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Introduction

For multistage problems, stochastic programming is usually
performed on scenario trees.

An essential problem to solve to apply this method is: How to
generate the tree when only historical scenarios are available ?

A classical method is to use a clustering heuristic. The goal of this
short talk is to present the convergence of this heuristic and
illustrate it on an example.
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Stochastic Optimization
Complexity of multistage programs

Stochastic optimization is difficult problem, even more so in the
multistage case [Shapiro, 2006], but appears nevertheless quite
frequently in a large number of domains and applications (finance,
production, power, logistic, scheduling, . . . ).

Multistage problems differ from two stages ones by their
information structure. In the multistage case, not only an optimal
decision must be obtained for the first stage, but also decision rules
for the following stages, which are functions of the information
acquired at each stage.

This progressive acquisition of information and the associated
measurability constraints make this problem much harder.



Stochastic Optimization
Resolution of multistage programs

Therefore, contrarily to the two stages case, it is not possible to
use a simple Monte Carlo sampling approach.

I’ll put aside dynamic programming based methods which are a
separate class with their strengths and weaknesses and I will
concentrate on stochastic programming based methods. Among
these methods, we can find:

1. Closed loop stochastic gradient methods [Barty et al., 2005]
which adapt stochastic gradient techniques to the functional
nature of the multistage problems ;

2. Methods of progressive refinement of a discrete approximation
of the problem [Casey and Sen, 2006];

3. And the most common methods which first discretize the
problem completely before solving it using classical means.



Stochastic Optimization
A priori discretization

Among those methods we can find:

1. Linear decision rules based methods
[Thénié and Vial, 2004, Holt et al., 1955] or quantization
[Barty, 2004], which discretize the multistage problem into a
two stages one ;

2. And the most widely used technique usually associated with
“Stochastic Programing”which consists in discretizing the
problem into a deterministic finite dimension problem, solve
by large scale optimization methods, such as linear
programming. This discretization is usually performed with
the help of a tree, a structure which intrinsically takes into
account measurability constraints on the decisions.

While my approach will be slightly different, I’ll first concentrate
on that last class of methods.



Stochastic Optimization
Solving on a tree

Two widely different cases can occur:

1. Either we know how to perform conditional sampling on the
uncertainties, typically when the processes involved are known,
or when the uncertainties are independent. In that case, a
large amount of tree building techniques are available, either
Monte-Carlo based [Shapiro, 2003, Shapiro, 2006] or Quasi
Monte Carlo based [Pennanen and Koivu, 2005].

2. Or we cannot perform such sampling and only scenarios are
available, typically when only historical data are available, or
the scenario generation procedure is not adapted to
conditional sampling (e.g., some physical simulations). In this
last case, if the uncertainties are continuous, the scenarios do
no lend themselves directly to a tree structure.



When only scenarios are available
Solving from scenarios

In this last case, a few techniques are available (see
[Dupačová et al., 2000] for a survey). Mainly:

1. Moment matching techniques
[Høyland and Wallace, 2001, Høyland et al., 2003];

2. Probability metric methods [Römisch and Heitsch, 2006,
Pflug, 2001, Hochreiter and Pflug, 2006], and among them,
the classical tree generation by clustering method, typically
used for its simplicity.

Clustering is somewhat simpler that the SCENRED tree reduction
method [Römisch and Heitsch, 2006] and optimal tree generation
[Pflug, 2001]. Moreover, clustering does not assume the problem is
already formulated on a tree, which is almost never the case.
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Problem setting

let ξ1 and ξ2 two random variables with support Ξ1 ⊂ Rp1 and
Ξ2 ⊂ Rp2 , with Ξ1 ×Ξ2 equipped with the euclidean norm denoted
‖·‖. We look for the solution of the following three-stage
stochastic problem:

J = min
u0,u1(·)

E [f (u0, u1 (ξ1) , ξ1, ξ2)] (1)

Subject to {
u0 ∈ U0 ⊂ Rn0

∀ξ1 ∈ Ξ1, u1 (ξ1) ∈ U1 ⊂ Rn1

Suppose that for all u0 ∈ U0 u1 (ξ1) ∈ U1, ξ1 and ξ2,
f (u0, u1 (ξ1) , ξ1, ξ2) is finite and that f (u0, u1 (ξ1) , ξ1, ξ2) is
measurable and integrable for all u0 and u1 (·) considered.

