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GRADIENT FORMULAE FOR NONLINEAR PROBABILISTIC
CONSTRAINTS WITH GAUSSIAN AND GAUSSIAN-LIKE

DISTRIBUTIONS∗

WIM VAN ACKOOIJ† AND RENÉ HENRION‡

Abstract. Probabilistic constraints represent a major model of stochastic optimization. A
possible approach for solving probabilistically constrained optimization problems consists in applying
nonlinear programming methods. To do so, one has to provide sufficiently precise approximations
for values and gradients of probability functions. For linear probabilistic constraints under Gaussian
distribution this can be done successfully by analytically reducing these values and gradients to
values of Gaussian distribution functions and computing the latter, for instance, by Genz’s code.
For nonlinear models one may fall back on the spherical-radial decomposition of Gaussian random
vectors and apply, for instance, Deák’s sampling scheme for the uniform distribution on the sphere
in order to compute values of corresponding probability functions. The present paper demonstrates
how the same sampling scheme can be used to simultaneously compute gradients of these probability
functions. More precisely, we prove a formula representing these gradients in the Gaussian case as a
certain integral over the sphere again. The result is also extended to alternative distributions with
an emphasis on the multivariate Student’s (or t-) distribution.
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1. Introduction. A probabilistic constraint is an inequality of the type

(1.1) P (g(x, ξ) ≤ 0) ≥ p,

where g is a mapping defining a (random) inequality system and ξ is an s-dimensional
random vector defined on some probability space (Ω,A,P). The constraint (1.1) ex-
presses the fact that a decision vector x is feasible if and only if the random inequality
system g(x, ξ) ≤ 0 is satisfied with probability at least p ∈ [0, 1]. Probabilistic con-
straints are important for engineering problems involving uncertain data. Applications
can be found in water management, telecommunications, electricity network expan-
sion, mineral blending, chemical engineering, etc. For a comprehensive overview of the
theory, numerics, and applications of probabilistic constraints, we refer the reader to,
e.g., [28, 29, 31]. Initiated by Charnes and Cooper [6] and pioneered by Prékopa (e.g.,
by his celebrated log-concavity theorem [27]), the analysis of probabilistic constraints
has attracted much attention in recent years with a focus on algorithmic approaches.
Without providing an exhaustive list here, we refer the reader to models such as
robust optimization [2], a penalty approach [12], p-efficient points [9, 10], scenario ap-
proximation [5], sample average approximation [25], and convex approximation [23].
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The present paper is motivated by the traditional nonlinear programming ap-
proach to the solution of probabilistically constrained optimization problems: from
a formal viewpoint, (1.1) is a conventional inequality constraint ϕ(x) ≥ p with
ϕ(x) := P (g(x, ξ) ≤ 0). On the other hand, a major difficulty arises from the fact
that, typically, no analytical expression is available for ϕ. All one can hope for, in
general, are tools for numerically approximating ϕ. Beyond crude Monte Carlo esti-
mation of the probability defining ϕ, there exist many more efficient approaches based,
for instance, on graph-theoretical arguments [4], variance reduction [33], quasi–Monte
Carlo (QMC) techniques, or sparse grid numerical integration [14]. It seems, however,
that such approaches are most successful when exploiting the special model structure
(i.e., the mapping g and the distribution of ξ). For instance, in the special case of
separable constraints g(x, ξ) = ξ − x, and of ξ having a regular Gaussian distribu-
tion (such that ϕ reduces to a multivariate Gaussian distribution function), one may
employ an efficient code by Genz [15, 16] which is based on a numerical integration
scheme combining separation and reordering of variables with randomized QMC. A
similar technique has been proposed for the multivariate Student’s (or t-) distribution
[16]. The numerical evaluation of other multivariate distribution functions such as
Gamma or exponential distribution has been discussed, e.g., in [24, 32].

For an efficient solution of probabilistically constrained problems via numerical
nonlinear optimization, it is evidently not sufficient to calculate just functional values
of ϕ; one also has to have access to gradients of ϕ. The need to calculate gradients of
probability functions has been recognized for a long time and has given rise to many
papers on representing such gradients (e.g., [13, 19, 21, 26, 34]). In the separable case
with Gaussian distribution mentioned above, it is well known [28, p. 203] that partial
derivatives of ϕ can be reduced analytically to function values ϕ̃ of another Gaussian
distribution with modified parameters. This allows one to employ the same efficient
method (e.g., by Genz) available for values of Gaussian distribution functions in order
to compute gradients simultaneously and to control the error for calculating ∇ϕ and
ϕ simultaneously [17]. Interestingly, this special circumstance can be extended to
more general models: it has been demonstrated in [18, 37, 38] that for general linear
probabilistic constraints ϕ(x) := P (T (x)ξ ≤ a(x)) ≥ p under Gaussian distribution
and with possibly singular matrix T (x), the computation not only of ϕ (which is
evident) but also of ∇ϕ can be analytically reduced to the computation of Gaussian
distribution functions. Combining appropriately these ideas with Genz’s code and
an SQP solver, it is possible to solve corresponding optimization problems for Gaus-
sian random vectors in dimension of up to a few hundred (where the dimension of
the decision vector x is less influential). Applications to various problems of power
management can be found, e.g., in [1, 18, 37, 38, 39].

When considering models which are nonlinear in ξ, a reduction to distribution
functions is no longer possible. In this case, another approach, the so-called spherical-
radial decomposition of Gaussian random vectors (see, e.g., [16]) appears to be promis-
ing for calculating both function values and gradients of ϕ. More precisely, let ξ be
an m-dimensional random vector normally distributed according to ξ ∼ N (0, R) for
some correlation matrix R. Then, ξ = ηLζ, where R = LLT is the Cholesky decom-
position of R, η has a chi-distribution with m degrees of freedom, and ζ has a uniform
distribution over the Euclidean unit sphere

S
m−1 :=

{
z ∈ R

m

∣∣∣∣∣
m∑
i=1

z2i = 1

}
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of Rm. As a consequence, for any Lebesgue measurable set M ⊆ Rm, its probability
may be represented as

(1.2) P (ξ ∈ M) =

∫
v∈Sm−1

μη ({r ≥ 0 : rLv ∩M 	= ∅})dμζ ,

where μη and μζ are the laws of η and ζ, respectively. More generally, one may
approximate the integral

(1.3)

∫
v∈Sm−1

h(v)dμζ

for any Lebesgue measurable function h : Sm−1 → R. For the special case h(v) :=
μη ({r ≥ 0 : rLv ∩M 	= ∅}), we obtain the probability (1.2), which can be numerically
computed by combining efficient sampling schemes on Sm−1 with fast computation
of the one-dimensional sets in braces for each fixed sampling point v ∈ Sm−1. In this
paper, we will show how—with another function h(v)—the same (efficient) sampling
scheme of the unit sphere can be employed to simultaneously compute values and
derivatives of the probability (1.2) with respect to an exterior parameter playing the
role of a decision vector x in a probabilistic constraint.

To illustrate the potential advantage of spherical-radial decomposition (1.2) over
a crude Monte Carlo approximation of P (ξ ∈ M), assume that there exists a mapping
ρ such that

(1.4) {r ≥ 0 : rLv ∩M 	= ∅} = [0, ρ(v)] ∀v ∈ S
m−1.

Then, by (1.2), we may write the desired probability as an expected value of two
different random variables:

p := P (ξ ∈ M) = Eξ(IM (ξ)) = Eζ(μη([0, ρ(ζ)])),

where IA(z) = 1 if z ∈ A and IA(z) = 0 otherwise. This leaves us with two
possibilities for approximating p: first, one may empirically approximate IM (ξ) by
sampling ξ (crude Monte Carlo), and, second, one may empirically approximate
μη([0, ρ(ζ)]) by sampling ζ on the sphere. Now one can show (see the appendix)
that

(1.5) Varζ (μη([0, ρ(ζ)])) ≤ Varξ (IM (ξ)),

indicating that sampling by means of the spherical-radial decomposition should lead
to a possibly strong reduction of variance compared to crude Monte Carlo sampling.
For an early proposal of sampling the uniform distribution on the sphere, we refer the
reader to Deák [7, 8]. Recently, much progress has been made toward optimal QMC
sampling on the unit sphere, e.g., [3] (or on a Cartesian product of unit spheres [20]),
which gives hope for even more efficient procedures. In [3], for instance, certain N -
point configurations on the sphere are identified which belong to the class of so-called
QMC designs and as such allow one to derive powerful estimates of the approximation
error in terms of the sample size. Based on such efficient sampling schemes for the
unit sphere and applying them simultaneously to values and gradients of probability
functions, the results of this paper may serve as a basis for a numerical treatment of
nonlinear convex probabilistic constraints with Gaussian and alternative distributions
via nonlinear optimization.
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In this paper we will consider probability functions ϕ(x) := P (g(x, ξ) ≤ 0), where
ξ has a multivariate Gaussian distribution and g : Rn × Rm → R is a continuously
differentiable function convex in its second argument. As mentioned above, the pri-
mary goal of this paper is to provide a formula for ∇ϕ which allows one to make
use of sampling schemes for the unit sphere in order to compute ϕ and ∇ϕ simul-
taneously. One may be tempted to simply differentiate with respect to x under the
integral representing ϕ in terms of the spherical-radial decomposition (1.2) of ξ. A
corresponding formula can be found, without justification, however, in [11, section
9.2]. A proof of this formula can be found in [30] under the implicit assumption that
the set {ξ | g(x̄, ξ) ≤ 0} is bounded at the point x̄ of interest. Boundedness is also
the key assumption for many general gradient formulae of probability functions (e.g.,
[26, 34, 35, 36]). On the other hand, boundedness is a very restrictive assumption in
probabilistic programming. Even in the simple case of mappings g(x, ξ) := ξ−x ≤ 0,
corresponding to the evaluation of multivariate distribution functions, it is violated.
In order to illustrate the potential failure of differentiability of probability functions in
the absence of boundedness, we start the paper with a short section presenting a coun-
terexample suited to the framework considered here. In this example, all input data
are nice (ξ has a regular Gaussian distribution, g is smooth and additionally convex
in its second argument, and the inequality defined by g satisfies the Slater condition
or, equivalently, the linear independence constraint qualification), yet the probabil-
ity function fails to be differentiable due to the absence of compactness. In order to
guarantee differentiability without boundedness, one usually has to provide additional
arguments allowing for an application of Lebesgue’s dominated convergence theorem.
These frequently nonevident arguments are typically derived from the specific struc-
ture of a probability function (distribution of ξ, structure of the mapping g). Not
surprisingly, finding these arguments in the context of our paper requires major effort.
As a result, we present not just a formal technical but a verifiable condition ensuring
differentiability also in the unbounded case. The validity of this condition is checked
for several significant examples. In particular, a generalization of the obtained result
to non-Gaussian distributions (such as χ2 or multivariate Student’s) is provided by
exploiting the fact that certain important multivariate distributions can be led back
to the Gaussian one by a nonlinear transformation not affecting the original structure
imposed on our data.

