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Introduction

For multistage problems, stochastic programming is usually
performed on scenario trees. These trees are used to represent the
non-anticipativity constraint and can be difficult to build if only
historical scenarios are available.

We try to provide an alternative to scenario trees that makes use
of a non-parametric estimate of non-anticipativity.

We present the idea and apply it to an example. Convergence of
the scheme is not currently addressed.



Plan

Overview of stochastic programming

Approximation of non-anticipativity

Hydro management example



Plan

Overview of stochastic programming

Approximation of non-anticipativity

Hydro management example



Plan

Overview of stochastic programming

Approximation of non-anticipativity

Hydro management example



Plan

Overview of stochastic programming

Approximation of non-anticipativity

Hydro management example



Stochastic Optimization
Complexity of multistage programs

Stochastic optimization is difficult problem, even more so in the
multistage case [Shapiro, 2006], but appears nevertheless quite
frequently in a large number of domains and applications (finance,
production, power, logistic, scheduling, . . . ).

Multistage problems differ from two stages ones by their
information structure. In the multistage case, not only an optimal
decision must be obtained for the first stage, but also decision rules
for the following stages, which are functions of the information
acquired at each stage.

This progressive acquisition of information and the associated
measurability constraints make this problem much harder.



Stochastic Optimization
Resolution of multistage programs

Therefore, contrarily to the two stages case, it is not possible to
use a simple Monte Carlo sampling approach.

I’ll put aside dynamic programming based methods which are a
separate class with their strengths and weaknesses and I will
concentrate on stochastic programming based methods. Among
these methods, we can find:

1. Closed loop stochastic gradient methods [Barty et al., 2005]
which adapt stochastic gradient techniques to the functional
nature of the multistage problems ;

2. Methods of progressive refinement of a discrete approximation
of the problem [Casey and Sen, 2006];

3. And the most common methods which first discretize the
problem completely before solving it using classical means.



Stochastic Optimization
A priori discretization

Among those methods we can find:

1. Linear decision rules based methods
[Thénié and Vial, 2004, Holt et al., 1955] or quantization
[Barty, 2004], which discretize the multistage problem into a
two stages one ;

2. And the most widely used technique usually associated with
“Stochastic Programing”which consists in discretizing the
problem into a deterministic finite dimension problem, solve
by large scale optimization methods, such as linear
programming. This discretization is usually performed with
the help of a tree, a structure which intrinsically takes into
account measurability constraints on the decisions.

While my approach will be slightly different, I’ll first concentrate
on that last class of methods.



Stochastic Optimization
Solving on a tree

Two widely different cases can occur:

1. Either we know how to perform conditional sampling on the
uncertainties, typically when the processes involved are known,
or when the uncertainties are independent. In that case, a
large amount of tree building techniques are available, either
Monte-Carlo based [Shapiro, 2003, Shapiro, 2006] or Quasi
Monte Carlo based [Pennanen and Koivu, 2005].

2. Or we cannot perform such sampling and only scenarios are
available, typically when only historical data are available, or
the scenario generation procedure is not adapted to
conditional sampling (e.g., some physical simulations). In this
last case, if the uncertainties are continuous, the scenarios do
no lend themselves directly to a tree structure.



When only scenarios are available
Solving from scenarios

In this last case, a few techniques are available (see
[Dupačová et al., 2000] for a survey). Mainly:

1. Moment matching techniques
[Høyland and Wallace, 2001, Høyland et al., 2003];

2. Probability metric methods [Römisch and Heitsch, 2006,
Pflug, 2001, Hochreiter and Pflug, 2006], and among them,
the classical tree generation by clustering method.
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Problem statement

Let ξ1 and ξ2, two random variables of support Ξ1 ⊂ Rp1 and
Ξ2 ⊂ Rp2 , and Ξ1 × Ξ2 equipped with the euclidean norm denoted
‖·‖.

We address the following three stage problem:

J = min
u0,u1(·)

E [f (u0, u1 (ξ1) , ξ1, ξ2)] (1)

Under the constraints{
u0 ∈ U0 ⊂ Rn0

∀ξ1 ∈ Ξ1, u1 (ξ1) ∈ U1 ⊂ Rn1

We suppose that for all u0 ∈ U0 u1 (ξ1) ∈ U1, ξ1 and ξ2,
f (u0, u1 (ξ1) , ξ1, ξ2) is finite and f (u0, u1 (ξ1) , ξ1, ξ2) is
measurable and integrable for all u0 and u1 (·) considered.



