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Abstract. In optimal control problems, often initial data are required that are not known
exactly in practice. In order to take into account this uncertainty, we consider optimal control
problems for a system with an uncertain initial state. A finite terminal time is given. On account of
the uncertainty of the initial state, it is not possible to prescribe an exact terminal state. Instead,
we are looking for a control that steers the system into a given neighborhood of the desired terminal
state with sufficiently high probability. This neighborhood is described in terms of an inequality for
the terminal energy. The probabilistic constraint in the considered optimal control problem leads to
optimal controls that are robust against the inevitable uncertainties of the initial state. Numerical
examples with optimal Neumann control of the wave equation are presented.

Key words. terminal constraint, uncertain initial data, probabilistic constraint, optimal control,
boundary control, wave equation

AMS subject classifications. 49J20, 49J55, 49M37

DOI. 10.1137/19M1269944

1. Introduction. Many applications in engineering sciences are modeled by ini-
tial boundary value problems with a hyperbolic system; see, for example, [3, 2, 6].
In applications in engineering, often some data are uncertain. In order to provide
analytical insights for such a situation, in this paper we consider a system that is
governed by a wave equation with uncertain initial data that are modeled by random
Fourier series. The corresponding Cauchy problems have been analyzed in [4].

For the situation with uncertain initial data, we consider an optimal control prob-
lem with conditions on the terminal state. For a given control, the terminal state is
also uncertain. Optimal control problems with terminal constraints have been stud-
ied before in the classical deterministic setting where the desired terminal state is
prescribed exactly; see, for example, [24, 31, 18]. This is possible since the system is
exactly controllable; that is, for a known initial state and a sufficiently large control
time, there exists a control such that the desired terminal state is reached exactly (see
[26]). This exact terminal condition is equivalent to a sequence of moment equations
for the terminal state; see, for example, [15]. Control to a position of rest can also be
characterized by the requirement that the terminal energy be equal to zero.

In our probabilistic setting, since the initial state is uncertain for a fixed control
function, it is impossible to predict the terminal state exactly. Therefore, instead of
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a terminal constraint, we require that the terminal energy of the system state be less
than or equal to a given upper bound ε at least with a given probability. So, similar
to [17], we present a relaxation of the exact terminal constraint that increases the
robustness of the optimal controls.

In this way, we obtain optimal controls for which the probability that the termi-
nal position is contained in a certain ε-neighborhood of the desired terminal position
is greater than or equal to a prescribed parameter p ∈ (0, 1). So, starting from the
uncertain initial state, the optimal controls generate a terminal state that satisfies
a probabilistic constraint. The solution of this optimal control problem can be ap-
proximated by a suitable numerical method. By truncating the infinite series that
represents the terminal energy, we obtain a sequence of auxiliary problems whose
solutions converge to the solution of the optimal control problem with the probabilis-
tic constraint on the terminal energy. In this way, we can compute approximations
for a control that satisfies the probabilistic constraints and minimizes the objective
function of the optimal control problem. In this paper, we consider the L2-norm
of the control as the objective function. In fact, if for some p > 2 the Lp-norm is
chosen as the objective function, for the deterministic problem with terminal con-
straints the situation is quite similar as for p = 2; see, for example, [18] for the
case p ∈ (2,∞) and [17] for the case p = ∞. We expect that also for the problems
with probabilistic terminal constraints, a generalization to these cases is possible;
however, in order to keep the presentation concise, here we only consider the case
p = 2.

The problem that we consider falls into the class of risk-averse PDE-constrained
optimization problems. This topic has gained much interest recently. One direction
of approaching such problems is the consideration of the conditional value at risk in
the objective or constraints (see, e.g., [23], and see [20] for the approximation of the
conditional value at risk). Another perspective, the one taken in this paper, is the
use of probabilistic constraints, which are very popular in engineering problems but
traditionally applied in finite dimension. As stated in a recent monograph [27, p. 89],
their application in the environment of PDE-constrained optimization is still in its
infancy (e.g., [7, 11, 29]). It can be observed that ideas from various backgrounds
(e.g., numerical solution of PDEs, stochastic optimization, etc.) are coming to the
fore right now. For instance, in [27, 29], the basic approach consists in smoothing the
Heaviside function and using some sampling scheme of the given random vector in
order to approximate the values and gradients of the probability function involved.
This “mollifying” idea can be traced back in the stochastic optimization literature
at least to the 1980s (see, e.g., [10, 25]) and has received recent attention again in
numerical methods for probabilistic programming [12, 30].

Our approach presented here follows the spirit of the “Hungarian school” repre-
sented by A. Prékopa and his students (see [28]) in that it aims at exploiting specific
information about the problem, for instance, a concrete probability distribution (or a
class thereof). More precisely, we assume a multivariate Gaussian distribution of the
random vector (which could be replaced by any elliptically symmetric or Gaussian-
like distribution, such as Student, lognormal, or truncated Gaussian) and apply the
spheric-radial decomposition method, which allows for an efficient approximation of
the (original, not smoothed) probability function and its gradient [1] even in larger
dimensions of the random vector (say, a few hundred). Moreover, we benefit from an
explicit description via Fourier series of the control-to-state operator in order to de-
rive structural results (convexity, existence of solutions, convergence with increasing
number of Fourier coefficients, etc.).
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The paper has the following structure. In section 2 we discuss the deterministic
initial boundary value problem and the corresponding problem with uncertain initial
data. In section 3 we discuss the corresponding problem of norm-minimal Neumann
control for the system with uncertain initial state and a probabilistic constraint for the
terminal energy. Also, an approximation of the energy with finite sums is introduced.

In section 4 it is shown that the probabilistic constraint in the optimal control
problem with approximated energy is convex. Based on this fact, methods for the
computation of the probabilities and the corresponding gradients with respect to the
control are presented in section 5. The existence of optimal controls for the original
problem and the problems with the approximated energy constraint are shown in
section 6. In section 7 numerical examples are illustrated and discussed.

2. System states for Neumann boundary of the wave equation control
with uncertain initial data. We consider a vibrating string of length L > 0 with
homogeneous Dirichlet boundary conditions at one end and Neumann-boundary con-
trol at the other end. To study this problem, we use the Sobolev space H1(0, L) =
{f ∈ L2(0, L): The derivative f ′ in the sense of distributions is in L2(0, L)}. Let
y0 ∈ H1(0, L) and y1 ∈ L2(0, L) be given. Let T > 0 denote a given terminal time,
and let c > 0 denote the wave speed. For a given control u ∈ L2(0, T ), the determin-
istic initial boundary value problem

(P det)


y(0, x) = y0(x), x ∈ (0, L)
yt(0, x) = y1(x), x ∈ (0, L)
ytt(t, x) = c2 yxx(t, x), (t, x) ∈ (0, T )× (0, L)
y(t, 0) = 0, t ∈ (0, T )
yx(t, L) = u(t), t ∈ (0, T )

has been analyzed, for example, in [16, Thm. 2.3]. In engineering applications, often
the initial data are uncertain. As a model for the uncertain initial data, we use
random Fourier series as studied in [22]. For n ∈ {0, 1, 2, . . .}, define the complete
orthonormal series

ϕn(x) :=

√
2√
L

sin
((π

2
+ nπ

) x
L

)
and the corresponding coefficients α0

n, α
1
n ∈ R with

α0
n :=

∫ L

0

y0(x)ϕn(x) dx, α1
n :=

∫ L

0

y1(x)ϕn(x) dx.

Then we have the series representations

(2.1) y0(x) =

∞∑
n=0

α0
n ϕn(x), y1(x) =

∞∑
n=0

α1
n ϕn(x).

Unless otherwise stated, we shall make the following standing assumption for our
model of uncertain initial data.

(A) Assume that for all n ∈ {0, 1, 2, . . .}, identically distributed random variables
an, bn are given on a complete probability space (Ω,A,P).

