity and partial subdifferential of the radial probability function)
which are needed for the derivation of the main subdifferential formula presented in
Sect. 5. This main result which is valid for general continuous probability functions
will be specified then by adding additional hypotheses to the locally Lipschitzian and
differentiable case. An application to probability functions induced by a finite system
of smooth inequalities is given in Sect. 5.4.

2 Preliminaries

2.1 Spheric-radial decomposition of Gaussian random vectors

We recall the fact that any Gaussian random vector ξ ∼ N
(
0, R̃

)
has a so-called

spheric-radial decomposition, which means that the probability of ξ taking values in
an arbitrary Borel subset M of Rm can be represented as (e.g., [5, p.105])

P (ξ ∈ M) =
∫

v∈Sm−1

μη ({r ≥ 0 | r Lv ∈ M}) dμζ (v),

where Sm−1 := {
v ∈ R

m | ‖v‖2 = 1
}
denotes the unit sphere in R

m , μη is the one-
dimensional Chi-distribution withm degrees of freedom, and μζ refers to the uniform
distribution on Sm−1. Moreover, the (non-singular) matrix L is supposed to be a factor
in a decomposition R̃ = LLT of the positive definite correlation matrix R̃ (e.g.
Cholesky decomposition).

The spheric-radial decomposition allows us to rewrite the probability function (1)
in the form

ϕ(x) =
∫

Sm−1

e(x, v)dμζ (v) ∀x ∈ X, (2)
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Subdifferential characterization of probability functions… 171

where e : X × S
m−1 → R refers to the radial probability function defined by

e(x, v) := μη ({r ≥ 0 | g(x, r Lv) ≤ 0}) . (3)

With any x ∈ X satisfying g(x, 0) < 0, we will associate the finite and infinite
directions defined respectively as

F(x) : = {v ∈ S
m−1 | ∃r ≥ 0 : g(x, r Lv) = 0},

I (x) : = {v ∈ S
m−1 | ∀r ≥ 0 : g(x, r Lv) < 0}.

It is easily observed that F(x)∩ I (x) = ∅ and that F(x)∪ I (x) = S
m−1 by continuity

of g. Moreover, the number r ≥ 0 satisfying g(x, r Lv) = 0 in the case of v ∈ F(x)
is uniquely defined, due to the convexity of g in the second argument. This leads us
to define the following radius function for any x with g(x, 0) < 0 and any v ∈ S

m−1:

ρ (x, v) :=
{
r such thatg(x, r Lv) = 0 i f v ∈ F(x)
+∞ i f v ∈ I (x).

(4)

This definition allows us to rewrite the radial probability function e from (3) in the
form

e(x, v) = μη ([0, ρ (x, v)]) = Fη (ρ (x, v)) (5)

whenever g(x, 0) < 0. Here, Fη refers to the distribution function of the Chi-
distribution with m degrees of freedom, so that F ′

η(t) = χ(t), where χ is the
corresponding density:

χ (t) := Ktm−1e−t2/2 ∀t ≥ 0, where K := 21−m/2

	(m/2)
. (6)

The second equation in (5) follows from Fη(0) = 0. We formally put Fη(∞) := 1
which translates the limiting property Fη(t) →t→+∞ 1 of cumulative distribution
functions.

2.2 Notation and tools from variational analysis

Our notation will be standard. By X and X∗ we will denote a real reflexive and
separable Banach space and its dual, with corresponding norms ‖ ‖ and ‖ ‖∗, and with
corresponding ballsBr (x),B∗

r (x∗) of radius r around x ∈ X and x∗ ∈ X∗. We denote
by 〈x, x∗〉, x ∈ X, x∗ ∈ X∗ the corresponding duality product, and by ⇀ the weak
convergence in both X and X∗. The polar of some closed cone C ⊆ X is the closed
convex cone

C∗ := {x∗ ∈ X∗ : 〈x∗, h
〉 ≤ 0 ∀h ∈ C

}
.

The notations clC , cl∗C , coC , and coC will refer to the (strong or norm) closure, the
weak∗ closure, the convex hull, and the closed convex hull of C ⊆ X (or C ⊆ X∗),
respectively.
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The indicator and the support functions of a setC ⊆ X (orC ⊆ X∗) are respectively
defined as

iC (x) : = 0 if x ∈ C and + ∞ otherwise,

σC (x∗) : = sup
x∈C

〈x, x∗〉.

Definition 1 Let C ⊆ X be a closed subset. Then the Fréchet, the Mordukhovich,
and the Clarke normal cones to C at x̄ ∈ C are respectively defined as

NF (x̄;C) :=
{
x∗ ∈ X∗ | lim sup

x→x̄,x∈C
〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0

}
,

NM (x̄;C) :=
{
x∗ ∈ X∗ | ∃xn → x̄, xn ∈ C, ∃x∗

n⇀x∗ : x∗
n ∈ NF (xn,C)

}
,

NC (x̄;C) := co NM (x̄;C).

We note that the definition of NC is not the original but a derived one. The normal
cones induce subdifferentials of functions f : X → R via their epigraphs

epi f := {(x, t) ∈ X × R | f (x) ≤ t} ,

which are closed whenever f is lower semicontinuous (lsc, for short).

Definition 2 Let f : X → R be a lsc function. Then the Fréchet, the Mordukhovich
(limiting), and the Clarke subdifferentials of f at x̄ ∈ X , are respectively defined as

∂F/M/C f (x̄) :=
{
x∗ ∈ X∗ | (x∗,−1

) ∈ NF/M/C ((x̄, f (x̄)) ; epi f )
}

.

The singular subdifferential of f at x̄ is defined as

∂∞ f (x̄) =
{
x∗ ∈ X∗ | (x∗, 0

) ∈ NM ((x̄, f (x̄)) ; epi f )
}

.

We recall that the Fréchet subdifferential has the explicit representation

∂F f (x̄) =
{
x∗ ∈ X∗ | lim inf

x→x̄

f (x) − f (x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ 0

}
. (7)

In the current setting of reflexive Banach spaces, the following representation holds
true for Clarke’s subdifferential [12, Theorem 3.57]:

∂C f (x̄) = co
{
∂M f (x̄) + ∂∞ f (x̄)

}
. (8)

For locally Lipschitzian functions, the following classical definition of Clarke’s sub-
differential applies:
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∂C f (x̄) = {x∗ ∈ X∗ | 〈x∗, h
〉 ≤ f ◦ (x̄; h) , ∀h ∈ X

}
, (9)

where

f ◦ (x̄; h) := lim sup
x→x̄,t↓0

f (x + th) − f (x)

t
(10)

denotes Clarke’s directional derivative of f at x̄ in the direction h.
In case that f happens to be convex, all the subdifferentials above coincide with

the ordinary subdifferential in the sense of convex analysis:

∂ f (x̄) := {x∗ ∈ X∗ | f (x) ≥ f (x̄) + 〈x∗, x − x̄
〉
, ∀x ∈ X

}
.

For a function f (x, y) of two variables, we will refer to its partial subdifferentials
at a point (x̄, ȳ) as the corresponding subdifferentials of the partial functions:

∂
F/M/C
x f (x̄, ȳ) := ∂F/M/C f (·, ȳ) (x̄) ; ∂

F/M/C
y f (x̄, ȳ) := ∂F/M/C f (x̄, ·) (ȳ) .

3 Continuity properties

In this section, we investigate continuous properties of the radial probability and the
radius functions, defined respectively in (3) and (4), which are the basis for deriving
in Sect. 5 subdifferential formulae for probability function (1).

