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ABSTRACT
Probability functions are a powerful modelling tool when
seeking to account for uncertainty in optimization problems.
In practice, such uncertainty may result from different sources
for which unequal information is available. A convenient com-
bination with ideas from robust optimization then leads to
probust functions, i.e. probability functions acting on gen-
eralized semi-infinite inequality systems. In this paper we
employ the powerful variational tools developedby BorisMor-
dukhovich to study generalized differentiation of such pro-
bust functions. We also provide explicit outer estimates of the
generalized subdifferentials in terms of nominal data.
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1. Introduction

The theory of optimization and optimal control has enormously benefitted from
the pioneering work of Boris Mordukhovich in the areas of variational analysis
and generalized differentiation. Starting with his introduction of the fundamen-
tal limiting normal cone [1] – being small (non-convex) and robust at the same
time -, new tools of generalized differentiation (subdifferential, coderivative etc.)
grew out of this initial concept in a natural way and opened a powerful per-
spective for more efficient characterizations of stability or necessary conditions
in set-valued analysis and optimization. A striking account of this progress has
been given inMordukhovich’s celebrated two-volumemonograph [2] on theThe-
ory andApplications of Variational Analysis andGeneralized Differentiation. An
update of recent developments, for instance in hierarchical or semi-infinite opti-
mization problems, can be found in [3]. Not to the least, the theory developed
by Boris Mordukhovich has also found fruitful applications in probabilistic pro-
gramming, be it for the stability theory of probabilistic constraints [4] or be it for
the derivation of ‘small’ subdifferential formulae for probability functions [5,6].
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The current work is devoted to the characterization of theMordukhovich sub-
differential of probability functions as they arise in optimization problems with
probabilistic constraints or in problems of reliability maximization. The classical
form of a probability function considered in operations research is

ϕ(x) = P(gi(x, ξ) ≤ 0, (i = 1, . . . ,m)), (1)

where x is a finite dimensional decision vector, ξ is a finite dimensional ran-
dom vector, and g represents a constraint mapping defining some finite random
inequality system. The probability function assigns to each decision x the prob-
ability of satisfying the given random inequality system. Typically, they are
embedded into optimization problems in one of the two ways

min{f (x) | ϕ(x) ≥ p} (probabilistic constraint);

max{ϕ(x) | x ∈ X} (reliability maximization).

Applications are abundant in engineering and particularly in power manage-
ment (see, e.g. [7]). It is well recognized that such probability function are
inherently non-smooth even if all input data (mapping g and distribution of
ξ ) are smooth (see, e.g. [5, Ex. 1], [8, Prop. 2.2], [6, Ex. 1.1]). Without fur-
ther conditions, just continuity can be expected to hold true by imposing some
standard constraint qualification. There are basically two reasons for inherent
non-smoothness: first, even for a single stochastic inequality (i.e. m=1 in (1)),
the effect of an unbounded support for the distributionmay cause a failure of dif-
ferentiability for the parameter dependent improper integral defining ϕ; second,
even in the case of bounded support but in the presence of several inequali-
ties, some constraint qualification (additional to that ensuring continuity) has
to be imposed (e.g. the so-called ‘rank-2-constraint qualification’ [9, Th. 3.1], [6,
Lemma 4.3]).

In order to figure out those additional conditions finally guaranteeing differen-
tiability, it turned out to be useful to investigate probability functions by means
of tools from variational analysis and generalized differentiation [5,6,10,11]. A
powerful tool to carry out this investigation in the context of Gaussian or Gaus-
sian like distributions of ξ is the so-called spheric-radial decomposition of an m-
dimensional Gaussian random vector ξ ∼ (μ,�), which allows to represent the
Gaussian probability of a Borel measurable setM as