2. Potential nondifferentiability of probability functions with nice data
in the absence of boundedness. We start this section by presenting a minimum
requirement on the problem data in the spirit of this paper, ensuring at least continuity
of the resulting probability function.

Proposition 2.1. Let g : Rn × Rm → R be continuous and convex in the
second argument. Let ξ ∼ N (0, R) for some correlation matrix R. Define ϕ (x) :=
P (g (x, ξ) ≤ 0). Let x̄ ∈ Rn be arbitrary. If g (x̄, 0) < 0, then ϕ is continuous in x̄.

Proof. Due to the existence of a Slater point, the set {z ∈ Rm|g (x̄, z) = 0} has
Lebesgue measure zero as the boundary of the convex set {z ∈ Rm|g (x̄, z) ≤ 0} . Since
ξ has a density, it follows that P (g (x̄, ξ) = 0) = 0. Along with the continuity of g,
this entails the continuity of ϕ.

In order to derive the differentiability of ϕ, it is not sufficient to add continuous
differentiability of g to the assumptions of Proposition 2.1, as is shown by the following
example. It follows that differentiability for ϕ requires the additional assumption of
compactness of the set {z ∈ Rm|g (x̄, z) ≤ 0} or, in case one wants to admit noncom-
pact sets, a kind of growth condition for the function ‖∇xg (x, ·)‖ in a neighborhood



1868 WIM VAN ACKOOIJ AND RENÉ HENRION

of x̄, as will be presented in this paper.
Proposition 2.2. Let g : R2 × R2 → R be defined by

g (x1, x2, z1, z2) := x2
1e

h(z1) + x2z2 − 1, where h(t) := −1− 2 log(1− Φ(t))

and Φ is the cumulative distribution function of the one-dimensional standard Gaus-
sian distribution. Let ξ ∼ N (0, I2) and x̄ = (0, 1). Then, the following hold true:

1. g is continuously differentiable.
2. g is convex in the second argument.
3. g (x̄, 0) = g (0, 1, 0, 0) < 0.
4. ϕ is not differentiable at x̄.

Proof. Statement 1 is evident from Φ being smooth and satisfying Φ < 1. The
Slater condition, i.e., statement 3, is evident as well. As for statement 2, note first that
1 − Φ is a log-concave function [28, Theorem 4.2.4] which implies that − log(1 − Φ)
and, hence, h are convex functions. As a composition with the exponential as an
outer function—which is convex and increasing—eh is convex too. It follows that g is
convex in the second argument.

In order to show nondifferentiability of ϕ at x̄, observe first that the partial
function ϕ (·, 1) attains its global maximum at 0. Indeed, the implication

g (t, 1, z1, z2) ≤ 0 =⇒ g (0, 1, z1, z2) ≤ 0,

which is valid for all t, z1, z2, yields that

ϕ (t, 1) = P (g (t, 1, ξ1, ξ2) ≤ 0) ≤ P (g (0, 1, ξ1, ξ2) ≤ 0) = ϕ (0, 1)

for all t. Now, if ϕ was differentiable at x̄, then ϕ′ (·, 1) = 0. We will show that there
exists some ε > 0 with

(2.1) ϕ (0, 1)− ϕ (t, 1) ≥ εt ∀t ∈ (0, 1) ,

which clearly contradicts ϕ′ (·, 1) = 0 and thus differentiability of ϕ. By definition of
ϕ and g and by the assumption of ξ ∼ N (0, I2) (implying ξ1, ξ2 ∼ N (0, 1)), we have
that

ϕ (0, 1)− ϕ (t, 1) = P (ξ2 ≤ 1)− P

(
ξ2 ≤ 1− t2eh(ξ1)

)

= Φ(1)− 1

2π

∫ ∞

−∞

(∫ 1−t2eh(z1)

−∞
e−(z2

1+z2
2)/2dz2

)
dz1

= Φ(1)− 1√
2π

∫ ∞

−∞
e−z2

1/2
1√
2π

(∫ 1−t2eh(z1)

−∞
e−z2

2/2dz2

)
dz1

=
1√
2π

∫ ∞

−∞
e−z2

1/2

(
Φ(1)− 1√

2π

(∫ 1−t2eh(z1)

−∞
e−z2

2/2dz2

))
dz1

=
1√
2π

∫ ∞

−∞
e−z2

1/2
(
Φ(1)− Φ

(
1− t2eh(z1)

))
dz1.

Here we used that e−u2/2/
√
2π is the density of both ξ1 and ξ2, and, hence,

(2.2)
1√
2π

∫ ∞

−∞
e−u2/2du = 1, Φ(τ) =

1√
2π

∫ τ

−∞
e−u2/2du.
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Now fix an arbitrary t ∈ (0, 1). Then the quantile Φ−1 (1− t) is well defined, and since
h is an increasing function (because Φ is so), we may infer that for all z1 ≥ Φ−1 (1− t)
the following holds true:

h(z1) ≥ h
(
Φ−1 (1− t)

)
= −1− 2 log(1 − Φ(Φ−1 (1− t))) = −1− 2 log t.

From here we derive that t2eh(z1) ≥ e−1 for all z1 ≥ Φ−1 (1− t), which leads, along
with Φ being increasing, to

Φ(1)− Φ
(
1− t2eh(z1)

)
≥ Φ(1)− Φ

(
1− e−1

)
=: ε > 0 ∀z1 ≥ Φ−1 (1− t) .

Given that Φ(1) ≥ Φ(1− t2eh(z1)) for any z1, we arrive at the following estimation:

ϕ (0, 1)− ϕ (t, 1) =
1√
2π

∫ ∞

−∞
e−z2

1/2
(
Φ(1)− Φ

(
1− t2eh(z1)

))
dz1

≥ 1√
2π

∫ ∞

Φ−1(1−t)

e−z2
1/2

(
Φ(1)− Φ

(
1− t2eh(z1)

))
dz1

≥ ε
1√
2π

∫ ∞

Φ−1(1−t)

e−z2
1/2dz1

= ε

(
1− 1√

2π

∫ Φ−1(1−t)

−∞
e−z2

1/2dz1

)

= ε
(
1− Φ

(
Φ−1 (1− t)

))
= εt.

Since t ∈ (0, 1) was arbitrary, we have proved (2.1) and thus the nondifferentiability
of ϕ at x̄.

Figure 1 illustrates the graph of the nondifferentiable probability function ϕ con-
structed in Proposition 2.2.

Fig. 1. Graph of a nondifferentiable probability function.

3. A gradient formula for parameter-dependent Gaussian probabilities
in the convex case. In the following, we assume that g : Rn ×Rm → R is a contin-
uously differentiable function which is convex with respect to the second argument.
We define

(3.1) ϕ (x) := P (g(x, ξ) ≤ 0) ,
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where ξ ∼ N (0, R).
Remark 3.1. We recall that convex sets are Lebesgue measurable so that the

probabilities in (3.1) are well defined by virtue of ξ having a density.
Remark 3.2. If ξ has a general nondegenerate Gaussian distribution, i.e., ξ ∼

N (μ,Σ) for some mean vector μ ∈ R
m and some positive definite covariance matrix

Σ of order (m,m), then one may define ξ̃ := D (ξ − μ), whereD is the diagonal matrix

with elements Σ
−1/2
ii . Then, clearly, ξ̃ ∼ N (0, R), where R is the correlation matrix

associated with Σ. Defining g̃ : Rn × R
m → R as

g̃ (x, z) := g
(
x,D−1z + μ

)
,

(3.1) can be rewritten as

ϕ (x) = P

(
g̃(x, ξ̃) ≤ 0

)
,

where g̃ has the same properties as g (it is continuously differentiable and convex with
respect to the second argument). Therefore, in (3.1), we may indeed assume without
loss of generality that ξ ∼ N (0, R).

By (1.2) and (3.1), we have, for all x ∈ Rn, that

(3.2) ϕ (x) =

∫
v∈Sm−1

μη ({r ≥ 0 : g(x, rLv) ≤ 0})dμζ =

∫
v∈Sm−1

e(x, v)dμζ

for

(3.3) e(x, v) := μη ({r ≥ 0 : g(x, rLv) ≤ 0}) ∀x ∈ R
n ∀v ∈ S

m−1.

According to the possibility of evaluating (1.3) by Deàk’s method, for instance, we
can obtain a value ϕ (x) for each fixed x. We now address the computation of ∇ϕ. It
is convenient to introduce the following two mappings F, I : Rn ⇒ Sm−1 of directions
with f inite and infinite intersection length:

F (x) :=
{
v ∈ S

m−1|∃r > 0 : g (x, rLv) = 0
}
,

I(x) :=
{
v ∈ S

m−1|∀r > 0 : g (x, rLv) 	= 0
}
.