For all the following results, the basic assumption (H) formulated in the Introduction
is tacitly required to hold; namely, function g is locally Lipschitzian as a function of
both arguments simultaneously, and convex as a function of the second argument.

Lemma 1 Define U := {x ∈ X | g(x, 0) < 0}.
1. The radius function ρ is continuous at (x, v) for any x ∈ U and any v ∈ F(x).
2. For x ∈ U and v ∈ I (x) it holds that limk→∞ ρ (xk, vk) = ∞ for any sequence

(xk, vk) → (x, v) such that vk ∈ F(xk).

Proof Observe first, that ρ is defined (possibly extended-valued) on U × S
m−1. To

verify 1, consider any sequence (xk, vk) →k (x, v)with vk ∈ S
m−1.We show first that

the sequence ρ (xk, vk) is bounded. Indeed, otherwise there would exist a subsequence
with ρ

(
xkl , vkl

)→l ∞. Clearly g(xkl , 0) < 0 for l large enough, because of g(x, 0) <

0. Fix an arbitrary r ≥ 0. Then ρ
(
xkl , vkl

)
> r . We claim that g(xkl , r Lvkl ) < 0 for

these l’s. This is obvious in case that vkl ∈ I (xkl ). If vkl ∈ F(xkl ), then therelations

g(xkl , 0) < 0, g(xkl , ρ
(
xkl , vkl

)
Lvkl ) = 0, ρ

(
xkl , vkl

)
> r,

and
g(xkl , r Lvkl ) ≥ 0,

would contradict the convexity of g in the second argument. Hence, for l sufficiently
large,

g(xkl , r Lvkl ) < 0,
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and passing to the limit yields that g(x, r Lv) ≤ 0, which holds true for all r ≥ 0
because the latter was chosen arbitrary. But then, g(x, r Lv) < 0 for all r ≥ 0, because
otherwise once more a contradiction with convexity of g in the second argument
would arise from g(x, 0) < 0. This, however, amounts to v ∈ I (x) contradicting our
assumption v ∈ F(x). Summarizing, we have shown that ρ (xk, vk) is bounded and,
in particular, vk ∈ F(xk) for all k. Let ρ

(
xkl , vkl

) →l r0 be an arbitrary convergent
subsequence. Then, we may pass to the limit in the relation g

(
xkl , ρ

(
xkl , vkl

)
Lvkl

) =
0 in order to derive that g (x, r0Lv) = 0, which in turn implies that r0 = ρ (x, v).
Hence, all convergent subsequences of ρ (xk, vk) have the same limit ρ (x, v). This
implies that ρ (xk, vk) →k ρ (x, v) and altogether that ρ is continuous at (x, v).

As for 2., observe that if ρ (xk, vk)would not tend to infinity, then there would exist
a converging subsequence ρ

(
xkl , vkl

) →l r1 for some r1 ≥ 0. Since ρ
(
xkl , vkl

)
<

∞ and g(xkl , 0) < 0 for l large enough, we infer that vkl ∈ F(xkl ) and, hence,
g(xkl , ρ

(
xkl , vkl

)
Lvkl ) = 0 for all these l’s. Now, passing to the limit yields that

g(x, r1Lv) = 0, whence v ∈ F(x), a contradiction. ��
Lemma 2 If g (x, 0) < 0 and v ∈ F(x), then there exist neighborhoods U and V of
x and v, respectively, such that v′ ∈ F(x ′) for all x ′ ∈ U and v′ ∈ V ∩ S

m−1.

Proof If the statement wasn’t true, then there existed a sequence (xk, vk) → (x, v)

with g (xk, 0) < 0, vk ∈ S
m−1 and vk ∈ I (xk). Hence, ρ (xk, vk) = ∞ and so

ρ (x, v) = ∞ by 1. in Lemma 1. This yields the contradiction v ∈ I (x). ��
Lemma 3 Let x ∈ X and r ≥ 0 be such that g(x, 0) < 0 and g(x, r Lv) = 0. Then

〈
z∗, Lv

〉 ≥ −g(x, 0)

r
> 0 ∀z∗ ∈ ∂zg (x, r Lv) .

Proof By convexity of g in the second variable and by definition of the convex subd-
ifferential, one has that

− r

2

〈
z∗, Lv

〉 =
〈
z∗, r

2
Lv − r Lv

〉
≤ g

(
x,

r

2
Lv
)

− g (x, r Lv)

= g
(
x,

r

2
Lv
)

≤ 1

2
g (x, 0) + 1

2
g (x, r Lv) = 1

2
g (x, 0) .

Since our assumptions imply that r > 0, the assertion follows. ��
We get in the following proposition the desired continuity of the radial probability

function e defined in (3).

Proposition 1 The radial probability function is continuous at any (x, v) ∈ X×S
m−1

with g(x, 0) < 0.

Proof Fix a point (x, v) ∈ X × S
m−1 with g(x, 0) < 0. Consider any sequence

(xk, vk) → (x, v) with vk ∈ S
m−1 and assume first that v ∈ F(x). Then,

ρ (xk, vk) →k ρ (x, v) by 1. in Lemma 1, and vk ∈ F(xk) for k large, by Lemma 2.
Hence, by (5) it follows that

e (xk, vk) = Fη (ρ(xk, vk)) →k Fη(ρ (x, v)) = e (x, v) ,

123



Subdifferential characterization of probability functions… 175

where the convergence follows from the continuity of the Chi-distribution function
Fη.

If in contrast v ∈ I (x), then, by (3), e (x, v) = μη (R+) = 1. We’ll be done if
we can show that e (xk, vk) →k 1. If this did not hold true, then there would exist a
subsequence and some ε > 0 such that

∣∣e (xkl , vkl
)− 1

∣∣ > ε ∀ l. (11)

Since vkl ∈ I
(
xkl
)
would imply as above that e

(
xkl , vkl

) = μη (R+) = 1, a
contradiction, we conclude that vkl ∈ F

(
xkl
)
for all l. Now, 2. in Lemma 1 guarantees

that ρ
(
xkl , vkl

)→l ∞. Then, by (5), we arrive at the convergence

e
(
xkl , vkl

) = Fη

(
ρ(xkl , vkl )

)→l 1,

where we exploited the property lim
t→∞ Fη (t) = 1, following from Fη being a cumula-

tive distribution function. This is a contradiction with (11), and the desired conclusion
follows. ��
Consequently, we obtain the continuity of the probability function ϕ, defined in (1).

Theorem 1 The probability function is continuous at any point x ∈ X with g(x, 0) <

0.

Proof For any sequence xn → x one has by Proposition 1 that

e (xn, v) →n e (x, v) ≤ 1 ∀v ∈ S
m−1,

where the inequality follows from e being a probability. Since the constant function 1
is integrable on Sm−1, the assertion follows from Lebesgue’s dominated convergence
theorem. ��

4 Subdifferential of the radial probability function

In this section, we provide characterizations of the Fréchet subdifferential of the radial
probability function e (·, v), defined in (3), for arbitrarily fixed directions v ∈ S

m−1.
As before, we also consider in this section our standard assumption (H).

We need first to estimate the set ∂F
x ρ(x, v):

Proposition 2 Let x ∈ X with g(x, 0) < 0 and v ∈ F(x) be arbitrary. Then, for
every y∗ ∈ ∂F

x ρ(x, v) and every w ∈ X, there exist x∗ ∈ ∂Cx g(x, ρ(x, v)Lv) and
z∗ ∈ ∂zg (x, ρ(x, v)Lv) such that 〈z∗, Lv〉 > 0 and

〈
y∗, w

〉 ≤ −1

〈z∗, Lv〉
〈
x∗, w

〉
.

