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Multistage stochastic programs

Let ξ ={ξt}T
t=1 be an Rd-valued discrete-time stochastic process de-

fined on some probability space (Ω,F , P) and with ξ1 deterministic.

The stochastic decision xt at period t is assumed to be measurable

with respect to the σ-field Ft(ξ) := σ(ξ1, . . . , ξt) (nonanticipativ-

ity).

Multistage stochastic program:

min

E[

T∑
t=1

〈bt(ξt), xt〉]

∣∣∣∣∣∣
xt ∈ Xt,

xt is Ft(ξ)−measurable, t = 1, . . . , T,

At,0xt + At,1(ξt)xt−1 = ht(ξt), t = 2, . . . , T


where Xt are nonempty and polyhedral sets, At,0 are fixed recourse

matrices and bt(·), ht(·) and At,1(·) are affine functions depending

on ξt, where ξ varies in a polyhedral set Ξ.

If the process {ξt}T
t=1 has a finite number of scenarios, they exhibit

a scenario tree structure.
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To have the multistage stochastic program well defined, we assume

xt ∈ Lr′(Ω,F , P; Rmt) and ξt ∈ Lr(Ω,F , P; Rd), where r ≥ 1 and

r′ :=


r

r−1 , if only costs are random

r , if only right-hand sides are random

r = 2 , if costs and right-hand sides are random

∞ , if all technology matrices are random and r = T.

Then nonanticipativity may be expressed as

x ∈ Nr′(ξ)

Nr′(ξ) = {x ∈ ×T
t=1Lr′(Ω,F , P; Rmt) : xt = E[xt|Ft(ξ)] , ∀t},

i.e., as a subspace constraint, by using the conditional expectations

E[·|Ft(ξ)].

For T = 2 we have Nr′(ξ) = Rm1 × Lr′(Ω,F , P ; Rm2).

→ infinite-dimensional optimization problem
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Quantitative Stability

Let us introduce some notations. Let F denote the objective

function defined on Lr(Ω,F , P; Rs) × Lr′(Ω,F , P; Rm) → R by

F (ξ, x) := E[
∑T

t=1〈bt(ξt), xt〉], let

Xt(xt−1; ξt) := {xt ∈ Xt|At,0xt + At,1(ξt)xt−1 = ht(ξt)}

denote the t-th feasibility set for every t = 2, . . . , T and

X (ξ) := {x ∈ Lr′(Ω,F , P; Rm)|x1 ∈ X1, xt ∈ Xt(xt−1; ξt)}

the set of feasible elements with input ξ.

Then the multistage stochastic program may be rewritten as

min{F (ξ, x) : x ∈ X (ξ) ∩Nr′(ξ)}.

Let v(ξ) denote its optimal value and, for any ε ≥ 0,

Sε(ξ) := {x ∈ X (ξ) ∩Nr′(ξ) : F (ξ, x) ≤ v(ξ) + ε}
S(ξ) := S0(ξ)

denote the ε-approximate solution set and the solution set of the

stochastic program with input ξ.
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The following conditions are imposed:

(A1) ξ ∈ Lr(Ω,F , P; Rs) for some r ≥ 1.

(A2) There exists a δ > 0 such that for any ξ̃ ∈ Lr(Ω,F , P; Rs)

with ‖ξ̃ − ξ‖r ≤ δ, any t = 2, . . . , T and any x1 ∈ X1, xτ ∈
Xτ (xτ−1; ξ̃τ ), τ = 2, . . . , t − 1, the set Xt(xt−1; ξ̃t) is nonempty

(relatively complete recourse locally around ξ).

(A3) The optimal values v(ξ̃) are finite for all ξ̃ ∈ Lr(Ω,F , P; Rs)

with ‖ξ̃ − ξ‖r ≤ δ and the objective function F is level-bounded

locally uniformly at ξ, i.e., for some α > 0 there exists a δ > 0

and a bounded subset B of Lr′(Ω,F , P; Rm) such that Sα(ξ̃) is

nonempty and contained in B for all ξ̃ ∈ Lr(Ω,F , P; Rs) with

‖ξ̃ − ξ‖r ≤ δ.