Consider the random initial data

(2.2) yω0 (x) =

∞∑
n=0

aωn α
0
n ϕn(x), yω1 (x) =

∞∑
n=0

bωn α
1
n ϕn(x),

where the superscript ω indicates the evaluation of the random variable at this out-
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come ω ∈ Ω. Then our assumption (A) along with an argument related to the
Paley–Zygmund theorem implies that for these random series, almost surely we have
yω0 ∈ H1(0, L), yω1 ∈ L2(0, L) (see [21, Lem. 4.3], [4, 8]). The corresponding proba-
bilistic initial boundary value problem with uncertain initial data is given by

(Pprob)


yω(0, x) = yω0 (x), x ∈ (0, L)
yωt (0, x) = yω1 (x), x ∈ (0, L)
yωtt(t, x) = c2 yωxx(t, x), (t, x) ∈ (0, T )× (0, L)
yω(t, 0) = 0, t ∈ (0, T )
yωx (t, L) = u(t), t ∈ (0, T ),

where ω ∈ Ω. The solution of (Pprob) is almost surely at least as well behaved as the
solution of (Pdet). In fact, we have again a series representation that is presented in
the following theorem.

Theorem 2.1. Assume that y0 ∈ H1(0, L) with y0(0) = 0, y1 ∈ L2(0, L), and
u ∈ L2(0, T ). For n ∈ {0, 1, 2, . . .}, define

λn :=
1

L2

(π
2

+ nπ
)2

and the random variables

αωn(t) := aωn α
0
n cos

(√
λn c t

)
+ bωn α

1
n

1√
λn c

sin
(√

λn c t
)

+ c2 ϕn(L) 1√
λn c

∫ t

0

u(s) sin
(√

λn c (t− s)
)
ds.

Then

(2.3) yω(t, x) =

∞∑
n=0

αωn(t)ϕn(x)

is almost surely the unique solution of (Pprob). For all t ∈ (0, T ), we have almost
surely yω(t, ·) ∈ L2(0, L) and∫ L

0

yω(t, x)2 dx =

∞∑
n=0

(αωn(t))
2
.

Moreover, we have almost surely yω ∈ C((0, T ), L2(0, L)).

Proof. The functions ϕn are the solutions of the eigenvalue problem

ϕxx(x) = −λϕ(x), x ∈ [0, L], ϕ(0) = 0, ϕx(L) = 0

with the eigenvalues λn and the normalization∫ L

0

ϕn(x)2 dx = 1, n ∈ {0, 1, 2, . . .}.

The sequence of functions (ϕn)
∞
n=0 is a complete orthonormal system in the Hilbert

space L2(0, L). The definition of the functions αωn(t) implies that almost surely
αωn(0) = aωn α

0
n and almost surely (αωn)′(0) = bωn α

1
n. Hence, we have almost surely∑∞

n=0 α
ω
n(0)ϕn(x) = yω0 (x) and

∑∞
n=0(αωn)′(0)ϕn(x) = yω1 (x) almost everywhere on

(0, L). Thus, we have almost surely yω(0, x) = yω0 (x) and yωt (0, x) = yω1 (x) almost
everywhere on (0, L); that is, the initial conditions of (Pprob) are satisfied. Now we
consider the boundary traces. Almost everywhere on (0, T ), we have almost surely
yω(t, 0) =

∑∞
n=0 α

ω
n(t)ϕn(0) = 0.
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The definition of αωn(t) implies that for all n ∈ {0, 1, 2, . . .}, we have almost surely

(αωn)′′(t) = − c
2

L2

(π
2

+ nπ
)2

αωn(t) + (−1)n c2
√

2√
L
u(t).

For a test function ϕ ∈ D([0, T ]× [0, L]), we have

ϕ(t, x) =

∞∑
n=0

∫ L

0

ϕ(t, s)ϕn(s) dsϕn(x).

Hence, 0 = ϕ(t, L) =
∑∞
n=0

∫ L
0
ϕ(t, s)ϕn(s) dsϕn(L). Thus, the definition of the

distributional derivative implies almost surely∫ T

0

∫ L

0

[
yωtt(t, x)− c2 yωxx(t, x)

]
ϕ(t, x) dx dt

=

∫ T

0

∫ L

0

yω(t, x)ϕtt(t, x)− c2 yω(t, x)ϕxx(t, x) dx dt

=

∫ T

0

∫ L

0

∞∑
n=0

αωn(t)ϕn(x)ϕtt(t, x)− c2 αωn(t)ϕn(x)ϕxx(t, x) dx dt

=

∞∑
n=0

∫ T

0

∫ L

0

ϕn(x) (αωn)′′2 αωn(t)ϕ′′n(x)ϕ(t, x) dx dt

=

∞∑
n=0

∫ T

0

∫ L

0

ϕn(x)αωn(t)
[
−c2 λn + c2λn

]
ϕ(t, x)

+ϕn(x) c2ϕn(L)u(t)ϕ(t, x) dx dt

=

∫ T

0

c2 u(t)

∞∑
n=0

∫ L

0

ϕ(t, s)ϕn(s) dsϕn(L) dt

=

∫ T

0

c2 u(t)ϕ(t, L) dt = 0.

Thus, almost surely yω satisfies the wave equation in the sense of distributions.
Now we choose a test function ϕ(x) ∈ C2([0, L]) such that ϕ(0) = 0 and ϕx(L) =

0. Then we have ϕ(L) =
∑∞
n=0

∫ L
0
ϕ(x)ϕn(x) dxϕn(L). Hence, we have almost surely

for t ∈ (0, T ) almost everywhere∫ L

0

[
1
c2 y

ω
tt(t, x)− yωxx(t, x)

]
ϕ(x) dx

=

∫ L

0

1
c2 y

ω
tt(t, x)ϕ(x)− yω(t, x)ϕxx(x) dx

− yωx (t, x)ϕ(x)|Lx=0 + yω(t, x)ϕx(x)|Lx=0

=

∞∑
n=0

(
1
c2 α

′′
n(t) + λnαn(t)

) ∫ L

0

ϕ(x)ϕn(x) dx− yωx (t, L)ϕ(L)

=

∞∑
n=0

ϕn(L)u(t)

∫ L

0

ϕ(x)ϕn(x) dx− yωx (t, L)ϕ(L)

= u(t)ϕ(L)− yωx (t, L)ϕ(L)

= [u(t)− yωx (t, L)] ϕ(L).

In this weak sense, yω satisfies the Neumann boundary condition at x = L.
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Hence, the series (2.3) almost surely solves (Pprob). Consider the classical energy

Eω(u, t) :=

∫ L

0

yωx (t, x)2 +
1

c2
(yωt (t, x))

2
dx.

Since the energy decays almost surely for u(t) = 0, the uniqueness of the solution
follows. The continuity of the solution with respect to time follows from the regularity
of the αn(t). Thus, Theorem 2.1 is proved.

Remark 2.1. Note that the functions ( 1√
λn
ϕ′n)∞n=0 also form a complete orthonor-

mal system in L2(0, L).

3. Optimal Neumann control. In this section, we look at the problem of
optimal control from an uncertain initial state to a desired terminal position in a
probabilistic sense in a given finite time for a system that is governed by the initial
boundary value problem (Pprob). We assume for simplicity that L = 1. Let T ≥ 2 be
given. Let an expected initial position y0 ∈ H1(0, 1) with y0(0) = 0 and an expected
initial velocity y1 ∈ L2(0, 1) be given. For the convenience of the reader, we first
restate the deterministic optimal control problem (Ndet) for the case of initial states
without uncertainty with an exact terminal condition that has been studied in [15]:

(Ndet)



minu∈L2(0,T ) ‖u‖2L2(0,T ) subject to

y(0, x) = y0(x), yt(0, x) = y1(x), x ∈ (0, 1)

y(t, 0) = 0, yx(t, 1) = u(t), t ∈ (0, T )

ytt(t, x) = c2 yxx(t, x), (t, x) ∈ (0, T )× (0, 1)

y(T, x) = 0, yt(T, x) = 0, x ∈ (0, 1).

The terminal constraints can also be replaced by the requirement that the terminal
energy be equal to zero. For the convenience of the reader, we include the repre-
sentation of the optimal control for the deterministic case (Ndet) with wave speed
c = 1.