Proof Fix y∗ ∈ ∂F
x ρ(x, v) and w ∈ X ; hence, ρ(x, v) < ∞ (because by assumption

v ∈ F(x)). LetM > 0 be aLipschitz constant of g at (x, ρ(x, v)Lv). Then, there exists
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a neighborhood U of x such that the function g(·, ρ(x, v)Lv) is locally Lipschitzian
with Lipschitz constant M at each x ′ ∈ U , and such that the functions g(x ′, ·), x ′ ∈
U , are locally Lipschitzian with the same Lipschitz constant M at ρ(x, v)Lv. As a
consequence of [3, Proposition 2.1.2], for all x ′ ∈ U one has that

∥∥x∗∥∥ ,
∥∥z∗∥∥ ≤ M ∀x∗ ∈ ∂Cx g(x

′, ρ(x, v)Lv), ∀z∗ ∈ ∂zg(x
′, ρ(x, v)Lv). (12)

Consider an arbitrary sequence tn ↓ 0 so that, by Lemma 2, we may assume
v ∈ F(x + tnw) for all n. By convexity and continuity of the function g with respect
to the second variable, the set ∂g (x + tnw, ·) (ρ(x, v)Lv) is nonempty for all n, and
so we may select a sequence

z∗n ∈ ∂zg (x + tnw, ·) (ρ(x, v)Lv); (13)

hence, taking into account, from the definition of function ρ, that g(x + tnw, ρ(x +
tnw, v)Lv) = 0 and g(x, ρ(x, v)Lv) = 0,

(ρ(x + tnw, v) − ρ(x, v))
〈
z∗n, Lv

〉 = 〈z∗n, ρ(x + tnw, v)Lv − ρ(x, v)Lv
〉

≤ g(x + tnw, ρ(x + tnw, v)Lv)

− g(x + tnw, ρ(x, v)Lv)

= −g(x + tnw, ρ(x, v)Lv)

= g(x, ρ(x, v)Lv) − g(x + tnw, ρ(x, v)Lv).

(14)

Next, Lebourg’s mean value Theorem for Clarke’s subdifferential [3, Theorem
2.3.7] yields some τn ∈ [0, 1] and

x∗
n ∈ ∂Cx g(x + τntnw, ρ(x, v)Lv) (15)

such that
g(x, ρ(x, v)Lv) − g(x + tnw, ρ(x, v)Lv) ≤ −tn

〈
x∗
n , w

〉
, (16)

and, consequently, from (14),

(ρ(x + tnw, v) − ρ(x, v))
〈
z∗n, Lv

〉 ≤ −tn
〈
x∗
n , w

〉
. (17)

Since X is reflexive and
∥∥z∗n
∥∥ ,
∥∥x∗

n

∥∥ ≤ M , by (12), there exists a subsequence(
x∗
nk , z

∗
nk

)
and some (x∗, z∗) ∈ X × R

m such that x∗
nk ⇀ x∗ and z∗nk → z∗. The

weak∗-closedness of the graph of Clarke’s subdifferential [3, Proposition 2.1.5] along
with (15) and (13) implies that

x∗ ∈ ∂Cx g(x, ρ(x, v)Lv), z∗ ∈ ∂zg (x, ρ(x, v)Lv) . (18)
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Now, Lemma 3 implies that

〈
z∗, Lv

〉 ≥ −g(x, 0)

ρ(x, v)
> 0,

and, so, by passing to the (inferior) limit in (17), we arrive at

〈
z∗, Lv

〉
lim inf
n→∞ t−1

n (ρ(x + tnw, v) − ρ(x, v)) ≤ − 〈x∗, w
〉
. (19)

Therefore, since y∗ ∈ ∂F
x ρ(x, v),

〈
y∗, w

〉 ≤ lim inf
n→∞ t−1

n (ρ(x + tnw, v) − ρ(x, v)) ≤ −1

〈z∗, Lv〉
〈
x∗, w

〉
,

as we wanted to prove. ��
Next, we give the desired estimate of the set ∂F

x e(x, v). Recall that χ is the density
of the one-dimensional Chi-distribution with m degrees of freedom (see (6)).

Theorem 2 Let x ∈ X with g(x, 0) < 0 and v ∈ F(x) be arbitrary. Then, for
every y∗ ∈ ∂F

x e(x, v) and every w ∈ X, there exist x∗ ∈ ∂Cx g(x, ρ(x, v)Lv) and
z∗ ∈ ∂zg (x, ρ(x, v)Lv) such that

〈
y∗, w

〉 ≤ −χ (ρ(x, v))

〈z∗, Lv〉
〈
x∗, w

〉
.

Consequently, if Mx,v denotes a Lipschitz constant of g(·, ρ(x, v)Lv) at x, then

∥∥y∗∥∥ ≤ ρ(x, v) · χ (ρ(x, v))

|g(x, 0)| Mx,v ∀y∗ ∈ ∂F
x e(x, v).

Proof By (5), for all y close to x we may write e (y, v) = Fη (ρ(y, v)), with
ρ(y, v) < ∞, as a consequence of Lemma 2. Since Fη is continuously differentiable
and nondecreasing (as a distribution function), F ′

η (t) ≥ 0 for all t ∈ R and, from the
calculus of Fréchet subdifferentials (e.g., [11, Corollary 1.14.1 and Proposition 1.11]),
we obtain that

∂F
x e(x, v) = ∂F

(
F ′

η (ρ(x, v)) ρ(·, v)
)

(x)

= F ′
η(ρ(x, v))∂Fρ(·, v)(x) = χ (ρ(x, v)) ∂F

x ρ(x, v).

Combination with Proposition 2 yields the first assertion.
To prove the second assertion, from the first part of the proposition we choose

elements x∗ ∈ ∂Cx g(x, ρ(x, v)Lv) and z∗ ∈ ∂zg (x, ρ(x, v)Lv) such that

〈
y∗, w

〉 ≤
∣∣∣∣
−χ (ρ(x, v))

〈z∗, Lv〉
∣∣∣∣
∥∥x∗∥∥ ‖w‖ ,
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and so, since 〈z∗, Lv〉 ≥ −g(x,0)
ρ(x,v)

> 0 by Lemma 3,

〈
y∗, w

〉 ≤ ρ(x, v) · χ (ρ(x, v))

|g(x, 0)| Mx,v ‖w‖ ,

yielding the desired conclusion. ��

We shall also need the following result.

Corollary 1 (i) For every x0 ∈ X with g(x0, 0) < 0 and every v0 ∈ F(x0) there
exist neighborhoods Ũ of x0 and Ṽ of v0 as well as some α > 0 such that

∂F
x e(x, v) ⊆ B

∗
α (0) ∀ (x, v) ∈ Ũ ×

(
Ṽ ∩ S

m−1
)

. (20)

(ii) For all x ∈ X with g(x, 0) < 0 and for all v ∈ I (x) one has that ∂F
x e(x, v) ⊆

{0}.

Proof (i) Let M > 0 and define open neighborhoods Ũ of x0 and Ṽ of v0 such that

M is a Lipschitz constant of g on Ũ × Ṽ and, for all (x, v) ∈ Ũ ×
(
Ṽ ∩ S

m−1
)

(recall Lemma 2),
g(x, 0) < 0, ρ(x, v) < ∞.

Hence, by Theorem 2,
∂F
x e(x, v) ⊆ B

∗
α(x,v) (0) ,

where

α(x, v) := ρ(x, v) · χ (ρ(x, v))

|g(x, 0)| Mx,v.