The following lemma collects some elementary properties that will be needed later.
Lemma 3.1. Let x ∈ R

n be such that g(x, 0) < 0. Then the following hold:
1. v ∈ I(x) if and only if g (x, rLv) < 0 for all r > 0.
2. F (x) ∪ I(x) = Sm−1.
3. For v ∈ F (x), let r > 0 be such that g (x, rLv) = 0. Then,

〈∇zg (x, rLv) , Lv〉 ≥ −g (x, 0)

r
.

4. If v ∈ I(x), then e(x, v) = 1, where e is defined in (3.3).
Proof. Statement 1 follows from the continuity of g, and statement 2 is evident

from the definitions. The convexity of g with respect to the second argument yields

−1

2
r 〈∇zg (x, rLv) , Lv〉 =

〈
∇zg (x, rLv) ,

1

2
rLv − rLv

〉
≤ g

(
x,

1

2
rLv

)
− g (x, rLv)

= g

(
x,

1

2
rLv

)
≤ 1

2
g (x, 0) +

1

2
g (x, rLv) =

1

2
g (x, 0) .
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This proves statement 3. If v ∈ I(x), then e(x, v) = μη (R+) = 1 because R+ is the
support of the chi-distribution. Therefore, statement 4 holds true.

Next, we provide a local representation of the factor r as a function of x and v.
Lemma 3.2. Let (x, v) be such that g(x, 0) < 0 and v ∈ F (x). Then, there exist

neighborhoods U of x and V of v as well as a continuously differentiable function
ρx,v : U × V → R+ with the following properties:

1. For all (x′, v′, r′) ∈ U × V × R+, the equivalence g(x′, r′Lv′) = 0 ⇔ r′ =
ρx,v(x′, v′) holds true.

2. For all (x′, v′) ∈ U × V one has the gradient formula

∇xρ
x,v (x′, v′) = − 1

〈∇zg(x′, ρx,v(x′, v′)Lv′), Lv′〉∇xg(x
′, ρx,v(x′, v′)Lv′).

Proof. By definition of F (x) we have that g (x, rLv) = 0 for some r > 0. Accord-
ing to statement 3 in Lemma 3.1, we have that

〈∇zg (x, rLv) , Lv〉 ≥ −g (x, 0)

r
> 0.

This allows us to apply the implicit function theorem to the equation g (x, rLv) = 0
and to derive the existence of neighborhoods U of x, V of v, and W of r along with
a continuously differentiable function ρx,v : U × V → W such that the equivalence

(3.4) g(x′, r′Lv′) = 0, (x′, v′, r′) ∈ U ×V ×W ⇔ r′ = ρx,v(x′, v′), (x′, v′) ∈ U ×V

holds true. By continuity of ρx,v, we may shrink the neighborhoods U and V such
that ρx,v maps into R+, and we may further shrink U such that g(x′, 0) < 0 for
all x′ ∈ U . Now, assume that g(x′, r∗Lv′) = 0 holds true for some (x′, v′, r∗) ∈
U×V ×(R+\W ). Then, by “⇐” in (3.4), g(x′, ρx,v(x′, v′)Lv′) = 0, where ρx,v(x′, v′) ∈
W . Consequently, r∗ 	= ρx,v(x′, v′). On the other hand, r∗, ρx,v(x′, v′) ∈ R+. This
contradicts the convexity of g with respect to the second argument and the fact
that g(x′, 0) < 0. It follows that in (3.4) W may be replaced by R+, which proves
statement 1. In particular, we have that g(x′, ρx,v(x′, v′)Lv′) = 0 for all (x′, v′) ∈
U × V , which after differentiation gives the formula in statement 2.

The preceding lemma allows us to observe the following.
Lemma 3.3. Let x ∈ Rn be such that g(x, 0) < 0. Then the following hold:
1. If v ∈ F (x), then there exist neighborhoods U of x and V of v such that

e(x′, v′) = Fη(ρ
x,v (x′, v′)) for all (x′, v′) ∈ U × V , where e is defined in

(3.3), Fη is the cumulative distribution function of the chi-distribution with
m degrees of freedom, and ρx,v refers to the resolving function introduced in
Lemma 3.2.

2. If v ∈ I(x), then ρxk,vk (xk, vk) → ∞ for any sequence (xk, vk) → (x, v) with
vk ∈ F (xk).

Proof. By Lemma 3.2(1), we have for all (x′, v′) that g(x′, ρx,v(x′, v′)Lv′) = 0
and g(x′, r′Lv′) 	= 0 for all r′ ∈ R+ with r′ 	= ρx,v(x′, v′). Now, (3.3) implies that

e(x′, v′) = μη ([0, ρ
x,v (x′, v′)]) = Fη(ρ

x,v (x′, v′))− Fη(0) ∀ (x′, v′) ∈ U × V.

Now, statement 1 of Lemma 3.3 follows upon observing that the chi-density is zero
for negative arguments, whence Fη(0) = 0. Next, let v ∈ I(x) and (xk, vk) → (x, v)
with vk ∈ F (xk). If ρxk,vk (xk, vk) does not tend to ∞, then there exists a con-
verging subsequence ρxkl

,vkl (xkl
, vkl

) → r for some r ≥ 0. Since g(x, 0) < 0, we
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have that g (xkl
, 0) < 0 for l sufficiently large. This allows us to apply Lemma

3.2 to the points (xkl
, vkl

), and so we infer from statement 1 of Lemma 3.3 that
g (xkl

, ρxkl
,vkl (xkl

, vkl
)Lvkl

) = 0 for all l sufficiently large. By continuity of g we
derive the contradiction g (x, rLv) = 0 with our assumption v ∈ I(x). This proves
statement 2.

Corollary 3.4. The function e : Rn × Sm−1 → R defined in (3.3) is continuous
at any (x, v) ∈ Rn × Sm−1 such that g(x, 0) < 0.

Proof. Let (x, v) ∈ Rn × Sm−1 with g(x, 0) < 0 be arbitrarily given. Referring
to the sets F (x) and I(x) characterized in Lemma 3.1, there are two possibilities:
if v ∈ F (x), then the function ρx,v is defined on a neighborhood of (x, v) and is
continuous there by Lemma 3.2. Moreover, in this case, e has the representation
given in statement 1 of Lemma 3.3. But with the cumulative distribution function Fη

of the chi-distribution being continuous, e is continuous, too, at (x, v) as a composition
of continuous mappings. If, in contrast, v /∈ F (x), then v ∈ I(x) by statement 2 of
Lemma 3.1. From statement 4 of the same lemma, we know that e(x, v) = 1. Consider
an arbitrary sequence (xk, vk) → (x, v) with vk ∈ S

m−1. Since g(x, 0) < 0, we have
that g(xk, 0) < 0 for k sufficiently large. Assume that e (xk, vk) → 1 does not hold.
Then, there are a subsequence (xkl

, vkl
) and some ε > 0 such that for all l

(3.5) |e (xkl
, vkl

)− 1| ≥ ε.

By Lemma 3.1(4), vkl
/∈ I(xkl

), whence vkl
∈ F (xkl

) for all l due to vkl
∈ Sm−1

and Lemma 3.1(2). Then ρxkl
,vkl (xkl

, vkl
) → ∞ by Lemma 3.3(2). Since Fη is the

distribution function of a random variable, it satisfies the relation limt→∞ Fη(t) = 1.
Consequently, we may invoke statement 1 of Lemma 3.3 to verify that

lim
l→∞

e (xkl
, vkl

) = lim
l→∞

Fη(ρ
xkl

,vkl (xkl
, vkl

)) = 1.

This contradicts (3.5), and, hence, again by Lemma 3.1(4),

lim
k→∞

e (xk, vk) = 1 = e(x, v).

This proves continuity of e at (x, v).
Corollary 3.5. For any x ∈ Rn with g(x, 0) < 0 and v ∈ F (x), the partial

derivative with respect to x of the function e : Rn × Sm−1 → R defined in (3.3) exists
and is given by

∇xe(x, v) = − χ (ρx,v (x, v))

〈∇zg (x, ρx,v (x, v)Lv) , Lv〉
∇xg (x, ρ

x,v (x, v)Lv) ,

where χ is the density of the chi-distribution with m degrees of freedom and ρx,v refers
to the function introduced in Lemma 3.2.

Proof. By statement 1 of Lemma 3.3 we have that e(x′, v′) = Fη(ρ
x,v (x′, v′)) for

all x′ in a neighborhood of x and all v′ in a neighborhood of v. Differentiation with
respect to x yields

(3.6) ∇xe(x
′, v′) = χ (ρx,v (x′, v′))∇xρ

x,v (x′, v′)

due to F ′
η(τ) = χ(τ) for τ > 0. In particular, ∇xe(x, v) = χ (ρx,v (x, v))∇xρ

x,v (x, v).
Now the assertion follows from Lemma 3.2(2).
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Next we prove a relation which is the key to some desired continuity properties.
Definition 3.6. Let g : Rn × Rm → R be a differentiable function. We say that

g satisfies the polynomial growth condition at x if there exist constants C,κ > 0 and
a neighborhood U(x) such that

‖∇xg (x
′, z)‖ ≤ ‖z‖κ ∀x′ ∈ U(x), ∀z : ‖z‖ ≥ C.

Lemma 3.7. Let x be such that g (x, 0) < 0 and such that g satisfies the polynomial
growth condition at x. Consider any sequence (xk, vk) → (x, v) for some v ∈ I(x)
such that vk ∈ F (xk). Then,

lim
k→∞

∇xe(xk, vk) = 0.

Proof. First observe that ρxk,vk (xk, vk) → ∞ by Lemma 3.3(2). Referring to the
neighborhood U(x) from Definition 3.6, we verify that for k sufficiently large
(3.7)
‖∇xg (xk, ρ

xk,vk (xk, vk)Lvk)‖ ≤ [ρxk,vk (xk, vk)]
κ ‖Lvk‖κ ≤ ‖L‖κ [ρxk,vk (xk, vk)]

κ

(recall that ‖vk‖ = 1 due to vk ∈ F (xk)). Moreover, by continuity of g, there
exists some δ1 > 0 such that g (xk, 0) ≤ −δ1 < 0 for k sufficiently large. Since
g (xk, ρ

xk,vk (xk, vk)Lvk) = 0 (see Lemma 3.2(1)), Lemma 3.1(3) provides that

〈∇zg (xk, ρ
xk,vk (xk, vk)Lvk) , Lvk〉 ≥ − g (xk, 0)

ρxk,vk (xk, vk)
.