Hypothesis on the dynamic

We suppose that there exists a function h1 such that
ξ2 = h1 (ξ1, ε2) with ε2 an Rp′

2 valued r.v. independent of ξ1.



Solving from historical scenarios

Let
(
ξj
1, ξ

j
2, ε

j
2

)
j=1,...,N

a sample of N independent drawings of the

rand variables triplet (ξ1, ξ2, ε2).

We look for the solution of problem (1), using only the values(
ξj
1, ξ

j
2

)
j=1,...,N

which correspond to the historical scenarios.

The transfer function h1 is supposed unknown.



Tree generation method
Scenario clustering

We perform a clustering of the N drawings into MN clusters
(Pi )i=1,...,MN

(a partition of the indices j ∈ {1, . . . ,N}) with
1 ≤ MN ≤ N.

Let:

I ‖Pi‖ = maxj ,j ′∈Pi

∥∥∥ξj
1 − ξj ′

1

∥∥∥ the diameter of cluster Pi ;

I θN = maxi=1,...,N ‖Pi‖ the maximum diameter;

I ∀i = 1, . . . ,MN , Ni = cardPi , the number of drawings in each
cluster;

I mN = mini=1,...,MN
Ni the smallest number of drawings in a

cluster;

I ∀i = 1, . . . ,MN , ∀j ∈ Pi , pj = i , the cluster to which each
drawing belongs to.



Tree generation method
Clustering Hypothesis

Clustering Hypothesis

Assume that when N →∞, the clustering procedure leads to
θN → 0, p.s., and ∃α > 0 t.q.

∑∞
N=1 P [mN < Nα] < ∞.

Example

If ξ1 follows an uniform law over Ξ1 = [0, 1], we can take

MN =
⌈√

N
⌉
, θN = 1

MN
, the MN clusters being defined by the

contiguous intervals of width θN .



Tree generation method
Choice of a representative element

For all non-empty cluster Pi , we arbitrarily choose a representative

element denoted ξ̂i
1 s.t. ∀j ∈ Pi ,

∥∥∥ξ̂i
1 − ξj

1

∥∥∥ ≤ θN and ξ̂i
1 ∈ Ξ1.

Example

If Ξ1 is convex, the barycenter of each cluster, ξ̂i
1 = 1

Ni

∑
j∈Pi

ξj
1, is

an adequate choice. Otherwise, we can always choose ξ̂i
1 among

the elements of the cluster, i.e.,
(
ξj
1

)
j∈Pi

.



Tree generation method
Final problem

Finally, we approximate the initial stochastic problem (1) by the
following deterministic tree structured problem:

J̃N = min
u0,(ui

1)i=1,...,MN

1

N

∑
j=1,...,N

f
(
u0, u

pj

1 , ξ̂
pj

1 , ξj
2

)
subject to u0 ∈ U0 and ∀i = 1, . . . ,MN , ui

1 ∈ U1.



Tree generation method
Example
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Initial scenario fan Tree generated by clustering

Figure: Tree generation from 5 scenarios with P1 = {1, 2, 3},
P2 = {4, 5}, ξ̂1

1 = ξ2
1 and ξ̂2

1 = ξ4
1 .



Convergence

For all η > 0, we study the probability P
[∣∣∣J̃N − J

∣∣∣ ≥ η
]

that the

approximate solution of the tree is not η-optimal.

On Quasi Monte Carlo

Please note that the following study does no take into account the
low discrepancy properties of the representative elements obtained
after clustering and is therefore only useful to prove convergence
and does not provide any reasonable clue about the convergence
speed.



