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a b s t r a c t

The spherical cap discrepancy is a widely used measure for how uniformly a sample of
points on the sphere is distributed. Being hard to compute, this discrepancy measure is
typically replaced by some lower or upper estimates when designing optimal sampling
schemes for the uniform distribution on the sphere. In this paper, we provide a fully
explicit, easy to implement enumerative formula for the spherical cap discrepancy.
Not surprisingly, this formula is of combinatorial nature and, thus, its application is
limited to spheres of small dimension and moderate sample sizes. Nonetheless, it may
serve as a useful calibrating tool for testing the efficiency of sampling schemes and its
explicit character might be useful also to establish necessary optimality conditions when
minimizing the discrepancy with respect to a sample of given size.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

A discrepancy measure ∆(µ, ν) quantifies the deviation between two given measures µ and ν. On a local scale, one
may compare the two measures with respect to a given set B to obtain the so-called local discrepancy

∆(B; µ, ν) := |µ(B) − ν(B)|.

In order to arrive at a global deviation measure, one extends the comparison of the two measures to a collection B of sets
and chooses an appropriate Lp norm:

∆p(µ, ν) :=

(∫
B

∆(B; µ, ν)pdω(B)
)1/p

(p < ∞),

∆∞(µ, ν) := sup
B∈B

∆(B; µ, ν) .
(1)

For surveys on discrepancies, we refer to, e.g., [1–3]. Discrepancies play a fundamental role in many mathematical
disciplines. For instance, in stochastic programming, the stability of optimal solutions and optimal values with respect
to perturbations of the underlying probability measure can be expected only for a problem-adapted choice of a
discrepancy [4].

The focus of the present paper will be on the so-called spherical cap discrepancy. Our interest in this quantity comes
from the algorithmic solution of optimization problems subject to probabilistic constraints. One approach here relies on
the so-called spheric-radial decomposition of random vectors having elliptically symmetric distribution (e.g., Gaussian). This
approach allows for a representation of the decision-dependent probability of some random inequality system as well as
of its gradient as integrals with respect to the uniform distribution on a sphere [5]. Hence, for an efficient numerical
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Fig. 1. Examples for spherical caps.

approximation of these integrals by finite sums, one has to make use of low discrepancy samples for that distribution. It
is well known (see, e.g. [6, p. 991]), that the resulting integration error tends to zero (for samples of increasing size) if
and only if the spherical cap discrepancy associated with these samples tends to zero. This special discrepancy is obtained
from our general setting (1) by defining p := ∞, µ as the uniform measure on the sphere, ν as the empirical measure
nduced by the sample and B as the collection of all closed halfspaces intersected with the sphere (caps). To be more
recise, we define the closed halfspace H(w, t) parameterized by (w, t), its empirical and cap measures µemp (w, t) and

µcap (w, t), respectively, and the spherical cap discrepancy ∆ associated with the sample
{
x1, . . . , xN

}
by

H(w, t) :=
{
x ∈ Rn

|⟨w, x⟩ ≥ t
} (

w ∈ Sn−1, t ∈ [−1, 1]
)
,

µemp (w, t) := N−1
· #

{
i ∈ {1, . . . ,N}

⏐⏐ xi ∈ H(w, t)
}
,

µcap (w, t) := µ
(
Sn−1

∩ H(w, t)
) (

µ = law of uniform distribution on Sn−1) ,

∆(w, t) :=
⏐⏐µemp (w, t) − µcap (w, t)

⏐⏐ ,
∆ := sup

w∈Sn−1, t∈[−1,1]
∆(w, t).

The following explicit formula for the cap measure – not depending on w ∈ Sn−1 – is well known

µcap (w, t) = Cn ·

⎧⎪⎪⎨⎪⎪⎩
∫ arccos(t)

0
sinn−2(τ )dτ , if 0 ≤ t ≤ 1,

1 −

∫ arccos(−t)

0
sinn−2(τ )dτ , if −1 ≤ t < 0,

(2)

where

Cn :=
1∫ π

0 sinn−2(τ )dτ

s the normalizing constant.
Fig. 1 illustrates different spherical caps on S2 for a set of three points located in the x/y plane. This plane itself induces

n upper and a lower closed halfspace each of them containing all three points (left picture). Hence, the associated upper
nd lower caps both have empirical measure 1 and cap measure 1/2. Therefore, the local discrepancies ∆(w, t) of these
aps equal 1/2. Another hyperplane passes just through two of the three points (right picture) and the associated left and
ight halfspaces induce a big and a small cap. The measure of the small cap tends to zero when the two points converge
o −x1. Therefore, the local discrepancy related with this small cap tends to 2/3.

To the best of our knowledge, no explicit formula for calculating the spherical cap discrepancy has been known so
ar. Rather the emphasis in the literature has been laid on suitable estimates with respect to more manageable quantities
llowing for asymptotic derivations and constructions of efficient low discrepancy designs (see, e.g., [6,7]). On the other
and, beyond the asymptotic ‘large sample’ viewpoint it might be of some interest even for fixed moderate sample sizes
o establish an easy enumerative formula enabling one to precisely compute the discrepancy and to compare different
ampling schemes.
As a rule, Lp discrepancies (p < ∞) are easier to compute than L∞ discrepancies as a consequence of the collection B

f test sets typically having infinite cardinality [8]. As far as explicit formulas for L∞ discrepancies are available (e.g., for
ectangular or general polyhedral sets, see [8–10]), they are of combinatorial nature which limits their application with
2
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Fig. 2. Plot of ∆(w, t) for a sample of size N = 1 (left) and N = 5 (right) on S1 .

espect to the dimension and the size of the sample. More precisely, it has been shown in [11], that computing the star
iscrepancy is an NP-hard problem. Moreover, the result is improved by [12] who proved that it is indeed W[1]-hard.
herefore, it is not surprising that a similar combinatorial aspect shows up in the enumerative formula for the spherical
ap discrepancy we present in Theorem 1. In our numerical experiments, we apply the formula to spheres of dimension
tarting from 2 (2000 samples) up to 5 (100 samples). Even in this rather modest setting, the formula may prove useful
or calibration purposes with respect to some given sampling scheme. For instance, in [6, p. 1005] an easy to compute
ower bound for the spherical cap discrepancy is used in numerical experiments in order to confirm empirically a certain
symptotic order for a digital net based on a two-dimensional Sobol’s point set on S2. Strictly speaking, the order obtained

with respect to the lower bound transfers to the discrepancy only when the ratio between the true value and the lower
estimate is approximately constant for increasing sample size. This is what we may confirm indeed in our numerical
experiments. We also use the proven formula in order to directly compare discrepancies of a few sampling schemes on
S2 for sample sizes of up to 1000. The results verify the good quality of a sampling scheme via Lambert’s equal-area
transform proposed in [6, p. 995]. Finally, we mention that the explicit character of the obtained formula might be of
some interest for the derivation of necessary optimality conditions when minimizing the discrepancy as a function of a
sample of fixed size.

