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Abstract. Introducing probabilistic constraints leads in general to nonconvex, nonsmooth or even disconti-
nuous optimization models. In this paper, necessary and sufficient conditions for metric regularity of (several
joint) probabilistic constraints are derived using recent results from nonsmooth analysis. The conditions apply
to fairly general constraints and extend earlier work in this direction. Further, a verifiable sufficient condition
for quadratic growth of the objective function in a more specific convex stochastic program is indicated and
applied in order to obtain a new result on quantitative stability of solution sets when the underlying probability
distribution is subjected to perturbations. This is used to derive bounds for the deviation of solution sets when
the probability measure is replaced by empirical estimates.
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1. Introduction

When building stochastic models in decision making under (stochastic) uncertainty,
the two main approaches consist in introducing future costs (e.g. for the compensation
of constraint violations) and in fixing certain reliability levels for constraints. The
latter approach is motivated by many problems in engineering sciences, where system
reliability is an important feature (e.g. inventory control, power generation, structural
design etc. [26], [31], [48]). It leads to stochastic programming problems with (so-called)
probabilistic or chance constraints. To give a mathematical formulation of the model
we study in this paper, lef be ans-dimensional random vector on some probability
space(2, A, P) and leté € Hj(x), j = 1,...,d, described constraints depending

on £ and on the decision vector € R™. Denoting by g the objective function and

by C the closed subset dR™ expressing all deterministic constraints, we arrive at the
following model:

min{fg(x) | x € C, P(¢ e Hj(x)) > pj, j =1,...,d}.

Here pj € (0,1) denotes the probability (or reliability) level subject to which the
constraint € Hj(x)’ has to be satisfied. Since different reliability requirements might

be fixed for different constraints, the levets € (0,1), j = 1,...,d are allowed to
be different. Later we shall prefer the following formulation of the model
P(w) min{g(x) | X € C, u(Hj(x¥) > pj, j=1,....d}, 1)
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where 1. denotes the probability distribution &f, i.e., x = P o &L, In Section 2 the
assumptions on the datg C, Hj (j = 1,...,d) are specified, so that the model is
well-defined and enjoys suitable properties.

To illustrate the mathematical challenges of model (1), we look at a special instance
of (1) where the only stochastic constraint is linear and takes the faxr &, i.e.
& € Ax+ RS, with a (s, m)- matrix A, the deterministic constraint s& is a (convex)
polyhedron and the objective functianis linear or (convex) quadratic. Since we have
nw({& | Ax > &}) = F,(AX), where F, denotes the probability distribution function of
w (or &), the specific model has the form

min{g(x) | x € C, F,(AX) > p} (2)

Chance constrained models of type (2) are met in a number of applied optimization
problems under uncertainty (the reader may consult [12], [36] and above all [31], and
the references therein). Nevertheless, already model (2) exhibits possible nonconvexity,
nondifferentiability and discontinuity properties that are induced by corresponding pe-
cularities of the distribution functiorf,. Conditions that imply convexity of model
(2) are well understood (cf. [31] and Section 2). But, the situation is different as for
differentiability properties of (2). Many multivariate distribution functions having den-
sities are known to be nondifferentiable, e.g., classical ones like Dirichlet, Gamma (for
certain parameter choices) and uniform distribution. Examples 7 and 8 in the Appendix
show that the uniform distribution function of measugever convex and nonconvex
polyhedral supports may fail to be differentiable at solutions to (2). Hence, classical
tools from differentiable or convex analysis and optimization may not apply. Example
9 shows that even the existence of a continuous and bounded density does not im-
ply the distribution function to be locally Lipschitzian (much less to be smooth). This
illuminates that a smooth approach to our analysis of model (1) would significantly
narrow the class of probability distributions. For that reason we will focus our analysis
to nonsmooth probabilistic constraints in order to enlarge the range of applications.

In most practical applications of the stochastic programming methodology only
incomplete information on the probability distributign (of &) is available. This fact
and the possible need of approximations foiin solution methods (cf. [31]) motivate
astability analysisof P(u) with respect to perturbations @f in the spaceP(IR®) of
all Borel probability measures olR® endowed with a suitable convergence (or metric).
In the context of stochastic programs with probabilistic constraints, this problem was
addressed in several papers, e.g. [1], [11], [12], [19], [20], [35], [36], [37], [38], [39],
[40], [45], [46], [47]. In [11] a nonlinear parametric framework is adapted to study
stability with respect to changes of finite dimensional parameters of the distribution
The convergence theory for measurable multifunctions is utilized in [39] to develop
general approximation results for probabilistically constrained models. This approach
is also used in [45], leading to general, satisfactory results on convergence rates of
estimates for such models. Further results in this direction are given in [20]. Asymptotic
properties of the optimal value based on an extended delta method are studied in [40].
Recently, a new class of nonparametric estimators that preserve convexity properties has
been adapted to chance constrained models in [12]. The asymptotic behaviour of these
estimates and of solution sets to stochastic programs is analysed, too. In the remaining
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papers quoted above, stochastic programs are viewed as parametric programs with
respect to the probability measuge [19], [46] and [47] give qualitative stability results

for constraint sets, marginal values and solutions when the measuseperturbed

in P(IR%) equipped with the (metrizable) topology of weak convergence ([5]). In [1],
[35], [36], [37], [38] quantitative stability results for marginal values are obtained with
respect to certain metric distancesBiIR®) (the Prokhorov metric in [1] and so-called
discrepancies in the other papers). The papers [35], [36], [37] also contain results on
upper semicontinuity of local solution sets. For the casedot 1, C = R™ and

H(xX) = {z € R® | h(x) > z} in problem (1) with continuously differentiabléa

and a probability measurg having a locally Lipschitzian distribution functiof,,,

a particular metric regularity result is given in [35] (Corollary 5.6) using the Clarke
generalized gradient. This has been partially extended by allowing for a general closed
subsetC of R™ (but assumingdh to be linear) in [36] (Proposition 2.1) by making use

of Clarke’s nonsmooth calculus. Another type of result for a nonconvex situation (with
d = 1, C convex,h linear, but without assuming that has concavity properties) is
developed in [38] (Theorem 4.6) and [36] (Corollary 2.2) by imposing a local growth
condition on the composite functioR, (h(-)) near binding feasible points.

The aim of the present paper is to extend the results in [35], [36], [37§nn
directions: earlier conditions on the stability of probabilistic constraint sets are consi-
derably generalized and a novel result on the Hausdorff Holder stability of solution sets
is established. We start our analysis by stating a general quantitative stability result for
P(1) (Theorem 1), which relies on the recent work by Klatte [22] and on techniques
developed in [37], [38]. The crucial conditions in this result arerttegric regularityof
the probabilistic constraints andjaadratic growthcondition for the objective function
near nonisolated minima. The growth condition appears in a more general context also
in [2], [6], [41] for instance, and in a slightly different framework in [24]. The aim
of our analysis is to derive verifiable conditions (on the original problefn)) for
metric regularity and quadratic growth. In particular, we focus on conditions that apply
to nonsmooth probabilistic constraints.

In Section 3 we shall study the case 6f € R™ being closed andHj(x) =
{ze R®| hj(0 >z} with hj : R" > RS, j=1,....dandY{ ;s =sin
(1). Characterizations of metric regularity will be obtained by exploiting the nonconvex
subdifferential calculus by Mordukhovich ([27], [28]). Two types of sufficient conditions
for metric regularity are developed. The first one represents an explicit growth condition
for the composite functiord, (x) = (u(H1(X)), ..., u(Hd4(x))) at a feasible point
(Theorem 4). The second type consists of separate constraint qualifications for the
function h = (hy, ..., hg) relative to C and for a function®,, whose components
are certain marginal distribution functions pf (Theorem 5). In casg. has a density,
a more transparent and verifiable condition, which implies the constraint qualification
for ®,, is established (Theorem 6). This can be achieved even globally if the strict
positivity region of the density contains a so-called infinity path (Theorem 7). The
principal statements are illustrated by examples showing their validity and limitations.
Earlier results are essentially extended.

In Section 4 we consider a convex stochastic program of the form (2) and give
a criterion implying quadratic growth of the objective near the solution set. In this
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respect a local strong concavity property of the meaguieessential. The methodology

for proving this result (Theorem 8) is shown to extend to establishing the Hausdorff
Holder continuity for solution sets (Theorem 9). Finally, we outline in Section 5 that our
guantitative stability results have immediate applications for empirical approximations
of P(u). Making use of recent results in empirical process theory we derive (exponential)
bounds for the distance of original and approximate solution sets (Proposition 5 and 6).

2. Quantitative stability results

In this section, we develop a framework for stability analysis of probabilistic constrained
models and present a general result on the quantitative stability of marginal values and
(local) solution sets. We consider the stochastic programming nfegel formulated

in the introduction

P(w) min{g(x) | x € C, w(Hj(x)) = pj, j=1,....,d},

which involves several (joint) probabilistic constraints. For the data we assume that
g is a continuous mapping fronlR™ into IR, C is a nonempty, closed subset of
R™, Hj is a set-valued mapping fro®™ into IR® having a closed graph (for each
j=1....d), pje 01 (=1..,d and x € P(R®. Making use of the
notationsp = (pz, ..., pa) and Mp(v) = {x € C | v(Hj(x)) > pj, j=1,...,d)}

for eachv € P(IR®), the modelP(x) takes the form

min{g(x) | x € Mp(u)}. (3)

We note that, forv € P(IR®), the functionv(H;(-)) is upper semicontinuous (cf.
Proposition 3.1 in [37]).

The first step to analyse stability of (3) with respect to perturbations of P(IRS)
is to identify a (suitable) metric distance dA(IRS). Consistently with [38], [37] we
consider the following distance, which is sometimes calfediscrepancy:

ap(u, v) = sug|u(B) —v(B)| | B € B} (4)

Here B is a class of closed subsets & such that all sets of the formij(x) (x €

C; j=1,...,d) belongtoB andthats is a determining class (i.e., it has the property
that if any two measures agree @) then they coincide). Convergence of a sequence
of probability measures with respect to the metrig means its uniform convergence
on B. Necessary and sufficient conditions Bnsuch that weak convergence of proba-
bility measures implies uniform convergence Bnusually refer to certain uniformity
properties of the clas$ with respect to the limit measure ([4]) or to the sequential
compactness oB, viewed as a subset of the hyperspace of closed subsi&8 efjuip-
ped with a suitable topology ([25]). In particular,B is a subclass of all convex Borel
sets, then the uniform convergenceBrio the limit measurex is implied by its weak
convergence and the conditipnoB) = 0 for all B € B (9B denoting the topological
boundary ofB). A special classB to be considered in the following is

d
Bk ={x9_,Bj | Bj € {R%,zj + R”}.zj € R%}, where) sj=s
i=1
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The inducedB- discrepancy is denoted as . For d = 1 it reduces to the Kolmogorov
distanceak (1, v) = [|[Fy — Fullo = sup|Fu(2) — Fu(2)|, whereF,(2) = v(z+ R®)
zeRS

is the distribution function ofv.