Norm in Lr: ‖ξ‖r := (
T∑

t=1
E[‖ξt‖r])

1
r
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Theorem:
Let (A1), (A2) and (A3) be satisfied, r ≥ 1 and X1 be bounded.

Then there exist positive constants L, ε̄ and δ such that the esti-

mates

|v(ξ)− v(ξ̃)| ≤ L(‖ξ − ξ̃‖r + D∗
f (ξ, ξ̃))

dl∞(Sε(ξ), Sε(ξ̃)) ≤ L̄

ε
(‖ξ − ξ̃‖r + D∗

f (ξ, ξ̃))

hold for any ε ∈ (0, ε̄) and for all ξ̃ ∈ Lr(Ω,F , P; Rs) with

‖ξ̃− ξ‖r ≤ δ, where for the latter estimate it is required that S(ξ)

and S(ξ̃) are nonempty and r′ ∈ [1,∞).

Here, D∗
f (ξ, ξ̃) denotes the filtration distance of ξ and ξ̃ defined by

D∗
f (ξ, ξ̃) = sup

‖x‖r′≤1

T∑
t=2

‖E[xt|Ft(ξ)]− E[xt|Ft(ξ̃)]‖r′

and dl∞ the Pompeiu-Hausdorff distance of closed subsets of

Lr′(Ω,F , P; Rm).
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Remark 1: (strengthening (A3))

If in (A3) it is even required that the set B is bounded in L∞, the

Lr′-unit ball in the definition of D∗
f may be replaced by the L∞-unit

ball. The latter distance is (much) smaller and easier to estimate !

Remark 2: (weak convergence of solutions)

If (A1), (A2) and (A3) are satisfied, X1 is bounded, r′ ∈ (1,∞)

and (ξ(n)) is a sequence in Lr(Ω,F , P; Rs) converging to ξ in Lr

and with respect to D∗
f , any sequence of solutions (x(n)) with

x(n) ∈ S(ξ(n)) contains a subsequence that converges weakly in

Lr′ to some element of S(ξ). Hence, the convergence result for

approximate solution sets is much stronger than for solution sets.

Remark 3: (two-stage case)

For the two-stage situation T = 2, the stability result extends

earlier work, since it states stability results on approximate second-

stage solution sets. In earlier work, the stability of (approximate)

first-stage solution sets was considered under an inf-boundedness

condition for first-stage decisions (weaker than (A3)).
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Generation of scenario trees

(i) In most practical situations scenarios ξi with known probabili-

ties pi, i = 1, . . . , N , can be generated, e.g., simulation scenar-

ios from (parametric or nonparametric) statistical models of ξ

or (nearly) optimal quantizations of the probability distribution

of ξ.

(ii) Generating a scenario tree out of the scenarios ξi with proba-

bilities pi, i = 1, . . . , N ,.
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Approaches for (ii):

(1) Bound-based approximation methods,

(Frauendorfer 96, Kuhn 05, Edirisinghe 99, Casey/Sen 05).

(2) Monte Carlo-based schemes (inside or outside decomposition

methods) (e.g. Shapiro 03, 06, Higle/Rayco/Sen 01, Chiralaksanakul/Morton 04).

(3) the use of Quasi Monte Carlo integration quadratures

(Pennanen 05, 06).

(4) EVPI-based sampling schemes (inside decomposition schemes)

(Corvera Poire 95, Dempster 04).

(5) Moment-matching principle (Høyland/Wallace 01, Høyland/Kaut/Wallace 03).

(6) (Nearly) best approximations based on probability metrics

(Pflug 01, Hochreiter/Pflug 02, Mirkov/Pflug 06; Gröwe-Kuska/Heitsch/Römisch 01, 03,

Heitsch/Römisch 05).