P(ξ ∈ M) =
∫

Sm−1
μη({r ≥ 0 | μ+ rLv ∈ M}) dμζ (v), (2)

whereμη is the one-dimensional Chi-distributionwithm degrees of freedom,μζ
is the uniform distribution on the unit sphere S

m−1 and L originates from a fac-
torization � = LLT of the covariance matrix of ξ . This decomposition has been
used in the computation ofGaussian probabilities in early papers byDeák [12,13].
However, in the context of optimization problems, the set M would depend on
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the decision vector x and so, in addition to the computation of probabilities, one
would also be interested in the sensitivity of this probability with respect to the
decision vector. In [14] it was shown that the gradient with respect to x of the
probability (2) (withM replaced by some explicitly described moving setM(x))
can be represented – just by differentiation under the integral sign – as a spheric
integral much like (2) but with a modified integrand. This allows for a simul-
taneous sampling scheme of the uniform distribution on the sphere in order
to determine probabilities and sensitivities at a time in the framework of some
nonliear optimization solver.

While in [14] more general constraints (finite unions of finite intersections of
smooth inequalities) were admitted than in (1), the authors make a boundedness
assumption which may be quite restrictive for applications. In [8] it was shown
for a single inequality constraint, how to circumvent this boundedness assump-
tion by verifying some growth condition which turns out to apply in almost all
practically relevant situations. In [6] the analogous result was proven for sev-
eral inequaities and a general (Clarke-) subgradient formula provided for the
probability function in absence of further constraint qualifications. If, however,
the rank-2-constraint qualification mentioned above, applies to the stochastic
inequality system, thenϕ could be shown to be differentiable and its gradient rep-
resented in the formof a spheric integral again (without relying on a boundedness
assumption). Further improvements concerning the application of spheric radial
decomposition to probabilistic programmingwere obtained by extending the set-
ting to infinite-dimensional decisions [5], to the class of elliptical distributions
[11] and to the derivation of second-order derivative formulae for ϕ [15].

The aim of this work is to characterize the Mordukhovich subdifferential of
probability functions of the type

ϕ(x) = P(g(x, y, ξ) ≤ 0 ∀ y ∈ T(x)), (3)

where g : R
n × R

p × R
m → R is a constraint function, T : R

n ⇒ R
p is a

multifunction representing some moving index set for the inequality system
g(x, y, ξ) ≤ 0, and ξ is an m-dimensional random vector. We note first, that ϕ
is correctly defined by justifying that the set, of which the probability is taken, is
Borel measurable. Indeed, it is closed as an intersection of sets which are closed
by continuity of g. Observe that the stochastic inequality system, over which the
probability is taken in (3) has the typical form of a constraint set in general-
ized semi-infinite programming [16]. Such probability functions have recently
attracted much attention in optimization problems with so-called probust (=
probabilistic/robust) constraints (see [17–21]. These arise in a quite natural way,
when uncertainty parameters in the inequalities of some constraint system have a
mixed nature with some parameters being endowed with stochastic information
and others not. Such is the case for instance in gas transport optimization, where
the loads at the exits of the gas networks are random (andmodelled bymultivari-
ate statistical distributions based on historical data) while friction coefficients of
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the pipes underground are just uncertain within some given range [18]. Then it
makes sense, tomodel both types of uncertainty in a single joint model which is a
probabilistic constraint with respect to the stochastic parameter ξ over an infinite
inequality system reflecting the robust part of uncertainty.

A recent investigation of model (3) specialized to the setting of a constant
(yet continuous) index set T(x) ≡ T can be found in [21]. The consideration of
decision-dependent index sets as in (3) adds another twist to the non-smooth
character of the probability function ϕ. Our (first) practical motivation for ana-
lyzing this model comes again from optimization problems in gas transportation
as, for instance, themaximization of free capacities by the owner of a gas network
(see [19] for details). As in previous work, our intention is – starting with tools
from generalized differentiation – to provide explicit conditions under which ϕ
is differentiable along with a gradient formula as a spheric integral in the vein of
the discussion above.

This paper has the following organization. In Section 2 we provide a brief
overview of the employed concepts and background information. Our derivation
involves an auxiliary mapping, which can be represented as a ‘marginal func-
tion’. The careful study of its continuity, representation as a marginal function
and derivation of subdifferential estimates are the topic of Section 3. The final
Section 4 is devoted to the study of subdifferential estimates for the probabil-
ity function itself, carefully discusses the employed assumptions and provides an
application.

