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Abstract We present a novel mathematical algorithm to assist gas network opera-
tors in managing uncertainty, while increasing reliability of transmission and supply.
As a result, we solve an optimization problem with a joint probabilistic constraint
over an infinite system of random inequalities. Such models arise in the presence of
uncertain parameters having partially stochastic and partially non-stochastic character.
The application that drives this new approach is a stationary network with uncertain
demand (which are stochastic due to the possibility of fitting statistical distributions
based on historical measurements) and with uncertain roughness coefficients in the
pipes (which are uncertain but non-stochastic due to a lack of attainable measure-
ments). We study the sensitivity of local uncertainties in the roughness coefficients
and their impact on a highly reliable network operation. In particular, we are going
to answer the question, what is the maximum uncertainty that is allowed (shaping a
’maximal’ uncertainty set) around nominal roughness coefficients, such that random
demands in a stationary gas network can be satisfied at given high probability level for
no matter which realization of true roughness coefficients within the uncertainty set.
One ends up with a constraint, which is probabilistic with respect to the load of gas and
robust with respect to the roughness coefficients.We demonstrate how such constraints
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can be dealt with in the framework of the so-called spheric-radial decomposition of
multivariate Gaussian distributions. The numerical solution of a corresponding opti-
mization problem is illustrated. The results might assist the network operator with the
implementation of cost-intensive roughness measurements.

Keywords Chance constraint · Robust constraint · Uncertainty set · Spheric-radial
decomposition

1 Introduction

1.1 Background

In the context of the liberalization paradigm, regulatory authorities have separated
the natural gas transmission from production and services. Accordingly, the network
operators are solely responsible for the transportation of gas, and gas traders only
need to specify or nominate where they want to inject gas, at so-called entry points,
or extract gas (loads), at so-called exit points. As a consequence, new mathematical
challenges for the gas network operators have been introduced.

Presently, the reliability of the gas network operator depends on the accuracy of
calculating the transport capacity and on the security of supply. This concern is called
nomination validation, i.e., determine whether the given nominations of all entry and
exit flows are technically and physical feasible under the available infrastructure (see
Koch et al. 2015). This challenge is further complicated by the uncertainty of two
parameters in the feasibility check: the coverage of future load and the pipes’ rough-
ness coefficients. When ensuring security of gas supply for end consumers, network
operators have to quantify the coverage of uncertain future loads. The amount of gas
that enters the network depends on volatile prices, and the amount of gas that exits
is influenced by ambient temperature changes. Nevertheless, it is possible to model
the amount of future load by means of a stochastic distribution based on historical
data. Moreover, the roughness coefficient of a pipe influences the pressure loss of the
gas flowing. However, the exact value of the roughness coefficients are only known
at the time of commissioning of the network, but they change significantly through
time due to the aging of pipe material and to deposition of particles. The traditional
approach to estimate the transport capacity, is to set fixed values for the roughness
coefficients based on thewell-knownColebrook–White correlation (Colebrook 1939).
Nonetheless, this approach underestimates the uncertainty of roughness coefficients,
hence there is a miscalculation of the transport capacity.

In the research literature, there is a more in-depth study of nomination validation
in Pfetsch et al. (2015). The robustness of natural gas flows is examined in Chertkov
et al. (2015) and Gotzes et al. (2016) gives a explicit characterization of gas flow
feasibility and considers the stochastic nature of exit loads. The present paper devel-
ops a novel algorithm to improve the nomination validation procedure, by taking
into account these two types of uncertain parameters. The presence of non-stochastic
(roughness coefficients) and stochastic (load) uncertainty motivates us to establish a
joint robust/probabilistic constraint. As a result, we investigate themaximum of attain-
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able uncertainty around the roughness coefficients for different pipes in the network,
while keeping a high probability to satisfy the demands.

1.2 Proposed model: optimization under uncertainty

Data uncertainty prevails in many real world optimization models where it typically
enters the inequality constraints describing the set of feasible decisions:

gi (x, z) ≥ 0 (i = 1, . . . , k) . (1)

Here x ∈ R
n is a decision vector, z ∈ R

m is an uncertain parameter and g : Rn×R
m →

R
k refers to a constraint mapping. Overlooking the aspect of uncertainty would result

in optimal decisions, which are notoriously non-robust with respect to deviations from
the assumed deterministic data. When modeling uncertainty, two situations typically
occur: in the first one, access to historical observations is given such that uncertainty
can bemodeled bymeans of a randomvector ξ obeying a certain estimatedmultivariate
distribution. This allows one to turn (1) into a so-called (joint) probabilistic constraint:

P
(
g(x, ξ) ≥ 0

) ≥ p ∈ (0, 1) (2)

(note that the first ’≥’ sign is to be understood component-wise). The meaning of (2)
is as follows: a decision x is declared to be feasible if and only if the original random
inequality system (1) is satisfied with at least probability p, a level usually chosen
close to but not identical to one in order to guarantee sufficient robustness without
excessive costs. For a standard reference on probabilistic constraints we refer to the
monograph by Prékopa (1995).