Therefore,

(3.8) 〈∇zg (xk, ρ
xk,vk (xk, vk)Lvk) , Lvk〉 ≥ δ1 [ρ

xk,vk (xk, vk)]
−1

> 0.

Using the definition χ (y) = δ2y
m−1e−y2/2 of the density of the chi-distribution withm

degrees of freedom (where δ2 > 0 is an appropriate factor), we may combine Corollary
3.5 with (3.7) and (3.8) in order to derive that

‖∇xe(xk, vk)‖ =

∥∥∥∥ χ (ρxk,vk (xk, vk))

〈∇zg (xk, ρxk,vk (xk, vk)Lvk) , Lvk〉
∇xg (xk, ρ

xk,vk (xk, vk)Lvk)

∥∥∥∥
(3.9)

≤ δ−1
1 ρxk,vk (xk, vk) · δ2 [ρxk,vk (xk, vk)]

m−1
e−[ρxk,vk (xk,vk)]

2/2 · ‖L‖κ [ρxk,vk (xk, vk)]
κ

= δ−1
1 δ2 ‖L‖κ [ρxk,vk (xk, vk)]

κ+m
e−[ρxk,vk (xk,vk)]

2/2 →k 0,

where the last limit follows from ρxk,vk (xk, vk) → ∞ and the fact that yαe−y2/2 → 0
for y → ∞, where α > 0 is an arbitrary constant. This proves our assertion.

Remark 3.3. One may observe from the proof of Lemma 3.7 that a weaker growth
condition than that in Definition 3.6 (involving an exponential term) would suffice for
proving the same result. One could, for instance, use the following exponential growth
condition.

Let g : Rn × Rm → R be a differentiable function. We say that g satisfies the
exponential growth condition at x if there exist constants δ0, C > 0 and a neighborhood
U(x) such that

‖∇xg (x
′, z)‖ ≤ δ0 exp(‖z‖) ∀x′ ∈ U(x), ∀z : ‖z‖ ≥ C,
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and we observe that the key estimate (3.9) of Lemma 3.7 becomes

‖∇xe(xk, vk)‖ ≤ δ0δ
−1
1 δ2 [ρ

xk,vk (xk, vk)]
m e−[ρxk,vk (xk,vk)]

2/2e‖L‖ρxk,vk (xk,vk).

The same conclusion then easily follows.
In this paper, we do not put the emphasis on the weakest possible form of the

growth condition but rather on its simplicity. It should be noted, however, that each of
the following results requiring the polynomial growth condition holds upon requiring
the above exponential growth condition instead.

Corollary 3.8. Let x be such that g (x, 0) < 0 and such that g satisfies the
polynomial growth condition at x. Then, for any v ∈ Sm−1, the partial derivative with
respect to x of the function e exists at (x, v) and is given by

∇xe(x, v) =

{
− χ(ρx,v(x,v))

〈∇zg(x,ρx,v(x,v)Lv),Lv〉∇xg (x, ρ
x,v (x, v)Lv) if v ∈ F (x),

0 else,

where χ is the density of the chi-distribution with m degrees of freedom and ρx,v refers
to the function introduced in Lemma 3.2.

Proof. Thanks to Corollary 3.5 and Lemma 3.1(2), it is sufficient to show that
∇xe(x, v) = 0 for v ∈ I(x). We shall show that, for any i ∈ {1, . . . ,m},

(3.10) lim
t↑0

e(x+ tui, v)− e(x, v)

t
= 0,

where ui is the ith canonical unit vector in Rn. In exactly the same way one can show
that the corresponding limit for t ↓ 0 equals zero. Altogether, this will prove that
∇xe(x, v) = 0. Assume that (3.10) is wrong. Since e(x, v) = 1 (by Lemma 3.1(4))
and e(x + tui, v) ≤ 1 for all t (by definition of e as a probability in (3.3)), it follows
that the quotient in (3.10) is always nonpositive, and, thus, negation of (3.10) implies
the existence of some ε > 0 and of a sequence tk ↑ 0 such that

(3.11)
e(x+ tkui, v)− e(x, v)

tk
≥ ε.

In particular, v ∈ F (x + tkui) for all k because otherwise v ∈ I(x + tkui) and so
e(x + tkui, v) = 1 (again by Lemma 3.1(4)), thus contradicting (3.11). We may also
assume that g(x + tkui, 0) < 0 for all k. Now, fix an arbitrary k and define (recall
that tk < 0)

α := inf {τ ∈ [tk, 0] |e(x+ τui, v) = 1} .

Due to e(x, v) = 1 we have that α ≤ 0. On the other hand, e(x+ tkui, v) < 1 and the
continuity of e (see Corollary 3.4) provide that α > tk. We infer that e(x+τui, v) < 1
for all τ ∈ [tk, α) and, hence,

(3.12) v ∈ F (x+ τui) ∀τ ∈ [tk, α)

(once more by statements 2 and 4 of Lemma 3.1). But then the function

β(τ) := e(x+ τui, v)

is differentiable for all τ ∈ (tk, α) by virtue of Corollary 3.5, and its derivative is given
by

β′(τ) = 〈∇xe(x+ τui, v), ui〉 .
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Therefore, the mean value theorem guarantees the existence of some τ∗k ∈ (tk, α) such
that

β′(τ∗k ) =
β(α)− β(tk)

α− tk

or, equivalently,

〈∇xe(x+ τ∗kui, v), ui〉 =
e(x+ αui, v)− e(x+ tkui, v)

α− tk
.

By continuity of e and by definition of α, we have that e(x + αui, v) = 1 = e(x, v),
whence, by tk < α ≤ 0,

〈∇xe(x+ τ∗kui, v), ui〉 =
e(x, v)− e(x+ tkui, v)

α− tk
≥ e(x, v) − e(x+ tkui, v)

−tk
≥ ε,

where the last relation follows from (3.11). Now, since k was arbitrarily fixed, we
have constructed a sequence τ∗k such that tk < τ∗k ≤ 0 such that

(3.13) 〈∇xe(x+ τ∗kui, v), ui〉 ≥ ε ∀k.

Since tk ↑ 0, we also have that τ∗k ↑ 0. Moreover, v ∈ F (x + τ∗kui) by (3.12). Due
to our assumption that g satisfies the polynomial growth condition at x and due to
v ∈ I(x), Lemma 3.7 yields that limk→∞ ∇xe(xk, v) = 0, which contradicts (3.13).
This proves Corollary 3.8.

Corollary 3.9. Let x be such that g (x, 0) < 0 and such that g satisfies the
polynomial growth condition at x. Then, for any v ∈ S

m−1, the partial derivative ∇xe
is continuous at (x, v).

Proof. Let x ∈ Rn with g(x, 0) < 0 and v ∈ Sm−1 be arbitrarily given. Also let
(xk, vk) → (x, v) be an arbitrary sequence with vk ∈ S

m−1. If v ∈ F (x), then relation
(3.6) holds true locally around (x, v). In particular, for k large enough,

∇xe(xk, vk) = χ (ρx,v (xk, vk))∇xρ
x,v (xk, vk) → χ (ρx,v (x, v))∇xρ

x,v (x, v)

= ∇xe(x, v),

where the convergence follows from the continuity of the chi-density and of ∇xρ
x,v as

a result of Lemma 3.2. Hence, in the case of v ∈ F (x), ∇xe is continuous at (x, v).
Now assume in contrast that v ∈ I(x). Then ∇xe(x, v) = 0 by Corollary 3.8. Now
assume that ∇xe(xk, vk) does not converge to zero. Then ‖∇xe(xkl

, vkl
)‖ ≥ ε for

some subsequence and some ε > 0. Then vkl
∈ F (xkl

) for all l because otherwise
vkl

∈ I(xkl
) and, thus, ∇xe(xkl

, vkl
) = 0 due to Corollary 3.8 (applied to xkl

rather
than x; observe that the condition g (x, 0) < 0 and the polynomial growth condition
at x are open conditions and hence continue to hold true for the xkl

). Now Lemma 3.7
yields the contradiction

lim
l→∞

∇xe(xkl
, vkl

) = 0

with ‖∇xe(xkl
, vkl

)‖ ≥ ε. This proves Corollary 3.9.
Now we are in a position to state our main result.
Theorem 3.10. Let g : Rn × Rm → R be a continuously differentiable function

which is convex with respect to the second argument. Consider the probability function
ϕ defined in (3.1), where ξ ∼ N (0, R) has a standard Gaussian distribution with
correlation matrix R. Let the following assumptions be satisfied at some x̄:
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1. g (x̄, 0) < 0.
2. g satisfies the polynomial growth condition at x̄ (Definition 3.6).

Then ϕ is continuously differentiable on a neighborhood U of x̄ and it holds that
(3.14)

∇ϕ (x) = −
∫
v∈F (x)

χ (ρx,v (x, v))

〈∇zg (x, ρx,v (x, v)Lv) , Lv〉
∇xg (x, ρ

x,v (x, v)Lv) dμζ(v) ∀x ∈ U.

Here, μζ is the law of the uniform distribution over Sm−1, χ is the density of the chi-
distribution with m degrees of freedom, L is a factor of the Cholesky decomposition
R = LLT , and ρx,v is as introduced in Lemma 3.2.

Proof. Since ξ ∼ N (0, R), the probability function ϕ has the representation
(3.2). With g (x̄, 0) < 0, let U be a sufficiently small neighborhood of x̄ such that for
all x ∈ U we still have that g(x, 0) < 0 and that the polynomial growth condition
is satisfied at x. Then the partial derivative ∇xe of the function e defined in (3.3)
exists on U × Sm−1 by Corollary 3.8 and is continuous there by Corollary 3.9. By
compactness of Sm−1, there exists some K > 0 such that

‖∇xe(x̄, v)‖ ≤ K ∀v ∈ S
m−1.