Dynamic and Historical scenarios

Hypothesis on the dynamic

We suppose that there exists a function h1 such that
ξ2 = h1 (ξ1, ε2) with ε2 a random variables in Rp′2 independent of
ξ1.

Scenarii

Let
(
ξj
1, ξ

j
2, ε

j
2

)
j=1,...,N

a sample of N independent drawings of

(ξ1, ξ2, ε2).

We try to solve problem (1), using only the values
(
ξj
1, ξ

j
2

)
j=1,...,N

that correspond to the historical scenarios observed.

The transfer function h1 is supposed unknown.



Approximation of non-anticipativity
Equivalent formulation

We can express problem (1) equivalently as

J = min
u0,u1(·)

E [f (u0,u1, ξ1, ξ2)] (2)

Under the constraints{
u0 ∈ U0 ⊂ Rn0

u1 ∈ U1 ⊂ Rn1 , a.s.

and the non-anticipativity constraint on u1:

E [u1 |ξ1 ] = u1



Approximation of non-anticipativity
Non-parametric approximation

Let D > 0. We relax the non-anticipativity constraint

E [u1 |ξ1 ] = u1

by
‖E [u1 |ξ1 ]− u1‖2 ≤ D2

Then replace the conditional expectation by a non-parametric
estimate over the scenarios

∑
j=1,...,N

∥∥∥∥∥∥∥∥
∑

k=1,...,N K

(
‖ξj

1−ξk
1‖

ε

)
uk
1∑

k=1,...,N K

(
‖ξj

1−ξk
1‖

ε

) − uj
1

∥∥∥∥∥∥∥∥
2

≤ D2

with K (·) a (typically Gaussian) kernel, and
(
uj
1

)
j=1,...,N

the

realizations of u1 on the historical scenario.



Approximation of non-anticipativity
Final form

Finally, we approximate the initial problem (1) by the following
deterministic problem:

J̃N = min
u0,(uj

1)j=1,...,N

1

N

∑
j=1,...,N

f
(
u0, u

j
1, ξ

j
1, ξ

j
2

)
subject to the constraints u0 ∈ U0 and ∀j = 1, . . . ,N, uj

1 ∈ U1 and

∑
j=1,...,N

∥∥∥∥∥∥∥∥
∑

k=1,...,N K

(
‖ξj

1−ξk
1‖

ε

)
uj
1∑

k=1,...,N K

(
‖ξj

1−ξk
1‖

ε

) − uj
1

∥∥∥∥∥∥∥∥
2

≤ D2

We expect this approximation to converge to the true problem
when D → 0, ε → 0 and N →∞ at the appropriate speeds.
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Context

We consider the problem of managing an hydro-power plant. Two
successive production decisions u1 ≥ 0 and u2 ≥ 0 have to be
made.

The reservoir initially contains an amount of energy S , so that we
require u1 + u2 ≤ S .

These decisions have to be taken as feedbacks on successive
random selling prices ξ1 and ξ2.

There is a non-anticipativity constraint on the first decision, i.e., u1

has to be taken prior to any knowledge of the second price, except
its conditional law with respect to the first one.



Problem setting

Mathematically, we consider the following cost function:

f (u1, u2, ξ1, ξ2) = −u1ξ1 − u2ξ2 − V (S − u1 + u2)

where V (x) the value of the remaining stock at the end of the two
steps, and is in our case a quadratic approximation of

√
η + x , i.e.,

V (x) =
√

η + ax + bx2, with

b = 2
S2

(
√

η − 2
√

η + S
2 +

√
η + S

)
, a =

√
η+S−√η−b

S and

η = 0.1. ξ1 and ξ2 follow independent uniform laws on [0.4, 2],
and S = 1.



Optimization problem

Our optimization problem is therefore:

J = min
u1(·),u2(·,·)

E [−u1 (ξ1) ξ1 − u2 (ξ1, ξ2) ξ2 − V (S − u1 (ξ1) + u2 (ξ1, ξ2))]

subject to, ∀ (ξ1, ξ2) ∈ [0.4, 2]2, u1 (ξ1) ∈ [0,S ] and
u2 (ξ1, ξ2) ∈ [0,S − u1 (ξ1)].