A second situation arises when some uncertain parameter Φ is, for instance, fixed
but simply unknown or it is random but its distribution is unknown because it cannot
be observed/measured. In such case, a model is introduced that ensures feasibility of
its solution for all possible realizations (equivalently: for the worst case scenario) of
the uncertain parameter within some uncertainty set U ⊆ R

s . Then, (1) turns into a
constraint with infinitely many inequalities

g(x, Φ) ≥ 0 ∀Φ ∈ U (3)

which can be equivalently written as a single worst case constraint

inf
Φ∈U

g(x, Φ) ≥ 0. (4)

Clearly, if g happens to be concave in the first variable, then the set of feasible decisions
x in (3) or (4) is convex, which is a favorable property of optimization problems. Note
that both, the probabilistic and the worst case constraints (2), (3), (4) just depend on
the decision vector x but unlike (1) no longer on the concrete outcome of uncertainty.
Hence, they can figure as ordinary well-defined constraints in optimization problems
with some additional objective given. One then speaks of probabilistic programming
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(in case of (2)) or of robust optimization (in case of (3)). For a basic monograph on
robust optimization, we refer to Ben-Tal et al. (2009).

A crucial step in robust optimization is the appropriate choice of the uncertainty set
U . Simple-shaped sets like polyhedra or ellipsoids lead to problems with favorable
complexity which allow one to deal with much larger dimensions than in the case of
probabilistic constraints. That is why robust optimization is not only employed in the
absence of statistical information but also as a nicer-behaved substitute of probabilistic
constraints in a probabilistic setting. This is usually done by choosing an uncertainty
set of desired probability p in (2): P(ξ ∈ U ) = p. This can be easily arranged, for
instance, in the case of multivariate Gaussian distributions and ellipsoids of appro-
priate size. In such case the set of feasible decisions x defined by (3) or (4) (with Φ

replaced by ξ ) is always contained in the set of feasible decisions defined by (2), such
that robust optimization provides feasible yet conservative solutions to probabilistic
programming. The conservatism, however, may be considerable up to the point of
ending up at very small or even empty feasible sets possibly coming at much higher
costs than under a probabilistic constraints. This effect motivates the consideration of
probabilistic constraints in the presence of statistical information at least in moderate
dimension.

Traditionally both approaches, chance constraint and robust optimization have been
dealt with separately. Very often, however, one is faced with uncertain variables of
both mentioned types. An example is the transportation management of gas networks.
Here, the uncertain demands (loads) at the nodes of the network are usually provided
with a rich historical data record allowing one to approximate their joint (multivariate)
distribution and, thus, to model them by a random vector ξ . In contrast, the transport is
influenced by roughness coefficients along the pipes for which there usually just exists
some imprecise estimation but no concrete measurement. This leads us naturally to
the consideration of uncertain inequalities (2) in which the uncertain variable has a
stochastic and a non-stochastic part, i.e., z = (ξ,Φ). As a consequence, the originally
separate models (3) and (4) have to be combined appropriately. There are essentially
two different ways of doing so:

On the one hand, we formulate a probabilistic constraint (w.r.t. ξ ) involving a
robustified (w.r.t. Φ) uncertain inequality system:

P
(
g(x, ξ,Φ) ≥ 0 ∀Φ ∈ U

) ≥ p. (5)

A second possibility consists in modeling a family of probabilistic constraints first
and then establishing a robustified version of these:

P
(
g(x, ξ,Φ) ≥ 0

) ≥ p ∀Φ ∈ U . (6)

In analogy with finite random inequality systems, one may refer to (5) as a joint
probabilistic constraint (over an infinite number of random inequalities) and to (6) as
a system of individual probabilistic constraints (over a single random inequality each).
Models (5) and (6) have been introduced and considered before in Van Ackooij et al.
(2016) under the name of hybrid robust/chance-constraint. It has been observed there
(and is easy to see) that (6) is a weaker constraint than (5). In this paper, we shall
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focus on model (5) which takes the outer perspective of probabilistic programming.
The alternative model (6) appears, for instance, in the context of so-called stochastic
dominance constraints (see Dentcheva and Ruszczyński 2003). Both models have
been considered in Van Ackooij et al. (2016) in the context of linear probabilistic
constraints under discrete distributions. Our perspective is different in allowing for
nonlinear probabilistic constraints under the (continuous) Gaussian distributions using
the so-called spheric-radial decomposition. Moreover, the uncertainty set U will not
be fixed in our problem but subject to optimization. The model will be illustrated for
the example of demand satisfaction in a stationary gas network.

2 Description of the optimization problem

In this section, we present an optimization problem, from the viewpoint of the net-
work operator, who needs to validate nominations under stochastic and non-stochastic
uncertainty.We shall assume that the network is in steady state and is passive (i.e., does
not contain active elements such as compressors, valves etc.). These simplifications
allow us to maintain a purely algebraic model without combinatorial aspects. More-
over, we will focus our attention to the special case of a tree structured gas network
G = (V ,E ), where V is the set of nodes representing interconnection points, and E
is the set of arcs representing the pipelines. For including cycles into the consideration
we refer to the recent work (Gotzes et al. 2017). For simplicity, we shall also assume
that there is just one single injection node (entry), labeled zero, whereas there are m
additional nodes at which gas is withdrawn for consumption (exits). The unique entry
will be declared as the root of the tree while the arcs in E are directed away from the
root.