Survey: Dupačová/Consigli/Wallace 00
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Generating scenario trees

Let ξ be the original stochastic process on a probability space

(Ω,F , P) with parameter set {1, . . . , T} and state space Rd. We

aim at generating a scenario tree ξtr such that the distances

‖ξ − ξtr‖r and D∗
f (ξ, ξtr)

are small and, hence, the optimal values v(ξ) and v(ξtr), and the

approximate solution sets Sε(ξ) and Sε(ξtr) are close to each other

according to the stability result.

The idea is to start with a good initial approximation ξ̂ of ξ having

a finite number of scenarios ξi = (ξi
1, . . . , ξ

i
T ) ∈ RTd with proba-

bilities pi > 0, i = 1, . . . , N , and common root, i.e., ξ1
1 = . . . =

ξN
1 =: ξ∗1 . These scenarios might be obtained by quantization tech-

niques or by sampling or resampling techniques based on parametric

or nonparametric stochastic models of ξ.
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In the following we assume that

‖ξ − ξ̂‖r + D∗
f (ξ, ξ̂) ≤ ε

holds for some given (initial) tolerance ε > 0.

For example, the condition may be satisfied for D∗
f with respect to

the unit ball in L∞ instead of Lr′ for any tolerance ε > 0 if ξ̂ is

obtained by sampling from a finite set with sufficently large sample

size.
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Forward tree generation

Let scenarios ξi with probabilities pi, i = 1, . . . , N , fixed root

ξ∗1 ∈ Rd, r ≥ 1, and tolerances εr, εt, t = 2, . . . , T , be given such

that
T∑

t=2
εt ≤ εr.

Step 1: Set ξ̂1 := ξ̂ and C1 = {I = {1, . . . , N}}.

Step t: Let Ct−1 = {C1
t−1, . . . , C

Kt−1
t−1 }. Determine disjoint index

sets Ik
t and Jk

t of remaining and deleted scenarios such that Ik
t ∪

Jk
t = Ck

t−1, a mapping αt : I → I

αt(j) =

{
ikt (j) , j ∈ Jk

t , k = 1, . . . , Kt−1,

j , otherwise,

where ikt (j) ∈ Ik
t such that

ikt (j) ∈ arg min
i∈Ik

t

|ξ̂t−1,i − ξ̂t−1,j|t,
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a stochastic process ξ̂t

ξ̂t,i
τ =

{
ξ

ατ (i)
τ , τ ≤ t,

ξi
τ , otherwise,

such that

‖ξ̂t − ξ̂t−1‖r
r,t =

Kt−1∑
k=1

∑
j∈Jk

t

pj min
i∈Ik

t

|ξi
t − ξj

t |r ≤ εr
t .

Set It := ∪Kt−1
k=1 Ik

t and Ct := {α−1
t (i) : i ∈ Ik

t , k = 1, . . . , Kt−1}.

Step T+1: Let CT = {C1
T , . . . , C

KT
T }. Construct a stochastic

process ξtr having KT scenarios ξk
tr such that ξk

tr,t := ξ
αt(i)
t with

probabilities πi
T =

∑
j∈Ck

T

pj if i ∈ Ck
T , k = 1, . . . , KT , t = 2, . . . , T .

Theorem: ‖ξ̂ − ξtr‖r ≤
T∑

t=2
εt ≤ εr.
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 t = 1  t = 2  t = 3  t = 4  t = 5  t = 1  t = 2  t = 3  t = 4  t = 5  t = 3 t = 1  t = 2  t = 4  t = 5

 t = 1  t = 2  t = 3  t = 5 t = 4  t = 5 t = 1  t = 2  t = 3  t = 4  t = 1  t = 2  t = 3  t = 4  t = 5

Illustration of the forward tree generation for an example including T=5 time periods starting with
a scenario fan containing N=58 scenarios

<Start Animation>

file:E:/anim05/animation.html
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Convergence

Theorem:
Let (A1), (A2) and (A3) be satisfied with r′ ∈ [1,∞) and X1 be

bounded. Let L > 0 and δ > 0 be the constants appearing in the

stability result and let ‖ξ − ξ̂‖r < δ.