2. Basic assumptions and concepts

We start with the following definitions of well-known properties of multifunc-
tions:

Definition 2.1: Let S : R
n ⇒ R

p be a set-valued mapping. Then,

(1) S is closed if its graph gph S := {(x, y) ∈ R
n × R

p | y ∈ S(x)} is a closed set.
(2) S is locally bounded if for every x ∈ R

n there exists a neighbourhood U of x
such that S(U) := ∪x′∈US(x′) is bounded.

(3) S is inner (or: lower) semicontinuous at (x̄, ȳ) ∈ gph S if for every sequence
xk → x̄ there exists a sequence yk ∈ S(xk) with yk → ȳ. Moreover, we say
that S is inner semicontinuous at x̄ if it is inner semicontinuous at every
(x̄, ȳ) ∈ gph S.

Throughout this paper, we make the following standing assumptions on (3):

g is continuously differentiable and it is convex with respect to (4)

the third variable.

T is a closed and locally bounded multifunction. (5)
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ξ has an elliptical distribution according to ξ ∼ E(μ,�, θ)

(see Definition 2.8) with continuous generator θ . (6)

We note that (5) implies T to have compact values, i.e. T(x) is compact for all
x ∈ R

n. Moreover, we have the following immediate observation:

Proposition 2.2: From (5) it follows that, if T(x̄) = ∅ for some x̄ ∈ R
n, then

T(x) = ∅ and ϕ = 1 locally around x̄ for ϕ in (3).

Proof: Assume that there exists some sequence xn → x̄ with T(xn) �= ∅ and
choose yn ∈ T(xn). Then, by local boundedness of T, one has that ynk →k ȳ for
some subsequence and for some ȳ. The closedness of T now implies the con-
tradiction ȳ ∈ T(x̄) with T(x̄) = ∅. Consequently, there is some neighbourhood
U of x̄ such that T(x) = ∅ for all x ∈ U. This entails that for every x ∈ U the
inequality system

g(x, y, z) ≤ 0 ∀ y ∈ T(x) = ∅
is trivially satisfied for all z ∈ R

m. Therefore, ϕ(x) = 1. �

Clearly, the last proposition shows, that our probability function ϕ in (3)
behaves trivially around arguments at which T is empty. That is why we will
exclude this case from the corresponding results below.

In the following, we collect some basic concepts of variational analysis and
generalized differentiation used in the paper (see, e.g. [3,22]).

Definition 2.3: Let C ⊆ R
n be a closed set and x̄ ∈ C. The contingent cone

TC(x̄), the Fréchet normal cone N̂C(x̄) and the Mordukhovich normal cone
NC(x̄) to C at x̄ are respectively defined as:

TC(x̄) :=
{
d ∈ R

n | ∃tn ↓ 0, ∃ xn ∈ C, t−1
n (xn − x̄) = d

}
N̂C(x̄) :=

{
x∗ ∈ R

n | 〈x∗, d
〉 ≤ 0 ∀ d ∈ TC(x̄)

}
NC(x̄) := {x∗ ∈ R

n | ∃(xn, x∗
n) → (x̄, x∗), xn ∈ C, x∗

n ∈ N̂C(xn)}.

We recall that the Mordukhovich normal cone (unlike the Fréchet normal
cone) has closed graph [22, Prop. 6.6]. The normal cones above induce the fol-
lowing subdifferentials for lower semicontinuous functions f : R

n → R ∪ {∞}:

Definition 2.4: The Fréchet subdifferential ∂̂f (x̄), the Mordukhovich subdiffer-
ential ∂f (x̄) and the singular Mordukhovich subdifferential ∂∞f (x̄) of f at x̄ are
respectively defined as:

∂̂f (x̄) := {x∗ ∈ R
n | (x∗,−1) ∈ N̂epi f (x̄, f (x̄))}

∂f (x̄) := {x∗ ∈ R
n | (x∗,−1) ∈ Nepi f (x̄, f (x̄))}
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∂∞f (x̄) := {x∗ ∈ R
n | (x∗, 0) ∈ Nepi f (x̄, f (x̄))},

where epi f := {(x, t) ∈ R
n+1 | f (x) ≤ t} refers to the epigraph of f.