Taking into account the continuity of ρ (see Lemma 1), we may suppose for all

(x, v) ∈ Ũ ×
(
Ṽ ∩ S

m−1
)
that M is a Lipschitz constant for g(·, ρ(x, v)Lv) at

the point x (∈ Ũ ). Thus, we can replace Mx,v by M in the definition of α above.
Moreover, since g is continuous (also by Lemma 1), as well as the Chi-density

χ , we deduce that α is continuous on Ũ ×
(
Ṽ ∩ S

m−1
)
. Then, after shrinking

Ũ × Ṽ if necessary, we may assume that for some α > 0

α(x, v) ≤ α ∀ (x, v) ∈ Ũ ×
(
Ṽ ∩ S

m−1
)

.

This proves (20).
(ii) As already observed in the proof of Proposition 1, v ∈ I (x) implies that e(x, v) =

1. Consequently, the function e(·, v) (as the value of a probability) reaches a
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global maximum at x . Let x∗ ∈ ∂F
x e(x, v) and u ∈ X\{0} be arbitrary. Then,

−
〈
x∗, u

‖u‖
〉

= lim inf
n→∞ −

〈
x∗, n−1u

〉
∥∥n−1u

∥∥

≥ lim inf
n→∞

e(x + n−1u, v) − e(x, v) − 〈x∗, n−1u
〉

∥∥n−1u
∥∥

≥ lim inf
h→0

e(x + h, v) − e(x, v) − 〈x∗, h〉
‖h‖ ≥ 0.

Hence 〈x∗, u〉 ≤ 0 for all u ∈ X , and so x∗ = 0 as desired. ��
Definition 3 For x ∈ X and l > 0, we call

Cl(x) := {h ∈ X | g◦(·, z)(y; h) ≤ l ‖z‖−m e
‖z‖2
2‖L‖2 ‖h‖ ∀y ∈ B1/ l (x) , ‖z‖ ≥ l}

the l-cone of nice directions at x ∈ X . Here, we make use of Clarke’s directional
derivative (10) of the partial function g(·, z). We denote the polar cone to Cl(x) as
C∗
l (x).

Note that, by positive homogeneity of Clarke’s directional derivative, {Cl}l∈N defines
a nondecreasing sequence of closed cones.

We give in the following theorem another estimate for ∂F
x e(x, v), which will be

useful in the sequel.

Theorem 3 Fix x0 ∈ X such that g(x0, 0) < 0. Then, for every l > 0, there exists
some neighborhood U of x0 and some R > 0 such that

∂F
x e(x, v) ⊆ B

∗
R (0) − C∗

l (x0) ∀x ∈ U, v ∈ S
m−1.

Proof Let l > 0 be arbitrarily fixed. It will be sufficient to show that for every v0 ∈
S
m−1 there are neighborhoods Ū of x0 and V̄ of v0 and some R > 0 such that

∂F
x e(x, v) ⊆ B

∗
R (0) − C∗

l (x0) ∀ (x, v) ∈ Ū × (V̄ ∩ S
m−1). (21)

If this holds true, then the global inclusion in the statement of this theorem will follow
from the local ones above by a standard compactness argument with respect to Sm−1.

In order to prove (21), fix an arbitrary v0 ∈ S
m−1. Assume first that v0 ∈ I (x0).

Then, define open neighborhoods U∗ of x0 and V ∗ of v0 such that U∗ ⊆ B1/ l (x0)
(with l > 0 as fixed above) and, for all x ∈ U∗ and v ∈ V ∗ ∩ F(x),

g(x, 0) ≤ 1

2
g(x0, 0) < 0, ρ(x, v)‖Lv‖ ≥ l.

Note, that the last inequality is possible by virtue of 2. in Lemma 1 and by L being
nonsingular and Sm−1 being compact (therefore ‖Lv‖ ≥ δ for all v ∈ S

m−1 and some
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δ > 0). From Corollary 1(ii) we derive that

∂F
x e(x, v) ⊆ {0} ∀x ∈ U∗, v ∈ I (x). (22)

Now, consider an arbitrary (x, v) ∈ U∗ × V ∗ such that v ∈ F(x). Let also y∗ ∈
∂F
x e(x, v) and h ∈ −Cl(x0) be arbitrarily given. Then, by Theorem 2, there exist
x∗ ∈ ∂Cx g(x, ρ(x, v)Lv) and z∗ ∈ ∂zg (x, ρ(x, v)Lv) such that

〈
y∗, h

〉 ≤ χ (ρ(x, v))

〈z∗, Lv〉
〈
x∗,−h

〉 ≤ χ (ρ(x, v))

〈z∗, Lv〉 g◦(·, ρ(x, v)Lv)(x;−h), (23)

where the last inequality relies on (9) and on the fact that both the density function χ

and 〈z∗, Lv〉 are positive (see Lemma 3). Since −h ∈ Cl(x0), our conditions on the
neighborhoods U∗ and V ∗ stated above guarantee that

g◦(·, ρ(x, v)Lv)(x;−h) ≤ l ‖ρ(x, v)Lv‖−m e
‖ρ(x,v)Lv‖2

2‖L‖2 ‖h‖
≤ l ‖ρ(x, v)Lv‖−m e

ρ(x,v)2

2 ‖h‖ .

This allows us to continue (23) as

〈
y∗, h

〉 ≤ χ (ρ(x, v)) ρ(x, v)l

|g(x, 0)| ‖ρ(x, v)Lv‖−m e
ρ(x,v)2

2 ‖h‖

= lK

|g(x, 0)| ‖Lv‖−m ‖h‖ ,

where we used Lemma 3 and the definition of the Chi-density with m degrees of
freedom (see (6)). Owing to g(x, 0) ≤ 1

2g(x0, 0) < 0, we may continue as

〈
y∗, h

〉 ≤ 2lK K ∗

|g(x0, 0)| ‖h‖ , (24)

where (recall that L is nonsingular)

K ∗ := max
v∈Sm−1

‖Lv‖−m ∈ R+.

Consequently, we have shown that for some K̃ > 0, which is independent of x and
v, 〈

y∗, h
〉 ≤ K̃ ‖h‖ ∀y∗ ∈ ∂F

x e(x, v), h ∈ −Cl(x0).
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Using indicator and support functions, respectively, this relation is rewritten as, for all
h ∈ X ,

〈
y∗, h

〉 ≤ K̃ ‖h‖ + i−coCl (x0)(h)

= σB∗
K̃

(0)(h) + σ−C∗
l (x0)(h)

= σ(
B

∗
K̃

(0)−C∗
l (x0)

)(h).

Consequently, we get

σ∂F
x e(x,v)(h) ≤ σ(

B
∗
K̃

(0)−C∗
l (x0)

)(h) ∀h ∈ X,

which entails the inclusion

∂F
x e(x, v) ⊆ B

∗
K̃

(0) − C∗
l (x0).

Since (x, v) ∈ U∗ × V ∗ with v ∈ F(x) were chosen arbitrarily, we may combine
this with (22) to derive that

∂F
x e(x, v) ⊆ B

∗
K̃

(0) − C∗
l (x0) ∀ (x, v) ∈ U∗ ×

(
V ∗ ∩ S

m−1
)

.

Now, we suppose that v0 ∈ F(x0). Then Corollary 1(i) guarantees the existence
of neighborhoods Ũ of x0 and Ṽ of v0 as well as some α > 0 such that relation (20)
holds true. Consequently, we end up with the claimed relation (21) upon putting

Ū := Ũ ∩U∗, V̄ := Ṽ ∩ V ∗, R := max{α, K̃ }.