Theorem 3.1 (representation of the optimal Neumann control; see [15]).
Let T ≥ 2, k := max{n ∈ N : 2n ≤ T}, and ∆ := T − 2k. For t ∈ [0, 2), let

(3.1) d(t) :=

{
k + 1, t ∈ (0,∆],
k, t ∈ (∆, 2).

Then the optimal control u0 that solves (Ndet) is 4-periodic, with

u0(t) =


1

2d(t) [y′0(1− t)− y1(1− t)] , t ∈ (0, 1),

1
2d(t) [y′0(t− 1) + y1(t− 1)] , t ∈ (1, 2).

For t ∈ (0, 2), l ∈ {0, 1, . . . , k} with t+ 2l ≤ T , we have u0(t+ 2l) = (−1)l u0(t).

Now we present a problem that is suitable for uncertain initial data. Let an
accuracy parameter ε > 0 and a probability threshold p ∈ (0, 1) be given. We
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consider the problem of optimal exact control and uncertain initial data

(Nprob)(ε, p)



minu∈L2(0,T ) ‖u‖2L2(0,T ) subject to

yω(0, x) = yω0 (x), yωt (0, x) = yω1 (x), x ∈ (0, 1)

yω(t, 0) = 0, yωx (t, 1) = u(t), t ∈ (0, T )

yωtt(t, x) = c2 yωxx(t, x), (t, x) ∈ (0, T )× (0, 1)

P ( Eω(u, T ) ≤ ε ) ≥ p.

The parameter ε is an upper bound for the terminal energy that is valid at least
with the given probability p. For the terminal energy, we have

Eω(u, T ) =

∫ L

0

yωx (T, x)2 +
1

c2
yωt (T, x)2dx

=

∞∑
n=0

∣∣∣∣∣
∫ L

0

yωx (T, x) 1√
λn
ϕ′n(x) dx

∣∣∣∣∣
2

+
1

c2

∣∣∣∣∣
∫ L

0

yωt (T, x)ϕn(x) dx

∣∣∣∣∣
2

dx

=

∞∑
n=0

λn (αωn(T ))
2

+
1

c2
((αωn)′(T ))

2
.

For n ∈ {1, 2, 3, . . .}, define

σωn (t) := aωn α
0
n cos

(√
λn c t

)
+ bωn α

1
n

1√
λn c

sin
(√

λn c t
)

and

c(1)
n (u) := c2 ϕn(1) 1√

λn c

∫ T

0

u(s) sin
(√

λn c (T − s)
)
ds.

With the explicit representation of αωn(T ) from Theorem 2.1, we obtain

αωn(T ) = c(1)
n (u) + σωn (T ).

We have

(σωn )′(t) = −aωn α0
n

√
λn c sin

(√
λn c t

)
+ bωn α

1
n cos

(√
λn c t

)
.

Define

c(2)
n (u) := c2 ϕn(1)

∫ T

0

u(s) cos
(√

λn c (T − s)
)
ds.

Then
(αωn)′(T ) = c(2)

n (u) + (σωn )′(T ).

For the terminal energy, this yields

Eω(u, T ) =

∞∑
n=0

λn

(
c(1)
n (u) + σωn (T )

)2

+
1

c2

(
c(2)
n (u) + (σωn )′(T )

)2

.

Thus, the inequality constraint in (Nprob)(ε, p) has the form

(3.2) P

( ∞∑
n=0

λn

(
c(1)
n (u) + σωn (T )

)2

+
1

c2

(
c(2)
n (u) + (σωn )′(T )

)2

≤ ε

)
≥ p.
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In this way, the probabilistic constraint in the definition of (Nprob)(ε, p) demands
that the probability that the control is successful in a reduction of the energy such
that Eω(u, T ) ≤ ε be greater than or equal to p.

In order to make the energy accessible to numerical computations, the infinite
series that defines Eω(u, T ) is approximated by the finite sum of the first N terms
with N ∈ {1, 2, 3, . . .}. Define

(3.3) EωN (u, T ) :=

N∑
n=0

λn

(
c(1)
n (u) + σωn (T )

)2

+
1

c2

(
c(2)
n (u) + (σωn )′(T )

)2

.

We obtain the problem

(Nprob)(ε, p, N)


minu∈L2(0,T ) ‖u‖2L2(0,T ) subject to

P ( EωN (u, T ) ≤ ε ) ≥ p.

4. Convexity of the probabilistic constraint in (Nprob)(ε, p, N). In this
and the following section, we shall be dealing with finite-dimensional random vectors
in the context of problem (Nprob)(ε, p, N) with cutoff N -term energy 3.3. Therefore,
we will not have to impose our standing assumption (A) on identical distributions of
all of its components. This assumption will become critical again when showing in
section 6 the existence of solutions to the original problem (Nprob)(ε, p), where the
whole sequence of random variables comes into play.

In this section, we show that the probabilistic constraint in (Nprob)(ε, p, N) defines
a convex set of admissible controls u. To this aim, let ξ be an m-dimensional random
vector, U a vector space, and g̃ : U × Rm → Rk a given mapping. The following
theorem is due to Prékopa (in the original formulation, U was supposed to be finite-
dimensional, but this restrictive property is not exploited in the proof of the result;
see also [11, Prop. 4]):

Theorem 4.1 ([28]). Let ξ have a log-concave density, i.e., a density whose log
is (possibly extended-valued) concave. If all components g̃i of g̃, (i = 1, . . . , k), are
quasi-convex, then the probability function φ̃ : U → R defined by

(4.1) φ̃(u) := P (g̃i(u, ξ) ≤ 0 (i = 1, . . . , k))

is log-concave.

We introduce the probability functions φN : L2(0, T ) → R for N ∈ N associated
with the inequality constraints in (Nprob)(ε, p, N) as

φN (u) := P ( EωN (u, T ) ≤ ε )

or, more explicitly, (see (3.3))

(4.2) φN (u) := P

(
N∑
n=0

λn

(
c(1)
n (u) + σωn (T )

)2

+
1

c2

(
c(2)
n (u) + (σωn )′(T )

)2

≤ ε

)
.

Proposition 4.2. Let the random vector ξ := ((an, bn))Nn=1 have a log-concave
density. Then φN defined in (4.2) is also log-concave.
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Proof. By definition, φN can be written as φN (u) = P (g (u, ξ) ≤ 0), where, for
n = 1, . . . , N ,

g (u, z) :=

N∑
n=1

gn (u, z)− ε

gn (u, z) := λn

(
c(1)
n (u) + 〈An, z〉

)2

+
1

c2

(
c(2)
n (u) + 〈Bn, z〉

)2

An :=

(
(0, 0), . . . , (0, 0),(
α0
n cos

(√
λncT

)
,
α1
n√
λnc

sin
(√

λncT
))

, (0, 0), . . . , (0, 0)

)
Bn :=

(
(0, 0), . . . , (0, 0),(
−α0

n

√
λnc sin

(√
λncT

)
, α1

n cos
(√

λncT
))

, (0, 0), . . . , (0, 0)

)
z :=

((
zan, z

b
n

))N
n=1

,

where the nonzero expressions in An, Bn appear at position n. Since the functions

c
(1)
n (u) and c

(2)
n (u) are linear in u, the functions gn are convex as squares of linear

functions in (u, z) jointly. Hence, g is also convex. Now the result follows from
Theorem 4.1 upon putting φ̃ := φN and g̃ := g.

Corollary 4.3. In the setting of Proposition 4.2, the set of feasible controls u
defined by the probabilistic constraint in problem (Nprob)(ε, p, N) is convex and can
be equivalently represented by a convex inequality hN (u) ≤ 0, where

(4.3) hN (u) := − log φN (u) + log p

and φN is defined in (4.2).

Remark 4.1. We observe that many prominent multivariate distributions share
the property of having log-concave densities, e.g., multivariate Gaussian, Dirichlet,
Wishart, Gamma, or the uniform distribution on convex compact sets; see [28].