Wewill refer to p, b̂ as the vectors of pressures and loads, respectively, at the nodes,
and to q as the vector of flows through the arcs of the network. It is well known that
the following relations have to be met in order to satisfy the load b̂ (being positive in
the case of withdrawal and negative in the case of injection):

Aq = b̂ (7)

AT p2 = (diagΦ)|q|q (8)

pmin ≤ p ≤ pmax (9)

Here, A refers to the incidence matrix of the network, diagΦ is a diagonal matrix
whose diagonal is given by a vector Φ = (Φe)e∈E of roughness coefficients for
the pipes (arcs) and pmin, pmax are vectors of lower and upper bounds, respectively,
for the pressure at the given nodes. Functions of vectors, such as (·)2 or | · |(·) are
to be understood as vectors with entries defined componentwise. Equations (7), (8)
refer to the first and second Kirchhoff laws (mass flow conservation and pressure drop
equations),whereas the bound constraints (9) result from technological and contractual
restrictions.
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2.1 Explicit representation of feasible loads

The operator of a gas network is obliged to ensure the feasibility of loads b for a given
network environment (technical equipment, pressure bounds, booked capacities for
injecting or withdrawing gas). If he wishes to change this environment in a systematic
way, e.g., by solving some optimization problem, then it is important to have access
to an explicit description of feasibility in terms of the boundary data without further
dependence on physical state variables p, q. Such description was provided in Gotzes
et al. (2016). The following result provides a description of the feasibility of load
vectors b by means of an explicit inequality system:

Proposition 2.1 (See Gotzes et al. 2016, Cor. 1)Consider a tree G = (V ,E )with the
unique entry referring to the root node zero. Then, the load vector b̂ := (b0, b) with
b0 being the load at the entry and b being the vector of withdrawals at exits is feasible
in the sense of Eqs. (7), (8), (9) if and only if the following system of inequalities is
satisfied for k, � = 0, . . . ,m, k �= �:

hk(b, Φ) + (
pmax
k

)2 − h�(b, Φ) −
(
pmin
�

)2 ≥ 0, (10)

where, for k = 0, . . . ,m we have put:

hk(b, Φ) :=

⎧
⎪⎨

⎪⎩

∑

e∈Π(k)
Φe

(
∑

t	h(e)
bt

)2

i f k ≥ 1

0 i f k = 0

.

Here, for k, � ∈ V , denote k 	 l if, in G, the unique directed path from the root to k,
denoted Π(k), passes through l. Moreover, h(e) refers to the head of arc e ∈ E .

The fact that the feasibility of the original enhanced vector b̂ is already determined
by the feasibility of its exit part b in the inequality system above follows from the total
load (sum of all components) always being zero. Hence, in the following we will only
speak of the feasibility of the load vector at exits from the very beginning.

We emphasize that both variables of the function hk occurring in the inequality
system (10) are uncertain, of different nature, however: the load vector b is of stochastic
nature because historical data on its realization are available. In contrast, the roughness
coefficientsΦe may be endowed only by some nominal values, from which they differ
in an unobservable way, for instance, by the aging of pipes’ material underground.
Our aim is to consider both types of uncertainty in a joint probabilistic/robust model
as detailed in the introduction.

To set up this model we start by emphasizing the variability of roughness coeffi-
cients in the definition of feasible loads via (10): for any given vector Φ of roughness
coefficients, we denote the set of feasible loads b (satisfying (10)) by MΦ . In order to
take into account the uncertain (non-stochastic) nature ofΦ, we assume that it belongs
to some uncertainty setUδ which is parameterized by a vector δ ∈ R

|E |. For instance,
Uδ could be a rectangle with side lengts δe or an ellipsoid with principal axes δe around
some nominal vector Φ̂ of roughness coefficients. We strengthen now the definition
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of feasibility of a load vector b w.r.t. uncertainty in Φ by requiring that it satisfies (10)
for all Φ in the uncertainty set. This means, for each fixed shape parameter δ, the set
of feasible loads b is given by

Mδ :=
⋂

Φ∈Uδ

MΦ (δ ∈ R
|E |). (11)

Often, the choice of the uncertainty set, in particular of its size, is somehow arbitrary.
This motivates us, in this paper, not to fix it but to consider this set as variable (via the
parameter δ) and subject to optimization.

On the other hand, in order to address the stochastic uncertainty of the load vector
b we will understand it from now on as the outcome of an m-dimensional random
vector ξ , where m = #V − 1 is the number of exits. In particular, we will assume ξ

to be a Gaussian random vector ξ ∼ N (μ,Σ) with mean μ and covariance matrix
Σ . In a strict sense, exit loads cannot follow a Gaussian distribution because the
latter allows negative values. This effect, however, is negligible if the relative standard
deviations are small. Moreover, the methodology we are presenting here is easily
adapted to Gaussian-like distributions (truncated Gaussian, Log-normal) which are
good candidates for modeling stochastic exit loads (Koch et al. 2015, Chapter 13).