��
Corollary 2 Fix x0 ∈ X such that g(x0, 0) < 0, and assume one of the following
alternative conditions:

{
z ∈ R

m | g (x0, z) ≤ 0
}
is a bounded set, (25)

or
∃ l > 0 such that Cl(x0) = X. (26)

Then the partial radial probability functions e(·, v), v ∈ S
m−1, are uniformly locally

Lipschitzian around x0 with some common Lipschitz constant independent of v.

Proof In the case of (25), one has that I (x0) = ∅, whence F(x0) = S
m−1. Then, by

Corollary 1(i), for every v0 ∈ S
m−1 there exist neighborhoods Ũv0 of x0 and Ṽv0 of

v0 as well as some αv0 > 0 such that

∂F
x e(x, v) ⊆ B

∗
αv0

(0) ∀ (x, v) ∈ Ũv0 ×
(
Ṽv0 ∩ S

m−1
)

.
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Then, by the evident compactness argument with respect to the sphere Sm−1 already
alluded to in the beginning of the proof of Theorem 3, we derive the existence of a
neighborhood Ũ of x0 and of some α > 0 such that

∂F
x e(x, v) ⊆ B

∗
α (0) ∀ (x, v) ∈ Ũ × S

m−1.

In the case of (26), the same relation (with α := R) is a direct consequence of
Theorem3upon taking into account thatCl (x0) = X entails that−C∗

l (x0) = {0}.Now,
the claimed statement on uniform Lipschitz continuity follows from [12, Theorem
3.5.2]. ��

5 Subdifferential of the Gaussian probability function ϕ

In this section, we provide the required formulae for the Fréchet, the Mordukhovich,
and the Clarke subdifferentials of the Gaussian probability function ϕ, defined in (1).
These results are next illustrated in Example 1, and in Sect. 5.3 to discuss the Lipschitz
continuity and differentiability of ϕ. Finally, we study in this section, Sect. 5.4, the
special and interesting setting of probability functions given bymeans of finite systems
of smooth inequalities. In this case, formulae of the subdifferentials of ϕ are expressed
in terms of the initial data in (1), i.e., in terms of the function g. All this is done under
our standard assumption (H).

5.1 Main result

We start by recalling the following result on the interchange of Mordukhovich sub-
differentials and the integration sign when dealing with the integral functions of the
form

I f (x) :=
∫

ω∈�

f (ω, x)dμ.

Here, (�,A, ν) a σ -finite complete measure space, and f : � × X → [0,+∞] is
a normal integrand; that is,

(i) f is A ⊗ B(X)-measurable,
(ii) f (ω, ·) is lsc for all ω ∈ �.

We assume that I f (x0) < +∞ for some x0 ∈ X . Then we have the following result
in which the integral

∫
ω∈�

∂M f (ω, x0)dν is to be understood in the Aumann’s sense;
that is, the set of Bochner integrals over all measurable selections of the multivalued
mapping ∂M f (·, x0) (see, e.g., [2]).
Proposition 3 [4] Assume that for some δ > 0 and K ∈ L1(�,R) we have for all
x ∈ Bδ(x0)

∂F
x f (ω, x) ⊆ K(ω)B∗

1 (0) + C, a.e. ω ∈ �, (27)

where C ⊆ X∗ is a closed convex cone with polar cone having a nonempty interior.
Then
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(i) ∂M I f (x0) ⊆ cl∗
{ ∫

ω∈�

∂M f (ω, x0)dν (ω) + C

}
.

(ii) Provided that X is finite-dimensional,

∂M I f (x0) ⊆
∫

ω∈�

∂M f (ω, x0)dν (ω) + C.

(iii) ∂∞ I f (x0) ⊆ C.

(vi) ∂C I f (x0) ⊆ co

{ ∫
ω∈�

∂M f (ω, x0)dν (ω) + C

}
.

Now, we are in a position to prove the main result of our paper.

Theorem 4 Let x0 ∈ X be such that g(x0, 0) < 0. Assume that the cone Cl(x0) has
a non-empty interior for some l > 0. Then,

(i) ∂Mϕ(x0) ⊆ cl∗
{ ∫

v∈Sm−1

∂M
x e(x0, v)dμζ (v) − C∗

l (x0)

}

(ii) Provided that X is finite-dimensional,

∂Mϕ(x0) ⊆
∫

v∈Sm−1

∂M
x e(x0, v)dμζ (v) − C∗

l (x0).

(iii) ∂∞ϕ(x0) ⊆ −C∗
l (x0).

(vi) ∂Cϕ(x0) ⊆ co

{ ∫
v∈Sm−1

∂M
x e(x0, v)dμζ (v) − C∗

l (x0)

}
.

Proof We apply Proposition 3 by putting

f (ω, x) := e (x, ω) , C := −C∗
l (x0),

and using the measurable space (Sm−1,A, μζ ), with A being the σ -Algebra of mea-
surable sets with respect to μζ . It is known that μζ is σ -finite and complete. The
measurability property of f and the lower semicontinuity of f (ω, ·) are consequences
of the continuity of e (see Proposition 1). The cone C∗ = coCl(x0) has a non-empty
interior, by the current assumption. Condition (27) is a consequence of Theorem3upon
definingK(ω) := R for allω ∈ � = S

m−1, and observing thatK ∈ L1(Sm−1,R), due
to Sm−1 having finite (μζ -) measure. Now, the claimed result follows fromProposition
3 by taking into account that I f = ϕ thanks to (2).

��
Our main result motivates some investigation about the impact of the parameter

l > 0 in the definition of the cones C∗
l (x0), x0 ∈ X . From Definition 3, it follows

immediately that (Cl(x0))l≥0 forms a non-decreasing family of closed cones, and
hence

Ck(x0) ⊆ Ck+1(x0); C∗
k (x0) � C∗

k+1(x0) ∀k ∈ N. (28)
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Moreover, Ck(x0) having a non-empty interior as required in Theorem 4, implies
thatCk+1(x0)does so too. Thismeans that the upper estimates in the results ofTheorem
4 become increasingly precise for k → ∞. This immediately raises the question if
we may pass to the limit in this result. Let us then introduce the limiting cone of nice
directions

C∞(x0) := ⋃
k∈N

Ck(x0) =

{h ∈ X | ∃k ∈ N : g◦(·, z)(y; h) ≤ k ‖z‖−m e
‖z‖2
2‖L‖2 ‖h‖ ,∀y ∈ B 1

k
(x) , ‖z‖ ≥ k}.

The reader can simply notice (through Baire’s Theorem) the non-emptiness of the
interior of C∞(x0) is equivalent to the non-emptiness of the interior of Cl(x0) for
some l > 0. As far as the singular subdifferential is concerned, we may immediately
pass to the limit:

Proposition 4 Fix x0 ∈ X with g(x0, 0) < 0, and assume that Cl(x0) has a non-empty
interior for some l > 0. Then ∂∞ϕ(x0) ⊆ −C∗∞(x0).

Proof By Theorem 4(iii) we have that ∂∞ϕ(x0) ⊆ −C∗
l (x0). Since along with Cl(x0)

the larger cones Ck(x0) for k ∈ N, k ≥ l, have non-empty interiors too, it follows that

∂∞ϕ(x0) ⊆
⋂

k∈N,k≥l

−C∗
k (x0) = −

(⋃
k∈N

Ck(x0)

)∗
= −C∗∞(x0),

where the first equality relies on (28). ��

In order to formulate a corresponding result for the Mordukhovich and Clarke subd-
ifferentials, we need an additional boundedness assumption:

Proposition 5 Fix x0 ∈ X with g(x0, 0) < 0, and assume that Cl(x0) has a non-empty
interior for some l > 0. Moreover, suppose that ∂M

x e(x0, v) is integrably bounded;
i.e., there exists some function R : Sm−1 → R+ with

∫
Sm−1 R(v)dμζ (v) < ∞ such

that
∂M
x e(x0, v) ⊆ B

∗
R(v)(0) μζ − a.e. v ∈ S

m−1.