A special feature of model (3) is that we have to take into account its possible
nonconvexity. Even when the original model is convex (cf. e.g. Corollary 1), perturba-
tions of u (e.g. by discrete measures) lead to nonconvex perturbed programs. Hence,
an appropriate concept for the stability analysis of (3) has to take into account the per-
turbation of sets of local minimizers. Here we make use of the concepts developed in
[21], [32] and, in particular, of so-called complete minimizing sets (CLM sets). Given
V € R™, we put for eachv € P(IRS)

ev(v) = inf{g(x) | x € Mp(v) NclV}
Wy (v) = argmin{g(x) | x € Mp(v) NclV} = {x € Mp(v) NclV | g(x) = v (1)},

where cl V denotes the closure of. For V = R™ we shall briefly write(v) and
W(v) for the resulting global optimal value function and the set of global minimizers.
Given u € P(R®), we call anonempty subs&t of R™ a CLM set for (3) with respect
to V, if V is an open subset dR™ containing X and X = Wy (u). For a discussion
of CLM sets we refer to [32], but mention that nonempty sets of global minimizers,
isolated local minimizers and sets of non-isolated local minimizers around wdich
satisfies a quadratic growth condition (cf. e.qg. [6], [41], [22]) are examples of CLM sets.
To state our quantitative stability result, we still need a stability property for the
probabilistic constraint in (3). We put, : R™ — RY, 6 (x) = u(Hj(x)) for each
xeR™ j=1...,d andp=(p1,...,ps) € R Consistently with the general
definition given in Section 3 we say here that the probabilistic constraint function
0,.(-) — p is metrically regular with respect t€ at somex? ¢ Mp(w) if there are
constantsa > 0 ande > 0 such that

dist(x, Mp_y(1)) < a-dist(9,(0 — p, R{ —y) = ajlmax(0, p—y — 6,00}

for all (x,y) € (CN By(x%) x B,(0). Here (and in all what follows)B,(x) denotes
the closed ball with radius aroundx. The following general stability result will serve
as an orientation for the further development of our analysis.

Theorem 1. In addition to the general conditions, assume that

(i) X is a CLM setforP(u) with respect to a bounded s&t (i.e., X = Wy () and
X is compact),
(ii) g islocally Lipschitz continuous,
(iii) the probabilistic constraint functiord, (-) — p is metrically regular with respect to
C ateachx? e X.

Then there are constants > 0 and § > 0 such that the set-valued mappingy
from (P(IR®), ap) to R™ is upper semicontinuous at, Wy (v) is a CLM set for
P(v) with respect toV and |py (1) — ¢v(v)| < L - ap(u, v) holds whenevew e
P(R®), ag(u,v) < 8.

If, moreover, the following quadratic growth condition is satisfied
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(iv) there exists a constamt > 0 such that we have
9% = gy () + ¢ dist(x, Wy () ¥x € Mp(w) NV,
then Wy is upper Holder continuous gt with rate 1/2, i.e.,

sup dist(x, Wyv(u)) < L - ag(u, v)*? wheneven € P(R®), ap(u, v) < 8.
XeWy (v)

Proof. The first part of the assertion is proved in Theorem 3.2 of [37]. It remains to note
that condition(iii) is equivalent to the fact that the set-valued mapping> Mq(1)
from R4 to R™ is pseudo-Lipschitzian at each paix®, p) € X x {p} (cf. [29],
Theorem 1.5). On the other hand, the latter property is equivalent to the local Lipschitz
continuity of the function(x, g) > dist(x, Mq()) from R™ x RY to R at each
X%, p) € X x {p} (see Theorem 2.3 in [34]), which is assumed in [37]. The second
part of the result follows from Theorem 2.2 in [22] by using the same arguments as
by deriving Theorem 3.2 in [37] from Proposition 1 and Theorem 1 in [21] (see also
Theorem 2.5 in [35]).

O

All assumptiongi)-(iv) in the theorem concern the original (or unperturbed) problem
P(w). While (i) and(ii) do not require further discussion, the conditi¢iiy and (iv)
are decisive and deserve verification.

The following corollaries illustrate the potentials of the approach considered here.
To simplify the presentation, it is assumed in all corollaries that the objective function
g and the seC of deterministic constraints in (1) are convex and that (1) contains one
probabilistic constraint only (i.ed = 1) and has the form

min{g(x) | x € C, u(H(x)) > p},

where H is a set-valued mapping fronR™ to IR having closed graphp € (0, 1)
and u € P(IRS). The first two corollaries are concerned with the convex caselkhat
has convex graph angd carries a certain concavity property-¢oncavity’) whereas
the last corollary deals with a nonconvex situation whéteand i do not enjoy
convexity assumptions. To introduce the notion ofranoncave probability measure
(r € [—o0, o0]) we define first the generalized mean functiop on Ry x IRy x [0, 1]
as follows:

(aa + @ —1bHY if r € (0, 00) orr € (—o0,0),ab> 0

0 ifab=0,r € (—o0,0)
mr(a, b; 1) = atbl—* ifr=0 (5)
max{a, b} if r =00
min{a, b} if r=—o00

The measuren € P(IR®) is called r-concave r € [—oo, 0o] ([7], [31]), if the
inequality w(AB1 + (1 — 2)B2) > m; (u(B1), u(B2); ) holds for all » € [0, 1] and

all convex Borel subsetB, B, of IRS such thatiB; + (1— X1)By is Borel. Forr =0
andr = —oo, u is also called logarithmic concave and quasi-concave, respectively
([30]). Sincem, (a, b; A) is increasing inr if all the other variables are fixed, the sets
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of all r-concave probability measures are increasingi§ decreasing. It is known (cf.
[7], [9], [30], [31]) that u € P(IRS) is r-concave for some € [—o0, 1/s] if u has
a density f, such that

fLAz+ A —21)2) = My (fu(2), fu(2D); 1), (6)

wherer(s) = r(1 —rs)~1 holds for all » € [0,1] and z,Z € RS. We mention

that e.g. the uniform distribution (on some bounded convex set), the (nondegenerate)
multivariate normal distribution, the Dirichlet distribution, the multivariate Student and
Pareto distributions are-concave for some € (—oo, oo] (see [7], Chapter 4 in [31]).

Corollary 1. Assume thatH has convex graph, that is r-concave for some <
(—o0, 00] and that there exists an elemeit e C such that the strict inequality
uw(H(X)) > p holds. Let W () be nonempty and boundel, be an open bounded
neighbourhood of¥ (1) and B = {H(x),z+ RS | x € C,z € RS}.

Then there areL > 0,§ > 0 such that the set-valued mappingy from
(P(R®), ap) to R™M is upper semicontinuous at with Wy (1) = () and Wy (v)
being a CLM set foP(v) with respect toV, and |¢o(u1) — ¢v (V)| < Lag(u, v) holds
whenever € P(IRS), ag(u, v) < 6.

The result is an immediate consequence of Theorem 1, since the assumptiehs on
and . imply the metric regularity conditiofiii) (Corollary 3.7. in [37]). In order to

avoid handling of sets of local solutions and to make the presentation more transparent,
we assume for the remainder of this section tBats (convex) compact and the open
bounded neighbourhood is chosen such that C V, hence¥y = ¥ and gy = ¢.

The nextresult states Holder stability of solution sets for amodel with quadratic objective
and linear probabilistic constraints and is proved in Section 4.

Corollary 2. Let g be (linear or) quadratic,C be polyhedral,H have the form

H(x) = Ax+ RS, x € R™ with some(s, m)- matrix A and . be r-concave for some
r € (—oo, co]. Assume thaw(n) N argmin{g(x) | x € C} = ¢ and that there exists
an X € C with F,(AX) > p. Moreover, assume tha{TL is strongly convex on some
convex neighbourhood oA (). Then there are constants > 0, § > 0 such that

dH (P(0), W(v) < L||IF, — Fy |2 wheneven € P(R®), ||F, — Fylleo < 8

(here dy denotes the Hausdorff distance on subsetiRa).
The emphasis in the following Corollary is on the nonsmoothness of the measure.

Corollary 3. Let H(x) = h(x) + R®, whereh € C1(R™, IRS) and assume that for all
global minimizersx® € W(u) the following conditions are satisfied:

S
(i) VAe RL\ {0} 3ceC: _le,-whj(xo), c—x% >0
J:
(i) w has a densityf, and, if F,L(h(xo)) = p, then there exists some< IRS such

that z— h(x%) belongs to the boundary dR® and f,. is bounded below by some
positive number for almost alt' in some neighborhood of.
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Then there are constants > 0, § > 0 such that the set-valued mapping from
(P(R®), ak) to R™ is upper semicontinuous at and |¢(v) — ()| < Lak (i, v)
for v € P(RS) with ax (1, v) < 8.

The proof follows from Theorem 5, Theorem 6 and Proposition 3. Another result
with emphasis on a possible nonsmoothness of the fundtiovill be given later (cf.
Corollary 5).

3. Metric regularity of probabilistic constraints

The importance of metric regularity as a stability concept in stochastic programming
has been outlined in Section 2 (Theorem 1). In this section we study a specific class of
probabilistic constraints by putting

Hix)={ze R® | hj(x) >z} xe R™j=1....d

in the generalmoddP(x) formulated in Section 1. Here we assume that RSi, hj :
R™ - RS,z = (z1,...,29) € RS = R® x ... x R¥. Then the probabilistic
constraint becomes

M={xeClu({ze R°lhjx =z} =pj} (j=1....0d, (7

where C € R™ is closed,u € P(R®) is a probability measure ofR® and p; €
(0, 1) are prescribed probability levels. For the following it will be more convenient to
transform (7) into the equivalent description

M={xeC|o.hXx) = p} 8
whereh = (h1,....,hg) : R" — RS and p = (p1,..., pd) refer to the entities
introduced above. The mapping,, = (®%.....®%9) : RS - RY comprises the

marginal distribution functions of. as its components:
i }
CI>L(y)= Fu(o0o,...,00,¥j,00,...,00) (j=1,...,d),
wherey = (y1,....yd) € RS yj € RSi(j = 1,...,d). Note that®,, is a non-
decreasing mapping which, in caseat= 1, reduces to the usual distribution function
F.. Since the multifunctionsH; have closed graph, the componenttﬁ are upper
semicontinuous (cf. Section 2).

The aim of this section is to formulate sufficient characterizations of metric regula-
rity in a general nonsmooth framework. As the main tool the subdifferential calculus by
Mordukhovich [28] shall be applied. This offers certain advantages over using the cor-
responding (larger in general) concepts by Clarke [10]. In particular, the Mordukhovich
coderivative yields an equivalent criterion for metric regularity [27]. It turns out that,
for instance in the case of a single locally Lipschitzian inequafity) < 0, which is
binding at some feasible poi, an equivalent characterization of metric regularity by
arelation like 0¢ o f(X) requires the departure @f from the framework of convexity.