2. Preparatory results

We have the following elementary (semi-) continuity properties of both considered measures:

Lemma 1. µcap is continuous and µemp is upper semicontinuous on Sn−1
× [−1, 1]. Moreover, the following relations are

satisfied for all w ∈ Sn−1 and t ∈ [−1, 1]:

µemp (w, t) + µemp (−w, −t) = 1 + N−1#
{
i
⏐⏐ xi ∈ H(w, t) ∩ H(−w, −t)

}
≥ 1, (3)

µcap (w, t) + µcap (−w, −t) = 1. (4)

roof. The continuity of µcap and (4) follow immediately from (2), while (3) is an immediate consequence of the
efinitions. Let w ∈ Sn−1, t ∈ [−1, 1] and (wk, tk) → (w, t) an arbitrary sequence with wk ∈ Sn−1, tk ∈ [−1, 1]. Define

I :=
{
i ∈ {1, . . . ,N}

⏐⏐ xi /∈ H(w, t)
}
,

so that
⟨
w, xi

⟩
< t for all i ∈ I . Then, by continuity, there is some k0, such that

⟨
wk, xi

⟩
< tk - i.e., xi /∈ H(wk, tk) - for all

k ≥ k0 and all i ∈ I . It follows that

µemp (wk, tk) ≤ µemp (w, t) ∀k ≥ k0,

whence

lim sup
k→∞

µemp (wk, tk) ≤ µemp (w, t) .

This proves the upper semicontinuity of µemp on Sn−1
× [−1, 1]. □

Fig. 2 plots the local discrepancy ∆(w, t) for the unit circle S1. As can be seen, it is a highly irregular, discontinuous
(actually neither upper nor lower semicontinuous yet piecewise smooth) function. Therefore it is not a priori evident that

the supremum in the definition of the discrepancy is attained.

3
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The next proposition shows that the discrepancy ∆ is always realized indeed by a certain cap:

Proposition 1. There are w∗
∈ Sn−1, t∗ ∈ [−1, 1], such that

∆ =
⏐⏐µemp (

w∗, t∗
)
− µcap (

w∗, t∗
)⏐⏐ .

Proof. Let (wk, tk) ∈ Sn−1
× [−1, 1] be a sequence realizing the supremum in the definition of ∆:⏐⏐µemp (wk, tk) − µcap (wk, tk)

⏐⏐ →k ∆. (5)

By the compactness of Sn−1
× [−1, 1] we may assume that

(wk, tk) →
(
w̄, t̄

)
∈ Sn−1

× [−1, 1] . (6)

According to (5) one may assume one of the following two cases upon passing to a subsequence:

µemp (wk, tk) − µcap (wk, tk) → ∆, (7)
µcap (wk, tk) − µemp (wk, tk) → ∆. (8)

In the case of (7), the continuity of µcap and the upper semicontinuity of µemp on Sn−1
× [−1, 1] (see Lemma 1) yield

along with (6) that:

∆ = lim
k→∞

(
µemp (wk, tk) − µcap (wk, tk)

)
= lim sup

k→∞

(
µemp (wk, tk) − µcap (wk, tk)

)
≤ µemp (

w̄, t̄
)
− µcap (

w̄, t̄
)

≤
⏐⏐µemp (

w̄, t̄
)
− µcap (

w̄, t̄
)⏐⏐ ≤ ∆.

Hence, ∆ =
⏐⏐µemp

(
w̄, t̄

)
− µcap

(
w̄, t̄

)⏐⏐. In the case of (8) one may exploit (3), (4) and once more the upper semicontinuity
of µemp in order to derive that:

∆ = lim
k→∞

(
µcap (wk, tk) − µemp (wk, tk)

)
= lim

k→∞

(
1 − µemp (wk, tk) −

(
1 − µcap (wk, tk)

))
= lim sup

k→∞

(
1 − µemp (wk, tk) −

(
1 − µcap (wk, tk)

))
≤ lim sup

k→∞

(
µemp (−wk, −tk) −

(
1 − µcap (wk, tk)

))
≤ µemp (

−w̄, −t̄
)
−

(
1 − µcap (

w̄, t̄
))

= µemp (
−w̄, −t̄

)
− µcap (

−w̄, −t̄
)

≤
⏐⏐µemp (

−w̄, −t̄
)
− µcap (

−w̄, −t̄
)⏐⏐ ≤ ∆.

Hence, ∆ =
⏐⏐µemp

(
−w̄, −t̄

)
− µcap

(
−w̄, −t̄

)⏐⏐. Altogether, the assertion follows with (w∗, t∗) :=
(
w̄, t̄

)
in the first case

and (w∗, t∗) :=
(
−w̄, −t̄

)
in the second one. □

We may strengthen the previous proposition in the sense that not only there exists some cap realizing the discrepancy
but that it also has to contain at least one sample point on its relative boundary:

Proposition 2. For (w∗, t∗) realizing the discrepancy in Proposition 1 it holds that there is some i ∈ {1, . . . ,N} such that
⟨w∗, xi⟩ = t∗.

Proof. Assume that ⟨w∗, xj⟩ ̸= t∗ for all j ∈ {1, . . . ,N}. Then,

µemp(w∗, t) = µemp(w∗, t∗) (9)

for t close to t∗. If |t∗| < 1, then one may strictly increase (t > t∗) or decrease (t < t∗) µcap(w∗, t), so that by virtue of
(9) the local discrepancy ∆(w∗, t) can be strictly increased in comparison with the maximal one ∆(w∗, t∗) = ∆. This is a
contradiction. If t∗ = 1, then

⟨w∗, xj⟩ < 1 ∀j ∈ {1, . . . ,N},

µcap(w∗, t∗) = µemp(w∗, t∗) = 0.