Again, continuity of ∇xe on U × Sm−1 and compactness of Sm−1 guarantee that the
function α : U → R defined by

α(x) := max
v∈Sm−1

‖∇xe(x, v)‖

is continuous. Since α(x̄) ≤ K, we may assume, after possibly shrinking U , that
α(x) ≤ 2K for all x ∈ U , whence

(3.15) ‖∇xe(x, v)‖ ≤ 2K ∀x ∈ U, ∀v ∈ S
m−1.

From μζ(S
m−1) = 1 for the law μζ of the uniform distribution on Sm−1 we infer that

the constant 2K is an integrable function on Sm−1 uniformly dominating ‖∇xe(x, v)‖
on S

m−1 for all x ∈ U . Now Lebesgue’s dominated convergence theorem allows us to
differentiate (3.2) under the integral sign:

∇ϕ (x̄) =

∫
v∈Sm−1

∇xe(x̄, v)dμζ .

As stated in the beginning of this proof, assumptions 1 and 2 imposed in Theorem 3.10
for the fixed point x̄ continue to hold for all x in the neighborhood U . Therefore, we
may derive that

(3.16) ∇ϕ (x) =

∫
v∈Sm−1

∇xe(x, v)dμζ ∀x ∈ U.

Exploiting once more the dominance argument from (3.15), the continuity of ∇xe on
U × Sm−1 and the compactness of Sm−1 ensure by virtue of Lebesgue’s dominated
convergence theorem that ∇ϕ is continuous. Finally, formula (3.14) follows directly
from Corollary 3.8.

Remark 3.4. Evidently, formula (3.14) is explicit and can be used inside Deák’s
method in order to calculate ∇ϕ in parallel with ϕ by efficient sampling on Sm−1. For
each sampled point v ∈ Sm−1 one first has to check whether the equation g(x, rLv) = 0
has a solution r ≥ 0 at all. If not, i.e., v ∈ I(x), then such v does not contribute to
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the (approximated) integral in (3.14). Otherwise, i.e., v ∈ F (x), one has to evaluate
the integrand in (3.14), which amounts to finding the unique solution r ≥ 0 of the
equation g(x, rLv) = 0. In general, a few Newton–Raphson iterations should do the
job.

We now want to focus our attention on the assumptions of Theorem 3.10. First,
recall that assuming a standard Gaussian distribution ξ ∼ N (0, R) does not mean
any loss of generality by virtue of Remark 3.2. Also assumption 1 of the theorem is
not restrictive. This will come as a consequence of the following proposition.

Proposition 3.11. With g and ϕ as in Theorem 3.10, let the following assump-
tions be satisfied at some x̄:

1. There exists some z̄ such that g(x̄, z̄) < 0.
2. ϕ(x̄) > 1/2.

Then g(x̄, 0) < 0.
Proof. As in the proof of Theorem 3.10 we may assume that ξ ∼ N (0, R) so that

ϕ has the representation (3.2). Define the set M := {z ∈ Rm|g(x̄, z) ≤ 0}. Clearly,
M is convex and nonempty by our assumption 1. This same assumption (Slater point)
guarantees that

intM = {z ∈ R
m|g(x̄, z) < 0} .

Assume that g(x̄, 0) ≥ 0. Then 0 /∈ intM , and, hence, one could separate 0 from M ,
which would mean that there exists some c ∈ Rm\{0} such that

M ⊆
{
z ∈ R

m|cT z ≤ 0
}
=: M̃.

With ξ having a centered Gaussian distribution, the one-dimensional random vari-
able cT ξ has a centered Gaussian distribution too, and, hence, we arrive with our
assumption 3 at the contradiction

1/2 = P
(
cT ξ ≤ 0

)
= P

(
ξ ∈ M̃

)
≥ P (ξ ∈ M) = ϕ (x̄) > 1/2.

The proposition has been proved.
Proposition 3.11 means that violation of assumption 1 in Theorem 3.10 implies

that g(x̄, z) ≥ 0 for all z or that ϕ(x̄) ≤ 1/2. A typical application of Theorem 3.10 is
probabilistic programming, where one is imposing the chance constraint ϕ(x) ≥ p with
some probability level p close to one. Since gradients of ϕ are usually calculated at or
close to feasible points (e.g., by cutting planes), the case ϕ(x̄) ≤ 1/2 is very unlikely
to occur. On the other hand, g(x̄, z) ≥ 0 for all z is a degenerate situation meaning
that there exists no Slater point for the convex function g(x̄, ·). In such a situation it
typically happens that the set {z|g(x, z) ≤ 0} becomes empty for x arbitrarily close
to x̄, which would entail a discontinuity of ϕ at x̄. Then, of course, there is no hope
of calculating a gradient at all.

Finally, turning to condition 2 of Theorem 3.10 (growth condition), it may require
some technical effort to check it in concrete applications (see, e.g., the examples
discussed in the following section). On the other hand, we shall see in a moment that
we may do without this condition in the case that the set {z|g(x̄, z) ≤ 0} is bounded.
To formulate a corresponding statement we need the following two auxiliary results.

Lemma 3.12. Let g : Rn × Rm → R be continuous. Moreover, let g be convex in
the second argument. Then, for any x ∈ Rn with g (x, 0) < 0 one has that I(x) = ∅ if
and only if M(x) := {z ∈ Rm|g(x, z) ≤ 0} is bounded.



1878 WIM VAN ACKOOIJ AND RENÉ HENRION

Proof. Let x be arbitrary such that g (x, 0) < 0. Obviously boundedness of M(x)
implies that I(x) = ∅, so let us assume that I(x) = ∅ and that M(x) is unbounded.
Then there is a sequence zn with g (x, zn) ≤ 0 and ‖zn‖ → ∞. Without loss of

generality, we may assume that ‖zn‖−1
zn → z for some z ∈ R

m\{0}. Let t ≥ 0

be arbitrary. Then ‖zn‖−1
t ≤ 1 for n sufficiently large. From convexity of g(x, ·),

g (x, 0) < 0, and g (x, zn) ≤ 0 we infer that g(x, ‖zn‖−1tzn) ≤ 0 for n sufficiently
large. Passing to the limit, we get that g (x, tz) ≤ 0. Thus, as t ≥ 0 was arbitrary,

(3.17) g (x, tz) ≤ 0 ∀t ≥ 0.

Assume that there was some τ ≥ 0 with g (x, τz) = 0. Then, again by convexity of
g(x, ·) and by g (x, 0) < 0, one would arrive at the following contradiction with (3.17):

g (x, tz) > g (x, τz) = 0 ∀t > τ.

Hence, actually g (x, tz) < 0 for all t ≥ 0. Putting v := L−1z/
∥∥L−1z

∥∥, where L is
the (invertible) matrix appearing in the definition of I(x), and observing that this
definition is correct due to z 	= 0, we derive that g

(
x, t

∥∥L−1z
∥∥Lv) < 0 for all t ≥ 0.

Since
∥∥L−1z

∥∥ > 0, this implies that g (x, rLv) < 0 for all r ≥ 0. Hence we have
the contradiction v ∈ I(x) with our assumption I(x) = ∅. It follows that M(x) is
bounded as was to be shown.

Proposition 3.13. Let g be as in Lemma 3.12, and let x̄ ∈ Rn with g (x̄, 0) < 0.
If M(x̄) is bounded, then there is a neighborhood U of x̄ such that M(x) remains
bounded for all x ∈ U .

Proof. By continuity of g, we may choose U small enough that g (x, 0) < 0 for
all x ∈ U . If the assertion is not true, then by virtue of Lemma 3.12 there exists a
sequence xn → x̄ such that I (xn) 	= ∅ for all n ∈ N. By statement 1 in Lemma 3.1
this implies the existence of another sequence vn ∈ Sm−1 such that

g (xn, rLvn) < 0 ∀r ≥ 0, ∀n ∈ N.

Without loss of generality, we may assume that vn → v̄ for some v̄ ∈ Sm−1. For
each r ≥ 0 we may pass to the limit in the relation above, in order to derive that
g (x̄, rLv̄) ≤ 0 for all r ≥ 0. With the same reasoning as below (3.17), we may conclude
that indeed g (x̄, rLv̄) < 0 for all r ≥ 0. This means that v̄ ∈ I (x̄), whence M (x̄) is
unbounded by Lemma 3.12. This is a contradiction with our assumption.

Now we are in a position to state an alternate variant of Theorem 3.10 which does
not require the verification of the growth condition.

Theorem 3.14. Theorem 3.10 remains true if the second condition (growth con-
dition) is replaced by the condition that the set {z|g(x̄, z) ≤ 0} is bounded. Then (3.14)
becomes

∇ϕ (x) = −
∫
v∈Sm−1

χ (ρx,v (x, v))

〈∇zg (x, ρx,v (x, v)Lv) , Lv〉
∇xg (x, ρ

x,v (x, v)Lv) dμζ(v)

(3.18)

∀x ∈ U.

Proof. As in the proof of Theorem 3.10, the function e is continuous on U ×Sm−1

by Corollary 3.4 because this result does not require the growth condition to hold.
Moreover, ∇xe exists on U × Sm−1. Indeed, our boundedness assumption ensures
via Proposition 3.13 that—after possibly shrinking the neighborhood U of x̄—the set
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{z|g(x, z) ≤ 0} remains bounded for all x ∈ U . Lemma 3.12 implies that I(x) = ∅
or, equivalently, according to Lemma 3.1(2), that F (x) = Sm−1 for all x ∈ U . Then
Corollary 3.5 yields that ∇xe exists on U × Sm−1 and is given by

∇xe(x, v) = − χ (ρx,v (x, v))

〈∇zg (x, ρx,v (x, v)Lv) , Lv〉
∇xg (x, ρ

x,v (x, v)Lv) .