Then

∂Mϕ(x0) ⊆ ∂Cϕ(x0) ⊆ cl

⎧⎪⎨
⎪⎩

∫

v∈Sm−1

∂M
x e(x0, v)dμζ (v)

⎫⎪⎬
⎪⎭

− C∗∞(x0).

Proof For the purpose of abbreviation, put

I :=
∫

v∈Sm−1

∂M
x e(x0, v)dμζ (v).
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From our assumption on ∂M
x e(x0, v), being integrably bounded, it follows that I

is bounded too. Consequently, cl∗I is w∗-compact. With Cl(x0) having a non-empty
interior, for all k ∈ N with k ≥ l, from Theorem 4(i) it follows that

∂Mϕ(x0) ⊆ cl∗
{I − C∗

k (x0)
} = cl∗I − C∗

k (x0) ∀k ≥ l.

Due to (28), we may continue as

∂Mϕ(x0) ⊆
⋂
k∈N

{
cl∗I − C∗

k (x0)
}
, (29)

which in turn, using again the w∗-compactness of cl∗I, gives us

∂Mϕ(x0) ⊆ cl∗I −
⋂
k∈N

C∗
k (x0) = cl∗I −

(⋃
k∈N

Ck(x0)

)∗
= cl∗I − C∗∞(x0).

Now, by [12, Theorem 3.57], by Proposition 4, and by convexity of C∗∞(x0), we
arrive at

∂Cϕ(x0) = co
{
∂Mϕ(x0) + ∂∞ϕ(x0)

}

⊆ co
{
cl∗I − C∗∞(x0) − C∗∞(x0)

}

= co
{
cl∗I − C∗∞(x0)

}
.

Now, as a consequence of [15, Theorem 3.1], the strong closure cl I is convex (the
measure μζ being nonatomic), so that cl∗I = cl I is convex, and the last inclusion
above reads

∂Cϕ(x0) ⊆ clI − C∗∞(x0).

This finishes the proof of our proposition. ��

5.2 An illustrating example

In the following, we provide an example which, on the one hand, serves as an illus-
tration of our main result Theorem 4 and, on the other hand, shows that even for a
continuously differentiable inequality g (x, ξ) ≤ 0, satisfying a basic constraint qual-
ification, the associated probability function ϕ may fail to be differentiable, actually
even to be locally Lipschitzian (though it is continuous due to the constraint qualifi-
cation).

Example 1 Define the function g : R × R
2 → R by

g (x, z1, z2) := α(x)eh(z1) + z2 − 1,

where

α(x) :=
{
x2 x ≥ 0
0 x < 0,
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h (t) := −1 − 4 log (1 − �(t)) ; �(t) := 1√
2π

t∫

−∞
e−τ 2/2dτ,

i.e., � is the distribution function of the one-dimensional standard normal distri-
bution. Moreover, let ξ have a bivariate standard normal distribution, i.e.,

ξ = (ξ1, ξ2) ∼ N
(

(0, 0) ,

(
1 0
0 1

))
.

The following properties are shown in the Appendix:

1. g is continuously differentiable.
2. g is convex in (z1, z2).
3. g (0, 0, 0) < 0.
4. C1(0) = (−∞, 0].
5.
∫
v∈S1 ∂M

x e(0, v)dμζ (v) ⊆ (−∞, 0].
6. ϕ fails to be locally Lipschitzian in 0.

Observe that, by 1. and 2., g satisfies our basic data assumptions, (H), and that
3. forces the probability function ϕ to be continuous. On the other hand, by 6., ϕ

is not locally Lipschitzian -much less differentiable - in 0 despite the continuous
differentiability of g and the satisfaction of Slater’s condition. Now, Theorem 4(ii),
along with 4. and 5. provides that

∂Mϕ(0) ⊆ (−∞, 0] − [0,∞) = (−∞, 0] , ∂∞ϕ(0) ⊆ (−∞, 0] .

On the other hand, analytical verification along with the formula for ϕ provided
in the Appendix (or alternatively visual inspection of the graph of ϕ) yields that
∂Mϕ(0) = {0} and ∂∞ϕ(0) = (−∞, 0], so that the upper estimate for the singular
subdifferential is strict, while the one for the basic subdifferential is not (nevertheless
this upper estimate is nontrivial due to being smaller than the whole space).

5.3 Lipschitz continuity and differentiability of ϕ

The following result on Lipschitz continuity of the probability function ϕ is an
immediate consequence of Clarke’s Theorem on interchanging subdifferentiation and
integration [3, Theorem 2.7.2] and of Corollary 2:

Theorem 5 Fix x ∈ X such that g(x, 0) < 0. Under one of the alternative conditions
(25) or (26), the probability function ϕ is locally Lipschitz near x and the following
estimate holds true:

∂Cϕ(x) ⊆
∫

v∈Sm−1

∂Cx e(x, v)dμζ (v). (30)

The next result provides conditions for differentiability of the probability function ϕ;
recall that #A denotes the cardinal of a set A.
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Proposition 6 In addition to the assumptions of Theorem 5, assume that

#∂Cx e(x, v) = 1 μζ -a.e. v ∈ S
m−1. (31)

Then ϕ is strictly differentiable at x and

∇ϕ(x) =
∫

v∈Sm−1

∇xe(x, v)dμζ (v).

Consequently, if X is finite-dimensional and (31) holds true in some neighborhood of
x, then ϕ is even continuously differentiable at x.

Proof Assumption (31) entails that the integral in (30) reduces to a singleton. On the
other hand, the subdifferential on the left-hand side of (30) is nonempty, since ϕ is
locally Lipschitz near x (see [3, Proposition 2.1.2]). Hence, the inclusion (30) yields
the single-valuedness of ∂Cϕ(x) as well as the equality

∂Cϕ(x) =
∫

v∈Sm−1

∂Cx e(x, v)dμζ (v).

Now, since a locally Lipschitzian function reducing to a singleton at some point is
strictly differential at this point with gradient equal to the (single-valued) subdiffer-
ential (see [3, Proposition 2.2.4]), it follows that ϕ is strictly differentiable at x0 and
∂Cϕ(x0) = {∇ϕ(x0)}. Likewise, the local Lipschitz continuity of e(·, v) around x0
for all v ∈ S

m−1 (see Corollary 2) yields along with (31) that

∂Cx e(x0, v) = {∇xe(x0, v)} μζ − a.e. v ∈ S
m−1.

Altogether, we have shown the first assertion of our Proposition. The second asser-
tion on continuous differentiability follows from [3, Corollary to Prop. 2.2.4]. ��

5.4 Application to a finite system of smooth inequalities

In order to benefit from Theorem 4, one has to be able to express the integrand
∂M
x e(x0, v) in terms of the initial data in (1), i.e., in terms of the function g. We
will illustrate this for the case of a probability function defined over a finite system of
continuously differentiable inequalities which are convex in their second argument:

ϕ(x) := P (gi (x, ξ) ≤ 0, i = 1, . . . , p) , x ∈ X. (32)

Clearly, this can be recast in the form of (1) upon defining

g := max
i=1,...,p

gi , (33)
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where g is locally Lipschitz as required and convex in the second argument because
the gi ’s are supposed to be so. Since g (x, 0) < 0 implies that gi (x, 0) < 0 for all
i = 1, . . . , p, we may associate with each component a function ρi satisfying the
relation gi (x, ρi (x, v) Lv) = 0, as we did in (4). The relation between ρ associated
via (4) with g in (33) is, clearly,

ρ (x, v) = min
i=1,...,p

ρi (x, v) ∀x : g (x, 0) < 0, ∀v ∈ F(x). (34)

Note, however, that unlike ρ, the functions ρi are continuously differentiable because
the gi ’s are so.This is a consequenceof the Implicit FunctionTheorem (see [19,Lemma
3.2]), which moreover yields the gradient formulae, for all x with g (x, 0) < 0 and all
v ∈ F(x),

∇xρi (x, v) = − 1

〈∇zgi (x, ρ (x, v) Lv) , Lv〉∇x gi (x, ρ (x, v) Lv) , i = 1, . . . , p.