5. Algorithmic approach to the solution of problem (Nprob)(ε, p, N).
For the algorithmic solution of the optimization problem (Nprob)(ε, p, N), the numer-
ical evaluation/approximation of the probability function φN in (4.2) along with its
sensitivity with respect to the control variable u is necessary. We will describe next an
approach via the so-called spheric-radial decomposition of Gaussian random vectors
(see, e.g., [9, p. 105], [13, p. 30]). Although the same idea applies to a whole class
of distributions (e.g., Gaussian-like such as lognormal, truncated Gaussian, or ellip-
tically symmetric distributions, such as Student), we will content ourselves here with
the probably most prominent case of purely Gaussian distributions. The following
result is well known (see [9, eq. (8)] or in its present form [14, Thm. 3.1]).

Lemma 5.1. Let ξ ∼ N (µ,Σ) be an m-dimensional Gaussian random vector hav-
ing expectation µ and (nondegenerate) covariance matrix Σ. Then, for any Borel-
measurable subset M ⊆ Rm, its probability with respect to this distribution can be
represented as

P (ξ ∈M) =

∫
Sm−1

νχ {r ≥ 0|µ+ rLv ∈M} dνη(v).
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Here, Sm−1 is the (m − 1)-dimensional unit sphere in Rm, νη is the uniform dis-
tribution on Sm−1, νχ denotes the one-dimensional χ-distribution with m degrees of
freedom, and L is such that

(5.1) Σ = LLT

(e.g., Cholesky decomposition).

Next, we apply the previous lemma to the probability function φ̃(u) defined in
Theorem 4.1 for k = 1 and consider

(5.2) φ̃(u) := P (g̃ (u, ξ) ≤ 0) ,

where g̃ : U × Rm → R for some Banach space U and ξ is a Gaussian random vector
as in Lemma 5.1.

Corollary 5.2. Fix any u ∈ U with the following properties:
1. φ̃(u) > 0.5.
2. g̃(u, ·) is convex.
3. The convex inequality g̃(u, ·) ≤ 0 admits a Slater point; i.e., there is some z̄

with g̃(u, z̄) < 0.
Then,

(5.3) φ̃(u) =

∫
Sm−1

e (u, v) dνη(v),

where e(u, v) = Fνχ(ρ(u, v)) (with Fνχ referring to the distribution function of νχ) if
the equation

g̃ (u, µ+ rLv) = 0

admits a (unique) nonnegative solution r = ρ(u, v) ≥ 0 and e(u, v) = 1 else (i.e.,
g̃(u, µ+ rLv) < 0 for all r ≥ 0).

Proof. Lemma 5.1 yields that

(5.4) φ̃(u) =

∫
Sm−1

νχ {r ≥ 0|g̃(u, µ+ rLv) ≤ 0} dνη(v).

For fixed u ∈ U , define the set M := {z ∈ Rm | g̃(u, z) ≤ 0}. Clearly, M is convex
and nonempty by assumption 3. From our assumptions, it follows that the mean
vector µ of ξ satisfies the strict inequality g̃(u, µ) < 0 (see [1, Prop. 3.11]). Now,
by the convexity of M , one has either that g̃(u, µ + rLv) < 0 for all r ≥ 0 or that
g̃(u, µ+ rLv) = 0 for exactly one r = ρ(u, v) ≥ 0. In the first case,

νχ {r ≥ 0|g̃(u, µ+ rLv) ≤ 0} = νχ(R+) = 1

since the support of the χ-distribution is the nonnegative reals. In the second case,

νχ {r ≥ 0|g̃(u, µ+ rLv) ≤ 0} = νχ([0, ρ (u, v)]) = Fνχ (ρ (u, v))− Fνχ (0)

= Fνχ (ρ (u, v)) .

Now the assertion follows from (5.4).
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A few words on the assumptions of Corollary 5.2 are in order: The convexity
assumption 2 will hold true in the case of our problem (Nprob)(ε, p, N) because the
function g defined in the proof of Proposition 4.2 and playing the role of g̃ in Corol-
lary 5.2 was shown to be convex (actually in both arguments simultaneously) in the
mentioned proof. Requiring the value of the probability function to be larger than
0.5 as in assumption 1 is no practical restriction because in probabilistic constraints,
one is typically dealing with probabilities close to one. Finally, it is well known that,
without the Slater point assumption 3, the probability function φ̃ may even fail to
be continuous. In the case of our problem (Nprob)(ε, p, N), this condition is always
automatically satisfied because, given a control u, we may always find an initial state
which is steered to zero terminal energy by that control. Hence, the terminal energy
is strictly smaller than ε, which amounts to the existence of the desired Slater point
for g̃ := g and with g defined in the proof of Proposition 4.2.

For numerical purposes, the spheric integral in Corollary 5.2 will be approximated
by a finite sum based on a sample v1, . . . , vK ∈ Sm−1 from the uniform distribution on
the sphere. One possibility to do so efficiently consists in generating a quasi–Monte
Carlo sample w1, . . . , wK of the m-dimensional standard Gaussian distribution in Rm
and to normalize it so that vk := wk/‖wk‖ for k = 1, . . . ,K. Then the desired value
of the probability function in (5.2) can be approximated as

(5.5) φ̃(u) ≈ K−1
K∑
k=1

e
(
u, vk

)
.

Of course, the larger K, the better this approximation. It remains to clarify how the
function e(u, v) in Corollary 5.2 can be evaluated in the context of our optimization
problem (Nprob)(ε, p, N). To this end, the general function g̃ defined in (5.2) will be
specified now as the function g introduced in the proof of Proposition 4.2. Hence, we
have

g̃ (u, µ+ rLv) := g (u, µ+ rLv)

=

N∑
n=1

(
λn

(
c(1)
n (u) + 〈An, µ+ rLv〉

)2

+
1

c2

(
c(2)
n (u) + 〈Bn, µ+ rLv〉

)2
)
− ε.

Now, to solve the equation g̃(u, µ+ rLv) = 0 for given u and v in r ≥ 0 as mentioned
in Corollary 5.2, we can regroup and rewrite it as a quadratic equation in r:

(5.6) α (u, v) r2 + β (u, v) r + γ (u, v) = 0,

where

α (u, v) :=

N∑
n=1

λn 〈An, Lv〉2 +
1

c2
〈Bn, Lv〉2 ,

β (u, v) :=

N∑
n=1

2λn 〈An, Lv〉
(
〈An, µ〉+ c(1)

n (u)
)

+
2

c2
〈Bn, Lv〉

(
〈Bn, µ〉+ c(2)

n (u)
)
,

γ (u, v) :=

N∑
n=1

λn

(
c(1)
n (u) + 〈An, µ〉

)2

+
1

c2

(
c(2)
n (u) + 〈Bn, µ〉

)2

− ε.

Under the assumptions of Corollary 5.2, it follows that g̃(u, µ) < 0 (see proof
there), which means that γ(u, v) < 0. Since, moreover, α(u, v) ≥ 0, it follows that
exactly one of the following cases may occur:
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(a) If α(u, v) = 0 and β(u, v) ≤ 0, then (5.6) has no solution r ≥ 0 at all, and
hence e(u, v) = 1 (see Corollary 5.2).

(b) If α(u, v) = 0 and β(u, v) > 0, then the unique solution of (5.6) is

r = ρ (u, v) := −γ (u, v)

β (u, v)
> 0.

(c) If α(u, v) > 0, then (5.6) has exactly one solution r ≥ 0 given by

r = ρ (u, v) :=
−β (u, v) +

√
β2 (u, v)− 4γ (u, v)α (u, v)

2α (u, v)
.

We note that the one-dimensional distribution function Fνχ of the χ-distribution is
a direct built-in function of many mathematical software packages or can be easily
derived from the corresponding distribution functions of the χ2- or Γ-distributions
(for instance, Fνχ(t) = Fνχ2 (t2)).