Notations

Let v (u0, ξ1) denote the second stage value:

v (u0, ξ1) = min
u1∈U1

E [ f (u0, u1, ξ1, ξ2)| ξ1 = ξ1]

J = min
u0∈U0

E [v (u0, ξ1)]

Let ṽi (u0, ξ1) denote the discrete approximation of v (u0, ξ1)
through the clusters:

ṽi (u0, ξ1) = min
u1∈U1

1

Ni

∑
j∈Pi

f
(
u0, u1, ξ1, ξ

j
2

)

J̃N = min
u0∈U0

1

N

∑
i=1,...,MN

Ni ṽi

(
u0, ξ̂

i
1

)
= min

u0∈U0

1

N

∑
j=1,...,N

ṽpj

(
u0, ξ̂

pj

1

)
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(
u0, ξ̂

i
1

)
= min

u0∈U0

1

N

∑
j=1,...,N
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Notations (continued)

Let Ĵ denote the SAA approximation using drawings
(
ξj
1

)
and the

exact second stage:

ĴN = min
u0

1

N

∑
j=1,...,N

v
(
u0, ξ

j
1

)

Finally, though hypothesis (11) on the dynamic, ∀j = 1, . . . ,N,

ξj
2 = h1

(
ξj
1, ε

j
2

)
, let v̂i (u0, ξ1) denote the value of the second

stage approximated using the valuesξ2| ξ1 = ξ1 generated from

h1

(
ξ1, ε

j
2

)
for j ∈ Pi :

v̂i (u0, ξ1) = min
u1∈U1

1

Ni

∑
j∈Pi

f
(
u0, u1, ξ1, h1

(
ξ1, ε

j
2

))
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Proof Outline

The proof is composed of three steps:

1. First we prove the convergence of the second stage towards its
exact value;

2. Then we perform the same proof for the first stage;

3. Finally we conclude on the overall convergence.



Convergence of the second stage
Splitting into parts

We compare, ∀j = 1, . . . ,N, v
(
u0, ξ

j
1

)
and ṽ

(
u0, ξ̂

pj

1

)
using the

following upper bounding:∣∣∣v (
u0, ξ

j
1

)
− ṽ

(
u0, ξ̂

pj

1

)∣∣∣ ≤
∣∣∣v (

u0, ξ
j
1

)
− v

(
u0, ξ̂

pj

1

)∣∣∣
+

∣∣∣v (
u0, ξ̂

pj

1

)
− v̂pj

(
u0, ξ̂

pj

1

)∣∣∣
+

∣∣∣v̂pj

(
u0, ξ̂

pj

1

)
− ṽpj

(
u0, ξ̂

pj

1

)∣∣∣



Convergence of the second stage
First part : regularity

The difference
∣∣∣v (

u0, ξ
j
1

)
− v

(
u0, ξ̂

pj

1

)∣∣∣ an be upper bounded

using regularity properties of h1 and f .

Hypothesis on the regularity

Assume that:

1. h1 is uniformly Ch1-Lipschitz in ξ1;

2. And f is uniformly Cf -Lipschitz in (ξ1, ξ2).

Therefore:

∣∣∣v (
u0, ξ

j
1

)
− v

(
u0, ξ̂

pj

1

)∣∣∣ ≤ θNCf

√
1 + C 2

h1
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)
− v
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1
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1 + C 2

h1



Convergence of the second stage
Second part: Monte Carlo

The difference
∣∣∣v (

u0, ξ̂
pj

1

)
− v̂pj

(
u0, ξ̂

pj

1

)∣∣∣ can be upper bounded

using Shapiro’s result on SAA approximation (cf.
[Shapiro, 2006, Shapiro and Nemirovski, 2005]).