In the following proposition, we provide an explicit upper estimate of the subdiffer-
ential set ∂M

x e(x0, v) in terms of the initial data, which can be used in the formula of
Theorem 4 to get an upper estimate for the subdifferential of the probability function
(32):

Proposition 7 Fix x ∈ X such that gi (x, 0) < 0 for i = 1, . . . , p. Then, for every
l > 0, there exists some R > 0 such that the radial probability function associated
with g in (33) via (3) satisfies

∂M
x e(x, v) ⊆

⎧⎪⎪⎨
⎪⎪⎩

− ⋃
i∈T (v)

{
χ(ρ(x,v))

〈∇z gi (x,ρ(x,v)Lv),Lv〉∇x gi (x, ρ (x, v) Lv)
}

v ∈ F (x)

B
∗
R (0) − C∗

l (x) v ∈ I (x) .

Here, T (v) := {i ∈ {1, . . . , p} | ρi (x, v) = ρ (x, v)}.
Proof Fix an arbitrary v ∈ S

m−1. Given the continuity of e, we exploit the following
representation [12, Theorem 2.34] of the Mordukhovich subdifferential in terms of
the Fréchet subdifferential, which holds true in Asplund spaces (hence, in particular
for reflexive Banach spaces)

x∗ ∈ ∂M
x e(x, v) ⇐⇒ ∃ xn →n x and ∃ x∗

n ⇀n x∗ : x∗
n ∈ ∂F

x e(xn, v).

Then, the inclusion ∂M
x e(x, v) ⊆ B

∗
R (0) − C∗

l (x) follows from Theorem3, since
B

∗
R (0) is weak*-compact and C∗

l (x) is weak*-closed, entailing that B∗
R (0) − C∗

l (x)
is weak*-closed. This yields the desired estimate of ∂M

x e(x, v) when v ∈ I (x).
Suppose now in addition that v ∈ F (x), and, according to Lemma 2, let U be a

neighborhood of x such that, for all y ∈ U ,

g (y, 0) < 0, v ∈ F(y).
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From the proof of Theorem 2 we have seen that

∂F
x e(y, v) = χ (ρ(y, v)) ∂F

x ρ(y, v), ∀y ∈ U,

which, by continuity of χ and by 1. in Lemma 1, immediately entails that

∂M
x e(x, v) = χ (ρ(x, v)) ∂M

x ρ(x, v).

From (34) and the calculus rule for minimum functions [12, Proposition 1.113] we
conclude that

∂M
x ρ(x, v) ⊆

⋃
i∈T (v)

∇xρi (x, v).

with T (v) being defined as in the statement of the Proposition. Now, the assertion
follows from (35). ��

We provide next a concrete characterization for the local Lipschitz continu-
ity/differentiability of the probability function ϕ, defined in (32), alongwith an explicit
subdifferential/gradient formula:

Theorem 6 Fix x0 ∈ X with g (x0, 0) < 0, and assume that for some l > 0 it holds,
for i = 1, . . . , p,

‖∇x gi (x, z)‖ ≤ l ‖z‖−m e
‖z‖2
2‖L‖2 ∀x ∈ B1/ l (x0) , ‖z‖ ≥ l. (35)

Then the probability function (32) is locally Lipschitz near x0 and there exists a
nonnegative number R ≤ sup{‖x∗‖ | x∗ ∈ ∂M

x e(x0, v) and v ∈ I (x0)} such that

∂Cϕ(x0) ⊆ −
∫

v∈F(x0)

co

⎧
⎨
⎩
⋃

i∈T (v)

χ (ρ (x0, v)) ∇x gi (x0, ρ (x0, v) Lv)

〈∇zgi (x0, ρ (x0, v) Lv) , Lv〉

⎫
⎬
⎭ dμζ (v)

+μζ (I (x0))B
∗
R (0) .

Proof As a maximum of finitely many smooth functions, g is Clarke-regular, so that
Clarke’s directional derivative of g coincides with its usual directional derivative.
Hence, by Danskin’s Theorem and by (35), we get the following estimate, for all
h ∈ X , x ∈ B1/ l (x0) and ‖z‖ ≥ l,

g◦(·, z)(x; h) = 〈∇x g(x, z), h〉
= max {〈∇x gi (x, z), h〉 : gi (x, z) = g(x, z)}
≤ max

i=1,...,p
〈∇x gi (x, z), h〉 ≤ l ‖z‖−m e

‖z‖2
2‖L‖2 ‖h‖ .
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Hence,Cl(x0) = X and, so, Theorem 5 guarantees that ϕ in (32) is locally Lipschitz
near x0 and that

∂Cϕ(x0) ⊆
∫

v∈F(x0)

∂Cx e(x0, v)dμζ (v) +
∫

v∈I (x0)
∂Cx e(x0, v)dμζ (v). (36)

Since e (·, v) is locally Lipschitzian for all v ∈ S
m−1, it follows from [12, Theorem

3.57] and from Proposition 7 that

∂Cx e(x0, v) = co
{
∂M
x e(x0, v)

}

= −co

⎧⎨
⎩
⋃

i∈T (v)

χ (ρ (x0, v))∇x gi (x0, ρ (x0, v) Lv)

〈∇zgi (x0, ρ (x0, v) Lv) , Lv〉

⎫⎬
⎭ .

Hence, the first termon the right-hand side of (36) coincideswith the integral term in
the asserted formula above. As for the second term, observe that ∂Cx e(x0, v) ⊆ B

∗
R (0)

for some R > 0 by Theorem 3, which yields the second term in the upper estimate of
this theorem. ��

From Theorem 6 and Proposition 6, we immediately derive the following:

Corollary 3 If in the setting of Theorem 6 one has that μζ (I (x0)) = 0 (in particular,
under assumption (25)), or the constant R in Theorem 6 is zero, then

∂Cϕ(x0) ⊆ −
∫

v∈Sm−1

co

⎧⎨
⎩
⋃

i∈T (v)

χ (ρ (x0, v))∇x gi (x0, ρ (x0, v) Lv)

〈∇zgi (x0, ρ (x0, v) Lv) , Lv〉

⎫⎬
⎭ dμζ (v).

If, in addition, forμζ -a.e. v ∈ S
m−1 we have that #T (v) = 1 (say: T (v) = {i∗(v)}),

then the probability function (32) is strictly differentiable with gradient

∇ϕ(x0) = −
∫

v∈Sm−1

χ (ρ (x0, v))∇x gi∗(v) (x0, ρ (x0, v) Lv)〈∇zgi∗(v) (x0, ρ (x0, v) Lv) , Lv
〉 dμζ (v).