In fact, it is shown in [13] that Mordukhovich’s subdifferential of Lipschitzian functions
may be homeomorphic to any compact subselR3f
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3.1. Basics from nonsmooth analysis

In this section, some basic concepts for characterizing metric regularity in a nonsmooth
setting shall be recalled. Let, Y, Z be arbitrary sets. For multifunctiors: XY, © :
Y~ Z put
Ker® ={xe X|0e€ d(x)}
ImMd={yeY|ye ®(x),xe X}
Gph® = {(X,y) e X x Y |y € ®(X)}
OHy) = (xe X |y € 2%}
O o d(X) = U O(y) (xeX), andif X=R™,Y=R":
yed(x)
limsup®(x) = {y € Y | Ixn — x°3yp = y: yn € ®(Xn)}.
x—x0

Now let X, Y be two normed spaces. A multifunctioh : X Y is calledmetrically
regularat some point(x%, y°) € Gph® if there are constanta > 0 ande > 0 such
that

dist(x, @ (y)) < a-dist(y, ®(x)) V(X y) € B:(x°) x Bs(y°).

The abstract form of constraint sets writes@s F~1(K), whereC € X andK C Y
are closed subsets of the respective spaBesi§ually being a closed convex cone) and
F : X — Y is the constraint function. Therk is said to be metrically regular with
respect toC at some feasible point® € C N F~1(K) if the associated multifunction

| -Fx)+KforxeC
() = { %) else

is metrically regular a(x?, 0). It is easily seen that this is equivalent to the conventional
definition of metric regularity for constrained systems:

Je > 03a > 0OV(X, y) € (CN B:(x%) x Be(0) :
dist(x, CN F~1(K —y)) < a- dist(F(x), K —y)
Note that in this relation only the constraints given Byare subject to perturbations

whereasC is considered to be a fixed set of unperturbed constraints.
For some closed subs&cC R" and x° € S the following concepts are defined:

T(S x% = limsupt~3(S— {x°)) (contingent cone)
t,0
Te(S X% ={the R" | Vxg = X° (X} €9 Vtn L 03hy — h: Xp+thhy € S
(Clarke’s tangent cone)
TOS x% = {(x* € R"| (x*,h)y <0Vh e T(S x%)} (Fréchet normal cone)
Na(S x°) = limsup T%(S x)  (approximate normal cone)

x—x0
XeS

Ne(S x%) = {x* € R"| (x*,h) < 0Vh e To(S x°)} (Clarke’s normal cone)
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The normal cond\, induces the approximate subdifferential for lower semicontinuous
functions f : R" — R:

3 f(x0) = {x* € R"| (x*, —1) € Na(Epi f; (x°, f(x°))},

where Epi refers to the epigraph. For locally Lipschitzian functions Clarke’s subdiffe-
rential 9. relates tod, as

3c F(x0) = Tom 9, f(xO). (9)

A closed subsetS € R" is called regular atx’ € S in the sense of Clarke, if
T(S X% = T(S x%). Similarly, a locally Lipschitzian functionf is called regular at
x% € R" in the sense of Clarke, iT(Epi f; (x0, f(x0))) = Tc(Epi f; (x°, f(x%))). In
case of the mentioned kinds of regularity it holds thég(S; X% = Na(S x°) and
e F(X0) = 94 f(X0).

Amultifunction ® : R"~> R™ with closed graph and some poitx?, y°) € Gph®
induces a multifunctiorD;®(x%, y°) : R™—~ R" defined via

D00 YO (y") = {X* € R" | (X*, —y*) € Na(Gpho; (°, y)},

which is called the approximate coderivativedfat (x°, y°). For single valued, locally
Lipschitzian functions® : R" — R™ one has (see [16], Proposition 8):

DiP(X, D(X)(Y") = da(y", ®)(x) Vx e R" vy* ¢ R (10)

The following results are due to Mordukhovich (compare [27], [28]) and will be sub-
stantially exploited in this section:

Theorem 2. A multifunction® : R" . R™ with closed graph is metrically regular at
some point(x?, y°) € Gpha if and only if Ker D;®(x°, y°) = {0}.

Theorem 3. Let the multifunctions® : R"~ R™ and ® : R™”] R* have closed

graph and(x, 2) € Gph(® o ®). Suppose that the multifunctiovl : R" x R — R™
defined by

M(x, 2) = ®(X) N O L(2)
is locally bounded aroundX, z) and that the condition
D:O(y, 2)(0) NKerDid (X, y) = {0} Vy e M(X, 2)
holds. Then one has

DX(® o ®)(X, 2)(z) € U Di®(X, y) o DEO(Y, 2)(z") VZ' e R
yed(x)NO-1(2)

Lemmal. Let §,S € IR" be closed sets wittkk € S NS and Na(S; X) N
—Na($; %) = {0}. Then

Na(S1 N ;%) S Na(Si; X) + Na(S; %),

where equality holds if5;, S are regular in the sense of Clarke.
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3.2. An explicit growth condition

Before dealing with the chance constraint (8) we start our considerations with general
constraint sets described by finitely many inequalities:

P={xeC|Fx) >0} F:R"— RK Cc R"(Cclosed. (11)
Obviously, (8) fits into this type of constraints. For a feasible pafhe P denote by

l={ie{l....k| Rx®) =0}
J=1{i €{l, ...,k | Fis notcontinuous at’}
the sets of active and noncontinuity indices, respectivelx®awhere theF; refer to

the components of. The following definition provides an explicit growth condition
on the components of which will imply metric regularity.

Definition 1. We say that the constraint mappirfg: R” — R¥ in (11) is growing at
some feasible point® e P with respect toC if

() Fi is upper semicontinuous in a neighbourhooddffor i € {1, ..., k}
(ii) there exists anp > 0 such that the following local growth condition is fulfilled:
I >0VxeB,(x®)NCVe>03yeB,(x)NC:
F(y) >R +ply—xl Vieluld

Note that, for continuoud-, this is merely a growth condition imposed on the active
components ak’.

Lemma 2. Let x? € P be a feasible point of (11). IF is growing atx? with respect
to C, then F is metrically regular atx® with respect toC.

Proof. According to Section 3.1 one has to verify metric regularity of the multifunction

_[-Foo+REifxeC
e = { ] else

at the point(x?, 0) € Gph®. Choose a numbep with 0 < y <  (wheren refers to
Definition 1) which, according to the definition of the index sétand J, satisfies

F(@>y Vi¢glulvzeintB,x% (12)

For computing Fréchet normal con&$ in a neighbourhood ofx?, 0), fix an arbitrary
(X, b) € (int B,,(xo) x int B, (0)) N Gph®. Thenx € C and b > —F(x) by definition
of .

Let us first consider the caseU J # ¢@. By Definition 1 there exists a sequence
yi — X (i € C), such thatFi(y)) > Fi(X) + pllyi — X|| Vi € | U J. Clearly yi # x.
We show that the vector

<)l:()) + Iyt = x|l ((Y| - Xl/))'])_/l - x||> _ (b— p||§: ) x||]_) (13)
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with 1= (1,..., 1T belongsto Gpl® for | large enough. In fact, if € | U J, then
[bli — pliyi = XII = =Fi(X) — pliyi = x|l > =Fi(W),

where the[b]; denote the corresponding componentdoDn the other hand, taking
for instance the Euclidean nornty, € intB,, (0) implies [b]i > —y, hence[b]; —
ollyi = X|| > —y for i = 1,...,k and largel. In particular, relation (12) makes
also the indices ¢ | U J satisfy [b]i — pllyi — X|| > —F M) (I large enough).
Combining both cases one arrivestat- p|lyi — X||1 € —F(y1) + RK , which together
with y; € C yields (yi,b — pllyi — x||1) € Gph®. Without loss of generality, we
assume(yr — X)/lIlyi — x|l — &, so (13) shows thatt, —p1) belongs to the contingent
cone T(Gph®; (x, b)). Consequently,

(&, —pD), (E*,y")) = (5, €) — p(Ly*) <0 V(*,y") € TOGph; (x, b))

Dueto [[§]l =1 this means|§*|| = (—§, &%) = —p(L, y*).

Now turn to the casd U J = @. Here (X, b) + 8(0, —pl) € Gph® for sufficiently
small § > 0 (compare (12) and recalb]; > —y for the components ob). So
(0, —pl) € T(Gph®:; (X, b)), and applying an arbitrary normal vect@r*, y*) to this
provides the inequality-p(1, y*) < 0. Summarizing, one has

—p(L,y*) < I&*I (14)
Y(&*, y*) € TO(Gphd; (x, b)) Y(x, b) € (int B, (x° x int B, (0)) N Gphd

in any case. Consider any* € KerD;CD(xo, 0). Local upper semicontinuity of all
componentsF; together with the closedness 6f imply the closedness (neax?, 0))
of Gph®. By virtue of Theorem 2 the lemma is proved if we can show tiat 0. By
definition

(0, —7%) € Na(Gph®; (x°,0)) = limsup T%(Gph®; (x, b))
x,b)— (x0
(()é,l)kj))e((;pﬁg)
so there are sequences

(x1, b)) — (x°,0), (x1,b) € Gph®, (&, yi) — (0, —=z%), (&, Yf) €
TO(Gpha; (x, ).

Along with (14) this leads to-p(1, —z*) < 0, or, because is positive, to(1, z*) < 0.
On the other handb, > —F(x)) implies (0, e)) € T(Gph®; (x|, b)) for arbitrary
standard unit vectors;j < RK (j=1,....Kk, hencey;" < 0. By continuity, z* > 0,
so the desired relatiog® = 0 follows.

|

The reverse direction of Lemma 2 does not hold in general, as one can see from
the exampleC = R, F(x) = |x| if x # 0 and F(0) = 1. While F is upper
semicontinuous, it fails to be growing at 0. On the other hand one computes

Na(Epi(—F); (0,0) = {(x,y) € R? | y € {0, —|x|}}



Metric regularity and quantitative stability in stochastic programs with probabilistic constraints 67

hence, KeD;®(0, 0) = {0} for the multifunction® = —F + IR, so ® is metrically
regular at(0, 0) due to Theorem 2 and, thereforE, is metrically regular at 0. For

the continuous case, however, the growth condition of Definition 1 is an equivalent
characterization of metric regularity in the constraint system (11) (cf. [14]):

Lemma 3. In (11) assume thaf is continuous and that® € P. Then metric regularity
of F at x% w.rt. C implies F to be growing atx® w.r.t. C.

Now we apply the above results to the characterization of metric regularity of the
probabilistic constraint (8).

Theorem 4. In the probabilistic constraint (8) leh be continuous and® e M(pe)
some feasible point. Suppose there exist 0, > 0 such that for all component@,&

of @, that are not continuous a(x®) or that are binding (i.e.,QL(h(xo)) = pj) the
growth condition

¥x e B,xX)NCVe>03ye B,NC: @l (h(y) > ®)hx)+plly—X|

is fulfilled. Then the constraint functio®, (h(-)) — p is metrically regular atx® w.rt.