Since all occurring functions are continuous, the same holds true for ∇xe. Now the
same argument as in the proof of Theorem 3.10 allows us to derive (3.16) which along
with the formula for ∇xe above yields (3.18).

The result of Theorem 3.14 which we have derived here as a special case of Theo-
rem 3.10 also can be derived from [30, Proposition 2.2] under an implicit boundedness
assumption (Assumption 2.2(i)) corresponding to the one imposed here. Note that
in Theorem 3.10 we do not require boundedness. Not surprisingly, gradient formulae
for probability functions may come in different guises. In [34, Theorem 2.1], ∇ϕ was
represented—again under the restrictive boundedness assumption—in the form of a
volume or surface integral over the (x-dependent) domain of integration, which is not
directly related to the integral over the unit sphere considered here.

4. Selected examples. In this section we are going to discuss some instances of
the probabilistic constraint (1.1) to which our gradient formulae obtained in Theorems
3.10 and 3.14 apply and thus could be used in the numerical solution of corresponding
optimization problems.

4.1. Gaussian distributions. We assume first, as before, that the random
vector has a Gaussian distribution. We shall focus on the particular model

(4.1) P (〈f(ξ), h1(x)〉 ≤ h2(x)) ≥ p

with nonlinear mappings f : Rm → Rl, h1 : Rn → Rl, and h2 : Rn → R involving a
coupling of the random and decision vectors.

Proposition 4.1. In the probabilistic constraint (4.1), let f, h1, h2 be continu-
ously differentiable, and let the components fi of f be convex and the components h1,i

of h1 be nonnegative. Furthermore, let ξ ∼ N (0, R) have a standard Gaussian dis-
tribution with correlation matrix R and associated Cholesky decomposition R = LLT .
Consider any x̄ with 〈f(0), h1(x̄)〉 < h2(x̄). Finally, let f satisfy the following poly-
nomial growth condition:

‖f(z)‖ ≤ ‖z‖κ ∀z : ‖z‖ ≥ C

for certain κ, C > 0. Then the probability function ϕ (x) := P (〈f(ξ), h1(x)〉 ≤ h2(x))
defining the constraint (4.1) is continuously differentiable on a neighborhood U of x̄,
and its gradient is given by

∇ϕ (x) =

∫
v∈F (x)

χ (ρx,v (x, v))〈
hT
1 (x)∇f (ρx,v (x, v)Lv) , Lv

〉(4.2)

·
(
∇h2(x) − [f(ρx,v (x, v)Lv)]

T ∇h1(x)
)
dμζ(v) ∀x ∈ U.

Proof. In our setting the general function g in (3.1) becomes g (x, z) = 〈f(z), h1(x)〉
− h2(x). The continuous differentiability and convexity with respect to the second
argument of g are evident from our assumptions. Moreover, g (x̄, 0) < 0. As for the
growth condition, let U be a neighborhood of x̄ on which max{‖∇h1‖ , ‖∇h2‖} ≤ K
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for some K > 0. Then, taking—without loss of generality—the maximum norm, we
have that

‖∇xg(x, z)‖ =
∥∥∥∇h2(x)− [f(z)]

T ∇h1(x)
∥∥∥ ≤ K(‖f(z)‖+ 1)

≤ ‖z‖2+κ ∀x ∈ U, z : ‖z‖ ≥ max{C,K, 2}.

Consequently, we may apply Theorem 3.10. Equation (4.2) follows immediately from
(3.14) for the given form of the function g.

4.2. Gaussian-like distributions. We are now going to apply Theorem 3.10
to probabilistic constraints with random vectors having non-Gaussian distributions.
In the first case, we consider a linear probabilistic constraint

(4.3) P (〈η, x〉 ≤ b) ≥ p

with a random vector η whose components ηi (i = 1, . . . , l) are independent and have
a χ2-distribution with ni degrees of freedom. By definition, ηi =

∑ni

k=1 ξ
2
i,k, where the

ξi,k ∼ N (0, 1) are independent for k = 1, . . . , ni. We are interested in the gradient
of the probability function ϕ(x) := P (〈η, x〉 ≤ b). Define a Gaussian random vector
with independent components

ξ := (ξ1,1, . . . , ξ1,n1 , . . . , ξl,1, . . . , ξl,nl
) ∼ N (0, I) .

Clearly, η ∼ f(ξ), where fi(z) :=
∑ni

k=1 z
2
i,k for i = 1, . . . , l and z is partitioned in the

same way as ξ above. Then, the probability function defining (4.3) becomes

ϕ(x) = P (〈η, x〉 ≤ b) = P (〈f(ξ), x〉 ≤ b) .

We derive the following gradient formula which does not need the verification of
a polynomial growth condition and which is even fully explicit with respect to the
resolving function ρx,v.

Proposition 4.2. In (4.3), let b > 0. Consider any feasible point x̄ of (4.3)
satisfying x̄i > 0 for i = 1, . . . , n. Then the probability function ϕ is continuously
differentiable on a neighborhood U of x̄, and its gradient is given by

(4.4) ∇ϕ (x) = −
√
b

2

∫
v∈Sm−1

χ
(√

b/ 〈f(v), x〉
)

〈f(v), x〉3/2
[f(v)]

T
dμζ(v) ∀x ∈ U.

Proof. In our setting the general function g in (3.1) becomes g (x, z) = 〈f(z), x〉−b,
which is continuously differentiable. Since the components fi are convex, g (x, ·) is
convex whenever x ≥ 0, which by our assumption holds true in a neighborhood of x̄.
Evidently, the results of Theorems 3.10 and 3.14 are of local nature (differentiability
around x̄), so they actually do not need convexity of g (x, ·) for all x ∈ Rn but only for
x in a neighborhood of x̄ which is satisfied here. Next observe that g (x̄, 0) = −b < 0.
Finally, recalling that x̄i > 0 for i = 1, . . . , n, we obtain the estimate

{z|g(x̄, z) ≤ 0} = {z| 〈f(z), x̄〉 ≤ b} ⊆
{
z|
(

min
i=1,...,n

x̄i

) n∑
i=1

fi(z) ≤ b

}

=

{
z| ‖z‖2 ≤ b

(
min

i=1,...,n
x̄i

)−1
}
,
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whence the set on the left-hand side is bounded. Altogether, this allows us to invoke
Theorem 3.14 and to derive the validity of formula (3.18). We now specify this
formula in our setting. First observe that, given ξ ∼ N (0, I), we have that R = I;
hence we have L = I for the Cholesky decomposition R = LLT . Next we calculate
explicitly the function ρx,v (x, v) which is the unique solution in r ≥ 0 of the equation
〈f(rLv), x〉 = b. Now, by definition of f ,

〈f(rLv), x〉 = r2 〈f(v), x〉 = b,

whence

(4.5) r =
√
b/ 〈f(v), x〉.

Next, we calculate

∇xg (x, ρ
x,v (x, v)Lv) = [f (ρx,v (x, v) v)]T = [ρx,v (x, v)]2 [f(v)]T

= (b/ 〈f(v), x〉) [f(v)]T ,

〈∇zg (x, ρ
x,v (x, v)Lv) , Lv〉 = 〈∇zg (x, ρ

x,v (x, v) v) , v〉

=
〈∑n

i=1
xi∇fi (ρ

x,v (x, v) v) , v
〉

=
∑n

i=1
xi 〈∇fi (ρ

x,v (x, v) v) , v〉

= 2ρx,v (x, v)
∑n

i=1
xi

∑ni

k=1
v2i,k

= 2ρx,v (x, v) 〈f(v), x〉 = 2
√
b 〈f(v), x〉.

Combining these last relations with (4.5) provides formula (4.4).
As a second instance for a non-Gaussian but Gaussian-like distribution, we con-

sider the multivariate log-normal distribution. Recall that a random vector η follows
a multivariate log-normal distribution if the vector ξ := log η (componentwise log-
arithm) has a Gaussian distribution. We now consider a probabilistic constraint of
type

(4.6) P (〈η, x〉 ≤ h(x)) ≥ p,

where η is an m-dimensional random vector with log-normal distribution and h :
Rm → R is some function. We are interested in the gradient of the associated prob-
ability function ϕ(x) := P (〈η, x〉 ≤ h(x)). We denote by ξ := log η the Gaussian
random vector associated with η. Without loss of generality (see Remark 3.2) we
may assume that ξ ∼ N (0, R) for some correlation matrix R. We denote by L the
associated factor in the Cholesky decomposition R = LLT .

Proposition 4.3. In the setting above, assume that x̄ satisfies x̄i > 0 for i =
1, . . . ,m. Assume, moreover, that h is continuously differentiable and that h(x̄) >∑m

i=1 x̄i. Then

∇ϕ (x) = −
∫
{v∈Sm−1|∃i:Liv>0}

χ (ρx,v (x, v))∑m
i=1 xie

ρx,v(x,v)Liv
i Liv

[
eρ

x,v(x,v)Lv −∇h(x)
]
dμζ(v)

∀x ∈ U.

Here, Li refers to the ith row of L, and the expression ez has to be understood com-
ponentwise.
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Proof. In our setting the general function g in (3.1) becomes g (x, z) = 〈ez, x〉 −
h(x). Clearly, g is continuously differentiable and convex with respect to z for all x
close to x̄ (as mentioned in the proof of Proposition 4.3, this weakened condition is
enough in the context of Theorem 3.10). Moreover, g (x̄, 0) =

∑m
i=1 x̄i − h(x̄) < 0. In

order to apply Theorem 3.10, it is sufficient to verify the exponential growth condition
of Remark 3.3 (note that the originally imposed polynomial growth condition would
not hold true here). To this aim, let U be a neighborhood of x̄ on which ‖∇h‖ ≤ K
for some K > 0. Then, with respect to the maximum norm, we get that

‖∇xg (x
′, z)‖ ≤ ‖ez‖+ ‖∇h(x′)‖ ≤ e‖z‖ +K ≤ 2e‖z‖ ∀x′ ∈ U(x), ∀z : ‖z‖ ≥ logK.