Since µcap(w∗, t) is strictly increased for t < t∗ = 1 while µemp(w∗, t) = 0 for t close to t∗ (see (9)), one may strictly
increase the local discrepancy again, so that the same contradiction results. The case t∗ = −1 follows analogously. □

An interesting consequence of the previous proposition is that a cap realizing the discrepancy has always empirical
measure not smaller than cap measure:
4
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Corollary 1. For (w∗, t∗) realizing the discrepancy in Proposition 1 it holds that µemp(w∗, t∗) ≥ µcap(w∗, t∗).

Proof. Suppose to the contrary, that µemp(w∗, t∗) < µcap(w∗, t∗). Then, using (3) and (4), we arrive at the contradiction

∆ = µcap(w∗, t∗) − µemp(w∗, t∗)
= 1 − µcap(−w∗, −t∗) −

(
1 + N−1#

{
i
⏐⏐xi ∈ H(w∗, t∗) ∩ H(−w∗, −t∗)

}
− µemp(−w∗, −t∗)

)
< µemp(−w∗, −t∗) − µcap(−w∗, −t∗) ≤ ∆.

Here, the strict inequality follows from the fact that H(w∗, t∗) ∩ H(−w∗, −t∗) contains at least one sample point by
Proposition 2. □

Lemma 2. Let
{
x1, . . . , xk

}
⊆ Sn−1 for some k ∈ N and let

S :=
{
(w, t)

⏐⏐ ⟨
w, xi

⟩
= t (i = 1, . . . , k)

}
. (10)

Let

p := rank
{(

xi

−1

)}
i=1,...,k

.

Then, assuming without loss of generality that

rank
{(

xi

−1

)}
i=1,...,p

= p

(i.e., the first p points xi are affinely independent), the set S defined in (10) has a reduced representation

S =
{
(w, t)

⏐⏐ ⟨
w, xi

⟩
= t (i = 1, . . . , p)

}
. (11)

roof. By p ≤ k it is sufficient to show that the right-hand side of (11) is contained in S as defined in (10). It is therefore
nough to show the implication⟨

w, xj
⟩
= t (j = 1, . . . , p) H⇒

⟨
w, xi

⟩
= t (i = p + 1, . . . , k) . (12)

y definition of p, the vectors
(

xi
−1

)
(i = p + 1, . . . , k) are linear combinations of the vectors

(
xj
−1

)
(j = 1, . . . , p). Hence,

for an arbitrarily fixed i ∈ {p + 1, . . . , k} there exists some λ ∈ Rp such that(
xi

−1

)
=

p∑
j=1

λj

(
xj

−1

)
.

Along with the assumption in (12), both components of this last identity yield that⟨
w, xi

⟩
=

p∑
j=1

λj
⟨
w, xj

⟩
= t

p∑
j=1

λj = t

which is the conclusion of (12). □

The proof of Proposition 2 might suggest the idea that a discrepancy realizing cap has to contain not just one but a
maximum possible number of sample points on its relative boundary. This intuition is wrong as can be seen from Fig. 1.
Here, any of the two caps in the left picture contain three points on its relative boundary but realize a strictly smaller
local discrepancy ∆(w, t) than the small cap in the right picture which contains just two of the three sample points on its
relative boundary. As a consequence, the evaluation of the discrepancy ∆ cannot be based just on a simple enumeration
of local discrepancies ∆(w, t) associated with affinely independent subsets of the sample points. One has also to consider
smaller subsets of sample points for which the hyperplane associated with the cap is not yet fixed. In order to get rid of the
remaining degree of freedom, one has to maximize the local discrepancy conditionally to this small subset belonging to
the relative boundary of the cap. In the right picture of Fig. 1, among all caps having x2, x3 on its boundary, the one defined
by a vertical hyperplane turned out to maximize the local discrepancy. The crucial argument in order to incorporate this
maximization aspect, is provided in the following result:

Lemma 3. Let
{
x1, . . . , xk

}
⊆ Sn−1 be such that

rank
{(

xi
)}

= k.

−1 i=1,...,k

5
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Denote by X∗ the matrix whose columns are generated by xi for i = 1, . . . , k and define

X̃∗ :=

(
X∗

−1T

)
; γ := 1T

(
X̃T

∗
X̃∗

)−1
1; 1 := ( 1, . . . , 1)T .

Let (w∗, t∗) be a local solution of the optimization problem

max
w,t

{
t
⏐⏐ ⟨

w, xi
⟩
= t (i = 1, . . . , k) , ⟨w, w⟩ = 1

}
. (13)

hen, it holds that 0 < γ ≤ 1. If γ < 1, then

t∗ ∈

{
±

(
1 − γ

γ

)1/2
}

, w∗
=

1 + (t∗)2

t∗
X∗

(
X̃T

∗
X̃∗

)−1
1.

Moreover, γ = 1 is equivalent to t∗ = 0 and we then have rank X∗ = k − 1.

Proof. In order to identify (w∗, t∗) via necessary optimality conditions we have first to check if the gradients{(
x1

−1

)
, . . . ,

(
xk

−1

)
,

(
2w
0

)}
with respect to (w, t) of the equality constraints in (13) are linearly independent. We assume a linear combination(

0
0

)
=

k∑
i=1

λi

(
xi

−1

)
+ µ

(
2w
0

)
.

Multiplication of the first component with w yields – taking into account the equality constraints in (13) and comparing
the second component – that

0 =

k∑
i=1

λi
⟨
w, xi

⟩
+ 2µ ⟨w, w⟩ = t

k∑
i=1

λi + 2µ = 2µ.

Hence,
k∑

i=1

λi

(
xi

−1

)
=

(
0
0

)
.