The problem can be solved exactly by dynamic programming. We
compare this exact solution to our approximation of the

non-anticipativity constraint. Let
(
ξj
1, ξ

j
2

)
j=1,...,N

be N

independent realizations of the prices.



Approximate version

We consider the following problem:

J̃N = min“
u
j
1,u

j
2

”
j=1,...,N

1

N

X
j=1,...,N

f
“
uj

1, u
j
2, ξ

j
1, ξ

j
2

”
+

C

N

NX
j=1

‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚
uj

1 −

NX
k = 1
k 6= j

Kε1

“
ξj
1, ξ

k
1

”
uk

1

NX
k = 1
k 6= j

Kε1

“
ξj
1, ξ

k
1

”

‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚

2

where Kε (x , y) = e−
‖x−y‖2

ε2 .



Feedback synthesis

Once this problem is solved, we synthesize the required feedbacks
u1 (·) and u2 (·, ·) using:

u1 (ξ1) =

N∑
j=1

Kε1

(
ξj
1, ξ1

)
uj

1

N∑
j=1

Kε1

(
ξj
1, ξ1

)

u2 (ξ1, ξ2) =

N∑
j=1

Kε2

((
ξj
1, ξ

j
2

)
, (ξ1, ξ2)

)
uj

2

N∑
j=1

Kε2

((
ξj
1, ξ

j
2

)
, (ξ1, ξ2)

)
with ε2 chosen to provide the best fit for the point set((

ξj
1, ξ

j
2

)
, uj

2

)
. We choose empirically ε2 =

√
ε1
π . The quality of

this approximate is then evaluated by a large Quasi-Monte-Carlo
simulation.



Approximation as a function of C and ε1
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Figure: Approximation of u1 (·) for N = 100 scenarios as a function of
the bandwidth ε1 and the penalty C .
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Figure: Approximation of u2 (·, ·) for N = 100 scenarios as a function of
the bandwidth ε1 and the penalty C .



Optimal feedback u2 (·, ·)
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Figure: Optimal feedback u2 (·, ·)



Comparison

The results must be compared to the optimum value,
J = −1.7414, the value obtained without the penalty term, i.e.,
the anticipative solution assuming the future is known, whose value
is -1.786, and the value of the solution obtained by synthesizing
from the anticipative solution, feedbacks as detailed above, with
ε1 = 0.1. The value of this last solution is −1.69563.



Approximation as a function of C and ε1

ε1 = 0.02 ε1 = 0.1 ε1 = 0.5

C = 1 -1.6788 -1.72698 -1.67559

C = 5 -1.67757 -1.73394 -1.66757

C = 25 -1.67638 -1.72863 -1.58707

Table: Quality of the approximation for N = 100 scenarios as a function
of the bandwidth ε1 and the penalty C .



Case C = 0
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Figure: Approximations of u1 (·) and u2 (·, ·), for N = 100 scenarios, with
bandwidth ε1 = 0.1 and no penalty, i.e., C = 0.



Best approximations for various N
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Figure: Best approximation of u1 (·) for N = 10, 27, 129 and 999.



Best approximations for various N

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 0

 0.2
 0.4
 0.6
 0.8

 1

u2

Estimated feedback

ξ1

ξ2

u2

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 0

 0.2
 0.4
 0.6
 0.8

 1

u2

Estimated feedback

ξ1

ξ2

u2

N = 10 N = 27

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 0

 0.2
 0.4
 0.6
 0.8

 1

u2

Estimated feedback

ξ1

ξ2

u2

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 0

 0.2
 0.4
 0.6
 0.8

 1

u2

Estimated feedback

ξ1

ξ2

u2

N = 129 N = 999

Figure: Best approximation of u2 (·, ·) for N = 10, 27, 129 and 999.



Best approximations for various N

N ε1 C Value

10 0.215443 5.99484 -1.70561

27 0.129155 2.15443 -1.72187

129 0.0774264 5.99484 -1.73369

999 0.016681 1000 -1.74018

Table: Quality and values of ε1 and C for the best solutions for N = 10,
27, 129 and 999.



Conclusion

1. It seems to works ;

2. It is quite simple to implement, and parameters can be defined
through cross-validation or simulation ;

3. It should be able to decompose by scenario the problem
obtained to speed up the computation ;

4. We are working on prooving convergence.



Bibliography I

Barty, K. (2004).
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