Accordingly, we turn the original inclusion b ∈ Mδ from (11) into the probabilistic
constraint P (ξ ∈ Mδ) ≥ p, where p ∈ (0, 1) is a probability level (close to one)
chosen in the modeling process. Observe that this inequality now is a constraint on
the shape parameter δ for the uncertainty set Uδ . Since we consider δ as a variable, it
defines a set of feasible shape parameters as

M := {
δ ∈ R

|E | ∣∣P (ξ ∈ Mδ) ≥ p
}
. (12)

The interpretation of this constraint is as follows: a shape parameter δ is feasible if
and only if the probability of random load vectors b being admissible in the sense of
(10) for all roughness coefficients Φ ∈ Uδ is at least p. Clearly, an increase of δ and,
hence of the uncertainty set Uδ will result in a stronger ’for all’ condition and, thus,
in a decrease of the probability of the event ξ ∈ Mδ .

With this setup, we are interested in a maximum amount of uncertainty for the
roughness coefficients which still allows us to technically satisfy - under the given
pressure bounds - the random loads for all uncertain roughness coefficients with a
given probability p. This leads us to the optimization problem

max{ f (δ) | δ ∈ M}, (13)

where the objective f characterizes the amount of uncertainty, e.g., f (δ) := volUδ

or f (δ) := ‖δ‖. The solution of (13) may provide the network operator with an idea
at what precision at least he needs to know the roughness coefficient in the context
of safe network operation. Such information could be used, for instance, when trying
to roughly estimate these coefficients by indirect measurements via the solution of
an inverse problem (see Egger et al. 2017) or in order to identify critical parts of the
network where it is more important to do so than in other parts.
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3 Determination of the probability of Mδ

The key for solving the optimization problem (13) is clearly the verification of the
inclusion δ ∈ M , which according to (12) amounts to the computation of the proba-
bility of the event ξ ∈ Mδ . This task faces two difficulties which we will address in
this section: first, the set Mδ , given as an infinite intersection of sets MΦ has to be
made explicit and second, the Gaussian probability of such a set has to be determined
efficiently.

3.1 Efficient description of the set Mδ

By definition of MΦ as consisting of all load vectors b satisfying (10), we may write
Mδ in (11) as

Mδ = {
b |

hk(b, Φ) + (
pmax
k

)2 − h�(b, Φ) −
(
pmin
�

)2 ≥ 0

∀Φ ∈ Uδ ∀k, � = 0, . . . ,m (k �= �)
}
.

The difficulty in working with the set Mδ consists in the fact that it is defined by
infinitelymany constraints, because the uncertainty set is infinite in general. Evidently,
we have the following equivalent reformulation:

Mδ = {
b |

inf
Φ∈Uδ

hk(b, Φ) + (
pmax
k

)2 − h�(b, Φ) −
(
pmin
�

)2 ≥ 0

∀k, � = 0, . . . ,m (k �= �)
}
.

In the typical case of compact uncertainty sets Uδ , we may finally represent Mδ as

Mδ = {
b |

hk(b, Φ
∗
k�(δ, b)) + (

pmax
k

)2 − h�(b, Φ
∗
k�(δ, b)) −

(
pmin
�

)2 ≥ 0

∀k, � = 0, . . . ,m (k �= �)
}
, (14)

where
Φ∗

k�(δ, b) := argmin
Φ∈Uδ

{hk(b, Φ) − h�(b, Φ)} . (15)

This last representation (14) has the advantage of involving only a finite number of
inequalities in contrast to the original description. However, it comes at the price of
solving the optimization problem (15) for each b and δ. Fortunately, this is easily done
for specific simple enough uncertainty sets, for instance, rectangles or ellipsoids. This
is mainly a consequence of the difference function hk − h� appearing in (15) being
linear in Φ by definition of hk in Proposition 2.1. Minimizing a linear function over a
rectangle or ellipsoid can be done explicitly in terms of the coefficients of this linear
function.
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3.2 Explicit solutions for simple uncertainty sets

We will provide in the following explicit solutions for the functions Φ∗
k�(δ, b) intro-

duced in (15) in case of ellipsoidal and rectangular uncertainty sets. We will assume
that our uncertainty sets are symmetric around some nominal (or guessed) value Φ̂

for the roughness coefficients. In the case of an ellipsoid, we define for δ ∈ R
|E |
+ :

Uδ := {
Φ ∈ R

|E |∣∣(Φ − Φ̂)TΣδ(Φ − Φ̂) ≤ 1
}
, (16)

where Σδ is a diagonal matrix with entries δ1, . . . , δ|E |.
In the following, referring back to the notation introduced in Proposition 2.1, we

will use the assignments

1e,k :=
{
1 if e ∈ Π(k)

0 otherwise

and
γe(b) :=

∑

t∈V , t	h(e)

bt . (17)

This notation will allow us to rewrite the definition for hk(b, Φ) in Proposition 2.1 as

hk(b, Φ) =
∑

e∈E
Φeγ

2
e (b)1e,k (k = 1, . . . ,m). (18)

Lemma 3.1 For the uncertainty set (16) the functions introduced in (15) have the
following explicit representation for k, � = 0, . . . ,m with k �= l and e ∈ E :

[Φ∗
k�(δ, b)]e = Φ̂e + (1e,� − 1e,k)γ 2

e (b)/δe√ ∑

s∈(Π(k)∪Π(l))\(Π(k)∩Π(l))
γ 4
s (b)/δs

.