By assumption of the lemma, the vectors
{( xi

−1

)}
i=1,...,k

are linearly independent, whence λi = 0 for i = 1, . . . , k.

urthermore, µ = 0, which altogether proves the linear independence of the gradients of equality constraints in (13).
This allows us to derive the following necessary optimality condition for a local solution (w∗, t∗) of problem (13). Here

the gradient of the objective function t appears on the left-hand side:

∃ λ1, . . . , λk, µ ∈ R :

(
0
1

)
=

k∑
i=1

λi

(
xi

−1

)
+ µ

(
2w∗

0

)
. (14)

he second component implies that
∑k

i=1 λi = −1. Multiplication of the first component by w∗ and exploiting the equality
constraints in (13) yield that

0 =

k∑
i=1

λi
⟨
w∗, xi

⟩
+ 2µ

⟨
w∗, w∗

⟩
= t∗

k∑
i=1

λi + 2µ,

in particular, t∗ = 2µ. With λ := ( λ1, . . . , λk)T , the equation in (14) reads as(
0
1

)
= X̃∗λ + t∗

(
w∗

0

)
. (15)

Multiplication of both sides from the left by X̃T
∗
and using the first feasibility constraint XT

∗
w∗

= t∗1 in (13) result in

−1 = X̃T
∗
X̃∗λ + t∗21.

By the assumption of this lemma, the matrix X̃T
∗
X̃∗ is regular and we can solve the last equation for λ:

λ = −(1 + t∗2)
(
X̃T X̃

)−1
1. (16)
∗ ∗

6
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Recalling that 1Tλ = −1 we arrive at

(1 + t∗2)1T
(
X̃T

∗
X̃∗

)−1
1 = 1 . (17)

y definition of γ , the latter equation implies that we necessarily have 0 < γ ≤ 1, and γ = 1 if and only if t∗ = 0. In the
case γ = 1 we have that w∗

∈ Ker XT
∗

∩ Sn−1 by feasibility of w∗ in (13). Moreover, from (15) we see that X∗λ = 0 for
some λ ̸= 0 which then implies that rank X∗ = k − 1 due to

k − 1 = rank X̃∗ − 1 ≤ rank X∗ = k − dimKer X∗ ≤ k − 1.

If, in contrast, 0 < γ < 1, then, by (17),

t∗ = ±

(
1 − γ

γ

)1/2

. (18)

he first component of (15) reads

0 = X∗λ + t∗w∗.

sing the representation (16) for λ we obtain that

w∗
=

1 + t∗2

t∗
X∗

(
X̃T

∗
X̃∗

)−1
1

which completes the proof. □

Note, the fact that (w∗, t∗) is a local maximum in (13) does not imply t∗ ≥ 0 in case of k = n. We proceed with the
following purely technical lemma which will be needed to cope with a degenerate subcase in our main result later on.

Lemma 4. Let
{
x1, . . . , xN

}
⊆ Sn−1. For any I ⊆ {1, . . . ,N} let XI be the matrix whose columns are xi, i ∈ I . Define

X̃I :=

(
XI

−1T

)
and let be X̃ := X̃{1,...,N}. Let w0 ∈ Sn−1 be given such that

I0 :=
{
i ∈ {1, . . . ,N} | ⟨w0, xi⟩ = 0

}
̸= ∅

and such that it holds

w0 ∈ argmax
w∈Ker XT

I0
∩Sn−1

µemp(w, 0) , (19)

rank X̃I0 < min
{
n, rank X̃

}
, rank XI0 = rank X̃I0 − 1 . (20)

Then there exist w1 ∈ Sn−1 and I1 with I0 ⊆ I1 ⊆ {1, . . . ,N} such that

w1 ∈ Ker XT
I1 ∩ Sn−1, µemp(w1, 0) = µemp(w0, 0), (21)

rank XI1 = rank XI0 + z, rank X̃I1 = rank X̃I0 + z (22)

for some natural number z ≥ 1.

Proof. We claim that assumptions (19) and (20) imply that the index set

J0 :=
{
j ∈ {1, . . . ,N} | ⟨w0, xj⟩ > 0

}
is nonempty. Indeed, in case that J0 = ∅, we would have that µemp(w0, 0) = N−1#I0 and that

⟨
w0, xi

⟩
≤ 0 for all

i ∈ {1, . . . ,N}, which amounts to µemp(−w0, 0) = 1. Then, since −w0 ∈ Ker XT
I0

∩ Sn−1, it would follow that

1 = µemp(−w0, 0) ≤ µemp(w0, 0) = N−1#I0 ≤ 1.

Consequently, N = #I0, hence X̃ = X̃I0 and we arrive at the contradiction

rank X̃ = rank X̃I0 < min
{
n, rank X̃

}
≤ rank X̃ .

Therefore, J0 ̸= ∅.
From the assumption w0 ∈ Ker XT

I0
∩ Sn−1 and from the definitions of I0, J0 we observe that

µemp(w0, 0) = N−1 (#I0 + #J0). (23)

In order to show the existence of some suitable w1 let us consider the following optimization problem:

min
{
ϕ(w)

⏐⏐⏐w ∈ Ker XT
I ∩ Sn−1, ϕ(w) ≥ 0

}
, ϕ(w) := min⟨w, xj⟩. (24)
w 0 j∈J0

7
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Observe that the feasible set of this problem is nonempty (it contains w0) and compact by continuity of ϕ. Hence, once
ore by continuity of ϕ, the problem admits a solution w1. Select j1 ∈ J0 satisfying ⟨w1, xj1⟩ = ϕ(w1) and put K := I0∪{j1}.
Next, we prove that ϕ(w1) = 0. Assume to the contrary that ϕ(w1) > 0. Because xj1 /∈ span

{
xi
}
i∈I0

by w1 ∈ Ker XT
I0

and ⟨w1, xj1⟩ > 0, we observe that

rank XK = rank XI0 + 1. (25)

ssumption (20) and property (25) imply that

dimKer XT
K = n − rank XK = n − rank XI0 − 1 > 0,

hence Ker XT
K ∩ Sn−1

̸= ∅. Select some w̄ ∈ Ker XT
K ∩ Sn−1 moreover satisfying ⟨w1, w̄⟩ ≥ 0 and define

w̄t := tw̄ + (1 − t) w1 ∀t ∈ [0, 1] .

hen, with ∥ · ∥ referring to the Euclidean norm, we derive that

∥w̄t∥ > 1 − t > 0 ∀t ∈ (0, 1). (26)

n particular, recalling that w1 ∈ Ker XT
I0

∩ Sn−1 is a solution of (24) and that

w̄ ∈ Ker XT
K ∩ Sn−1

⊆ Ker XT
I0 ∩ Sn−1,

we may define

w̃t := w̄t/∥w̄t∥ ∈ Ker XT
I0 ∩ Sn−1

∀t ∈ (0, 1).