After having described how to evaluate fairly precise values for the probability
function φ̃(u) via (5.5) (or in the context of optimization problem (Nprob)(ε, p, N)
the probability function φN (u) defined in (4.2)), we address now the question of
how to obtain its derivative Dφ̃(u) in order to set up a gradient-based optimization
procedure for solving problem (Nprob)(ε, p, N). For the following result, we refer the
reader to [19, Cor. 3, Rem. 1]. We note that the result in [19] has been presented for
standardized Gaussian random vectors. We formulate it here for the case of general
random vectors, which follows immediately from the previous one.

Theorem 5.3. Let g̃ : U ×Rm → R in (5.2) be continuously differentiable, where
U is some reflexive and separable Banach space, and let ξ ∼ N (µ,Σ) be an m-
dimensional Gaussian random vector. Additionally to the assumptions of Corollary
5.2, suppose that the following growth condition is satisfied around u ∈ U :

∃l > 0 : ‖∇ug̃ (w, z)‖ ≤ le‖µ+∆z‖ ∀w : ‖w − u‖ ≤ 1/l ∀z : ‖z‖ ≥ l,

where ∆ is a diagonal matrix with diagonal elements ∆i := diag
√

Σi,i. Then the

probability function φ̃ from (5.2) is (strictly) differentiable at u, and its gradient ∇φ̃(u)
is given as

(5.7) ∇φ̃(u) = −
∫
v∈F (u)

χ (ρ (u, v)) · ∇ug̃ (u, µ+ ρ (u, v)Lv)

〈∇z g̃ (u, µ+ ρ (u, v)Lv) , Lv〉
dνη(v).

Here,

χ(t) :=
tm−1e−t

2/2

2m/2−1Γ (k/2)
(t ≥ 0)

is the density of the one-dimensional χ-distribution with m degrees of freedom. More-
over, F (u) refers to the set of directions v ∈ Sm−1 such that the equation

g̃ (u, µ+ rLv) = 0

admits a (unique) nonnegative solution r = ρ(u, v) ≥ 0 (see Cor. 5.2).

The preceding theorem can now be applied to the probability function of our
problem (Nprob)(ε, p, N):
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Theorem 5.4. Let the random vector ξ := (an, bn)Nn=1 with coefficients introduced
in (A) have a 2N -dimensional Gaussian distribution ξ ∼ N (µ,Σ). Consider any u ∈
L2(0, T ) which is feasible in (Nprob)(ε, p, N) for some p > 0.5. Then the probability
function φN (u) := P( EωN (u) ≤ ε ) in (4.2) is (strictly) differentiable at u, and its
gradient is given by

(5.8) ∇φN (u) = −
∫
v∈F (u)

χ (ρ (u, v)) · ∇ug (u, µ+ρ (u, v)Lv)

〈∇zg (u, µ+ρ (u, v)Lv) , Lv〉
dνη(v),

where, with the definitions of An, Bn in the proof of Proposition 4.2,

∇ug(u, z) = 2

N∑
n=1

{
λn

(
c(1)
n (u) + 〈An, z〉

)
∇c(1)

n (u) +
c
(2)
n (u) + 〈Bn, z〉

c2
∇c(2)

n (u)

}
,

(5.9)

∇zg(u, z) = 2

N∑
n=1

{
λn

(
c(1)
n (u) + 〈An, z〉

)
An +

c
(2)
n (u) + 〈Bn, z〉

c2
Bn

}
.

(5.10)

Proof. Clearly, the function g introduced in Proposition 4.2 is continuously dif-
ferentiable with partial gradients as in (5.9), (5.10). By virtue of our assumptions,
we obtain that φN (u) ≥ p > 0.5, and hence, recalling the remarks below the proof of
Corollary 5.2, all assumptions of that corollary are satisfied for g̃ := g and φ̃ := φN .
As for the growth condition in Theorem 5.3, we observe that

‖∇ug(v, z)‖ ≤ 2

N∑
n=1

{
λn

∥∥∥∇c(1)
n (v)

∥∥∥(∣∣∣c(1)
n (v)

∣∣∣+ ‖An‖ ‖µ+ ∆z‖
)

+
1

c2

∥∥∥∇c(2)
n (v)

∥∥∥(∣∣∣c(2)
n (v)

∣∣∣+ ‖Bn‖ ‖µ+ ∆z‖
)}

.

By linearity of c
(1)
n , c

(2)
n , the norms ‖∇c(1)

n (v)‖, ‖∇c(2)
n (v)‖ are constants, and moreover

there exists some κ, δ > 0 such that

max
{∣∣∣c(1)

n (v)
∣∣∣ , ∣∣∣c(2)

n (v)
∣∣∣} ≤ κ ∀v : ‖v − u‖ ≤ δ.

This allows us to derive an estimate of the type

‖∇ug(v, z)‖ ≤ K1 +K2 ‖µ+ ∆z‖ ∀v : ‖v − u‖ ≤ δ ∀z,

which clearly entails the growth condition in Theorem 5.3. Summarizing, we observe
that all assumptions of Theorem 5.3 (including those of Corollary 5.2) are fulfilled for
g̃ := g and φ̃ := φN .

We recall that the functions c
(1)
n , c

(2)
n occurring in the formulas (5.9), (5.10) are

defined below problem (Nprob)(ε, p). In particular, one calculates their gradients
occurring in (5.9) as

∇c(1)
n (u) (s) =

c√
λn

ϕn(1) sin
(√

λn c (T − s)
)

(s ∈ (0, T )) ,(5.11)

∇c(2)
n (u) (s) = c2 ϕn(1) cos

(√
λn c (T − s)

)
(s ∈ (0, T )) .(5.12)
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The results presented in this section suggest an algorithmic scheme for determin-
ing approximations of the probability function φN (u) = P( EωN (u) ≤ ε ) and its gra-
dients ∇φN (u) in the iterative solution of our optimization problem (Nprob)(ε, p, N)
at a given iterate u ∈ L2(0, T ). The idea is to approximate the gradient ∇φN (u)
by its values on a finite subset {t1, . . . , tM} ⊆ (0, T ). In this way, a gradient-based
solution algorithm for (Nprob)(ε, p, N) (e.g., projected gradients) is easily set up. Ob-
serve that, thanks to Corollary 5.2 and Theorem 5.4, both the value φN (u) and its
gradient ∇φN (u) are represented as spherical integrals (in the latter case, one reduces
the sphere to its subset v ∈ F (u) by a simple check of ρ(u, v) <∞). Hence, the same
sample v ∈ Sm−1 can be used in order to update both φN (u) and ∇φN (u). Here, one
takes advantage of the fact that the value ρ(u, v) has only to be determined once. The
following algorithm assigns to a given iterate u ∈ L2(0, T ) approximations for φN (u)
and for ∇φN (u) on a given grid {t1, . . . , tM} under the given Gaussian distribution
(an, bn)Nn=1 ∼ N (µ,Σ) of the coefficients in (2.2).

Algorithm 5.1.
1. Generate a (quasi–Monte Carlo) sample v1, . . . , vK of the m-dimensional

standard Gaussian distribution N (0, I).
2. Find a Cholesky decomposition Σ = LLT for the covariance matrix of the

given distribution of coefficients.
3. Initialize the desired approximation sv for φN (u) and sg for ∇φN (u) on the

grid {t1, . . . , tM} by sv := 0 and sg(ti) := 0 for i = 1, . . . ,M . Initialize the
iteration counter for the sample in step 1 as k := 1.

4. For the given iterate u and the sampled direction v := vk ∈ S, check for and
identify the solution of (5.6). Compute values α(u, vk), β(u, vk), γ(u, vk)
as indicated below (5.6). Update the contribution of sample vk to the dis-
cretized versions of the spherical integrals (5.3) and (5.8) according to the
case distinction made above:
(a) If α(u, vk) = 0 and β(u, vk) ≤ 0 (i.e., (5.6) has no solution, from which

e(u, vk) = 1 and vk /∈ F (u)), then update sv := sv + 1.
(b) If α(u, vk) = 0 and β(u, vk) > 0, then put

ρ
(
u, vk

)
:= −

γ
(
u, vk

)
β (u, vk)

.