Hence, the exponential growth condition of Remark 3.3 is satisfied. This allows us to
apply Theorem 3.10. Inserting the corresponding derivative formulae for g, we derive
that ϕ is continuously differentiable on a neighborhood U of x̄ and its gradient is
given by

(4.7) ∇ϕ (x) = −
∫
v∈F (x)

χ (ρx,v (x, v))∑m
i=1 xieρ

x,v(x,v)〈Li,v〉 〈Li, v〉

[
eρ

x,v(x,v)Lv −∇h(x)
]
dμζ(v)

for all x ∈ U . Here, Li denotes the ith row of the Cholesky factor L. To complete the
proof, we have to verify the representation of the integration domain F (x) asserted
in the statement of this proposition. Without loss of generality, we assume the neigh-
borhood U of x̄ in the formula above to be small enough that g (x, 0) < 0 and xi > 0
for i = 1, . . . ,m and for all x ∈ U (recall that g (x̄, 0) < 0 and x̄i > 0 for i = 1, . . . ,m).
We claim that for all x ∈ U the set I(x) introduced below (3.3) can be written as

(4.8) I(x) =
{
v ∈ S

m−1|Lv ≤ 0
}
.

Indeed, let x ∈ U and v ∈ Sm−1 with Lv ≤ 0 be arbitrary. Then, for all r > 0,

g(x, rLv) =
〈
erLv, x

〉
− h(x) ≤

〈
e0, x

〉
− h(x) = g (x, 0) < 0,

whence v ∈ I(x) by Lemma 3.1(1). Conversely, let x ∈ U and v ∈ I(x) be arbitrary.
Then 〈erLv, x〉 < h(x) for all r > 0. Define J := {i|Liv > 0}. It follows from xi > 0
for i = 1, . . . ,m that

h(x) >
∑
i∈J

xie
r〈Li,v〉.

If J 	= ∅, then the sum on the right-hand side tends to ∞ for r → ∞, which is a con-
tradiction to this sum being bounded from above by h(x) for all r > 0. Consequently,
J = ∅, proving Lv ≤ 0 and, thus, the reverse inclusion of (4.8). Since, by definition,
F (x) = Sm−1\I(x), we may plug the information from (4.8) into (4.7) in order to
derive the asserted formula.

4.3. Student’s (or t-) distribution. As a last application, we are going to
consider probabilistic constraints of type (1.1), where the random vector ξ follows
a so-called multivariate Student’s or t-distribution. This is an important type of
distribution, in particular, due to its application in the context of copulas. We recall
that ξ ∼ T (μ,Σ, ν), i.e., ξ obeys a multivariate t-distribution with parameters μ,Σ, ν,
if ξ = μ + ϑ

√
ν
u , where ϑ ∼ N (0,Σ) has a multivariate Gaussian distribution with

mean 0 and covariance matrix Σ, u ∼ χ2 (ν) has a chi-squared distribution with
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ν degrees of freedom, and ϑ and u are independent [22]. We are interested in the
probability function (3.1) but this time for a t-variable rather than for a Gaussian
variable.

Remark 4.1. Using the definition of a t-distribution, we may duplicate the argu-
ments of Remark 3.2 in order to convince ourselves that in the consideration of (3.1)
we may assume without loss of generality that ξ ∼ T (0, R, ν), where R is a correla-
tion matrix. In particular, this can be arranged without disturbing the assumption
of g in (3.1) being continuously differentiable and convex with respect to the second
argument.

In a first step, we provide an expression for the probability function (3.1) in the
case of a t-distribution.

Theorem 4.4. Let g : Rn × R
m → R be a continuously differentiable function

which is convex with respect to the second argument. Moreover, let ξ ∼ T (0, R, ν)
for some correlation matrix R. Consider a point x̄ such that g(x̄, 0) < 0. Then
there exists a neighborhood U of x̄ such that the probability function (3.1) admits the
representation

ϕ (x) =

∫
v∈Sm−1

ẽ (x, v) dμζ ∀x ∈ U,

where for all x ∈ U and v ∈ Sm−1

ẽ (x, v) :=

{
Fm,ν(m

−1 [ρx,v (x, v)]2), v ∈ F (x),
1, v ∈ I(x),

and Fm,ν refers to the distribution function of the Fisher–Snedecor distribution with
m and ν degrees of freedom. Moreover, ρx,v is as introduced in Lemma 3.2, and F (x)
and I(x) are defined as in Lemma 3.1.

The proof of this theorem is left for the appendix. Now we may duplicate the proof
of Corollary 3.4 but with the function e there replaced by the function ẽ introduced
above and with the expression Fη(ρ

x,v (x′, v′)) in statement 1 of Lemma 3.3 replaced

by the expression Fm,ν(m
−1 [ρx,v (x′, v′)]2) in order to derive the continuity of ẽ at

any x ∈ U , where U is defined as in Theorem 4.4. Next we may copy the proof of
Corollary 3.5 (again with the appropriate replacements) and get the following.

Corollary 4.5. For any x ∈ Rn with g(x, 0) < 0 and v ∈ F (x), the partial
derivative with respect to x of the function ẽ : Rn×S

m−1 → R defined in Theorem 4.4
exists and is given by
(4.9)

∇xẽ(x, v) = −2ρx,v (x, v)
fm,ν

(
m−1 [ρx,v (x, v)]

2 )
m 〈∇zg (x, ρx,v (x, v)Lv) , Lv〉

∇xg (x, ρ
x,v (x, v)Lv) ,

where

(4.10) fm,ν(t) =

{
Γ(m/2+ν/2)
Γ(m/2)Γ(ν/2)m

m/2νν/2tm/2−1 (mt+ ν)
−(m+ν)/2

, t ≥ 0,

0, t < 0,

is the density of the Fisher–Snedecor distribution with m and ν degrees of freedom,
ρx,v refers to the function introduced in Lemma 3.2, and L is a factor of the Cholesky
decomposition R = LLT .
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The following “equivalent” of Lemma 3.7 requires some additional conditions and
work.

Lemma 4.6. Let x be such that g (x, 0) < 0 and such that g satisfies the polynomial
growth condition at x with coefficient κ < ν (Definition 3.6). Consider any sequence
(xk, vk) → (x, v) for some v ∈ I(x) such that vk ∈ F (xk). Then

lim
k→∞

∇xẽ(xk, vk) = 0.

Proof. First observe that ρxk,vk (xk, vk) → ∞ by Lemma 3.3(2). The arguments
of Lemma 3.7 allow us to deduce that for k sufficiently large the estimates (3.7) and
(3.8) still hold. Using (4.10), we may combine Corollary 4.5 with (3.7) and (3.8) in
order to derive that

‖∇xẽ(xk, vk)‖ =

∥∥∥∥∥2ρ
xk,vk(xk, vk)fm,ν(m

−1 [ρx,v (x, v)]2)

m 〈∇zg (xk, ρxk,vk (xk, vk)Lvk) , Lvk〉
∇xg (xk, ρ

xk,vk (xk, vk)Lvk)

∥∥∥∥∥
≤ 2νν/2

Γ(m/2 + ν/2)

Γ(m/2)Γ(ν/2)
‖L‖κ δ−1

1 ρxk,vk(xk, vk)
m+κ

·
(
1 +

ρxk,vk(xk, vk)
2

ν

)−m+ν
2

→k 0,

where the last limit follows from ρxk,vk (xk, vk) → ∞ and κ < ν.

Having established Lemma 4.6, the same arguments as in Corollary 3.8 can be
used to show that ẽ is differentiable with respect to x and to derive a similar formula.
This can be done since the proof of Corollary 3.8 uses only the properties of e and we
have established the same properties for ẽ. Accordingly, ∇xẽ(x, v) is given by formula
(4.9) if v ∈ F (x), and ∇xẽ(x, v) = 0 if v ∈ I(x). In the same way as in Corollary 3.9
one establishes the continuity of ∇xẽ upon noting that fm,ν(t) defined as in (4.10) is
also continuous. We thus arrive at the following key result, the proof of which is a
verbatim copy of that of Theorem 3.10 (again, e and ẽ have the same properties).

Theorem 4.7. Let g : Rn × Rm → R be a continuously differentiable function
which is convex with respect to the second argument. Consider the probability function
ϕ defined in (3.1), where ξ ∼ T (0, R, ν). Let the following assumptions be satisfied at
some x̄:

1. g (x̄, 0) < 0.
2. g satisfies the polynomial growth condition at x̄ (Definition 3.6) with coeffi-

cient κ < ν.

Then ϕ is continuously differentiable on a neighborhood U of x̄, and it holds that
(4.11)

∇ϕ (x) =

∫
v∈F (x)

−2ρx,v(x, v)fm,ν(m
−1 [ρx,v (x, v)]

2
)

m 〈∇zg (x, ρx,v (x, v)Lv) , Lv〉
∇xg (x, ρ

x,v (x, v)Lv) dμζ(v)

for all x ∈ U . Here, μζ is the law of the uniform distribution over Sm−1, fm,ν is the
density of the Fisher–Snedecor distribution with m and ν degrees of freedom, and ρx,v

is as introduced in Lemma 3.2.

In the above result, the degrees of freedom ν of ξ ∼ T (0, R, ν) impose an im-
portant restriction on the growth condition and, hence, on the mappings g for which
the result holds. In Theorem 3.14 we were able to replace the growth condition by a
boundedness assumption. This can also be done now. Again the proof of the following
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result is a verbatim copy of that of Theorem 3.14.
Theorem 4.8. Theorem 4.7 remains true if the second condition (growth condi-

tion) is replaced by the condition that the set {z|g(x̄, z) ≤ 0} is bounded. Then, (4.11)
becomes
(4.12)

∇ϕ (x) =

∫
v∈Sm−1

−2ρx,v(x, v)fm,ν(m
−1 [ρx,v (x, v)]2)

m 〈∇zg (x, ρx,v (x, v)Lv) , Lv〉
∇xg (x, ρ

x,v (x, v)Lv) dμζ(v)

for all x ∈ U . Moreover, this result holds for all ν ≥ 1.
Remark 4.2. Theorem 4.8 in particular covers the case when ξ follows a multivari-

ate Cauchy distribution, i.e., ξ ∼ T (0, R, 1). This case was excluded in Theorem 4.7.