Now, since limt↓0 ∥w̄t∥ = ∥w1∥ = 1, we infer that for all j ∈ J0,

lim
t↓0

⟨
w̃t , xj

⟩
= lim

t↓0

(
t
⟨
w̄, xj

⟩
+ (1 − t)

⟨
w1, xj

⟩)
/∥w̄t∥ =

⟨
w1, xj

⟩
≥ ϕ(w1) > 0.

Consequently, ϕ(w̃t ) ≥ 0 for small enough t > 0 which entails that w̃t is feasible in problem (24) for small enough t > 0.
On the other hand, since w̄ ∈ Ker XT

K , we may exploit the relation
⟨
w̄, xj1

⟩
= 0, in order to derive from (26) and ϕ(w1) > 0

that

ϕ(w̃t ) ≤
⟨
w̃t , xj1

⟩
=

(
t
⟨
w̄, xj1

⟩
+ (1 − t)

⟨
w1, xj1

⟩)
/∥w̄t∥

= (1 − t) ϕ(w1)/∥w̄t∥ < ϕ(w1)

for all t ∈ (0, 1), whence the contradiction that for small enough t > 0 w̃t is feasible in problem (24) and realizes a strictly
smaller objective value than the solution w1. Hence, we have shown that ϕ(w1) = 0.

From ⟨w1, xj1⟩ = 0 it follows that w1 ∈ Ker XT
K ∩ Sn−1. Put

I1 :=
{
i ∈ {1, . . . ,N}

⏐⏐⟨w1, xi⟩ = 0
}

and obtain that

I0 ⊂ K ⊆ I1. (27)

Since Ker XT
K ⊆ Ker XT

I0
, the relation

⟨w1, xj⟩ ≥ ϕ(w1) = 0 ∀j ∈ J0

implies together with Eq. (23) and assumption (19) that

µemp(w1, 0) ≥ N−1 (#I0 + #J0) = µemp(w0, 0) ≥ µemp(w1, 0).

Hence, µemp(w1, 0) = µemp(w0, 0). This, along with the definition of I1 shows the two relations claimed in (21).
In order to verify (22), let finally I1\I0 = {k1, . . . , ks} and put K0 := I0, Kℓ := I0∪{k1, . . . , kℓ} for ℓ = 1, . . . , s. Obviously,

rank X̃Kℓ
− rank X̃Kℓ−1 ≥ rank XKℓ

− rank XKℓ−1

for all ℓ = 1, . . . , s, whence

rank X̃I1 − rank X̃I0 ≥ rank XI1 − rank XI0 =: z . (28)

By (25) and (27), we have that z ≥ 1. On the other hand, assumption (20) implies that

rank X̃I1 − rank X̃I0 ≤ rank XI1 + 1 − rank X̃I0

= z + rank XI0 + 1 − (rank XI0 + 1) = z . (29)

Estimations (28) and (29) show the relations claimed in (22) and we are done. □
8
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We finish this section by a simple implication which will be needed several times in the proof of the main result below
nd which uses the notation introduced in Lemma 4:

Ker XT
I ∩ Sn−1

̸= ∅ H⇒ dimKer XT
I ≥ 1 H⇒ rank X̃I ≤ rank XI + 1 ≤ n

H⇒ rank X̃I ≤ min
{
n, rank X̃

}
. (30)

. Main result

After the preparations of the previous section, we are in a position to derive a formula allowing for the computation of
he cap discrepancy ∆ of any sample on the sphere by enumeration of finitely many easy to calculate local discrepancies
(w, t). The theorem is divided into a simpler part for the case that the halfspace realizing the discrepancy does not

contain the origin on its boundary (i.e., t∗ ̸= 0 for the couple (w∗, t∗) in Proposition 1) and a technically more delicate
part in case that the origin does belong to that boundary (i.e., t∗ = 0).

Theorem 1. Let
{
x1, . . . , xN

}
⊆ Sn−1. For any I ⊆ {1, . . . ,N} with I ̸= ∅, let XI be the matrix whose columns are xi (i ∈ I)

and define X̃I :=

(
XI

−1T

)
as well as X̃ := X̃{1,...,N}. Consider the following finite families of index sets:

Φ1 : =

{
I ⊆ {1, . . . ,N}

⏐⏐ 1 ≤ rank X̃I = #I ≤ min
{
n, rank X̃

}
; γI < 1

}
,

Φ0 : =

{
I ⊆ {1, . . . ,N}

⏐⏐ 1 ≤ rank X̃I = #I = min
{
n, rank X̃

}
; γI = 1

}
,

where γI := 1T
(
X̃T
I X̃I

)−1
1. For I ∈ Φ1 ∪ Φ0 put

tI :=

{(
1−γI
γI

)1/2
I ∈ Φ1

0 I ∈ Φ0

, wI :=

{
1+tI 2

tI
XI

(
X̃T
I X̃I

)−1
1 I ∈ Φ1

∈ Ker XT
I ∩ Sn−1 I ∈ Φ0

,

where the selection of wI in case of I ∈ Φ0 is arbitrary. Then, for the cap discrepancy it holds that ∆ = max
{
∆1, ∆0

}
, where

∆1 :=

{
max
I∈Φ1

max
{
∆(wI , tI ), ∆(−wI , −tI )

}
ifΦ1 ̸= ∅

0 otherwise
,

∆0 :=

{
max
I∈Φ0

max
{
∆(wI , 0), ∆(−wI , 0)

}
ifΦ0 ̸= ∅

0 otherwise
.

Proof. Let (w∗, t∗) ∈ Sn−1
× [−1, 1] be such that (see Proposition 1)

∆ = ∆(w∗, t∗) =
⏐⏐µemp (

w∗, t∗
)
− µcap (

w∗, t∗
)⏐⏐ .