If (ε
(n)
r ) is a sequence tending to 0 such that the corresponding

tolerances ε
(n)
t in the forward tree generation algorithm are nonin-

creasing for all t = 2, . . . , T , the corresponding sequence (ξ
(n)
tr ) has

the property

lim sup
n→∞

|v(ξ)− v(ξ
(n)
tr )| ≤ Lε,

where ε > 0 is an initial tolerance such that

‖ξ − ξ̂‖r + D∗
f (ξ, ξ̂) ≤ ε
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Numerical experience

We consider a yearly mean-risk optimization model for electricity

portfolios of a German municipal electricity company which consist

of the own (thermal) electricity production, the spot market con-

tracts, supply contracts and electricity futures. Stochasticity enters

the model via the electricity demand, heat demand and spot prices

(at EEX). Our approach for generating input scenarios in form of

a scenario tree consists in developing a (multivariate) statistical

model for all stochastic components and in using the forward tree

generation algorithm started with a finite number of yearly demand-

price scenarios ξi with probabilities pi = 1
N , i = 1, . . . , N , which

are simulated from the statistical model.

The statistical model corresponds to ξ and the finite number of

scenarios are assumed to form the process ξ̂. In our test series we

started with N = 100 sample scenarios for a one year time horizon

with hourly discretization. Due to the fact that electricity future

products can only be traded monthly, branching was allowed only

at the end of each month. Scenario trees were generated by the
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Components Horizon Scenarios Time steps Nodes
3 (trivariate) 1 year 100 8 760 875 901

Table 1: Dimension of simulated input scenarios

forward tree generation algorithm for r = r′ = 2 and different

relative reduction levels εr,rel. The relative levels are given by

εr,rel :=
ε

εmax
and εrel,t :=

εt

εmax
,

where εmax is given as the maximum of the best possible Lr-distance

of ξ̂ and of one of its scenarios endowed with unit mass. The

individual tolerances εt at branching points were chosen such that

εr
t =

εr

T

[
1 + q

(
1

2
− t

T

)]
, t = 2, . . . , T, r = 2,

where q ∈ [0, 1] is a parameter that affects the branching structure

of the constructed trees. For the test runs we used q = 0.2 which

results in a slightly decreasing sequence εt. All test runs were per-

formed on a PC with a 3 GHz Intel Pentium CPU and 1 GByte

main memory.
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Jan Feb Apr Jun Jul Aug Sep NovMay Oct DecMar

Yearly demand-price scenario tree with reduction level εr,rel = 0.4
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Jan Feb Apr Jun Jul Aug Sep NovMar May Oct Dec

Yearly demand-price scenario tree with reduction level εr,rel = 0.55
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εr,rel Scenarios Nodes Stages Time (sec)
initial tree initial tree

0.20 100 100 875 901 775 992 4 24.53 s
0.25 100 100 875 901 752 136 5 24.54 s
0.30 100 100 875 901 719 472 7 24.55 s
0.35 100 97 875 901 676 416 8 24.61 s
0.40 100 98 875 901 645 672 10 24.64 s
0.45 100 96 875 901 598 704 10 24.75 s
0.50 100 95 875 901 565 800 9 24.74 s
0.55 100 88 875 901 452 184 10 24.75 s
0.60 100 87 875 901 337 728 11 25.89 s

Table 2: Numerical results for yearly demand-price scenario trees
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Future research

• Extension of scenario reduction algorithms to mixed-integer

(linear) two-stage stochastic programs using discrepancy dis-

tances,

• Extension of the stability result for optimal values to mixed-

integer (linear) multistage stochastic programs (in terms of

(extended) discrepancy distances),

• Development of stability-based forward tree generation algo-

rithms for mixed-integer (linear) multistage stochastic programs.