5. Concluding remarks. In this paper we have provided representations of the
gradients to convex probability functions as integrals with respect to uniform distri-
bution over the unit sphere. This was possible in the case of Gaussian or alternative
distributions (like log-normal or Student’s). Having such representations, one may
hope to solve corresponding probabilistically constrained optimization problems by
applying nonlinear programming methods and exploiting Deák’s sampling scheme of
the sphere to simultaneously approximate values and gradients of the given probabil-
ity functions. Proving the usefulness of this approach for numerical purposes will be
the object of future research. A generalization from single random inequalities toward
random inequality systems seems to be possible with an appropriate adaptation of
the ideas developed here.

Appendix.

Proof of Theorem 4.4. Let U be a neighborhood of x̄ small enough such that
g(x, 0) < 0 for all x ∈ U . Fix an arbitrary x ∈ U . According to the definition of ξ,
there exist ϑ ∼ N (0, R) and u ∼ χ2 (ν) such that ϑ and u are independent and

ϕ (x) = P

(
g

(
x, ϑ

√
ν

u

)
≤ 0

)
=

∫
{(y,t)|t>0,g(x,y

√
ν
t )≤0}

fϑ,u (y, t)dydt,

where fϑ,u denotes the joint density of the vector (ϑ, u). By independence, fϑ,u (y, t) =
fϑ (y) fu (t), where fϑ and fu are the densities of ϑ and u, respectively. In particular,
with Γ referring to the Gamma function, it holds that

(A.1) fu (t) =

{ 1
2ν/2Γ(ν/2)

tν/2−1e−t/2, t ≥ 0,

0, t < 0.

Therefore,

ϕ (x) =

∫ ∞

0

(∫
{y|g(x,y√ν

t )≤0}
fϑ (y) dy

)
fu (t) dt(A.2)

=
1

2ν/2Γ (ν/2)

∫ ∞

0

P

(
g

(
x, ϑ

√
ν

t

)
≤ 0

)
tν/2−1e−t/2dt.

With M := {z ∈ Rm|g(x, z) ≤ 0} one has that, for t > 0,

P

(
g

(
x, ϑ

√
ν

t

)
≤ 0

)
= P

(
ϑ ∈ t√

ν
M

)
.
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Since ϑ ∼ N (0, R), (1.2) yields that, for all t > 0,

P

(
g

(
x, ϑ

√
ν

t

)
≤ 0

)
=

∫
v∈Sm−1

μη

({
r ≥ 0|

√
ν

t
rLv ∈ M

})
dμζ

=

∫
v∈Sm−1

μη

({
r ≥ 0|g

(
x,

√
ν

t
rLv

)
≤ 0

})
dμζ ,

where η has a chi-distribution with m degrees of freedom and ζ has a uniform
distribution over Sm−1. Moreover, L is a factor of the Cholesky decomposition
R = LLT . Let t > 0 be arbitrary. Assume first that v ∈ F (x). With g(x, 0) < 0, let
ρx,v : Ũ × Ṽ → R+ be the function defined on certain neighborhoods Ũ , Ṽ of x and
v, respectively. It follows from statement 1 in Lemma 3.2 that{

r ≥ 0|g
(
x,

√
ν

t
rLv

)
≤ 0

}
=

[
0,

t√
ν
ρx,v (x, v)

]
.

If in contrast v ∈ I(x), then g(x, rLv) < 0 for all r ≥ 0, whence{
r ≥ 0|g

(
x,

√
ν

t
rLv

)
≤ 0

}
= R+.

Combining this with (A.2), we conclude that

ϕ (x) =
1

2ν/2Γ (ν/2)

∫ ∞

0

(∫
v∈F (x)

μη

([
0,

t√
ν
ρx,v (x, v)

])
dμζ

(A.3)

+

∫
v∈I(x)

μη (R+) dμζ

)
tν/2−1e−t/2dt

=
1

2ν/2Γ (ν/2)

∫ ∞

0

(∫
v∈F (x)

Fη

(
t√
ν
ρx,v (x, v)

)
dμζ + μζ (I(x))

)
tν/2−1e−t/2dt

= μζ (I(x)) +
1

2ν/2Γ (ν/2)

∫ ∞

0

tν/2−1e−t/2

∫
v∈F (x)

Fη

(
t√
ν
ρx,v (x, v)

)
dμζdt,

where Fη denotes the distribution function of η and we exploited that Fη(0) = 0,
μη (R+) = 1, and

1

2ν/2Γ (ν/2)

∫ ∞

0

tν/2−1e−t/2dt =

∫
R

fu(t)dt = 1.

Now, let r ≥ 0 be arbitrary and let ζ have a Fisher–Snedecor distribution with m and
ν degrees of freedom. Then ζ = (νUm) / (mUν), where Um and Uν are independent
and follow χ2-distributions with m and ν degrees of freedom, respectively. Denoting
by Fm,ν the distribution function of ζ, we derive that

Fm,ν(m
−1r2) = P

(
U−1
ν Um ≤ ν−1r2

)
=

∫
{(τ,t)|ντ≤tr2}

fUm,Uν (τ, t) dτdt,

where fUm,Uν denotes the joint density of the vector (Um, Uν). By independence,
fUm,Uν (τ, t) = fUm (τ) fUν (t), where the single χ2-densities are defined with appro-
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priate degrees of freedom in (A.1). It follows that

Fm,ν(m
−1r2) =

∫ ∞

0

∫ tr2/ν

0

fUν (t) fUm (τ) dτdt

=
1

2ν/2Γ (ν/2)

∫ ∞

0

tν/2−1e−t/2 1

2m/2Γ (m/2)

∫ tr2/ν

0

τm/2−1e−τ/2dτdt

=
1

2ν/2Γ (ν/2)

∫ ∞

0

tν/2−1e−t/2 1

2m/2−1Γ (m/2)

∫ r
√

t/ν

0

sm−1e−s2/2dsdt

=
1

2ν/2Γ (ν/2)

∫ ∞

0

tν/2−1e−t/2

∫ r
√

t/ν

0

fη(s)dsdt.

Here, we used that the variable η introduced above has a chi-distribution with m
degrees of freedom and so its density is given by

fη(s) =

{
1

2m/2−1Γ(m/2)
sm−1e−s2/2, s ≥ 0,

0, s < 0.

Consequently, with Fη denoting the distribution function of η,

Fm,ν(m
−1r2) =

1

2ν/2Γ (ν/2)

∫ ∞

0

tν/2−1e−t/2Fη

(
r
√

t/ν
)
dt

=
1

2ν/2−1Γ (ν/2)

∫ ∞

0

sν−1e−s2/2Fη

(
sr/

√
ν
)
ds.(A.4)

Consequently, exploiting the definition ẽ in the statement of Theorem 4.4, putting
r := ρx,v (x, v) in (A.4), and applying Fubini’s theorem, we end up via (A.3) at∫

v∈Sm−1

ẽ (x, v) dμζ

= μζ (I(x)) +

∫
v∈F (x)

Fm,ν(m
−1 [ρx,v (x, v)]

2
)dμζ

= μζ (I(x)) +
1

2ν/2−1Γ (ν/2)

∫ ∞

0

∫
v∈F (x)

sν−1e−s2/2Fη

(
sρx,v (x, v) /

√
ν
)
dμζds

= ϕ (x) .

Proof of (1.5). With the notation introduced in and below (1.4), we have that

Varζ (μη([0, ρ(ζ)])) = Eζ(μ
2
η([0, ρ(ζ)])) − p2

≤ Eζ(μη([0, ρ(ζ)])) − p2 =

∫
Sm−1×R+

I[0,ρ(v)](r) dμη(r)×dμζ(v) − p2

= Eξ(IM (ξ)) − p2 = Eξ(I
2
M (ξ)) − p2 = Varξ (IM (ξ)),

where we used that μη ≤ 1 (as a probability), that I2 = I, and that ξ ∈ M if and
only if η ≤ ρ(ζ) (by (1.4)).
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[1] T. Arnold, R. Henrion, A. Möller, and S. Vigerske, A mixed-integer stochastic nonlinear
optimization problem with joint probabilistic constraints, Pac. J. Optim., 10 (2014), pp. 5–
20.

[2] A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems contami-
nated with uncertain data, Math. Program., 88 (2000), pp. 411–424.

[3] J. S. Brauchart, E. B. Saff, I. H. Sloan, and R. S. Womersley, QMC Designs: Optimal
Order Quasi Monte Carlo Integration Schemes on the Sphere, preprint, arXiv:1208.3267v1
[math.NA], 2012.

[4] J. Bukszár, Hypermultitrees and sharp Bonferroni inequalities, Math. Inequal. Appl., 6 (2003),
pp. 727–743.

[5] G. C. Calafiore and M. C. Campi, The scenario approach to robust control design, IEEE
Trans. Automat. Control, 51 (2006), pp. 742–753.

[6] A. Charnes and W. W. Cooper, Chance-constrained programming, Management Sci., 6
(1959/1960), pp. 73–79.

[7] I. Deák, Computing probabilities of rectangles in case of multinormal distribution, J. Stat.
Comput. Simul., 26 (1986), pp. 101–114.

[8] I. Deák, Subroutines for computing normal probabilities of sets—Computer experiences, Ann.
Oper. Res., 100 (2000), pp. 103–122.

[9] D. Dentcheva and G. Martinez, Regularization methods for optimization problems with
probabilistic constraints, Math. Program., 138 (2013), pp. 223–251.
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[29] A. Prékopa, Probabilistic programming, in Stochastic Programming, Handbooks Oper. Res.
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