C. If, moreover,®,, is continuous, then the growth condition above, imposed on the
binding components),, is equivalent with metric regularity of,(h(-)) — p at x0

w.rt. C.

Proof. Recall that the components ¢b,, are automatically upper semicontinuous,
hence the compositiod®,, (h(-)) — p enjoys the same property. Apply Lemma 2. For
the second part apply Lemma 3.

i

Two examples shall illustrate the potential and the limitations of Theorem 4.

Example 1.In the chance constraint (8) leh =2, s=d =1, p= 0.5, h(xg, x2) =
X1 + X2. Let u be the uniform distribution over the intervgt-0.5, 0.5] and take

C={(x1,x2) € R? | x1 >0, X < x2 < x3}

Obviously one has®,(y) = F,(y) = y+ 05 Vy € (-0.5,0.5). The point of
interest isx® = (0, 0) e C. Then, in a small neighbourhood of this point, it holds that
F.(h(X1, X2)) = X1+ X2 4+ 0.5. In particular, the constraint is binding =Y. Evidently,

the second statement of Theorem 4 applies, so we know that checking metric regularity
is equivalent to verifying the growth condition of Theorem 4. Now, fix ang C near

x0. One may find a poiny € C, y # x arbitrarily close tox such thaty — x € IRi.

Then, F, (n(y)) — Fu(h(X) = y1+Y2— (X1 +X2) = |y — |1, thereforeF, (h(-)) — p

is growing with p = 1/2 at x° w.r.t C, hence metric regularity oF, (h(-)) — p holds

at x% w.rt. C.

In [36] (Corollary 2.2) a sufficient growth condition for metric regularity of the
constraint function®,, (h(-)) — p was proposed for the special cage= 1, ¢, = F,
continuous,h linear andC convex. Essentially, growth was required along line seg-
ments inC. Note that in Example 1 there are no (nontrivial) line segments emanating
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from x° and entirely contained i€, so the mentioned condition does not work here
although, apart from nonconvexity @, the remaining assumptions are fulfilled. Fur-
thermore, even ilC is convex andF,, continuous, but violates linearity (e.g. being
piecewise differentiable), this condition does no longer hold true. This illustrates the
extension obtained by Theorem 4.

The next example indicates a situation where metric regularity of chance constraints
cannot be recovered from the growth condition of Theorem 4 (compare Remark 2.5 in
[36]).

Example 2.In (8), letd = 1, C = R™, h continuous andw € P(IR®%) be a discrete
measure with finite support. Suppoges (0, 1) to fulfill inL |F.(z) — p| > 0. Then
zeRS

the constraint functiori, (h(-)) — p is metrically regular at all feasiblg®, whereas it
is not growing at allx® for which F,, is not continuous ah(x%).

3.3. Separate constraint qualifications

While metric regularity of the probabilistic constraint (8) has been characterized in terms
of the composite functio, o h so far, we now want to formulate separate constraint
qualifications for the two single functions that are easier to verify and to interpret. First,
an auxiliary result is needed:

Proposition 1. Let F : R" — IR have upper semicontinuous components and be
nondecreasing ak® € R". Then the associated multifunctign: R" - RK defined by

$(x) = —F(x) + RK satisfieslm Dzp(x°, y) € R" Vy € ¢(x0).

Proof. First note that Gpb is closed due to the upper semicontinuity Bf Consi-
der arbitraryy € ¢(x% and (x*, y*) € R" x RK such thatx* € Dip(x°, y)(y*).
This means(x*, —y*) € Na(Gphg; (xX°, y)) and, by definition, there are sequences
.y — ), (k. y) € Gphg) and (X, —yf) — (X5, —y*) (X", =) €
TO9(Gph¢; (xi, y1))). Since F is nondecreasing atx’, one has (gj,0) ¢
T (Gphe: (xi, y1)) for all standard unit vectors; € R" and for all | € N. It fol-
lows that ((x*, =y, (€j,0)) = (x)j <0 for j = 1,...,n, hencex’ < 0 and
x* € R, as desired.

|

It is interesting to note that, as a consequence of the last proposition, one has the
equivalence (see [14])

0€ 0aF(x) < 0e€dFx

for any nondecreasing : R" — R. In particular, this holds for distribution functions.

Now, with the constraint function®,, andh from the definition of the probabilistic
constraint in (8) we associate the following two multifunctiofis : RS RY and
I'2: R"Z RS via

h(x) xe C

— — d =
r'@=p-—o,(2+ |R+ and Ta(x) = {(}) else
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Then, their composition i€ = I'y o [ : R™~ RY with

_ d
F(x) = p—@,(hx)+ R} xeC
0 else
Proposition 2. In (8), assumeh to be continuous and consider some feasible point
X € M. Then the two constraint qualifications

Ker D' (h(X), 0) = {0} (15)
Ker DXT2(%, h(%)) N RS = {0} (16)

imply Ker DiI"(X, 0) = {0}.

Proof. All of the three multifunctionsl’z, I'1 and I' have a closed graph (due to the
closedness ofC, continuity of h and upper semicontinuity of,). Let us assume
for a moment that the application of Theorem 3 is justified. Then the relatien 0
Dil(x, 0)(z*) (for arbitrary z*) along with the fact thal", is single-valued(2(X) =
h(x)) yield the existence of somg* € RS such that

y* e D;Fl(h()'(), 0)(z") and Oe D;Fz()'(, h(x)) (y*).
From Proposition 1 we know that IB%I'1(h(X), 0) € IRS. This leads to
y* € KerDjilM2(x, h(x)) N RS = {0}

by (16) and toz* € Ker D3I"'1(h(X), 0) = {0} by (15). Consequently, Ké;I'(X, 0) =
{0}, as desired.

To check the assumptions of Theorem 3 first note that the multifundion z) =
Fz(x)m“Il(z) fulfills either M(x, 2) = @ or M(x, 2) = {h(x)}, soitis locally bounded
by continuity of h. In particular, M(X, 0) = {h(X)}, and again from Proposition 1 and
(16) we have

DiT1(h(x), 0)(0) N Ker DiI'2(X, h(X)) € R® NKerDila(X, h(X)) = {0}.

O

The result of this proposition can now be restated in terms of the ingredients of the
probabilistic constraint (8) itself.

Theorem 5. The constraint functionb,, (h(-)) — p in (8) is metrically regular at some
feasible pointx € M w.r.t. C if the following two conditions are fulfilled:

(i) The function®,(-) — p is metrically regular ath(X) in the constraint®,(z) > p.
(ii) h is continuous,Na(Gphh; (X, h(X))) N (—=Na(C; X) x {0}) = {0} and
Dih(x, hG))(Y) N —=Na(C;X) =@ Vy* € RS\ {0}
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Proof. Obviously, conditior{i) is equivalent to (15) by Theorem 2. Concern({iijgone
has GpH'2 = Gphh N (C x RS) for the multifunction ", introduced above. The
first part of (i) corresponds to the assumption of Lemma 1 (Wh= Gphh and
S = C x R9), so the lemma yields

Na(Gphl'2; (X, h(X))) € Na(Gphh; (X, h(X))) + Na(C; X) x {0}

Choose anyy* € KerDiI'2(X, h(x)) N RS. In particular, (0, —y*) € Na(GphI'z;
(X, h(x))) and we havg0, —y*) = (&, a) + (7, 0) according to the decomposition just
stated. Thert = —7 € —Na(C; X) and (&, —y*) = (§, @) € Na(Gphh; (X, h(X))). It
follows & € Dih(X, h(X))(y*)N—Na(C; X), hencey* = 0 due to the second part(if)
andtoy* € R®.However, thisis (16), so Proposition 2 guaranteesXgr(x, 0) = {0}
and, Theorem 2 implies metric regularity &, (h(-)) — p at X w.r.t C.

|

Theorem 5 offers the possibility to check properties of the meagurand of the
function h in (8) separately. Yet the conditions imposed are rather abstract. In the
following we develop criteria that are better to verify. First we turn to condifijpand

try to reformulate it in terms of assumptions concerning the density of the measure

If u has a density, then, denoting

= Y Y YY) (YERS s=s1+ -+ s9),
one recognizes that the componentsigf may be written as

1

oo oo Yj y] oo oo
Oy = / -/ / -/ / [ ot dylay ok

Next we introduce the set where this density is locally bounded below by a positive
number:

={ye R®|3e>0: f,(y) > ¢ foralmostally e B.(y)}.

For continuousf,,, of course, this set reduces®" = {y € RS | f,(y) > 0}. Finally,
for any subsetl € {1,...,d} put

Q'=Cyx---xCq, whereCi = {
The following theorem provides a density condition guaranteeing sufficient growth of

®,, to arrive at the desired property of metric regularity.

Theorem 6. For X € M in (8), denote the set of active indices gx) = {i €
{L....d} | @, (h(X) = p'}. If & has adensity andh(X) + Q') N DT 3 g, then
condition (i) of Theorem 5 is satisfied.
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Proof. By assumption, there exists sore= Dt such that for allj € 1(X)
Ye<theoltk=1....s and 3k(ij)e(l....5): ¥V = [hP

Here, lower and upper indices refer to the partition of vectoﬂR?n: R x ... x RX
introduced above. By definition, one hdg(y) > ¢ for almost ally € B(y). Choose
any z € Bg/2(h(X)). Without loss of generality we consider the balls with respect to the
maximum norm|| - ||«. AS a consequence, we have for all indiges I(X)

Z>¥-e/2 k=15
Next define some vecta € IRS via

ok 1jel(X) andk = k())
I — ] 0else

and putz(t) = z+te for t € (0, ¢/2). Clearly, for all indicesj € I(x) it holds
[zl =2V +t and [z0K =2 if k# k().

k) k(” +1] one has

In particular, [|z(t) — z|oo =t and forc € [Z;
ki ki ki ok
=¥V <1e- 2P+ 120 - [h(x)],-“)| <s/2+6/2=¢.

Now, the following estimation can be made for the active indiges I (X):

ol (z(t) — @) (2

[l
33
=3

v
—=
\
.\
\
\

a

<

i ol K(j
j—1 _ Zj(J) i e Ve

=58 . (g/25 7L e ||Z(t) — Zlloo

But, having in mind, that®,, is continuous due to the assumption thatpossesses
adensity, the above estimation implies tkdgf (-) — p is growing ath(x) (w.r.t. RS)in
the sense of Definition 1 (pyt = (¢/2)%, n = ¢/2 and recall that the above estimation
is valid for all t € (0, ¢/2)). According to Lemma 2P, (-) — p (considered with the
> 0 constraint) is metrically regular dt(x). This is condition(i) of Theorem 5.