Since, by Corollary 1,

µemp (
w∗, t∗

)
≥ µcap (

w∗, t∗
)
, (31)

it follows that

∆ = µemp (
w∗, t∗

)
− µcap (

w∗, t∗
)
. (32)

We define the (disjoint) index sets

I∗ :=
{
i ∈ {1, . . . ,N}

⏐⏐ ⟨w∗, xi
⟩
= t∗

}
, J∗ :=

{
i ∈ {1, . . . ,N}

⏐⏐ ⟨w∗, xi
⟩
> t∗

}
.

From Proposition 2, we infer that I∗ ̸= ∅. Let

S :=

⎧⎪⎨⎪⎩(w, t) ∈ Sn−1
× [−1, 1]

⏐⏐⏐⏐⏐⏐⏐
⟨
w, xi

⟩
= t i ∈ I∗⟨

w, xi
⟩
> t i ∈ J∗⟨

w, xi
⟩
< t i ∈ {1, . . . ,N} \(I∗ ∪ J∗)

⎫⎪⎬⎪⎭ .

The definitions of ∆ and (w∗, t∗) imply along with (31) that

(w∗, t∗) ∈ argmax µemp(w, t) − µcap(w, t). (33)

(w,t)∈Sn−1×[−1,1]

9
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Since (w∗, t∗) ∈ S it follows that even

(w∗, t∗) ∈ argmax
(w,t)∈S

µemp(w, t) − µcap(w, t).

We observe that µemp(w, t) = N−1(#I∗ + #J∗) = const for all (w, t) ∈ S. Hence,

(w∗, t∗) ∈ argmin
(w,t)∈S

µcap(w, t) .

Because, µcap(w, t) depends on t only and is monotonically decreasing with t (see (2)), (w∗, t∗) is a solution of the
optimization problem

max
w,t

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩t

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

⟨
w, xi

⟩
= t i ∈ I∗⟨

w, xi
⟩
> t i ∈ J∗⟨

w, xi
⟩
< t i ∈ {1, . . . ,N} \ (I∗ ∪ J∗)

⟨w, w⟩ = 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Note that the constraint t ∈ [−1, 1] is implicitly contained in the equality constraints above. Next, choose a subset Ī∗ ⊆ I∗
such that

#Ī∗ = rank X̃Ī∗ = rank X̃I∗ (34)

(using the notation introduced in the statement of the theorem). By Lemma 2, the optimization problem above can be
reformulated as

max
w,t

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩t

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

⟨
w, xi

⟩
= t i ∈ Ī∗⟨

w, xi
⟩
> t i ∈ J∗⟨

w, xi
⟩
< t i ∈ {1, . . . ,N} \ (I∗ ∪ J∗)

⟨w, w⟩ = 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (35)

Since
⟨
w∗, xi

⟩
> t∗ for i ∈ J∗ and

⟨
w∗, xi

⟩
< t∗ for i ∈ {1, . . . ,N} \ (I∗ ∪ J∗) and (w∗, t∗) is a solution of the optimization

problem (35), it follows that (w∗, t∗) must be a local solution of the optimization problem

max
w,t

{
t
⏐⏐ ⟨

w, xi
⟩
= t

(
i ∈ Ī∗

)
; ⟨w, w⟩ = 1

}
. (36)

By (34), this problem satisfies the assumption of Lemma 3 with X∗ := XĪ∗ and k := #Ī∗. According to that lemma we have
that 0 < γĪ∗ ≤ 1 with γI as introduced in the statement of this theorem.

In the case of γĪ∗ < 1 it follows from Lemma 3 (last statement), that t∗ ̸= 0. Then, by feasibility of (w∗, t∗) in (36), we
have that

(t∗)−1X̃T
Ī∗w

∗
= 1 (= (1, . . . , 1) ∈ R#Ī∗ ).

Consequently, −1 ∈ range XT
Ī∗
, and thus,

rank X̃Ī∗ = rank
(

XĪ∗

−1T

)
= rank (XT

Ī∗ | −1) = rank XT
Ī∗ ≤ n.

Since also rank X̃Ī∗ ≤ rank X̃ , we have shown that Ī∗ ∈ Φ1. Therefore, with the definitions of tI , wI in the statement of
this theorem, we infer from Lemma 3 that (w∗, t∗) ∈

{(
wĪ∗ , tĪ∗

)
,
(
−wĪ∗ , −tĪ∗

)}
. Thus,

∆ = ∆(w∗, t∗) ≤ max
{
∆(wĪ∗ , tĪ∗ ), ∆(−wĪ∗ , −tĪ∗ )

}
≤ ∆1 (37)

ith ∆1 as introduced in the statement of this theorem.
The remaining part of this proof is devoted to the case γĪ∗ = 1. From Lemma 3 we observe that t∗ = 0, and,

ank XĪ∗ = #Ī∗ − 1. The second equality in (34) along with Ī∗ ⊆ I∗ yields that rank XI∗ = rank XĪ∗ . Hence, the first
equality in (34) provides the relation

rank XI∗ = rank X̃I∗ − 1. (38)

oreover, by definition of I∗, one has that w∗
∈ Ker XT

I∗ ∩ Sn−1, so that

w∗
∈ argmax

w∈Ker XT
I∗∩Sn−1

µemp(w, 0) − µcap(w, 0) = argmax
w∈Ker XT

I∗∩Sn−1
µemp(w, 0) −

1
2 (39)

s a consequence of (33). Therefore,

w∗
∈ A := argmax

T n−1
µemp(w, 0). (40)
w∈Ker XI∗∩S

10
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Since µemp(w∗, 0) ≥
1
2 , it holds that

µemp(w, 0) ≥
1
2 ∀w ∈ A. (41)

By (30), w∗
∈ Ker XT

I∗ ∩ Sn−1 implies that rank X̃I∗ ≤ min
{
n, rank X̃

}
. We claim the existence of some index set Î and

of some vector ŵ such that

I∗ ⊆ Î ⊆ {1, . . . ,N} , rank X̃Î = min
{
n, rank X̃

}
,

ŵ ∈ Ker XT
Î

∩ Sn−1, µemp(ŵ, 0) = µemp(w∗, 0).
(42)

If rank X̃I∗ = min
{
n, rank X̃

}
, then we may choose Î := I∗ and ŵ := w∗ in (42). Otherwise, rank X̃I∗ < min

{
n, rank X̃

}
and

we make use of Lemma 4 starting with the data I0 := I∗ and w0 := w∗. Observe that by virtue of (38) and (40), I0 and w0
satisfy the assumptions (19) and (20) of that lemma. Accordingly, we derive the existence of some index set I1 ⊇ I0 and
w1 satisfying the relations (21) and (22). In particular, Ker XT

I1
⊆ Ker XT

I0
, whence both relations in (21) yield that

w1 ∈ argmax
w∈Ker XT

I1
∩Sn−1

µemp(w, 0).