Define:

w (u0, u1, ξ1) = E [ f (u0, u1, ξ1, ξ2)| ξ1 = ξ1]

ŵi (u0, u1, ξ1) =
1

Ni

∑
j∈Pi

f
(
u0, u1, ξ1, h1

(
ξ1, ε

j
2

))



Convergence of the second stage
Hypotheses for the large deviations theorem

Assume that:

1. U0 × U1 × Ξ1 is non-empty, closed and of finite diameter D1;

2. There exists a constant σ1 s.t.

M(u0,u1,ξ1) (t) ≤ e
σ2

1 t2

2 , ∀t ∈ R, ∀ (u0, u1, ξ1) ∈ U0 × U1 × Ξ1

where

M(u0,u1,ξ1) (t) = E
[
ef (u0,u1,ξ1,ξ2)−w(u0,u1,ξ1)

∣∣∣ ξ1 = ξ1

]
is the moment generating function of the r.v.
f (u0, u1, ξ1, ξ2)− w (u0, u1, ξ1);

3. And that f is L1-Lipschitz in (u0, u1, ξ1) uniformly in ξ2.



Convergence of the second stage
Application of the large deviations theorem

We then apply the theorem 1 from [Shapiro, 2006] which enables
us to deduce that there exists A1 ≥ 0 s.t. ∀η1 > 0, ∀n ∈ N∗ and
∀i = 1, . . . ,MN :

P
[

max
(u0,u1,ξ1)

|ŵi (u0, u1, ξ1)− w (u0, u1, ξ1)| ≥ η1

∣∣∣∣Ni = n

]
≤ A1

(
D1L1

η1

)n1

e
− nη2

1
16σ2

1

Which implies, ∀ (u0, ξ1) ∈ U0 × Ξ1, ∀n ∈ N∗, and ∀i = 1, . . . ,MN :

P [ |v̂i (u0, ξ1)− v (u0, ξ1)| ≥ η1|Ni = n] ≤ A1

(
D1L1

η1

)n1

e
− nη2

1
16σ2

1



Convergence of the second stage
Application of the large deviations theorem (cont.)

Therefore, ∀ (u0, ξ1) ∈ U0 × Ξ1 and ∀m ∈ N∗, since MN ≤ N:

P
[

max
i=1,...,MN

|v̂i (u0, ξ1)− v (u0, ξ1)| ≥ η1

∣∣∣∣mN ≥ m

]
≤ A1N

(
D1L1

η1

)n1

e
− mη2

1
16σ2

1

which implies that ∀ (u0, ξ1) ∈ U0 × Ξ1 and ∀m ∈ N∗:

P
[

max
i=1,...,MN

|v̂i (u0, ξ1)− v (u0, ξ1)| ≥ η1

]
≤ A1N

(
D1L1

η1

)n1

e
− mη2

1
16σ2

1 + P [mN < m]



Convergence of the second stage
Third part : regularity

Observe that:

ṽi

(
u0, ξ̂

i
1

)
= min

u1∈U1

1

Ni

∑
j∈Pi

f
(
u0, u1, ξ̂

i
1, h1

(
ξj
1, ε

j
2

))

Therefore the difference
∣∣∣v̂pj

(
u0, ξ̂

pj

1

)
− ṽpj

(
u0, ξ̂

pj

1

)∣∣∣ can be upper

bounded using the regularity of the dynamic h1 in ξ1 since∥∥∥ξj
1 − ξ̂

pj

1

∥∥∥ ≤ θN , then, using the regularity of f in ξ2.

We obtain: ∣∣∣v̂pj

(
u0, ξ̂

pj

1

)
− ṽpj

(
u0, ξ̂

pj

1

)∣∣∣ ≤ θNCh1Cf



Convergence of the second stage
Final upper bounding

Finally, let K = Cf

(
Ch1 +

√
1 + C 2

h1

)
, we have obtained that

∀m ∈ N∗:

P
[

max
i=1,...,MN

∣∣∣v (
u0, ξ

j
1

)
− ṽi

(
u0, ξ̂

i
1

)∣∣∣ ≥ θNK + η1

]
≤ A1N

(
D1L1

η1

)n1

e
− mη2

1
16σ2

1 + P [mN < m]

Which implies ∀m ∈ N∗:

P
[∣∣∣ĴN − J̃N

∣∣∣ ≥ θNK + η1

]
≤ A1N

(
DL

η1

)n1

e
− mη2

1
16σ2

1 + P [mN < m] (2)

Therefore, if hypothesis (14) on the clustering procedure holds, the
second stage value converge towards its exact value when the
number of drawings grows.