O



72 René Henrion, Werner Rémisch

DY
g

Fig. 1. lllustration of Theorem 6 for the cagb= 2, s = 3: the left picture refers to the situati® = 2, sp =

1,1 = {1}, and the right one tas; = 1,5, = 2,1 = {1}. In both cases, the two-dimensional manifolds
h(X) + Q' intersect the positivity regiorD of the density (illustrated as cuboids in the pictures). Hence,
condition(i) of Theorem 5 is satisfied

Since, by definition, & Q'™ for an arbitrary index set(x), one concludes
Corollary 4. If h(x) € DT, then condition (i) of Theorem 5 is satisfied.

This density conditionh(x) € D' was used in [36] (Lemma 2.1) in order to derive

a corresponding stability result for a specific probabilistic constraint( 1 and h

linear in (8)). For continuous densities one simply would have to regiif@(x)) > 0.

Note, however, that this relation is far from being necessary in order to ensure condition
(i) of Theorem 5, as can be seen from the following example:

Example 3.In (8), we taked = 1, s=m =2, h(x) = x, p= 05C = R2 In
particular, ¢, coincides with the distribution function of the measyte which we
assume to be induced by the following density IBA:

a y € B1(0)
f.(y) =1 @—lylhaye B20)\ Bi1(0)
0 y € R?\ By(0)

where the balls of the corresponding distances refer to the Euclidean norm and the
numbera > 0 is suitably chosen to guarantgg,. f,(y)dy = 1. Obviously, f, is
continuous andD* = int Bx(0). For X = (0, 3) we deduce from the symmetry df,
around the origin that

@, (h(x) = ©,((0,3) =0.5=p,

hence, we have the binding cas&) = {1}. Of course, f,(h(X)) = f,.((0,3)) =0,

so the strong condition of Corollary 4 does not apply. Nevertheless, one may derive
condition (i) of Theorem 5 becausg0, 3) + dR%2] N D+ # ¢ (take, for instance

(0, —3) € 9R2), hence, the weaker condition in Theorem 6 is satisfied.

Frequently, the property of metric regularity is required at points that are not given
explicitly, e.g. the set of local minimizers. Therefore, it might sometimes be useful to
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know conditions under which metric regularity holds everywhere. For instance, as a part
of this question, one could ask when condit{grof Theorem 5 is satisfied everywhere,
i.e., ®,() — p is metrically regular at alh(x) with X € M. Using Corollary 4 one

gets an immediate criterion for such a global behaviour, nard®ly = RS, which

is fulfilled for some of the conventional distributions (like multivariate normal). The
situation becomes more interesting for densities whose support is not &f.ofo
investigate this problem in more detail we introduce the following definition:

Definition 2. A subsetQ € RR" is called an infinity path inIR" if there exists some
continuous functionr : R — R" such thatimz = Q and

lim max 7j(t) = —o0, max mj(t) = oo
t——o0i=1,..,n =1,..,n

lim
to>o0ji=
Roughly speaking, one part @@ must tend to—oo with all its coordinates simulta-
neously, while for the other part it suffices that at least one coordinate tenrgsctoOf
course, any infinity path is a connected subsdR3f This concept allows an appropriate
characterization in the case df, having only one component, i.ed,= 1.

Theorem 7. If d = 1, 1 has a density andD™ contains an infinity pathQ in RS,
then condition (i) in Theorem 5 holds globally, i.&,,(-) — p is metrically regular at
h(x) forall X € M.

Proof. Consider anyx € M and putz = h(x). With reference to Definition 2 there
existty, t2 € IR, such that

“max mi(t)) < min z, max mi(t)) > max z

i=1,...,s i=1,...,s i=1,...,s i=1,...,s
Hence, forqp = n(t1), 02 = #(tp) one hasgy € QNint(z+ RS) and g €
QN (R®\ (z+ R%)). Now

RS = [int(z+ R$)JU[R®\ (z+ R®)]U[z+ 0RS ]

is a disjoint decomposition oRS, where the first two sets are open. Theref@e (z+
0IR®) £ ¢ because otherwise

Q=[Qnintz+ R)JU[QN(R®\ (z+ R%))]

would be a decomposition a into two open (in the relative topology dP), disjoint
and nonempty subsets in contradiction to the connectedne®s daking account of
Q € DT, we arrive at

## D" N@z+dRS) <D N (hx) + Q'P)

SinceX € M was arbitrary, the assertion follows from Theorem 6.
O

Itis noted here, that the assertion of the theorem is not restricted to the fixed probability
level p, in fact, this value does not enter the proof at any point. Consequently, under
the indicated assumption®,(-) — p’ is metrically regular ath(X) not only for all

X € M but even forallp’ € (0, 1). The following example shall illustrate the meaning

of Theorem 7.
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Infinity Path

~

No Infinity Path

Fig. 2. Probability densities with and without infinity path contained in the positivity region of the density
(shaded)

Example 4.Adopt the setting of Example 3, but with the density R¥ replaced by

fy = a2 Y= 02l <12 or yi<Oly2—yil <1/2
KY7710 else

(a suchthat/ f,(y)dy = 1). Obviously, here the sé* coincides with the one which
the first line in the definition off, relates to, saD* # RR?. Nevertheless, condition
(i) of Theorem 5 is satisfied globally. In fact, the continuous function R — IR?
defined byx(t) = (t,t) if t <0 andx(t) = (t,0) if t > O generates an infinity path
Q = Im~ thatis contained irD™, so Theorem 7 applies (see Fig. 2 top).

Now, reflect the density w.r.t. the origin, i.e., takg/(y) = f,(—y). Then, the set
Dt does not contain any infinity path (see Fig. 2 bottom). For instance, the canonical
candidateQ’ < D', which is defined byQ’ = Im =/, wherex’(t) = (t,0) for t <0
and 7' (t) = (t,t) for t > 0, fails to satisfy the first limiting condition in Definition 2
(while the second one holds true).

Now we turn to the second constraint qualification in Theorem 5. As will be seen below,
this can be viewed as some kind of Mangasarian-Fromovitz Constraint Qualification for
continuous inequality constraints. The first part of this condition (relating the approxi-
mate normal cones of the Graph lofand of the seC) is always fulfilled, for instance,

if C= R™ orif h islocally Lipschitzian. In order to gain more insight, we consider
the cases of locally Lipschitzian or evét- mappingsh.
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Proposition 3. If h is locally Lipschitzian in (8), then condition (ii) of Theorem 5
reduces to

daly*. h)(X) N —=Na(C; %) =0 Vy" e R® \ {0}. 17)
If h e CL(R™, RS) with JacobianDh, then the corresponding relation reads
[DhGOITY* ¢ Na(C; %) Vy* € RY\ {0} (18)

Proof. For locally Lipschitzianh the first part of conditiorii) in Theorem 5 is auto-
matically fulfilled. In fact, if k is a Lipschitz modulus oh nearX, then ||a*| < k| /b*||
for all (a*, b*) € T%Gphh; (x, h(x))) and all x nearx (compare [18], Lemma 3.8).
Now, the same relation must hold true for &i*, b*) € Na((Gphh; (X, h(X))) too. In
particular,b* = 0 impliesa* = 0.

Finally, the second part of conditidii) is nothing else but (17) as a consequence of
(10). Now (18) follows from the fact that the approximate subdifferential and the usual
derivative coincide in the?l- case.

O

In caseC = R™ (i.e., Na(C; X) = {0}), Gordan’s theorem shows the equivalence of
(18) with the condition

EeR": VhiX-£>0i=1,...,s,

where now, in contrast to the derivations above, we return to the conventional labelling
of the components ofi. Restricting this relation to the active indices only (which have
no meaning forh in our present context) this would be the well-known Mangasarian-
Fromovitz Constraint Qualification (in the absence of equations). Replacing the sets in
(17) by the corresponding (bigger) concepts of Clarke’s subdifferential calculus, one
gets the stronger requirement

Iy, h)X) N Ne(C; %) =9 Vy* e R\ {0}, (19)

which is closely related to well-known constraint qualifications in the locally Lipschit-
zian setting (e.g. [34], [8], [3], [17]). However, let us emphasize once more that, in (8),
the mappingh does not appear itself as a constraint, but as the inner part of a composite
constraint. In particular, there is no active index set to be considered. Furthermore,
the application of (17) according to Mordukhovich’s calculus promises advantages over
(19) for certain classes of mappings. This is confirmed by the following corollary, which
illustrates the verification of conditioni() in Theorem 1 by the criteria obtained so far,
and where the ’production functiorii is assumed to have a specific structure of nons-
moothness. In this lemma, with a compact Betwe associate the set of exposed points
exK ={xe K |3z: (z,X) < (z,y) Vy € K\ {Xx}} and exploit the relation (cf. [14])

da(min(-, y))(x) < cl (exK) (20)
ye
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Corollary 5. Let C be convexd = 1 and assume thaltj (x) = maxek; (X, y), where

Ki € R™ (i =1,...,s) are compact (e.g. finite) subsets. Furthermore, assume that
w € P(R® has a continuous density which is strictly positive ov&€). Then, the
condition

Vx*eT3ceC: (x*,c—X) <D0, (21)

where T = U{conay, ... ,as} | & € cl(ex(—Kj)) (i = 1,...,9)}, is sufficient to
guarantee metric regularity of the functiof, (h(-)) — p at some feasibl& € Mp(u).

Proof. According to Theorem 5, Theorem 6, and Proposition 3, it is sufficient to verify
the following two conditions:

hX) +R)NDT £¢ and da(y*, h)(X) N —=N(C; X) =0 Vy* € RS \ {0}
(22)

(N = normal cone to convex sets). By assumptitiC) € D™, so the first relation
of (22) is trivially fulfilled. Concerning the second relation, we apply (20) to obtain for
y* e RS \ {0}

S S S
By, N) (%) = 82} YD) € D (=y)dal=h)(X) € Y (=¥ cl (ex(—Ki).
i=1 i=1 i=1
(23)

For anyx* € —N(C; X), one has(x*,c— X) > 0 Vc € C. In order to prove the second
relation in (22), it suffices by (23) to lead to a contradiction the existence of some
A > 0,1 # 0 with x* € Y7, i cl (ex(—Kj)). In fact, if there were such., then
t~1x* € T with t =} Aj, hence(x*, c — X) < 0 for somec € C by (21).

i

In order to illustrate Corollary 5 as well as the difference to using the Clarke subdif-
ferential calculus here, consider the following one-dimensional example for problem
P(w):

Example 5.In (1), let
d=s=1 HX)={zeR||x| >z, C=B(0,1), p=05, ©u~N(0,1), x=0.

Then, in the setting of Corollary 5, one hhgx) = ||x|| = max{(x, y) | y € K}, where

K = B(0, 1). Clearly, all assumptions of the corollary are satisfied. To see this for (21),
note thatu(H(x)) > 0.5 Vx € R™, henceMp(u) = C and X € Mp(u). Furthermore,
ex(—K) equals the unit spher8™1, so T = U{conja} | a € S" 1} = S™1. Then

(21) is satisfied by choosing := —x*. The advantage of using (21) which relies on
the application of Mordukhovich’s subdifferential, over a characterization via Clarke’s
subdifferential o is seen in the example from the violation of the second relation in
(22) when replacind; by d¢c: dc(—1-h)(0) N —N(C; 0) = B(0, 1) N {0} = {0} £ @.

