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Abstract. For parametric systems of (finitely many) equations and (infinitely
many) inequalities the well-known concept of metric regularity is shown to
be equivalent to the so-called extended Mangasarian-Fromovitz constraint
qualification. By this, a corresponding result obtained by Robinson for finite
optimization problems my be transferred to semi-infinite optimization. For
the proof a local epigraph representation of the constraint set is mainly used.
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1. Introduction

Given a family A(:, ) (t e T) of multifunctions, a fixed t°€ T, and some (x°, y°)
belonging to the graph of A(:, t%, the notion of metric regularity indicates the
existence of a neighborhood W of (x°, y°, t°) such that, for each (%, j, f)e W, the
set A(, 1) 1(9):= {x|j e A(x, )} is nonempty and an a priori estimation of the
distance between X and A(-, £)~!(7) may be given in terms of the distance between
y and A(%, ?).

A standard application in optimization theory concerns studies of the reg-
ularity of the feasible set mapping for a parametrized system of finitely many
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equations and inequalities with C' data. Robinson [14], [15] has clarified the
close connections—in fact, equivalences under suitable assumptions—between
constraint qualifications (CQ) (Mangasarian-Fromovitz CQ, Slater CQ, Robinson
CQ, etc.) and metric regularity in the classical settings of nonlinear programming
problems; for a recent paper which completes the studies in this context, we refer
to [5]. Among the large number of publications handling metric regularity of
multifunctions on different levels of generality we also mention those of Ioffe [9],
Zowe and Kurcyusz [18], Penot [13], Aubin [2], Auslender [3], Rockafellar [17],
Borwein [4], and Jourani and Thibault [11]. Metric regularity of the constraint
set mapping plays an important role in the stability and sensitivity analysis of
parametric nonlinear programs, see, e.g., [11-[3], [5], [6], [12], [16], and [17].

This paper is concerned with conditions ensuring metric regularity of the
feasible set mapping of a semi-infinite program. We extend Robinson’s result [14]
that the Mangasarian-Fromovitz CQ is, for standard finite nonlinear programs,
equivalent to the regularity of the constraints. Thereby we relate to a CQ
introduced by Jongen et al. [10] who pointed out its relevance concerning
structural stability in semi-infinite optimization. As a main tool we use a technique
proposed in [7] to represent locally the constraints in epigraph form leading to
a very simple realization of metric regularity.

2. Maetric Regularity Results

Consider the following parametric system of equations and inequalities, which
typically appears as constraint system in semi-infinite optimization problems:

hx)=w, (i=1..p and g(G,xt=uj) (Vek), 1)

where te T, u = (uy, ..., u,) € R?, and ve C(K, R) are viewed as parameters, K isa
compact subset of R®, T is a metric space, and h;: R" x T >R and g: R* x R" x
T — R are given functions. C(K, R) denotes the space of continuous functions from
K to R with norm |v]| ¢ := max; k|v(j)|. For each (x, t) let

hix, £):= (hy(x, 2), ..., hy(x, 1) and g(:, x, )(j):= g(j, %, ?) (Vj € K).

Throughout the paper we impose the following continuity properties.

Assumption 1. The constraint functions satisfy:

1. g and h; are continuous.

2. g is continuously differentiable with respect to (j, x), and h is continuously
differentiable with respect to x.

3. The partial derivatives D; ,g(',, ) and D, h(:,") are continuous.

Obviously, by condition 1 of Assumption 1, the inequalities in (1) may be
interpreted as a cone constraint in C(K, R), namely, g(-, x, t) — v(*) € Co(K), where
Co(K):= {ve C(K, R)|¥(j) = 0 (Vje K)}.
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Specializing the notions of metric regularity in Definition 3.1 of [11] and
Definition 2.1, parametric version, of [ 5] to our situation, we arrive at the following
definition. Let |||, denote the [ -norm. For ueR?, ve C(K, R), and a€ R put
1@, V)| o, x = max{||ull o, [vllx}, &* := max{a, 0} and let v* be defined by v™(j):=
(v()*, Vje K. By dist we denote the point-to-set distance induced by any norm
Il in R". Let 0, and 6 be the zero elements in R? and C(K, R), respectively. For
w=(uv)eT x R? x C(K, R) we denote by M(w) = R" the solution set of (1).

Let 0® = (%0, 6) and x° e M(w®). We call system (1) metrically regular at
(x°, w®) if a neighborhood U of (x°, @°) and a real number B > 0 exist such that,
with @ = (t, u, v),

dist(x, M(w)) < B+ I — h(x, 1), (0 — g, %, Dok VX, w)eU. (2)

Note that (2) includes that M(w) is nonempty for all @ in some neighborhood of
w°. When fixing ¢t = t° in this definition, we call system (1) metrically regular at
(x°, w°) with respect to right-hand side perturbations. Defining the multifunction
A(x, 1):= {(h(x, t), g(-, x, 1))} — {0,} x Co(K), metric regularity in the sense of (2)
fits into the notion introduced in the very beginning of this paper.