Convergence of the first stage

Define:

ẑ (u0) =
1

N

∑
j=1,...,N

v
(
u0, ξ

j
1

)
z (u0) = E [v (u0, ξ1)]

As with the second stage approximation, the difference between J
and Ĵ can be upper bounded using Shapiro’s theorem.



Convergence of the first stage
Hypotheses for the large deviations theorem

Assume:

1. U0 is of finite diameter D0;

2. There exists σ0 s.t.

Mu0 (t) ≤ e
σ2

0 t2

2 , ∀t ∈ R, ∀u0 ∈ U0

where
Mu0 (t) = E

[
ev(u0,ξ1)−z(u0)

]
is the moment generating function of the r.v.
v (u0, ξ1)− z (u0);

3. And that v is L0-Lipschitz in u0 uniformly in ξ1.



Convergence of the first stage
Application of the large deviation theorem

From theorem 1 of [Shapiro, 2006], ∃A0 ≥ 0, s.t. ∀η0 > 0:

P
[
max
u0

|z (u0)− ẑ (u0)| ≥ η0

]
≤ A0

(
D0L0

η0

)n0

e
− Nη2

0
16σ2

0

Therefore

P
[∣∣∣ĴN − J

∣∣∣ ≥ η0

]
≤ A0

(
D0L0

η0

)n0

e
− Nη2

0
16σ2

0



Global convergence

By combining this inequality with (2) we get, ∀m ∈ N∗:

P
[∣∣∣J̃N − J

∣∣∣ ≥ θNK + η1 + η0

]
≤ A0

(
D0L0

η0

)n0

e
− Nη2

0
16σ2

0 + A1N

(
D1L1

η1

)n1

e
− mη2

1
16σ2

1 + P [mN < m]

(3)



Generalizations

Corollary

The generalization to any number of stages is straightforward.

Remark on having more scenario than manageable

It may be frequent that more scenario are available than can be
possible to take into account as nodes in the tree. In this case,
clustering can be applied to both the first and second stage, with
similar constraints.
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Example chosen

We apply the previous methodology to the following example:

f (u0, u1 (ξ1) , ξ1, ξ2) = −
[
u0ξ1 + u1ξ2 − (u0ξ1 + u1ξ2)

2 − u2
0 − u2

1

]
With ξ1 following an uniform law on [1, 2] and ξ2 = ξ1 + ε2 with
ε2 following and uniform law on [−1, 1].



Methodologies compared

The trees are build using the same branching factor at each stage.

We compare the following methodologies as a function of the
number of tree leaves:

1. SAA: drawing of a tree using conditional sampling;

2. QMC: idem SAA, but with low discrepancy drawings;

3. Cluster (x1): tree generation by clustering with as much
scenarios as tree leaves. Scenarios are drawn at random;

4. Cluster (x10, x100): idem, but with 10 times more (resp. 100
times more) scenarios than tree leaves.

Clusters are performed using a constant number of scenarios by
cluster.



Convergence speed
RMSE as a function of the number of first stage nodes
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Convergence speed
Observations

1. SAA convergence is very slow, even for such an easy problem;

2. The clustering procedure is significantly faster, without
reaching Quasi Monte Carlo’s speed. Remark: the trade-off
between first stage and second stage node is not optimized.;

3. Using more scenarios get the clustering procedure nearer to
Quasi Monte Carlo’s performance, but does not improve the
convergence speed.



Conclusion

On tree generation by clustering:

1. Simple and efficient methodology ;

2. Sound theoretical bases ;

3. Interesting properties in practice.

Two future improvements:

1. Take into account information on the cost function into the
clustering and the representative element choice ;

2. Take into account the low discrepancy properties of the
representative elements.
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clustering and the representative element choice ;

2. Take into account the low discrepancy properties of the
representative elements.
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