Proof It is well-known - and easy to show by writing down the necessary optimality
conditions - that for a given cost vector c �= 0, the optimization problem

min
Φ

{
cTΦ|(Φ − Φ̂)TΣδ(Φ − Φ̂) ≤ 1

}
(19)

has the unique solution

Φ∗ = Φ̂ − 1
√
cTΣ−1

δ c
Σ−1

δ c. (20)

Clearly, the optimization problem defining Φ∗
k�(δ, b) in (15) has the form of (19) with

the coefficients of the cost vector given by (according to (18))

ce := (1e,k − 1e,�)γ 2
e (b) (e = 1, . . . , |E |).
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Taking into account that Σδ is a diagonal matrix with diagonal entries δe, the optimal
solution Φ∗

k�(δ, b) can be read off component-wise from (20) to yield the asserted
formula. ��

Alternatively to (16), we now introduce a family of rectangular uncertainty sets,
again centered around some nominal value Φ̂ by means of

Uδ := [Φ̂ − δ, Φ̂ + δ] (δ ∈ R
|E |
+ ). (21)

Lemma 3.2 For the uncertainty set (21) the functions introduced in (15) are actually
independent of b and have the following explicit representation for k, � = 0, . . . ,m
with k �= l and e ∈ E :

[Φ∗
k�(δ, b)]e =

⎧
⎨

⎩

Φ̂e − δe if e ∈ Π(k)\Π(l)
Φ̂e + δe if e ∈ Π(l)\Π(k)
Φ̂e otherwise

.

Proof Weobserve from (18) and (17) that the following holds true for k, � = 0, . . . ,m
with k �= l and e ∈ E :

min
Φ∈Uδ

{hk(b, Φ) − h�(b, Φ)} = min
Φ∈Uδ

∑

e∈E
(1e,k − 1e,�)Φeγ

2
e (b).

WithUδ being a rectangle and with the sum above being separable in the components
Φe, the minimization can be carried out component-wise. Accordingly, each compo-
nent Φe is chosen in the interval [Φ̂e − δe, Φ̂e + δe] as to minimize the expression

(1e,k − 1e,�)Φeγ
2
e (b).

Since the coefficients γ 2
e (b) are non-negative, and (1e,k − 1e,�) equals ±1 (or zero in

which case the choice of Φe is arbitrary), we can choose the minimizing component
as

[Φ∗
k�]e := Φ̂e − (1e,k − 1e,�)δe.

By definition, this reduces to the formula asserted in the statement of our Lemma. ��

3.3 An algorithm for computing the probability of feasible random exit loads

Now, that we are given an explicit description of the set Mδ in (14) for the special case
of elliptical or rectangular uncertainty sets (upon substituting the functions Φ∗

k�(δ, b)
by the formulae obtained in Lemmas 3.1 and 3.2), we could use this finite inequality
system in order to test the feasibility of simulated outcomes of the random load b
according to the given Gaussian distribution. The averaged number of feasible simu-
lations would yield the Monte Carlo estimate for the desired probability P (ξ ∈ Mδ).
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SuchMonteCarlo approach has two drawbacks: first it may comewith a comparatively
large variance for the obtained probability estimation and, second, it does not provide
us with information about the sensitivity of this probability with respect to changes of
δ. This sensitivity (derivative) information is crucial, however, in order to set up any
efficient algorithm of nonlinear optimization in order to solve problem (13). There-
fore, we will alternatively make use of the so-called spheric-radial decomposition of
Gaussian random vectors (see, e.g. Déak 2000; Genz and Bretz 2009):

Theorem 3.1 Let ξ be anm-dimensionalGaussian random vector distributed accord-
ing to ξ ∼ N (μ,Σ). Then for any Borel measurable subset A ⊆ R

m it holds that

P (ξ ∈ A) =
∫

v∈Sm−1
μχ {r ≥ 0 | (r Lv + μ) ∩ A �= ∅}dμη

with ξ = χLη, where L is such that Σ = LLT (e.g., Cholesky decomposition), χ has
a chi-distribution μχ with m degrees of freedom and η has a uniform distribution μη

over the Euclidean unit sphere Sm−1.

In order to evaluate the integrand in the spheric integral above, one has to be able to
compute, for any fixed direction v ∈ S

m−1, the χ -probability of the one-dimensional
set

{r ≥ 0 | (r Lv + μ) ∩ A �= ∅}.
Since we are interested in the probability of the set A := Mδ , this amounts by (14) to
characterizing the set

{r ≥ 0 | g(δ, r Lv + μ) ≥ 0} (v ∈ S
m−1), (22)

where we set

g(δ, b) := min
k,�=0,...,m

k �=l

{
hk(b, Φ

∗
k�(δ, b)) + (pmax

k )2 − h�(b, Φ
∗
k�(δ, b)) − (pmin

� )2
}
.