Remark 1 It is worth mentioning that under the strengthened (compared with (35))
growth condition

∃l > 0 : ‖∇x gi (x, z)‖ ≤ le‖z‖ ∀x ∈ B1/ l (x0) , ‖z‖ ≥ l, i = 1, . . . , p

the constant R in Theorem 6 and Corollary above is zero, as it can be seen in (24) (see
also [20, Theorem 3.6 and Theorem 4.1]).
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6 Conclusions and future work

In this paper, we have analyzed (sub-) differentiability properties of Gaussian
probability functions which are potentially nonsmooth, possibly continuous only.
Upon successively adding appropriate conditions related with the directions of
non-pathological growth of the given random inequality, it was possible to derive
subgradient and gradient formulae for Lipschitzian and differentiable probability func-
tions, respectively. The results were applied to a finite system of differentiable random
inequalities.

The obtained results pose immediately new questions. In particular, one may be
interested in less restrictive general assumptions (H). For instance, convexity of g in
the second argument (the random variable) appears to be very restrictive for engineer-
ing applications (though it is typically fulfilled in probelms of operations research).
The technical benefit of convexity is the simple representation of the radial probability
function e in (5). In the absence of convexity, several degeneracies have to be expected
in this representation, for instance, the need to deal with a countable union of inter-
vals which drastically complicates the derivation of gradient formulae not only from
the conceptual but also from the notational point of view. This is subject of ongoing
work. Another issue concerns the consideration of alternative distributions in contrast
with Gaussian ones. Indeed, our methodology applies exactly the same way to the
whole class of elliptical distributions which allows for a spheric radial-decomposition
in the spirit of Sect. 2.1 but with the Chi-distribution replaced with appropriate alter-
native one-dimensional distributions. Then, Definition 3 would have to be adapted
appropriately to the densities of these new distributions.

7 Appendix

We verify in this Appendix properties 1.–6. in Example 1.
The continuous differentiability of g stated in 1. is obvious from the corresponding

property of α and h. For h, this relies on the smoothness of the distribution function of
the one-dimensional standard normal distribution � and on the fact that the argument
1 − �(t) of the logarithm is always strictly positive.

By nonnegativity of α it is sufficient to check that eh(t) is convex in order to verify
2. To do so, it is sufficient to show that h itself is convex, which by definition would
follow from the concavity of log (1 − �(t)). This, however, is a consequence of log�

being concave, which in turn implies that log (1 − �) is concave (see [14, Theorem
4.2.4]).

Statement 3. follows immediately from the definition of the functions.
As for 4., observe first that, by continuous differentiability of g,

g◦(·, z)(x;−1) = ∇x g (x, z1, z2) · (−1) = −α′(x)eh(z1) ≤ 0 ∀x, z1, z2 ∈ R,

whence−1 ∈ C1(0) byDefinition 3. On the other hand, putting x := 1 and z := (1, 0),
we have that x ∈ B1 (0), ‖z‖ = 1 and

g◦(·, z)(x; 1) = ∇x g (1, 1, 0) · 1 = α′(1)eh(1) = 2eh(1) ≈ 1161,
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whereas, due to m = 2 in this example,

‖z‖−m e
‖z‖2
2‖L‖2 = √

e ≈ 1.65.

Therefore, by Definition 3, 1 /∈ C1(0). Since C1(0) is a closed cone, this together
with −1 ∈ C1(0) yields C1(0) = (−∞, 0].

For proving 5., it is sufficient to show that

∂M
x e(0, v) ⊆ (−∞, 0] ∀v ∈ S

1. (37)

In order to calculate ∂M
x e(0, v) for an arbitrarily fixed v ∈ S

1, we have to compute
first the partial Fréchet subdifferentials ∂F

x e(x, v) for x in a neighborhood U of 0.
Define U such that g(x, 0, 0) < 0 for all x ∈ U (as a consequence of the already
shown relation g(0, 0, 0) < 0). If x < 0, then, by definition of e and g,

e(x, v) = μη ({r ≥ 0 | g (x, r Lv) ≤ 0}) = μη ({r ≥ 0 | r Lv2 ≤ 1}) .

Hence, for x < 0, e(x, v) does not depend on its first argument locally around x .
Therefore, ∂F

x e(x, v) = {0} for all x < 0. Now, consider some x ∈ U with x ≥ 0
and x∗ ∈ ∂F

x e(x, v). If v ∈ I (x), then ∂F
x e(x, v) ⊆ {0} (see Corollary 1(ii)). If, in

contrast, v ∈ F(x), then, by Theorem 2 (puttingw := ±1 there and observing that, by
continuous differentiability of g, the partial Clarke subdifferentials reduce to partial
gradients),

x∗ = −χ (ρ(x, v)) ∇x g (x, ρ(x, v)Lv)

〈∇zg (x, ρ(x, v)Lv) , Lv〉 = −2xeh(ρ(x,v)v1)χ (ρ(x, v))

〈∇zg (x, ρ(x, v)Lv) , Lv〉 ≤ 0.

Here, the inequality relies on x ≥ 0, on χ being positive as a density and on

〈∇zg (x, ρ(x, v)Lv) , Lv〉 ≥ −g(x, 0, 0)

ρ(x, v)
> 0

by Lemma 3. Altogether, we have shown that ∂F
x e(x, v) ⊆ (−∞, 0] for all x ∈ U .

This entails that also ∂M
x e(x, 0) ⊆ (−∞, 0]. Since v ∈ S

1 has been fixed arbitrarily,
the desired relation (37) follows.

In order to show 6. we provide first a formula for the probability function ϕ. If
t ≤ 0, then, by definition of g,

ϕ(t) = P (g (t, ξ1, ξ2) ≤ 0) = P (ξ2 ≤ 1) = �(1)
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because ξ2 ∼ N (0, 1) by the distribution assumption on ξ in Example 1. If t > 0,
then, again by the assumed distribution of ξ ,

ϕ(t) = P

(
ξ2 ≤ 1 − t2eh(ξ1)

)
= 1

2π

∞∫

−∞

⎛
⎜⎝

1−t2eh(z1)∫

−∞
e−(z21+z22

)
/2dz2

⎞
⎟⎠ dz1

= 1√
2π

∞∫

−∞
e−z21/2 · 1√

2π

⎛
⎜⎝

1−t2eh(z1)∫

−∞
e−z22/2dz2

⎞
⎟⎠ dz1

= 1√
2π

∞∫

−∞
e−s2/2 · �

(
1 − t2eh(s)

)
ds.

Now, we are going to show that ϕ fails to be locally Lipschitz around 0. Observe
first that, since � is increasing as a distribution function, h is increasing too by its
definition. Then, for any s, t satisfying s ≥ �−1

(
1 − √

t
)
(recall that � is strictly

increasing and so its inverse exists) it holds that

h(s) ≥ h
(
�−1

(
1 − √

t
))

= −1 − log t2.

Therefore, t2eh(s) ≥ e−1. Thus, we have shown that

�(1) − �
(
1 − t2eh(s)

)
≥ �(1) − �

(
1 − e−1

)
=: ε ∀s, t : s ≥ �−1

(
1 − √

t
)

.

With� being strictly increasing, we have that ε > 0. Now, for any t > 0, we calculate

ϕ(0) − ϕ(t) = �(1) − 1√
2π

∞∫

−∞
e−s2/2 · �

(
1 − t2eh(s)

)
ds

= 1√
2π

∞∫

−∞
e−s2/2 ·

(
�(1) − �

(
1 − t2eh(s)

))
ds

≥ ε
1√
2π

∞∫

�−1(1−√
t)

e−s2/2ds = ε

⎛
⎜⎝1 − 1√

2π

�−1(1−√
t)∫

−∞
e−s2/2ds

⎞
⎟⎠

= ε
(
1 − �

(
�−1

(
1 − √

t
)))

= ε
√
t .

Since ε > 0, ϕ fails to be locally Lipschitz around 0, which finally shows 6.
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