Similar to the considerations with respect to condit{nin Theorem 5 one may ask
under which circumstances conditiii) of the same theorem holds globally, i.e., for
all x e M. An answer may be deduced from the following corollary to Proposition 3:
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Corollary 6. In (8), let all components ofi be concave and the s& be convex. If,
for X € M, there exists somg* € C such thath(x*) > h(X) (componentwise), then
condition (ii) of Theorem 5 is satisfied.

Proof. Due to concavity,h is locally Lipschitzian, so we have to check (17). If this
relation does not hold, then there exist sogfee RS \ {0} and § € R™ such that

& € a(y*, —h)(x) N —N(C; X) (note that(y*, —h) is convex and thab; and Na
coincide with the subdifferential and the normal con®&\ of convex analysis). Since
both X and x* belong to the convex set, we derive (¢, x* — X) > 0. On the other
hand, by the sum rule of the convex subdifferential, there&re da(—h;)(X) with
E=Y5, y¥&. In particular, by the definition of the convex subdifferential, one has
(&, x* —X) < hij(X) — hj (x*). Summarizing, one obtains the contradiction

S
< (E X —%) = Zml,x —%) <Yy —hi(x*) <0

i=1

from the strict inequality in the assumption.
O

The corollary corrects an error in [36] Lemma 2.1., where, in the context of linear
mappingsh and convex set€, the existence of some& € C with h(x*) > h(X) was
required instead of the strict inequality.

Now, the desired global property may be formulated as follows: If, in [B)is
concave (e.g. linear) an@ is convex, then conditioii) of Theorem 5 is fulfilled on

S
M(w) N [ U ﬂ ht(—oo, hi(X*))]

x*eCi=1

which in general may be expected to be a big subset of the chance contrinj.

Atthe end of this section we reexamine Example 1 using the tools related to Theorem
5. In contrast to the previously given verification of metric regularity by means of the
composite functiord,, o h, the corresponding result shall be obtained now via separate
considerations of the measure and the function

Example 6 (Example 1 revisited)ue to Na(C; (0,0)) = {(£1,&2) € R2 | & < 0}

one has[Dh(0,0)]Ty* = (y*,y)T ¢ Na(C; (0,0)) Vy* > 0. Consequently, (18)
applies. On the other han®* = (-0.5, 0.5) for the given uniform distribution over
[-0.5,0.5]. Soh(0,0) = 0 € D' and we are in the situation of Corollary 4. Summari-
zing, both conditions of Theorem 5 are satisfied and the desired metric regularity result
follows.

4. Quadratic growth condition and quantitative stability
In order to obtain quantitative stability results for solution sets, a certain growth condition

for the objective function in a neighbourhood of the optimal set has to be verified. Thisis
studied next for more specific (convex) stochastic programs with one joint probabilistic
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constraint and polyhedral deterministic constraints. More precisely, we consider the
problem

P(u) min{g(x) | x € C, F,(AX) > p}, (24)

where g : R — IR is convex quadraticC € R™ is convex polyhedral A is an
(s, m)- matrix, p € (0, 1) and F,, is the distribution function of a probability measure
w € P(RS), which is assumed to be-concave for some& € (—oo, 0). Due to ther-
concavity ofu, P(u) represents a convex program. In the following) refers again
to the set of (global) solutions to (24) anbl, (v) denotes the localized solution set to
P(v), wherev € P(IR®) is a perturbation ofx andV € IR™ an open neighbourhood
of W(u).

Inthe first step of our analysis a reduction argumentis used to decompose the original
problemP(w) into two auxiliary problems. The first one is a stochastic program under
probabilistic constraints, again with decisions takenRf, whereas the second one
represents a parametric quadratic program with polyhedral constraints. The reduction
argument also provides insight into the structure of the solutionggaf.

Lemma 4. In addition to the general assumptions, lete P(IRS) and suppose the
closureclV of V € R™ to be a polytope. Then we have

ev(v) =inf{my(y) |y € A(Cy), Fu(y) = p} and WYy(v) =ov(Yv(v)),
where
Yv (v) = argmin{zyv(y) | y € A(Cv), Fy(y) > p}
Cy =CnclV
mv(y) =inf{g(x) | Ax=1y,x € Cv}
ov(y) = argmin{g(x) | Ax=1y,x € Cy} (y € A(Cy)).

Here, my is convex onA(Cy), oy is Hausdorff Lipschitzian orA(Cy) and there
exists annp > 0 such that

g(x) > v (AX) + ndist(x, ov(Ax)? Vx € Cy.

Proof. Since the constraint s€ix € Cy | F,(Ax) > p} is compact,Wy(v) is no-
nempty. Letx € Wy (v). Thenx € Cy, F,(Ax) > p, and

pv(v) = g(x) = vy (AX) > inf {my(y) | y € A(Cv), Fu(y) = p}.

Conversely, lety € A(Cy) with F,(y) > p. Then there exists an € oy(y) with
v (y) = g(X) > ¢v(v). Hence

pv(v) = inf{mv(y) |y € ACCv), Fui(y) = p} and g(x) =nv(AX) VX e Wy(v).

Thisimplies Wy (v) = oy (Yy (v)). The convexity ofry isimmediate and the Lipschitz
property of oy is shown in [23], Theorem 4.2.

Finally, we turn to the last statement in the lemma and assume a descigjkipa:
(x, Hx) + (c, x) for the objective function with some symmetric, positive semidefinite
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matrix H. For eachy € A(Cy) fix a corresponding(y) € ov(y). As an elementary
characterization of solution sets to quadratic programs one has

ov(y) ={xeCyn A_l(y) | Hx = Hz(y), (c,Xx) = (c, z(Y))}
By Hoffman’s theorem [15] there exists sonhe> O such that

dist(x, ov(y)) < L([[Hx — Hz(y)[l + [{c, X) — (c, z(V)])
Vy € A(Cy) Vx € Cy N A~L(y)

With the decompositiorH = HY/2H1/2 one arrives at(c, x) — (c, z(y)) = g(X) —
mv(y) — [IHY2x|12 + [[HY2z(y)||?, hence

dist(x, ov(y) < LAHYZIIHY2(x — z(y)|l + (IHY2z(y) |
—IHY2XID(IHY22(y) || + IIHY2X]) + g(%) — 7v ()
< LAIHY? + IHY 220y | + IHY2X)1ITHY2(x — 2yl
+g(X) — v ()
< L(2 + DIHYZHY2(x — z(y) | + 90 — v ()

forall y € A(Cy) and all x € Cy N A~L(y), where k = maxX{]|X|| | X € Cy}.
Consequently,

dist(x, ov (y)? < L(IHY2(x — z(y) 12 + (9(x) — v (¥))?)
vy € A(Cy) V¥x € Cy N A~L(y)

for someL > 0. Furthermore, the equality
9((X +2(y)/2) = g()/2+ 9@(y)) /2 — [HY2(x — z(y)1>/4
implies
IHY2(x = z(y)I?/2 < 900 —7v(y) VY € A(Cy) Vx € Cy N A™L(y)
Summarizing, one gets

dist(x, ov ()2 < L[2(g(X) — v (Y)) + v (9(X) — v (Y))]
< L@+ av)@X) —7v(Y)

forall y € A(Cy) and allx € Cy N A~1(y), where
v = maxg(X) | X € Cy} — min{g(X) | X € Cy}
Inserting anyx € Cy along withy = Ax € A(Cy) yields

g(x) > mv(AX) + ndist(x, ov (AX))?> V¥x € Cy.
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The preceding result enables us first to study the growth behaviour of the objective
function in the auxiliary problem

min{zv(y) | y € A(Cv), F,(y) > p}.

whereV is some suitably chosen subsetB™. In a second step, the formula fdry
in the above proposition and the propertiesogf may be exploited. This two-stage
procedure forms the basis of the proof of the following results.

Theorem 8. In addition to the general assumptions in this section, suppose that

(i) w(w) is nonempty and bounded;
(i) w(p) Nnargmin{g(x) | x € C} = @;
(i) 3x € C: F,(AX) > p (Slater condition);
(iv) F[L is strongly convex on some open convex neighbourtbarf A(W(w)).

Then the following quadratic growth condition is satisfied:

3¢ > 03V 2 W(w) (Vopen :  g(x) = g(u) +cd(x, W(u))?
vxe CNV, F (AX) > p.

Proof. Let Vo € R™ be an open convex set such thatu) € Vo and A(Vp) € U.
For eachx € W(u) selecte(x) > 0 such that the closed ball (w.r.t. the noim || o)
Boo (X, £(X)) aroundx with radius e(x) is contained inVp. Since W(w) is compact,
a finite number of these balls cov&r(u). The closed convex hul/ of their union is
a polyhedron with@(u) € V c V C Vo, whereV = intV. With the notations from
Lemma 4 consider now the problem

min{zv(y) |y € Sv, Fu(y) > p}, with Sy = A(Cv)
or, equivalently,
min{zy(y) | y € Sy, h(y) <0} where h(y)=F(y)—p'.

According to Lemma 4 the solution &y (1) of this problem fulfillsW(u) = Wy (n) =
ov(Yv(w)). Let y, € Yy(u) andy = Ax with X € C from (iii). Thenr-concavity of
w implies foranya € (O, 1]:

hY + 1= Dy = FLGY + @A =0y — p' < AFL(9) + A= DFL(y:) — P
< MFL(y - p) <O
Thus, we may select € (0, 1] suchthaty = Ay+(1—1)y, belongstoS, and hasthe
propertyh(y) < 0. This constraint qualification implies the existence of a Kuhn-Tucker
coefficienti, > 0 such that
v (Ys) = min{ry(y) + Ah(y) [ye Sy} and Ash(y,) =0

In case A, = 0, this would imply y, € argmin{zy(y) | Yy € Sy} and, hence, the
existence of some, € W(u) with g(Xs) = v (AX) = min{g(X) | AX = V., X €
Cv}. Then, in contradiction to conditiofii), x* would minimize g w.r.t. C due to
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x* € intV. Thus A, > 0 and vy + A:h is strongly convex onSy. Hence,y; is the
unique minimizer ofry + A.h and the growth property

30>0 plly— Yull® < mv(y) + Ah(y) —2v(y") Vye Sy (25)

is valid (recall thatSy € U). From Lemma 4 we conclud@ (i) = Wy () = ov (V)
and

IAX = Y:l1? < p v (AX) — p()) VX € Cy. Fu(AX) = p. (26)
Now, choose ank € C NV such thatF, (Ax) > p. Obviously
dist(x, W(w)) = dist(x, oy (y*)) < dist(x, ov(AX)) + dn (ov (AX), ov(y*)),

where dy refers to the Hausdorff distance on bounded subset®df Using the last
two statements of Lemma 4 (with some Hausdorff Lipschitz modllus 0) along
with (26) we continue by

dist(x, ¥(u)? < 2(dist(x, ov (AX))? + dn (ov (AX), av (Y*)?)
< 217X (g(x) — v (AX) + L2 Ax — y4[1?)
< 20" Hg(x) — v (AX) 4+ L2071y (AX) — p(1)))
< 2maxn~*, L2 g — e(n)

O

Together with Theorem 1 the preceding result leads to upper Holder continuity of the
localized solution set mappingy at o (with rate 1/2) immediately. Using the special
structure of problenP(x) we are able to show even the Hausdorff Holder continuity
of Wy at u.