(23)

Using the idea of spheric-radial decomposition presented in Theorem 3.1, we pro-
pose the following algorithm for computing the probability P(ξ ∈ Mδ) with a fixed
value of δ:

Algorithm 3.1 Let δ ∈ R
|E | be arbitrary, ξ ∼ N (μ,Σ) and L such that LLT = Σ .

1. Sample N points {v1, v2, . . . , vN } uniformly distributed on the sphere Sm−1.

2. i := 0; S := 0
3. i := i + 1;

Find the zero’s of the one-dimensional function (in r for δ fixed) θδ(r) :=
g(δ, r Lvi + μ) with g defined in (23) and represent the set Mi

δ := {r ≥
0 | θδ(r) ≥ 0} corresponding to (22) as a disjoint union of intervals: Mi

δ =
∪ρ

j=1[α j (δ), β j (δ)], whereα j (δ), β j (δ) are the zero’s obtained before and ordered
appropriately.
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4. Compute the χ -probability of Mi
δ according to

μχ(Mi
δ) =

∑

j

Fχ (β j (δ)) − Fχ (α j (δ)),

where Fχ refers to the cumulative distribution function of the one-dimensional
χ -distribution with m degrees of freedom. Put S := S + μχ(Mi

δ)

5. If i < N then go to 3.
6. Set P (ξ ∈ Mδ) := S/N.

A fewwords on this algorithm are in order at this place. The algorithm clearly provides
an approximation to the spheric integral in Theorem 3.1 by means of a finite sum
based on sampling of the sphere and then averaging the values of the integrand over
all samples. Of course, this approximation will improve with the sampling size which
may be large depending on the dimension m of the problem (i.e., exit nodes in the
network) and on the desired precision for the probability.

We recall that the uniform distribution on the sphere Sm−1 can be represented as the
distribution of η/‖η‖ (Euclidean norm), where η has a standard Gaussian distribution
in R

m , i.e., η ∼ N (0, I ). Then, the simplest idea to sample a point vi on the sphere
as in step 1. of the algorithm would be to independently sample m values w j of a
one-dimensional standard normal distribution by using standard random generators
and then putting vi := w/‖w‖ for w := (w1, . . . , wm). When replacing such Monte
Carlo sampling of the normal distribution (based on random number generators) by
Quasi-Monte Carlo sampling (based on deterministic low discrepancy sequences), one
observes a dramatic improvement in the precision of the result. For our gas network
problem (with fixed roughness coefficients), this was revealed in Gotzes et al. (2016)
. A further improvement is to be expected for direct Quasi-Monte Carlo sampling on
the sphere (not via normalization of Gaussian distributions) as discussed in Brauchart
et al. (2014).

We illustrate the construction of the sets Mi in step 3) of Algorithm 3.1 for the
special case of uncertainty sets given by rectangles (21): thanks to Lemma 3.2, the
optimal coefficients Φ∗

k�(δ, b) do not depend on b. Hence, we may simply write them
as Φ∗

k�(δ) with values according to Lemma 3.2. Now, by (23) and by definition of hk
below (10), we have that the function in r whose zero’s are looked for in step 3) takes
the form

θδ(r) = min
k,�=0,...,m

k �=l

⎧
⎨

⎩

∑

e∈Π(k)

[
Φ∗

k�(δ)
]
e

( ∑

t	h(e)

r Ltvi + μt

)2

−
∑

e∈Π(l)

[
Φ∗

k�(δ)
]
e

( ∑

t	h(e)

r Ltvi + μt

)2
⎫
⎬

⎭
,

where Lt denotes row t of the matrix L . Clearly, each of the expressions inside the
minimum is quadratic in r , hence, θ may be written as a minimum of quadratic
functions
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θδ(r) = min
k,�=0,...,m

k �=l

{
ck�(δ) + dk�(δ)r + ek�(δ)r

2
}

, (24)

with coefficients easily identified from the formula above. Since the zero’s of θδ must
be contained in the zero’s of all single quadratic functions inside the minimum, one
may proceed as follows: determine first all zero’s of the single quadratic functions
above and order them as x1, . . . xK . Second, delete from this list all zero’s xn for
which xn < 0 or θδ(xn) < 0. The remaining list, say y1, . . . , yK ′ will consist of the
positive zero’s of θδ . Third, identify neighboring zero’s, between which the function
θδ remains positive, in order to represent the set Mi in step 3) as a union of disjoint
intervals. For instance, if θδ(0) > 0, then we’ll have that

Mi = [0, y1] ∪ [y2, y3] ∪ · · · ,

whereas for θδ(0) < 0 the representation will be

Mi = [y1, y2] ∪ [y3, y4] ∪ · · · .

Observe, that the last of these intervalswill be closed by the last zero yK ′ if θδ(yK ′) < 0
or by ∞ else.

Once a representation of the set Mi in step 3. as a union of disjoint intervals has
been obtained, step 4. is easily accomplished by applying efficient standard routines for
high-precision approximations of the one-dimensional cumulative distribution func-
tion of the χ -distribution.