(c) If α(u, vk) > 0, then put

ρ
(
u, vk

)
:=
−β
(
u, vk

)
+
√
β2 (u, vk)− 4γ (u, vk)α (u, vk)

2α (u, vk)
.

In both cases (b) and (c), vk ∈ F (u). Update sv := sv +Fνχ(ρ(u, vk)) and for
(i = 1, . . . ,M) (see (5.8))

sg (ti) := sg (ti) +
χ
(
ρ
(
u, vk

))
· ∇ug

(
u, µ+ρ

(
u, vk

)
Lvk

)
(ti)

〈∇zg (u, µ+ρ (u, vk)Lvk) , Lvk〉
.

In this last formula, use the representations (5.9), (5.10). Referring to (5.11)
and (5.12), we obtain, for instance, the following fully explicit representation
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for ∇ug, required above:

∇ug
(
u, µ+ρ

(
u, vk

)
Lvk

)
(ti)

= 2c

N∑
n=1

(
cϕn(1)√

λn

∫ T

0

u(s) sin
(√

λn c (T − s)
)
ds

+
〈
An, µ+ρ

(
u, vk

)
Lvk

〉 )
·
√
λn ϕn(1) sin

(√
λn c (T − ti)

)
+ 2

N∑
n=1

(
(c2 ϕn(1)

∫ T

0

u(s) cos
(√

λn c (T − s)
)
ds

+
〈
Bn, µ+ρ

(
u, vk

)
Lvk

〉)
·ϕn(1) cos

(√
λn c (T − ti)

)
.

5. If k < K, then k := k + 1 and go to step 4.
6. STOP with φN (u) ≈ K−1sv and ∇φN (u)(ti) ≈ K−1sg(ti) for i = 1, . . . ,M .

6. Existence of solutions. In this section, we show that for all natural numbers
N ∈ {1, 2, 3, . . .} and ε > 0, a solution of (Nprob)(ε, p, N) exists if p is sufficiently
small. For a given ε > 0, we set

psup(ε,N) := sup
{
p ∈ [0, 1] | ∃u ∈ L2(0, T ) s.t. P ( EωN (u, T ) ≤ ε ) ≥ p

}
,

which is decreasing with respect to N . Hence, for all p < psup(ε, N), there exists
u ∈ L2(0, T ) such that P( EωN (u, T ) ≤ ε ) ≥ p, which means that the feasible
set of the optimal control problem (Nprob)(ε, p, N) is nonempty. This fact is used
to prove the following lemma, which ensures the existence of a unique solution to
(Nprob)(ε, p, N).

Lemma 6.1. Let N ∈ {1, 2, 3, . . .} be given. Assume that p ∈ [0, psup(ε, N)).
Then (Nprob)(ε, p, N) has a unique solution u ∈ L2(0, T ).

Proof. With the convex function hN as defined in (4.3), we can state problem
(Nprob)(ε, p, N) in the form

minu∈L2(0,T ) ‖u‖2L2(0,T ) subject to hN (u) ≤ 0.

Then the direct method of the calculus of variations yields the solution as the weak
limit point of a minimizing sequence. The strong convexity of the objective function
implies the uniqueness.

In preparation of the following lemma, let ν(ε, p, N) and ν(ε, p) denote the op-
timal value of (Nprob)(ε, p, N) and (Nprob)(ε, p), respectively.

Lemma 6.2. Assume that p ∈ [0, infN psup(ε, N)) and ν(ε, p) < ∞. Then the
sequence of solutions u∗(ε, p, N) of (Nprob)(ε, p, N) (N ∈ {1, 2, 3, . . .}) contains a
subsequence that converges strongly in L2(0, T ).

Proof. Since EωN (u, T ) ≤ EωN+1(u, T ) ≤ · · · ≤ Eω(u, T ), we have

ν(ε, p, N) ≤ ν(ε, p) for all N ∈ {1, 2, 3, . . .}.
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Moreover, the sequence (ν(ε, p, N))N∈N is increasing. Let L̃ := limN→∞ ν(ε, p, N).
Then L̃ ≤ ν(ε, p).

The assumption ν(ε, p) < ∞ implies that the sequence (u∗(ε, p, N))N∈N is
bounded. Hence, there exists a weakly convergent subsequence with a weak limit
ũ. We have L̃ ≥ ‖ũ‖2L2(0, L). For all N ∈ {1, 2, 3, . . .}, we have, for all M ≥ N ,

hN (u∗(ε, p, M)) ≤ 0.

Since hN is sequentially weakly lower semicontinuous, see [11, Prop. 1], we obtain for
all N ∈ {1, 2, 3, . . .}

hN (ũ) ≤ lim inf
M→∞

hN (u∗(ε, p, M)) ≤ 0.

This implies that ũ is feasible for (Nprob)(ε, p, N) for all N ∈ {1, 2, 3, . . .}. But

ν(ε, p, N) ≤ ‖ũ‖2L2(0, T ), and hence L̃ ≤ ‖ũ‖2L2(0, T ). Thus, we have L̃ = ‖ũ‖2L2(0, T ).

This implies in turn the strong convergence of the subsequence in L2(0, T ) to ũ.

In the following theorem, we show that each strong limit point ũ of the sequence of
solutions (u∗(ε, p, N))N∈N of the problems (Nprob)(ε, p,N) is feasible for (Nprob)(ε, p).

Theorem 6.3. Under the assumptions of Lemma 6.2 and under our standing
assumption (A), (Nprob)(ε, p) has a solution ũ that is a strong accumulation point of
the sequence (u∗(ε, p, N))N∈N given by Lemma 6.2. Moreover, we have

(6.1) lim
N→∞

ν(ε, p, N) = ν(ε, p).

Proof. Let ũ be as in the proof of Lemma 6.2. Note that we have ‖ũ‖2L2(0, T ) ≤
ν(ε, p) . Since ũ is feasible for (Nprob)(ε, p, N) for all N ∈ {1, 2, 3, . . .}, we have, for
all N ∈ {1, 2, 3, . . .},

(6.2) P (EωN (ũ, T ) ≤ ε ) ≥ p.

Define the random variable δωN := Eω(ũ, T )−EωN (ũ, T ) ≤ 0. We obtain that δωN+1 ≤
δωN . In addition, as a consequence of our standing assumption (A), we have almost
surely limN→∞ δωN = 0. Moreover, we have

P(EωN (ũ, T ) ≤ ε) = P(Eω(ũ) ≤ ε+ δωN ).

Consider the sets

SN := {ω ∈ Ω | Eω(ũ, T ) ≤ ε+ δωN} and ∩∞N=1 SN = {ω ∈ Ω | Eω(ũ) ≤ ε}.

Then we have SN+1 ⊂ SN , and due to (6.2), we have P(SN ) ≥ p. Define the set

S := {ω ∈ Ω | Eω(ũ, T ) ≤ ε} ∪
{
ω ∈ Ω

∣∣∣ lim
N→∞

δωN 6= 0
}
,

where P({ω ∈ Ω | limN→∞ δωN 6= 0}) = 0. Then P(S) = limN→∞ P(SN ). Thus, we
have shown that

P(Eω(ũ) ≤ ε) ≥ p.
Hence, ũ is feasible for (Nprob)(ε, p) and hence also a solution of (Nprob)(ε, p). Since
the arguments in the proof of Lemma 6.2 and Theorem 6.3 can be applied to any
weak limit point of the sequence (u∗(ε, p, N))N∈N, this implies that in fact every
accumulation point of the sequence (u∗(ε, p, N))N∈N is a solution of (Nprob)(ε, p).
Moreover, we have (6.1).
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2304 FARSHBAF-SHAKER, GUGAT, HEITSCH, AND HENRION

7. Numerical solution of two examples. In this section, we discuss the nu-
merical solution of two examples with different expected initial conditions for problem
(Nprob)(ε, p). Referring to the explicit description of that problem as well as to (2.2)
and (2.1), we consider the following problem data:

c := 1; ε := 0.1; T := 4; p ∈ {0.10, 0.15, 0.20 . . . , pmax}
an ∼ N (1, 0.2) (n ∈ N); an pairwise uncorrelated; bn := 0 (n ∈ N);

y0(x) := x (example 1); y0(x) := π−1 sin(πx) (example 2); y1(x) := 0 (x ∈ (0, 1)).