Theorem 9. Adopt the setting of Theorem 8. Then there extist- 0,6 > 0 and
a neighbourhoodv of W(ur) with

dH(P(). Wv(v)) < LIF, — FyI3% whenever v e P(RS), [[F, — Fylloo < .
Here, again,dy denotes the Hausdorff distance afifl,, — F, ||cc = SUB,cRs |F.(2) —
F.(2)].

Proof. As in the proof of Theorem 8 we construct a polyhedMnc R™ such that
W(w) is contained in the interio of V. Since the assumptions of Corollary 1 are
satisfied, the localized solution-set mappidg is upper semicontinuous ai and

Wy (v) # @ is a complete local minimizing set fdP(v) if ak (u, v) is sufficiently
small. Hence, there exists &> 0 such thaty # Wy (v) € V for all v € P(RS)
with ||F, — Fyllo < 8. With the notations from Lemma 4 and using the fact that
Yv () = {y«} and W(u) = Wy () = ov(yx) We obtain

dy (W(), Wv (1) = d(ov (V). ov(Yw () < L sup [ly — yall,
yeYy (v)
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where L > 0 is the Hausdorff Lipschitz constant ef, (cf. Lemma 4). Using (25), the
above chain of inequalities extends to (du&tqv) C Sy)

du (W(w), Wy (v) < Lp~Y/? sup (v (y) + Ach(y) — v (v 1Y?
yeYy (v)

Lo~ 2[pv (v) — (1) + A (FL(y) — ph1*2

P Y2pv (v) — p(1) + A (FL(y) — Fl(yn1Y2

Lo~ [lov (v) — ()] + A«Ir[(p— 8) " HF(y) — Fl(y)[1Y?
< Lo 20(L + ailr1(p— 8" Hydk (1, 12,

whereL > 0 is the constant from Theorem 1 and we used #aty) < p’ for any
y € Yy (v) and that the inequality

IA
)

IA

U — "] < [rfmaxu’ 1, o " ju — vl

holds for anyu, v € (0, 1]. This completes the proof.
O

The assumptiong)-(iv) imposed in the Theorems 8 and 9 all concern the original
problem P(w). Condition (i) is basic for our stability analysis and is satisfied, for
example, if C is a polytope. The conditior(§) and(iii) mean that the probability level

p is notchosentoo low and too high, respectivélyexpresses the fact that the presence
of the probabilistic constrainE, (AxX) > p moves the solution se¥ () away from
that obtained without imposing the reliability constraint f&ix > &’. From a modelling
point of view, both conditions show the significance of the choice of the reliability level
p. Assumptior(iv) is decisive for the desired growth condition of the objective function
aroundW(u). In contrastto the (globab-concavity of ., (iv) requires strong convexity

of F, as alocal property arouné(¥(w)) (in addition to the convexity of), on R®

with values in the extended real numbers). Although no general sufficient criterion for
(iv) is available so far(iv) seems to be satisfied in many cases whé (1)) belongs

to the interior of the support oft.

Proposition 4. Let 1 € P(IR®) be logarithmic concave and, hende, have the form
F.(2 = exp(—f(2)), ze RS where f : R® - RU {oo} is convex. Assume thdt

is continuous and strongly convex on some convex compatt setintdom f. Then
F,, is strongly convex otJ for eachr < 0.

Proof. Let r < 0 andz Z € U, 1 € [0, 1]. Denoting byc > 0 the strong convexity
constant off on U, we obtain
FL.0z+ (11— 12 =exp(—rf(iz+ (1-1)2)
< exp(—r[Af(@) + (L — 1) f(2) — AL — iz — 2l|?])
< (WF(2) + (1= MF}(2) exp(rea(d — W)l|z - Z|%),
where we used the monotonicity and convexity of exp. Let
rc
K:= = K:=minF/ a:= ——lz-2z)3.
rZTl%X (D), erILT (D, a {2%{ 2 lz— 2|7}
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Then there exists a constant> 0 such thattexp(—a) <t — «a for all a € [0, 3]
andt € [k, K], and we can continue to

FlL(z+ (1—0)2) < AFL@) + (L MFL@ — k(~Nehd - n)z— 22,

which is the desired inequality.
O

Note that for the uniform distributionx on some rectangldd = xiszl[a;, bi] the
function f has the formf(z) = —Ziszl log(zi — &), z € D, and the proposition
applies to each convex compact subgetf int D.

5. Exponential bounds for empirical solution estimates

Finally, we show how our quantitative stability results can be employed to derive
(asymptotic) properties of solutions R{ix) when estimating the (unknown) probabi-
lity distribution © by empirical measures. Consider independiSt valued random
variableséy, &, ... , &y, ... onsome probability spac&?, .4, P) having common law

w. The empirical measurgy, is a discrete random measure putting mass at each

n
of the pointséy(w), ... , &n(w), i.e., un =n~1 _Zlagi (n € N), where$; is the dirac
1=

measure placing mass oneat RS,
The relevant term in our stability analysis is tlfe discrepancy evaluated at and

Mn,

n
ap(pn, 1) = sudin™* > " 1g(&) — E[1g]| | B € B},
where B is some collection of closed sets IR, 1g denotes the charar(]:teristic func-
tion of B and E denotes expectation. Thus, the empirical procgss 3~ 1g(&) —
i=1
E[1g]}gep indexed by sets and its uniform convergence properties are of interest. We
refer to [44] for a recent exposition of the modern empirical process theory. When stu-
dying empirical measures, measurability complications arise. Here, we have to take care
of possibly nonmeasurable suprema over uncountable sets of measurable functions . To
simplify matters, we call a collectiof8 of closed subsets oR® permissibleif there
exists a countable subcla#® such that each characteristic functiog With B € B
is the pointwise limit of a sequenadg,) with Bk belonging toBo. Clearly, if B is
permissible we havexz(in, 1) = ap,(un, 1), i.e., the further analysis is reduced to
countable classes and, in particulag(un, 1) is measurable.

An important family of classes of (Borel) measurable sets are the Vapnik-ervonenkis
(VC) classes. Recall thdt is called a/C clasfindexv € N if it does not shatter any
subset ofIR® of cardinality v + 1, but does shatter at least a subset of cardinaliti3
is said to shattefxu, . .. , X} if each of its ¥ subsets is of the fornB N {x1, . .. , Xk}
for some B € B. The role of VC classes for empirical processes indexed by sets is
enlightened by the following result which is proved in the recent paper [43].
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Lemma 5. Let B be a permissible VC class of index Then there exists a constant
K > 0 (not depending on) such that we have foralh € N and A > 0,

K [/Ki%n
Plap(pn, ) = 1) <

/n

Examples of permissible VC classes are the collection of ¢eHsRRS | z € RS} (with

v = s), the collections of all closed balls iR (with v = s+ 1), all half-spaces inR®
(with v = s+ 1) and all polyhedra with at modt faces. Note that the collection of
all closed convex subsets dR® is permissible, but too large for being a VC class (cf.
[42]).

We return to the setting of Section 2 and show next that the bound in Lemma 5 leads
in a straightforward way to exponential bounds for the deviation of the sets of local
solutions taP(un) andP(uw), respectively, if the collectioiHj(x) | j =1,...,d; X €
C} is contained in a permissible VC class.

) exp(—212n).

Proposition 5. Adopt the setting of Section 2 and assume the conditions (i)-(iv) of
Theorem 1 to be satisfied and that the collectidthj(x) | j = 1,...,d; x € C} is

contained in a permissible VC clags Then there exist constanté > 0, v € N such
that we have foralln € N and ¢ > O,

K [/Ki%n

P( sup dist(x,¥y(n)) >¢) < —— (
XE‘I‘V(E)Ln) A/

wherex = min{s, €2L 2}, L and § denote the constants and the bounded open set
arising in Theorem 1.

) exp(—222n),

Proof. Let ¢ > 0 andn € N, and letL,§ and V be as in Theorem 1. First we
notice that sufdist(x, Yv(n)) | X € Wy (un)} is a (possibly extended real-valued)
measurable mapping (Theorem 2.K in [33]). Next we define the dkaas the union of
B and of the collectionz+ RS | z € R%}. Then B is a determining class as well as
a permissible VC class. Lat be its (VC) index. Now we sefs := {w | ag(iun, 1) <

8} € A and As = Q \ As, and obtain the following inclusion from Theorem 1:

{w| sup dist(x,Wy(n) >e} € AsU{w|e< Lag(un, w3
XeWy (i4n)
C {o | ap(un, 1) = min{s, 2L ~2}}.

Setting A = min{8, £2L—2}, the result follows from Lemma 5.
O

An immediate consequence of the preceding bound is the following large deviation
result:

limsupn=tlogP( sup dist(x, Wy (w)) > &) < —2min{§?, e*L~4}.

n— 00 XeWy (in)

All of this applies to the particular casélj(x) = {z € R® | hj(x) > zj} with
hj: R™ - RS, j =1,...,d,whichis considered in Section 3 and for which various
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verifiable sufficient conditions for the metric regularity condition (iii) are established
there (e.g. Theorems 4, 5 and 6). In this case we chdbseB . For the special case

d = 1,51 = s in Section 4 we have = s and a slightly modified bound in Lemma

5 (cf. the discussion in [43] after Theorem 1). The corresponding conclusion takes the
form:

Proposition 6. Adopt the setting of Theorem 9. Then there exists a condtast O
such that it holds for allh € N and ¢ > 0,

P(dH (B (), Wy (1)) > &) < K(A2n)S Zex (—252n),

wherex = min{s, €L =2}, L and § denote the constants and the bounded open set
arising in Theorem 9.

6. Appendix

In this appendix, a few examples shall illustrate how nonsmoothness may enter the
model (2) of stochastic programming with chance constraints in a natural way and thus
requires more general tools for the characterization of stability than the classical ones
from differentiable or convex analysis. The impact of a nonsmooth distribution function
on the characterization of stability in (2) is easily seen from the following example:

Example 7.In (2), let m = s = 2, g(X1,X2) = X3, C = [0,2] x [0,2], A := |
(=identity matrix),p = 1/4 and . = uniform distribution over{0, 1] x [0, 1]. Then,
the solution set becomes the line segment joining the pdibtd, 1) and (1/4, 2).
According to Theorem 1, one has to check metric regularity wl.of the constraint
function F,(x1, X2) — p at all these points. Around1/4, 1) € intC, this function
equals mifix1X2, X1} — p, hence no criterion based on differentiablity applies.