4 Numerical solution of the optimization problem

In this section, we describe the numerical solution of the optimization problem (13)
and illustrate the results for a concrete example. As a solution method for nonlinear
optimization problems subject to inequality constraints we have chosen the projected
gradient method (Gill et al. 1981) as it behaves rather robust with respect to the
inevitable inaccuracy in the computation of probabilities by means of Algorithm 3.1.
Note, that this inaccuracy can be reduced at the cost of increasing computation time
by enhancing the sample size N . In order to apply the projected gradient method it is
crucial not only to determine the (δ-dependent) probabilities P(ξ ∈ Mδ) in (12) but
also their gradients with respect to δ.

4.1 Approximating the gradient of the probability function

The sensitivity information on the δ-dependent probability function mentioned above
can be gained directly from inside Algorithm 3.1: by step 6), the probability is given
by S/N , where S is updated in step 4). Accordingly, the derivative of the probability
with respect to the parameter δ can be approximated by the expression S′/N , where
S′ is updated by the derivatives with respect to δ of the updates of S:
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∑

j

fχ (β j (δ))∇β j (δ) − fχ (α j (δ))∇α j (δ).

Here, fχ refers to the density of the one-dimensional χ -distribution withm degrees of
freedom, i.e., fχ is the derivative of the distribution function Fχ from step 4). Since
there exists an analytical expression for fχ , all one needs to know for evaluating the
expression above is the gradients ∇β j ,∇α j , i.e, the gradients with respect to δ of
the appropriate zero’s of the function θδ defined in step 3). These are easily found by
representing the appropriate zero’s of the associated quadratic equation

ck�(δ) + dk�(δ)r + ek�(δ)r
2 = 0

in (24) as r(δ) by using the classical solution formula and then deriving analytically
r(δ) with respect to δ. We emphasize that the procedure sketched above corresponds
to calculating the gradient of the approximated probability function. This does not
automatically have to coincide with calculating an approximation of the gradient of
the true probability function, i.e., both operations don’t have to commute. It was found
in Van Ackooij and Henrion (2014) and Van Ackooij and Henrion (2017) by deriving
corresponding gradient formulae that both approaches coincide under convexity of
the underlying random inequality system. Since this assumption is not satisfied in our
case for the system (10), a rigorous justification of the procedure described above (dif-
ferentiation ’inside the algorithm’) is missing so far. On the other hand, our numerical
experience suggests that the projected gradient method performs well in finding local
solutions to problem (13).

4.2 Illustration of a toy problem

For the purpose of illustration we start by considering a toy example of problem
(13). Here, a simple network consisting of one entry node, one passive node (Innode)
without injection or consumption and two exit nodes with random load is given as in
Fig. 1.

Observe, that the innode can be formallymodeled as an exit with zero consumption.
As there exist 3 arcs joining the nodes, we have three roughness coefficients Φe. We
will consider the maximization of rectangular uncertainty sets Uδ as introduced in
(21). We assume the following data:

Fig. 1 Structure of a simple
network for a toy example
containing one entry, one
passive node and two exits

IItixEItixE

Entry

Innode
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Φ̂1 = Φ̂2 = Φ̂3 = 0.0015

pmin = (1, 1, 1, 1); pmax = (390, 200, 100, 120)

ξ = (ξ1, ξ2) ∼ N

(
(4100, 3900);

(
300 0
0 300

))

f (δ) := (δ1)
0.9 + (δ2)

0.9 + (δ3)
0.9

p = 0.8

Here, the components of the vector Φ̂ of average roughness coefficients correspond
to the arcs (entry-innode, innode-exit 1, innode-exit 2), whereas the components of
pmin, pmax are labeled according to (entry, innode, exit 1, exit 2). The two exits are
supposed to have Gaussian random load with means 4100 and 3900, respectively and
standard deviation 300 both. We assume that the two loads are uncorrelated (which
does not necessarily have to be the case in our approach). The objective function f
measuring the size of the uncertainty setUδ has not been chosen on purpose as a norm.
The reason is that, e.g., the one-norm (which would correspond to exponents one in
the same expression) yields strongly ’concentrated’ solutions, i.e. optimal rectangular
uncertainty sets with many extremely short sides and a few long ones. In other words,
in order to allow a larger uncertainty for a few roughness coefficients, one has to insist
on extremely high accuracy for many other. Choosing exponents smaller than one
makes it possible to control the contrast between different uncertainty ranges and to
maintain a reasonable minimum amount. The probability level p in (12) was set to
0.8. The numerical solution of problem (13) with the given data is:

δ∗
1 = 0.00014595; δ∗

2 = 0.00006697; δ∗
3 = 0.00020503.

Relating these values to the average roughness coefficients indicated above, the inter-
pretation of this result is as follows: 80% of the random load scenarios at exits 1 and 2
are technically feasible in the sense of Prop. 2.1 for all roughness coefficients deviating
relatively from their average values by at most 97.3, 44.6 and 136.7%, respectively.
We can make a posterior check of this solution by simulating a set of exit load scenar-
ios according to the Gaussian distribution given above and counting for how many of
them feasibility holds true for all roughness coefficients in the calculated maximum
uncertainty rectangle.