For a feasible point x € M(t°, 0,, ®), let E(x):= {j € K|g(J, x, t°) = 0}. Clearly,
compactness of K implies compactness of E(x). Note that, due to feasibility of x,
the set E(x) consists of all global minima of the function g(:, x, t°) on K if E(x) # .

Following [10] (see also p. 47 of [8]) we say that the Extended Mangasarian—
Fromovitz Constraint Qualification (EMFCQ) holds at x° e M(t°, 0, ®) if

{D.h{(x° t%};=,....., is a linearly independent set (3)

.....

and
I¢eR", D.h(x°t=0(G(=1,...,p), D.g(j,x°t0¢ >0 (Vje E(x°).
@

If K is a finite set, EMFCQ is the standard Mangasarian-Fromovitz CQ.
Obviously, EMFCQ implies p < nand, if E(x°) # &5, then ¢ # 0,andp <n — 1.

Now we present the results of this paper. The idea of our approach relies
essentially on the following observation for a nonparametric inequality system: If
it is assumed that ¢° is fixed, no equations appear, and, for each je K, g(j, x, t°)
has the form x, — §(j, x;, ..., X,— 1), then the distance between some point and the
feasible set can be trivially estimated along the x,-axis. In the case of the general
system (1), estimate (2) reduces to a similarly simple form if a parametric epigraph
representation exists. As the subsequent lemma will show, EMFCQ provides this
after some local coordinate transformation. The proof of this lemma is almost
identical to that of the nonparametric version [7] and is therefore omitted.

For the purpose of abbreviation we introduce the projection [y],:=
(¥1, ..., ¥) of a point y e R” onto its first k coordinates.

Lemma 1. Assume EMFCQ to hold at a point x° e M(t°,0,, ®) with E(x°) # .
Then an open neighborhood U, x U, x U, x U, of (x°,0,,0,0,), an open set
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0 2 E(x°), and a local C'-coordinate transformation y: U, — U, with Y(x%) =0,
exist such that, for all (x,u,v,y)eU, x U, x U, x U, y= Y(x),- the following
systems are equivalent. :

{ hx,t%) =u } {y [yl,=u }

<> .
g(j’ X, to) = U(_]), V]E K u = (0(_], [y]n-l’ v)’ VjE K*
Here, K* is a compact set with Ex°) = K¥* = Kn O and ¢: O x [U,Jo-1 xU,—»R
is continuously differentiable on its domain. Further, a real number o > 0 exists such
that |(p(.]9 [y]n-la U) _ynl <ar |U(]) - g(.]a X, t0)|9 V(.]a X, 0, y)EK* X Ux X Uv X Uy9
y = ¥(x).

In what follows let ° € T and w°® = (t°, 0,, ). For brevity we sometimes write
h(x), g(j, x), M(u, v) instead of h(x, t°), g(j, x, t°), M(¢°, u, v).

Theorem.l. If EMFCQ holds at x° € M(w°), then system (1) is metrically regular
at (x°, 0?).

Proof. Relating a result given by Cominetti in Theorem 2.1 of [5] to our situation
means that metric regularity of (1) with respect to right-hand side perturbations
with some modulus f > 0 implies metric regularity of (1), if the functions x>
(h(x, t) — h(x, t°) and x> (g(-, x, t) — g(:, x, t°)) are Lipschitzian on some neigh-
borhood of x° with uniform Lipschitz constant L < g~ for all ¢ in some neighbor-
hood of t°. This, however, follows from condition 3 of Assumption 1 and the
compactness of K by standard arguments. Hence it suffices to show that (1) is
metrically regular at (x°, »®) with respect to right-hand side perturbations.

In the case E(x°) = ¢J, condition 1 of Assumption 1 yields that in some
neighborhood of (x° w°), system (1) is exclusively described by the equations.
However, then the classical MFCQ in finite optimization is dealt with and the
stated proposition follows from [14]. For E(x°) # & Lemma 1 may be applied.
We consider the system