Of course, in this example, one may compensate the lacking differentiability by a con-
vexity argument: the measuge is logarithmic concave andL, 1) is the kind of Slater

point required in Theorem 8. Also, one might object that the point discussed is located
on the boundary of the support of the underlying density, where non-differentiabilities
are expected to occur. A modification of the first example towards a uniform distribu-
tion over a nonconvex but still connected and even polyhedral set along with a (convex)
guadratic objective answers these objections:

Example 8.In (2), letm = s = 2, g(x1, X2) = (X1—3/4)%+ (x2—1/2)2, C = [0, 2] x

[0,2], A:=1, p=1/6 andu = uniformdistribution over[0, 1] x [0, 1])\ ([0, 1/2] x

[0, 1/2]). Then, the poink® = (3/4, 1/2) is feasible (the probability level is binding at
x9%), hence the solution set reduces exactlyx8}. Around x°, the constraint function
equalsF, (AX)—p = F,(X)—p = 4/3maxxa(x1—1/2), Xx1(x2—1/2), Xixo—1/4}—p,

and it is non-differentiable ax®, althoughx? lies in the interior of the support of the
underlying constant density (see left part of Fig. 3). Also, the measure is not quasi-
concave since the support af is non-convex. Consequently, neither differentiable nor
convex criteria apply in this case.
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Fig. 3. Left: lllustration of the distribution functionF,, for the uniform distribution on three quarters of
a square. The (nonsmooth) level lifig, (x) = p as well as the solution point (lifted to the graph Bf,) are
indicated. Right: Plot of the density defined in Example 9 and of the corresponding marginal densities

Starting from dimension two, there may occur unexpected relations between the
gualities of densities and corresponding distribution functions. For instance, the last
example has shown, that the distribution function may become non-differentiable even
at points in a neighborhood of which the underlying density is the nicest possible
(constant). The next example (communicated to us bei A. Wakolbinger) highlights
another aspect of this dimensionality phenomenon but now focusing on the Lipschitzian
property of the distribution function.

Example 9.Consider the following probability density in two variables:

X1 <0 0o 00
f(x1, X2) = cxi/ 4e—xxg x1 €[0,1] (c such that / / f(X1, X2)dx1dxe = 1)
ce X X1 >1 50—

This density is bounded and continuous. Yet, the distribution function is not locally
Lipschitzian, since the marginal densities are not locally bounded (see right part of Fig.
3).

Consequently, even in the class of random variables with bounded and continuous
density one may be led to renounce tools relying on Lipschitzian properties (like Clarke’s
subdifferential in its original definition) in the study of problem (2). Then, Theorem 4
still provides a tool for checking stability.

AcknowledgementsThis research is supported by the Deutsche Forschungsgemeinschatft.

The authors wish to thank Prof. R.T. Rockafellar (University of Washington, Seattle) and Prof. R.J.-B. Wets
(University of California, Davis) for beneficial discussions on the subject of this paper and for their hospitality
during the authors’ visits at Seattle and Davis. Further thanks are due to Darinka Dentcheva (Humboldt-
Universitat Berlin) and Rudiger Schultz (Konrad-Zuse-Zentrum Berlin) for helpful comments. We extend our
gratitude to the Associate Editor and the referees for their constructive suggestions which led to an improved
presentation of the material.



Metric regularity and quantitative stability in stochastic programs with probabilistic constraints 87

References

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.

20.
. Klatte, D. (1987): A Note on Quantitative Stability Results in Nonlinear Optimization. In: Lommatzsch,

22.
23.

24.

25.

26.
27.

28.
29.
30.

31.

Artstein, Z. (1994): Sensitivity with respect to the underlying information in stochastic programs. J. Com-
put. Appl. Math.56, 127-136

Attouch, H., Wets, R.J.-B. (1993): Quantitative stability of variational systems Il: A framework for
nonlinear conditioning. SIAM J. Opting, 359-381

Auslender, A. (1984): Stability in mathematical programming with nondifferentiable data. SIAM J.
Control Optim.22, 239-254

Bhattacharya, R.N., Ranga Rao, R. (1976): Normal approximation and asymptotic expansions. Wiley,
New York

Billingsley, P. (1968): Convergence of probability measures. Wiley, New York

Bonnans, J.F., loffe, A.D. (1995): Second-order sufficiency and quadratic growth for non isolated minima.
Math. Oper. Res20, 801-817

Borell, C. (1975): Convex set functions in d-space. Period. Math. Hirid.1-136

Borwein, J.M. (1986): Stability and regular points of inequality systems. J. Optimization Theory Appl.
48, 9-52

Brascamp , H.J., Lieb, E.H. (1976): On extensions of the Brunn-Minkowski and Prékopa-Leindler
theorems, including inequalities for log concave functions and with an application to the diffusion
equation. J. Funct. Anak2, 366—-389

Clarke, F.H. (1983): Optimization and nonsmooth analysis. Wiley, New York

Dupaova, J. (1986): Stability in Stochastic Programming — Probabilistic Constraints. In: Arkin, V.1.,
Shiraev, A., Wets, R.J.-B., eds., Stochastic Optimization, Lecture Notes in Control and Information
Sciences, \Vol. 81, pp. 314-325. Springer, Berlin

Growe, N. (1997): Estimated stochastic programs with chance constraints. Eur. J. Od€/1R&5-305
Henrion, R. (1997): Topological properties of the approximate subdifferential. J. Math. Anal 28fpl.
345-360

Henrion, R. (1997): The approximate subdifferential and parametric optimization. Habilitation thesis.
Humboldt University Berlin

Hoffman, A.J. (1952): On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur. Stand.
49, 263-265

loffe, A.D. (1984): Approximate subdifferentials and applications I. The finite-dimensional theory. Trans.
Am. Math. Soc281, 389-416

Jourani, A. (1994): Constraint qualifications and Lagrange multipliers in nondifferentiable programming
problems. J. Optimization Theory Apf@1, 533-548

Jourani, A., Thibault, L. (1990): Approximate subdifferential and metric regularity: The finite dimensional
case. Math. Program.7, 203-218

Kall, P. (1987): On approximations and stability in stochastic programming. In: Guddat, J., Jongen, H.Th.,
Kummer, B., Naicka, F., eds., Parametric optimization and related topics, pp.387-407. Akademie-
Verlag, Berlin

Kankova, V. (1994): A note on estimates in stochastic programming. J. Comput. Appl. 36a87—112

K., ed., Proceedings of the 19. Jahrestagung Mathematische Optimierung, Seminarbericht No. 90, pp. 77—
86. Humboldt University Berlin, Department of Mathematics

Klatte, D. (1994): On quantitative stability for non-isolated minima. Control Cyt23ri183-200

Klatte, D., Thiere, G. (1995): Error bounds for solutions of linear equations and inequalities. ZOR —
Math. Methods Oper. Redl1, 191-214

Kummer, B. (1987): Linearly and Nonlinearly Perturbed Optimization Problems in Finite Dimension. In:
Guddat, J., Jongen, H.Th., Kummer, B., N&kd, F., eds., Parametric Optimization and Related Topics,
pp. 249-267. Akademie-Verlag, Berlin

Lucchetti, R., Salinetti, G., Wets, R.J.-B. (1994): Uniform convergence of probability measures: Topolo-
gical criteria. J. Multivariate Anab1, 252-264

Marti, K. (1992): Stochastic optimization in structural design. Z. Angew. Math. M&;T452-T464
Mordukhovich, B.S. (1993): Complete characterization of openness, metric regularity and Lipschitzian
properties of multifunctions. Trans. Am. Math. S840, 1-35

Mordukhovich, B.S. (1994): Generalized differential calculus for nonsmooth and set-valued mappings.
J. Math. Anal. Appl.183 250-288

Penot, J.P. (1989): Metric regularity, openness and Lipschitzian behavior of multifunctions. Nonlinear
Anal., Theory, Methods Appll3, 629-643

Prékopa, A. (1971): Logarithmic concave measures with applications to stochastic programming. Acta
Sci. Math.32, 301-316

Prékopa, A. (1995): Stochastic Programming. Kluwer Academic Publishers, Dordrecht



88

R. Henrion, W. Rémisch: Stability in stochastic programs

32.
33.
34.
35.
36.
37.
. Romisch, W., Wakolbinger, A. (1987): Obtaining Convergence Rates for Approximations in Stochastic
39.

40.
41.

42.

43.
44.

45.
46.

47.

48.

Robinson, S.M. (1987): Local epi-continuity and local optimization. Math. Progg@n208-223

Rockafellar, R.T. (1976): Integral Functionals, Normal Integrands and Measurable Selections. In: Gossez,
G.P., et al., eds., Nonlinear Operators and the Calculus of Variations, Lecture Notes in Mathematics,
\ol. 543, pp. 157-207. Springer, New York

Rockafellar, R.T. (1985): Lipschitzian properties of multifunctions, Nonlinear Anal. Th. Math. 8ppl.
867-885

Romisch, W., Schultz, R. (1991): Distribution sensitivity in stochastic programming. Math. Prégyam.
197-226

Rémisch, W., Schultz, R. (1991): Distribution sensitivity for certain classes of chance-constrained models
with application to power dispatch. J. Optimization Theory Agil. 569-588

Romisch, W., Schultz, R. (1991): Stability analysis for stochastic programs. Ann. Ope30R2EL—-266

Programming. In: Guddat, J., Jongen, H.Th., Kummer, BZi8l@, F., eds., Parametric Optimization

and Related Topics, pp. 327-343. Akademie-Verlag, Berlin

Salinetti, G. (1983): Approximations for chance-constrained programming problems. Stoch@stics
157-179

Shapiro, A. (1991): Asymptotic analysis of stochastic programs. Ann. Oper3®d$9-186

Shapiro, A. (1992): Perturbation analysis of optimization problems in Banach spaces. Numer. Funct.
Anal. Optimization13, 97-116

Shorack, G.R., Wellner, J.A. (1986): Empirical Processes with Applications to Statistics. Wiley, New
York

Talagrand, M. (1994): Sharper bounds for Gaussian and empirical processes. Ann. EZ@&b6

van der Vaart, A.W., Wellner, J.A. (1996): Weak Convergence and Empirical Processes. Springer, New
York

Vogel, S. (1992): On stability in multiobjective programming — a stochastic approach. Math. Program.
56, 91-119

Wang, J. (1989): Continuity of feasible solution sets of probabilistic constrained programs. J. Optimization
Theory Appl.63, 79-89

Wets, R.J.-B. (1989): Stochastic Programming. In: Nemhauser, G.L., Rinnoy Kan, A.H.G., Todd, M.J.,
eds., Handbooks in Operations Research and Management Science, Vol. 1, Optimization, pp.573-629.
North-Holland

Wets, R.J.-B. (1996): Challenges in stochastic programming. Math. Progahi5—-135