The coefficients α0
n and α1

n in (2.2) and (2.1), respectively, are obtained as the Fourier
coefficients of the chosen functions y0(x), y1(x). In particular, α1

n = 0 for all n. The
latter implies that the (formal) multiplicative random coefficients bn for perturbing
y1(x) can be chosen arbitrarily without any effect. As for the coefficients an, they all
follow an identical Gaussian distribution (with mean 1 and standard deviation 0.2) in
order to satisfy our standing assumption (A). This allows us to apply all the existence
and convergence results of section 6 to our examples. However, as pointed out earlier,
this assumption is not necessary for the numerical solution of the approximating prob-
lem (Nprob)(ε, p). Moreover, assuming all coefficients to be pairwise uncorrelated is
of absolutely no importance (recall Algorithm 5.1 allowing for correlated components
of the Gaussian random vector) for either the theory or the numerical solution and
is just due to a lack of significant information about correlations here. With the an
having expectation 1, it is ensured that the expected initial value coincides with the
nominal one, i.e., Eyω0 (x) = y0(x) for all x ∈ (0, 1).

In order to deal with problem (Nprob)(ε, p) numerically, one has to pass to finite-
dimensional approximations on two sides simultaneously: First, the series expansion
for the terminal energy has to be cut after N terms, which leads us to the consideration
of problem (Nprob)(ε, p, N). Second, we compute approximations for the optimal
controls u ∈ L2(0, T ) in an M -dimensional space of piecewise constant functions. Let
a grid 0 = t0 < t1 < t2 < · · · < tM = T be given. For i ∈ {1, . . . ,M}, let

vj(t) :=

{
1 if t ∈ [tj−1, tj),
0 elsewhere,

and define the finite-dimensional space XM (T ) by

XM (T ) := span{vj(·) : j = 1, . . . ,M}.

For any u ∈ XM (T ), we use the representation

u(t) =

M∑
j=1

u(tj−1)vj(t) t ∈ [0, T ).

Hence, we are finally led to solve the problem

(Nprob)(ε, p, N, M)

 minu∈XM (T )

M∑
j=1

(tj − tj−1)u(tj)
2 subject to

φN (u) ≥ p.

The solution will be based on a projected gradient method using values and gradients
of φN computed by means of Algorithm 5.1. Apart from explicit expressions occurring
in these computations, we have to specify (see (5.8), (5.9), (5.10)) the integrals defining
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the functions c1n(u), c2n(u) introduced below problem (Nprob)(ε, p). By elementary
calculus, one obtains that for u ∈ XM (T ) and for all n ∈ N,∫ T

0

u(s) sin
(√

λn(T − s)
)
ds

=
1√
λn

− cos
(√

λnT
)
u(t0) +

M−1∑
j=1

(u(tj−1)− u(tj)) cos
(√

λn(T − tj)
)

+ u(tM )

 ,
∫ T

0

u(s) cos
(√

λn(T − s)
)
ds

=
1√
λn

sin
(√

λnT
)
u(t0)−

M−1∑
j=1

(u(tj−1)− u(tj)) sin
(√

λn(T − tj)
) .

Before we proceed, we present a further analytical result in order to clarify the re-
lation between the discretized problem (Nprob)(ε, p, N, M) and the original problem
(Nprob)(ε, p). In the analysis, the semidiscretized problem (Nprob)(ε, p, N), where
the control space is still infinite dimensional, appears as an intermediate auxiliary
problem.

For our convergence analysis, we assume that for each M ∈ {1, 2, 3, . . .}, the grids
in the definition of the space XM (T ) are chosen in such a way that for all ũ ∈ L2(0, T ),
there exists a sequence (uM )M with uM ∈ XM (T ) for all M ∈ {1, 2, 3, . . .} and
limM→∞ ‖uM − û‖L2(0, T ) = 0. Then we have the following lemma.

Lemma 7.1. Let ν(ε, p, N, M) denote the optimal value of (Nprob)(ε, p, N, M).
Let the assumptions of Theorem 6.3 hold. Then we have, for all M ∈ {1, 2, 3, . . .},

(7.1) lim inf
N→∞

ν(ε, p, N, M) ≥ ν(ε, p).

Assume in addition that the Slater condition holds in the sense that for all sufficiently
large N ∈ {1, 2, 3, . . .} (say for N ≥ N0), there exists a Slater point uS ∈ L2(0, T )
such that we have hN (uS) < 0. (This is the case if p is chosen sufficiently small.)

Then for all N ≥ N0 and all sufficiently large values of M , the discretized problem
(Nprob)(ε, p, N, M) has a unique solution. Let u∗(ε, p, N, M) denote the solution of
(Nprob)(ε, p, N, M). Then for all N ≥ N0, we have

(7.2) lim sup
M→∞

ν(ε, p, N, M) ≤ ν(ε, p).

For a sequence (u∗(ε, p, Nk, Mk))k, where limk→∞Mk = limk→∞Nk =∞, we have

(7.3) lim
k→∞

ν(ε, p, Nk, Mk) = ν(ε, p),

and there exists a strong accumulation point of the sequence (u∗(ε, p, Nk, Mk))k that
is a solution of (Nprob)(ε, p).

Proof. Since XM (T ) ⊂ L2(0, T ), we have ν(ε, p, N, M) ≥ ν(ε, p, N). Due to
(6.1) for all δ > 0, there exists a number N1 such that for all N ≥ N1, we have
ν(ε, p, N) ≥ ν(ε, p)− δ. Hence, for all N ≥ N1, we have ν(ε, p, N, M) ≥ ν(ε, p)− δ.
Since δ can be chosen arbitrarily small, this implies (7.1).

Let N ≥ N0 be given. Then we can choose a sequence (uMS )M such that for
all M ∈ {1, 2, 3, . . .}, we have uMS ∈ XM (T ) and limM→∞ ‖uMS − uS‖2(0, T ) = 0;
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[11, Prop. 2] implies that hN is sequentially weakly upper semicontinuous. Hence,
we have lim supM→∞ hN (uMS ) ≤ hN (uS) < 0. This implies that for M sufficiently
large, we have hN (uMS ) < 0. Hence, for M sufficiently large, uMS is feasible for
the finite-dimensional convex optimization problem (Nprob)(ε, p, N, M). This implies
that (Nprob)(ε, p, N, M) has a solution. Due to the strict convexity of the objective
function, this solution is uniquely determined.

Let ũ denote a solution of (Nprob)(ε, p); such a solution exists according to Theo-
rem 6.3. The definition of EωN as a truncation of Eω implies that we have hN (ũ) ≤ 0.
We can choose a sequence (uM )M such that for all M ∈ {1, 2, 3, . . .}, we have
uM ∈ XM (T ) and limM→∞ ‖uM − û‖2(0, T ) = 0. Similarly as above, [11, Prop. 2]
implies that we have lim supM→∞ hN (uM ) ≤ hN (û) ≤ 0. We define λM as follows: If
hN (uM ) ≤ 0, let λM = 0. If hN (uM ) > 0, let

λM =
hN (uM )

|hN (uMS )|+ hN (uM )
∈ (0, 1).

Then lim→∞ λM = 0. Define the modified sequence (u
(F )
M )M :

u
(F )
M = (1− λM )uM + λMu

M
S .

Then we have u
(F )
M ∈ XM (T ), limM→∞ ‖u(F )

M −û‖L2(0, T ) = 0, and the definition of λM

and the convexity of hN imply the inequality hN (u
(F )
M ) ≤ 0. Hence, u

(F )
M is feasible for

(Nprob)(ε, p, N, M). Thus, we have ν(ε, p, N, M) ≤ ‖u(F )
M ‖2L2(0, T ). This implies that

lim sup
M→∞

ν(ε, p, N, M) ≤ lim sup
M→∞

‖u(F )
M ‖

2
L2(0, T ) = ‖û‖2L2(0, T ) = ν(ε, p),

and (7.2) follows. Now (7.1) and (7.2) imply (7.3).
The remaining parts of the assertion follow as in the proof of Theorem 6.3.