[yl,=u and  y,=0(, [y].-1,0), VjeK*, (%)

in the setting of Lemma 1. In order to verify metric regularity, let (X, u,v, 5
in U, x U, x U, x U, with y =(x) be arbitrarily chosen. Define M*(u, v):=
{ye U,y satisfies (5)}. Clearly, M*(u, v) = y(U, ~ M(u, v)), by Lemma 1. Define
a reference point

y* € M*(u’ U) by [y*]n—l = (u, j’.p+ 1900 yn-— 1) and y: = (p*([y*]n~17 U),

where @*([¥],- 1, v) = max; g+ @(J, [¥]n-1, v). Feasibility of y* follows from Lem-
ma 1. Then

dist(7, M*(u,v)) < ¢ |7 — y*ll»
= c'max{"[j}]p—u”ao9 Iyn— (p*([y*]n‘—l’ U)l}, (6)

where ¢ is some positive factor of norm equivalence.
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Completing the proof, we first remark that x*:= y ~!(y*) € M(u, v). Secondly,
recall that ~! is continuously differentiable on U, and may be hence assumed,
without loss of generality, to be Lipschitzian there with modulus ¢ > 0. From (6)
we conclude (with 7 = ¢~ (X))

dist(x, M(u, v)) < dist(x, U, N M(u, v))
= inf Y@ —-v W
yeM*u,v)
< ¢- dist(j, M*(u, v))
< c-e-max{||[7], — tllw, [@*([¥*]u=1, 1) — Ful}- @

Without loss of generality, the maximum function ¢* may be assumed to be
Lipschitzian on [U,],-; x U, with some modulus 6 > 0. Taking account of the
second assertion in Lemma 1 we thus obtain

| a — @*([y*1n-1, V)|
<@ [y*In-10) — @*[F1a=1, )| + 1@*([V]s- 1, V) = Tl
<O llu—[7lple +a-liw—g(, )" k-

Combining this with (7) yields the required condition of metric regularity with
modulus f:= c-¢-max{l,a + 6} > 0. O

Theorem 2. If system (1) is metrically regular at x°e M(w®) with respect to
right-hand side perturbations, then EMFCQ holds at x°.

Proof. For g¢e R let £ be the function defined by &(j) = ¢ (Vj € K). By hypothesis,
neighborhoods U of 0,, V of x%, and positive real numbers B y exist such that,
for all (x,u)eV x U and all ce [O, 1]

dist(x, M(u, —8)) < B+ ll(u — h(x), (=& — g(*, X)) o, x-

The compactness of K and the continuity of g entail that, for some neighborhood
V' < V of x°, g(j, x) 2 =y (V(j, x)€ V' x U). Hence, we have for the solution set
mapping u — M(u) of the system h(x) = u that if (x, u)e V' x U, then

dist(x, M(u)) < dist(x, M(u, —7%))

< ﬁ'maX{lIu — h(x) ., max(—y — g(j, x»*}

jekK
= ﬁ "u - h(x)“oo’

which implies by classical regularity theory (see, e.g., Corollary 3 of [14]) that (3)
is satisfied.

Now we prove (4). If E(x°) = (J, then locally only equality constraints are
dealt with, but then the assertion follows from [14] again. Therefore let E(x°) # .
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Then min; g g(j, x°, t% = 0. Consider a sequence ¢, | 0 with g > 0. Since (4, v) =
(0,, 4) are feasible right-hand side perturbations of (1), metric regularity implies
that to each ¢, there belongs a point x* e M(t°, 0,, &) fulfilling

"xk - xoll = diSt(xo’ M(t.07 Op: é‘\lc)) < B ) "(ék - 9(9 xO’ to))+ "K = ﬂ " 8- (8)

For all je E(x°) we have g(j, x°, t°) = 0 and, due to feasibility of x*, we have
g(j, x*, °) > ¢,. Taking account of (8), this leads to (Vj € E(x°))

U a_guke)—gGx%e)
B Ix* — x| Ix* — x°|
_ Dog(j. x°%, £°)x* — x°) + o(x* — x%) o)
Ix* — x°] .

By (8) lim,_, . [|x* — x°|| = 0 holds. Without loss of generality we may assume
lim, _, o |x* — x°|| T}(x* — x°) = £e R". Transition to the limits on both sides
of (9) provides D g(j, x°, t%- & > (1/B) > O (Vj € E(x°). On the other hand, since
x°e M(t°,0,,0) and x*e M(°0,,8,), it follows that h(x°, t% = h(x*,t°) =0,
hence Dhy(x°, t)(x* — x°) = o(x* — x°). Dividing by ||x* — x°| and passing to the
limits yield Dh(x°,t%)-¢é=0(=1,...,p) O

3. Concluding Remarks

By Theorems 1 and 2 we may conclude that, for parametric systems of the type
(1), the concept of metric regularity is equivalent to EMDCQ. This fact could be
alternatively proved by applying results in [5], [13], and [18] to the cone
constraint form of (1), but we have preferred a more direct approach. The results
given above enlarge the set of equivalent characterizations of EMFCQ. We
emphasize that in [10] EMFCQ was found to coincide with stability of constraint
sets in semi-infinite optimization. By this it is recognized that metric regularity is
closely related to stability in the sense of Jongen. The difference between both
concepts is based on somewhat different types of data perturbations. Finally, in
[7] equivalence between EMFCQ and local epigraph representability of the
constraint set was shown.
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