Moreover, we infer from (20) and (22) that rank XI1 = rank X̃I1 − 1 and from the first relation in (21) and (30) that
rank X̃I1 ≤ min

{
n, rank X̃

}
.

Now, if rank X̃I1 = min
{
n, rank X̃

}
, then we may choose Î := I1 and ŵ := w1 in (42) due to (21) and w0 = w∗.

Otherwise, rank X̃I1 < min
{
n, rank X̃

}
and so the assumptions (19) and (20) of Lemma 4 are also satisfied for I1 and w1

instead of I0 and w0. This allows us to apply Lemma 4 again. In this way, a sequence of index sets Ik and of points wk
(k = 1, 2, . . .) is obtained for which I∗ = I0 ⊆ Ik and by (21) and (22)

wk ∈ Ker XT
Ik ∩ Sn−1, µemp(wk, 0) = µemp(w0, 0), rank X̃Ik = rank X̃Ik−1 + zk,

where zk ∈ N and zk ≥ 1. Since rank X̃Ik ≤ min
{
n, rank X̃

}
by (30), the last relation implies that, after finitely many steps,

we arrive at the situation rank X̃Ik = min
{
n, rank X̃

}
, so that we may define Î := Ik and ŵ := wk in (42). This finishes the

proof of (42).
Next, from (32) and (42) we know that

∆ = µemp(w∗, 0) −
1
2 = µemp(ŵ, 0) −

1
2 . (43)

his relation shows that (ŵ, 0) realizes the discrepancy ∆ as much as (w∗, 0). Therefore, we may assume that (w∗, t∗) is
(ŵ, 0) in the beginning of our proof until (36). In particular, analogously to the index set I∗ introduced there, we define

I∗ :=
{
i ∈ {1, . . . ,N} | ⟨ŵ, xi⟩ = 0

}
.

Following the previous arguments from (34) to (36), we may find an index set Ī∗ ⊆ I∗ such that

#Ī∗ = rank X̃Ī∗ = rank X̃I∗ . (44)

In particular,

ŵ ∈ Ker XT
Ī∗

∩ Sn−1. (45)

oreover, (ŵ, 0) is a local solution of the optimization problem

max
w,t

{
t
⏐⏐ ⟨

w, xi
⟩
= t

(
i ∈ Ī∗

)
; ⟨w, w⟩ = 1

}
. (46)

y (44), this problem satisfies the assumption of Lemma 3 with X∗ := XĪ∗ and k := #Ī∗. According to that lemma (last
tatement) we have that γĪ∗ = 1 with γI as introduced in the statement of this theorem. Applying (30) to ŵ ∈ Ker XT

I∗∩Sn−1,
we observe that

rank X̃I∗ ≤ min
{
n, rank X̃

}
.

On the other hand, since Î ⊆ I∗ by (42) and by definition of I∗, the rank relation in (42) leads to

rank X̃I∗ ≥ rank X̃Î = min
{
n, rank X̃

}
,

whence, along with (44)

#Ī∗ = rank X̃Ī∗ = min
{
n, rank X̃

}
. (47)

Summarizing, we have shown that Ī ∈ Φ .
∗ 0

11
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If in (47) rank X̃Ī∗ = rank X̃ , then there exist coefficients λi
j such that(

xi

−1

)
=

∑
j∈Ī∗

λi
j

(
xj

−1

)
∀i = 1, . . . ,N.

Therefore, we have for all i = 1, . . . ,N and all w ∈ Ker XT
Ī∗

that

⟨xi, w⟩ =

⟨(
xi

−1

)
,

(
w

0

)⟩
=

∑
j∈Ī∗

λi
j

⟨(
xj

−1

)
,

(
w

0

)⟩
=

∑
j∈Ī∗

λi
j ⟨x

j, w⟩ = 0.

This amounts to saying that µemp(w, 0) = 1 for all these w and, so,

∆(w, 0) =
⏐⏐µemp(w, 0) − µcap(w, 0)

⏐⏐ = 1/2 ∀w ∈ Ker XT
Ī∗

∩ Sn−1.

We conclude from (43) and (45) that

∆ =
⏐⏐µemp(ŵ, 0) −

1
2

⏐⏐ = ∆(ŵ, 0) = 1/2 = ∆(w, 0) ∀w ∈ Ker XT
Ī∗

∩ Sn−1.

Therefore, the value of ∆(wĪ∗ , 0) in the definition of ∆0 (see statement of this theorem) does not depend on the choice
of wĪ∗ ∈ Ker XT

Ī∗
∩ Sn−1. It follows from Ī∗ ∈ Φ0 that ∆ ≤ ∆0.

Otherwise, if in (47) rank X̃Ī∗ = n, then dimKer X̃T
Ī∗

= 1 and so there exists some (w̃, t̃) ∈ Sn with Ker X̃T
Ī∗

= span{(w̃, t̃)}.
Let w ∈ Ker XT

Ī∗
∩ Sn−1 be arbitrary. Then, (w, 0) ∈ Ker X̃T

Ī∗
and, hence, there is some λ ∈ R with (w, 0) = λ(w̃, t̃). Clearly,

̸= 0 by w ∈ Sn−1. It follows that t̃ = 0, whence w̃ ∈ Sn−1 and |λ| = 1. Therefore, w = ±w̃. Thus, we have shown that
w ∈ {w̃, −w̃} for all w ∈ Ker XT

Ī∗
∩ Sn−1. On the other hand, ŵ ∈ {w̃, −w̃} by (45). Therefore,

∆ =
⏐⏐µemp(ŵ, 0) −

1
2

⏐⏐ = ∆(ŵ, 0) ≤ max
{
∆(w̃, 0), ∆(−w̃, 0)

}
= max

{
∆(w, 0), ∆(−w, 0)

}
∀w ∈ Ker XT

Ī∗
∩ Sn−1.

s in the previous case, the value of ∆(wĪ∗ , 0) in the definition of ∆0 does not depend on the choice of wĪ∗ ∈ Ker XT
Ī∗

∩Sn−1.
Again, Ī∗ ∈ Φ0 implies that ∆ ≤ ∆0.