Remark 7.1. Lemma 7.1 indicates that in order to approximate a solution of
(Nprob)(ε, p), both discretization parameters N and M in (Nprob)(ε, p, N, M) should
be increased simultaneously. This is also illustrated in the numerical examples; see
Figure 3 and the corresponding comments below.

7.1. First example. Here, we assume that the nominal (unperturbed, expected)
initial state is given by y0(x) = x. With the concrete problem data as specified above,
it follows from Theorem 3.1 that the optimal deterministic control in problem (Ndet)
is the bang-bang control

(7.4) u∗(t) = 1/4 ∀t ∈ (0, 2); u∗(t) = −1/4 ∀t ∈ (2, 4).

This solution takes a nominal deterministic initial state y0(x) = x and y1(x) = 0
to a position of rest, i.e., a terminal state with zero energy, within the time T = 4.
In contrast to the deterministic case, for uncertain initial values, this same optimal
control will no longer take the string to rest (apart from the unlikely event that the
uncertain initial value coincides with the nominal or expected initial value). Instead,
we search for a control which takes the initial state with a certain sufficiently high
probability to a terminal state with an energy level below the chosen value of ε = 0.1.
In order to approximate the theoretical solution of problem (Nprob)(ε, p), we solved
problem (Nprob)(ε, p, N, M) for N = 100 and M = 256 with the probability level p
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Fig. 1. The figure shows the optimal controls under probabilistic terminal energy constraint
as solutions of problem (Nprob)(ε, p, N, M) for a tolerance of ε = 0.1 and for different probability
levels p. The two bang-bang controls in the figure refer to the optimal solution of the deterministic
problem (Ndet) (zero terminal energy) (larger amplitude) and to the solution of the expected value
counterpart of problem (Nprob)(ε, p, N, M) (lower amplitude; see text).

varying from p = 0.1 to the maximum possible value p = 0.9078 in steps of 0.05. The
corresponding optimal controls are illustrated in Figure 1.

Not surprisingly, unlike the piecewise constant deterministic solution (7.4) of prob-
lem (Ndet) (largest control in Figure 1), these controls are quite nonlinear due to the
presence of the probabilistic constraint, and they are increasing in amplitude for in-
creasing probability level p. Moreover, they exhibit the same symmetry patterns as
the deterministic controls. More surprisingly, the profiles change their shape from
convex-like to concave-like when passing a certain medium probability level p ≈ 0.47.
At that probability, the optimal control is bang-bang again but with lower ampli-
tude than the solution of (Ndet). It turns out that this is the solution of problem
(Nprob)(ε, p, N, M) when replacing the probabilistic constraint φN (u) ≥ p by the
constraint

(7.5)

∫ L

0

yx(T, x)2 +
1

c2
yt(T, x)2dx ≤ ε,

which bounds the terminal energy of the nominal (expected) initial state by ε (there-
fore, the control can afford a lower amplitude than that of (Ndet), which would corre-
spond to the stricter bound ε = 0).

Even less evident is the fact that the largest possible probability p = 0.9078 is
achieved again by a bang-bang solution which is exactly the one of the deterministic
problem (Ndet) imposing zero terminal energy while starting with the nominal ini-
tial state. Beyond that maximum probability, the feasible set of (Nprob)(ε, p, N, M)
becomes empty, and costs jump to infinity.

In order to illustrate the effect of the calculated solutions, we simulate a sample
of 10 random scenarios for the initial state around the nominal (expected) initial
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Fig. 2. Illustration of 10 simulated scenarios for the initial state (left diagram) and correspond-
ing evolution of energy over time.
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Fig. 3. The figure show the optimal control for the discretized problem with the energy EN with
N = 10. The control grid is equidistant with M = 16 (left) and M = 256 points, respectively.

state y0(x) = x according to the chosen Gaussian distribution of the multiplicative
perturbations an of the nominal Fourier coefficients (see problem data above). They
are illustrated in the left diagram of Figure 2. Taking the optimal control for the (still
feasible) probability level p = 0.9 (see Figure 2) and applying it to these 10 scenarios
for the initial state yields a time-dependent development of the corresponding energy
as illustrated in the right diagram of Figure 2. At terminal time T = 4, 9 out of
these 10 scenarios reach a terminal energy within the ε band around zero. This is in
expected correspondence with the chosen probability 0.9 (of course, slight deviations
could occur when repeating the simulation). Note, however, that this is just an out-
of-sample test (posterior test) and that the computation of optimal controls has not
been based on simulated scenarios but on the parameters of the underlying continuous
multivariate distribution.

Figure 3 illustrates that it is important both to increase the stochastic dimension
and to refine the discretization grid for the control simultaneously to approximate the
solution of the infinite-dimensional problem numerically. In the discretized problems,
the controls are approximated by piecewise constant functions. Refinement of the
control grid while keeping N = 10 constant leads to convergence to the optimal
control u∗(ε, p, N), which shows the typical features of the convergence of Fourier
series, namely, the overshooting at the jump discontinuities (Gibbs phenomenon).
Figure 1 shows the corresponding solution for N = 100 and M = 256. With this
choice of N , the spillover phenomenon is no longer visible.
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Fig. 4. The meaning of the figure is analogous to that in the previous example but now for a
problem with different initial state.

7.2. Second example. We repeat the numerical experiment with the more non-
linear nominal initial state y0(x) = π−1 sin(πx). The associated optimal controls are
illustrated in Figure 4. Except monotonicity of profiles with respect to the probabil-
ity level, we detect similar effects as in the previous example: Again, the family of
profiles passes, when increasing the probability level, through the solution of prob-
lem (Nprob)(ε, p, N, M) when replacing the probabilistic constraint φN (u) ≥ p by the
constraint (7.5) (terminal energy of expected initial state smaller than ε) at p = 0.43
and reaches its maximum probability at p = 0.9945, where it becomes identical to
the deterministic solution of problem (Ndet). Of course, these two special profiles
associated with deterministic problems are nonlinear now due to the nonlinearity of
the nominal initial state. As this relation between the probabilistic and the two de-
terministic solutions is repeatedly observed in examples, we strongly believe, without
having a proof yet, that it is generally true.

The left diagram of Figure 5 illustrates the dependence of the maximum achievable
probability on the chosen tolerance ε for the terminal energy. Of course, the larger
this tolerance, the higher the maximum probability that can be achieved. It turns out
that a slight increase of the tolerance from zero to 0.05 already ensures a sufficiently
high maximum probability of around 0.9. The right diagram of Figure 5 illustrates
the dependence of the cost for the control on the chosen probability level. It can be
seen that the level can be quickly increased up to around 0.8–0.9 at a very moderate
increase of costs. However, when approaching the maximum possible probability level,
the additional costs are considerable.

8. Conclusions. We have studied optimal control problems with systems gov-
erned by the wave equation where the initial state is uncertain. In order to take into
account the uncertainty, we have prescribed a probabilistic terminal constraint for
the energy of the system. In the probabilistic constraint, an upper bound ε for the
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Fig. 5. Plot of the maximum achievable probability as a function of the energy tolerance ε (left
diagram) and of the cost for the control as a function of the chosen probability level (right diagram).

energy and a desired probability level p appear as parameters. We have shown that
for reasonable choices of these parameters, optimal controls exist that solve the op-
timal control problems with a probabilistic terminal constraint. Examples illustrate
that the optimal controls can also be approximated numerically. In this presentation,
we did not consider further deterministic control constraints in addition to the prob-
abilistic constraint. However, it would not cause additional problems to include, for
example, box constraints for the control.

Since the uncertainty of the initial states occurs for many optimal control prob-
lems, it is also interesting to study this type of problem for more complex nonlinear
dynamics (see, for example, [5]). This will be a topic of future research.
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