Figure 2 shows ten different simulated load patterns for the two exits (with values
scattering around the averages indicated above indicated in the figure). For each simu-
lation the optimal rectangular uncertaintywith side lengths given above is shown along
with all infeasible roughness coefficients colored inside. An empty rectangle indicates
that the load pattern is feasible for all roughness coefficients in the rectangle. Then,
by definition, this load scenario is counted as feasible. According to Fig. 2, eight out
of ten load scenarios are feasible which corresponds (by chance exactly) to the chosen
probability level p = 0.8. For the two infeasible scenarios the polyhedral set (actually,
the complement of a polyhedron) of roughness coefficients in the rectangle violating
feasibility is made visible.
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Fig. 2 Simulation of ten exit
load patterns along with
infeasible roughness coefficients
colored inside the optimal
uncertainty set (color figure
online)

123



A joint model of probabilistic/robust constraints for gas… 459

Fig. 3 Computed sensitivity (displayed by gray scale) of the roughness coefficients for distinct pipes of a
gas network with different probability levels: p = 0.8 (left) and p = 0.9 (right)

4.3 Numerical solution of a medium size problem

In this section, we provide the results of solving problem (13) for a more realistic
setting with a network consisting of 27 nodes (1 entry and 26 exits). In other words,
the random vector considered in the joint probabilistic/robust constraint follows a
26-dimensional Gaussian distribution. The network is illustrated in Fig. 3 with the
entry located in the center. The pipes in the network are colored according to the
relative uncertainty allowed for the corresponding roughness coefficients in an optimal
(maximal) uncertainty set computed with the same objective as in the previous toy
example. The colors follow a gray scale, where black means that only low uncertainty
is allowed whereas white means high uncertainty can be tolerated. The solution in the
left figure was obtained upon imposing a probability level p = 0.8 whereas the one in
the right figure refers to a probability level p = 0.9. Not surprisingly, higher accuracy
for roughness coefficients is required overall when increasing the probability level.
More interestingly, higher accuracy is required at arcs close to the entry.
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Dentcheva D, Ruszczyński A (2003) Optimization with stochastic dominance constraints. SIAM J Optim
14(2):548–566

123

http://arxiv.org/abs/1504.00910


460 T. González Grandón et al.

Egger H, Kugler T, Strogies N (2017) Parameter identification in a semilinear hyperbolic system. IOPsci
Inverse Probl 33(5):055022

Genz A, Bretz F (2009) Computation of multivariate normal and t-probabilities, vol 195. Lecture notes in
statistics. Springer, Heidelberg

Gill P, Murray W, Wright M (1981) Practical optimization. Academic Press, Cambridge
Gotzes C, Heitsch H, Henrion R, Schultz R (2016) Feasibility of nominations in stationary gas networks

with random load. Math Methods Oper Res 84:427–457
Gotzes C, Nitsche S, Schultz R (2017) Probability of feasible loads in passive gas networks with up to three

cycles. Preprint, available online at OPUS TRR154
Koch T, Hiller B, Pfetsch M, Schewe L (2015) Evaluating gas network capacities, MOS-SIAM series on

optimization, vol 21. SIAM, Philadelphia
Pfetsch ME, Fügenschuh A, Geißler B, Geißler N, Gollmer R, Hiller B, Humpola J, Koch T, Lehmann T,

Martin A,Morsi A, Rövekamp J, Schewe L, SchmidtM, Schultz R, Schwarz R, Schweiger J, Stangl C,
SteinbachMC, Vigerske S,Willert BM (2015) Validation of nominations in gas network optimization:
models, methods, and solutions. Optim Methods Softw 30(1):15–53. doi:10.1080/10556788.2014.
888426

Prékopa A (1995) Stochastic programming. Kluwer, Dordrecht
Van Ackooij W, Henrion R (2014) Gradient formulae for nonlinear probabilistic constraints with Gaussian

and Gaussian-like distributions. SIAM J Optim 24:1864–1889
Van Ackooij W, Henrion R (2017) (Sub-) Gradient formulae for probability functions of random inequality

systems under Gaussian distribution. SIAM/ASA J Uncertain Quantif 5:63–87
Van Ackooij W, Frangioni A, de Oliveira W (2016) Inexact stabilized Benders’ decomposition approaches

with application to chance-constrained problems withfinite support. Comput Math Appl 65:637–669

123

http://dx.doi.org/10.1080/10556788.2014.888426
http://dx.doi.org/10.1080/10556788.2014.888426

	A joint model of probabilistic/robust constraints for gas transport management in stationary networks
	Abstract
	1 Introduction
	1.1 Background
	1.2 Proposed model: optimization under uncertainty

	2 Description of the optimization problem
	2.1 Explicit representation of feasible loads

	3 Determination of the probability of Mδ
	3.1 Efficient description of the set Mδ
	3.2 Explicit solutions for simple uncertainty sets
	3.3 An algorithm for computing the probability of feasible random exit loads

	4 Numerical solution of the optimization problem
	4.1 Approximating the gradient of the probability function
	4.2 Illustration of a toy problem
	4.3 Numerical solution of a medium size problem

	Acknowledgements
	References