Summarizing, our proof has shown by case distinction that necessarily ∆ ≤ ∆1 (see (37)) or ∆ ≤ ∆0. Therefore,
≤ max{∆1, ∆0}. On the other hand, each of the quantities ∆1, ∆0 is either zero or corresponds to a concrete value
(w, t) for some w ∈ Sn−1 and t ∈ [−1, 1]. Hence, in any case max{∆1, ∆0} ≤ ∆. This finishes the proof. □

We want to conclude this section with some algorithmic remarks. The formula provided by the main theorem is
ppropriate for easy implementation. To compute the cap discrepancy for a given point set one has to consider all
ossible selections I ⊆ {1, . . . ,N} with cardinality less than or equal to min

{
n, rank X̃

}
and one has to check whether

he selection is included in one of the two sets Φ1 or Φ0. This check implies first a verification of rank X̃I , and secondly,

f applicable, the computation of γI = 1T
(
X̃T
I X̃I

)−1
1. For these selected I one has to compute the local discrepancy by

he given formulas. Finally, the discrepancy is found as the maximum of the considered local discrepancies. A Matlab
mplementation of the enumeration formula for the spherical cap discrepancy provided by the theorem is accessible
hrough the link: https://www.wias-berlin.de/people/heitsch/capdiscrepancy

We observe that the cardinality of index sets to be checked in the proven formula is at most

min
{
n,rank X̃

}∑
i=1

(
N
i

)
.

hether calculating the spherical cap discrepancy is NP-hard (or W[1]-hard) is left open for future work. Clearly, this
spect of complexity limits the application of the formula to low-dimensional spheres and moderate sample sizes. Hence,
t will not be suitable for verifying asymptotic aspects of sampling schemes. On the other hand, it may be used to correctly
alibrate the efficiency of sampling schemes within a certain range of the sample size.

. Numerical illustration

In this section we illustrate the application of the derived formula for the spherical cap discrepancy to spheres S2 to
5 with sample sizes reaching from 2000 to 100 depending on dimension. Samples were generated by normalizations of
onte Carlo simulated independent Gaussian distributions which are approximations of the uniform distribution on the
phere. For the sake of comparison, we oppose the results to the application of an easily computable lower estimate of
he discrepancy as it was used, e.g., in [6]: Given a sample {x1, . . . , xN}, we clearly have that

∆̃ := max sup
⏐⏐µemp (

xi, t
)
− µcap (

xi, t
)⏐⏐ ≤ ∆.
i=1,...,N t∈[−1,1]

12
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Fig. 3. Plot of discrepancy ∆ (thick line), of its lower estimate ∆̃ (thin line) and of the ratio ∆̃/∆ (dashed line) for different dimensions (n = 3, 4, 5, 6)
nd sample sizes.

Table 1
CPU time (in seconds) of the enumeration formula for selected instances.
N 10 20 40 100 180 400 1000 2000

S2 0 0 0 3 30 499 15924 252313
S3 0 0 2 139 1911 77449 – –
S4 0 0 14 1932 48134 – – –
S5 0 1 92 32658 – – – –

Fig. 3 shows the numerical results. We observe the following trends:

• Both, ∆ and ∆̃ are decreasing with increasing sample size.
• The absolute difference between ∆ and ∆̃ decreases with the sample size.
• The absolute difference between ∆ and ∆̃ increases with the dimension of the sphere.
• The ratio between ∆̃ and ∆ is basically constant for variable sample size in each dimension of the sphere (with

different values of the constant).
• The constant itself is decreasing with the dimension of the sphere.

In particular, it seems that the discrepancy can be replaced by its lower estimate without loss of information in S2 starting
from a sample size of approximately 500. For larger dimension or sample size, it appears that at least the decay rate with
respect to the sample size is well reflected by the lower estimate (approximately constant ratio with the true discrepancy),
while the deviation from the true discrepancy becomes significant.

All computations are performed on a standard computer with single CPU (3.2 GHz). Table 1 displays the CPU time for
selected instances of the tested range of N and n.

In order to illustrate even more directly the application of the proven formula, we provide a comparison of 4 sampling
schemes on S2 for small sample sizes (≤ 1000). The first two methods are based on the already mentioned fact that the
normalization to unit length of a standard Gaussian distributionN (0m, Im) yields a uniform distribution on Sm−1. Therefore,
we may simulate the Gaussian distribution via Monte Carlo (MC) or via Quasi-Monte Carlo (QMC). As an alternative, we
follow the proposal in [6], to use the equal-area Lambert transform from the unit square to S2, again for MC and QMC.
For QMC, we applied in both cases Sobol’s sequences as a special case of low-discrepancy sequences.

Fig. 4 (left) shows the corresponding plots of the discrepancy as a function of the sample size (20 steps with an
increment of sample size by 50 points at a time). Not surprisingly, the QMC-based samples clearly outperform their MC
counterparts. Moreover, in both classes, the Lambert transformation yields slightly better results than the normalization
of Gaussians. The Log–Log plot (right) incorporates two gray strips with slopes identical to −1/2 (upper strip) and −3/4
(lower strip) with empirically shifted intercepts. It can be seen that the MC-based methods are closely tied with the
expected decay rate of −1/2, whereas the QMC counterparts get a slope slightly above the optimal rate of −3/4 (see
q. (3) in [6]).
13
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Fig. 4. Discrepancy as a function of sample size for 4 different sampling schemes in original form (left) and Log–Log Plot (right). For details see text.
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