The following representation of ∂f in terms of ∂̂f is well known [3, Proposi-
tion 1.20]:

∂f (x̄) = {x∗ ∈ R
n | ∃(xn, x∗

n) → (x̄, x∗), f (xn) → f (x̄) , x∗
n ∈ ∂̂f (xn)}. (7)

TheMordukhovich normal cone provides the possibility to introduce a derivative
concept for general set-valued mappings:

Definition 2.5: Let S : R
n ⇒ R

p be a set-valuedmappingwith closed graph. The
coderivative of S at (x̄, ȳ) ∈ gph S is defined as

D∗S(x̄, ȳ)(y∗) := {x∗ ∈ R
n | (x∗,−y∗) ∈ Ngph S(x̄, ȳ)}.

The fact that N is a cone implies immediately the following simple rule:

D∗S(x̄, ȳ)(λy∗) = λD∗S(x̄, ȳ)(y∗) ∀ λ ≥ 0 ∀ y∗. (8)

The following concept is a Lipschitz like property of set-valued mappings:

Definition 2.6: The set-valued mapping S : R
n ⇒ R

p has the Aubin property at
(x̄, ȳ) ∈ gph S if there existsK>0 together with neighbourhoodsU of x̄ andV of
ȳ such that

d
(
y, S(x2)

) ≤ Kd (x1, x2) ∀ y ∈ S(x1) ∩ V ∀ x1, x2 ∈ U,

where, on the left-hand side, ‘d’ refers to the usual point-to-set distance.

In finite dimensions, the Aubin property can be equivalently characterized
by means of the co-derivative. This is the object of the so-called Mordukhovich
criterium (see, e.g. [22, Theorem 9.40]):

Theorem 2.7: Let S : R
n ⇒ R

p be a set-valued mapping with closed graph and
(x̄, ȳ) ∈ gph S. Then S has the Aubin property at (x̄, ȳ) if and only if D∗S(x̄, ȳ)
(0) = {0}.

In this work we will consider elliptically distributed random vectors [23]:

Definition 2.8: We say that the m-dimensional random vector ξ is elliptically
distributed with mean μ, positive definite covariance matrix � and generator
θ : R+ → R+ (ξ ∼ E(μ,�, θ) for short) if and only if its density fξ : R

m → R+
is given by

fξ (z) = (det�)−1/2 θ
(
(z − μ)��−1(z − μ)

)
,

where the generator must satisfy
∫∞
0 tm/2θ(t) dt < ∞.
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The class of elliptical distributions contains, for instance, the multivariate
Gaussian, Student ( t- ), symmetric multivariate stable, symmetric multivariate
Laplace and multivariate logistic distributions. Now, consider a decomposition

� = LLT (9)

of � (e.g. Cholesky decomposition). Then, it can be shown that ξ admits a
representation as

ξ = μ+ RLζ ,

which we will refer to as the spherical radial decomposition. Herein ζ has a uni-
form distribution over the m-dimensional Euclidean unit sphere S

m−1 := {z ∈
R
m :

∑m
i=1 z

2
i = 1} andR – being stochastically independent of ζ – possesses a

density, which is given by

fR(r) :=
⎧⎨
⎩
2πm/2

�
(m
2
) rm−1θ(r2) if r ≥ 0,

0 if r < 0.
(10)

Let us consider the probability function (3) with ξ ∼ E(μ,�, θ). Then, simi-
lar to the previously discussed representation (2) in the special case of Gaussian
distributions, one has that

P(ξ ∈ M) =
∫

Sm−1
μR({r ≥ 0 | μ+ rLv ∈ M}) dμζ (v)

for any Borel measurable subsetM ⊆ R
m, where μζ refers to the uniform mea-

sure on S
m−1 and μR to the one-dimensional probability measure induced by

the density (10) (which would reduce to the Chi-distribution in (2)). Applying
this representation to the set

M := {z ∈ R
m | g(x, y, z) ≤ 0 ∀ y ∈ T(x)},

one derives the corresponding form of the probability function (3):

ϕ(x) =
∫
v∈Sm−1

μR({r ≥ 0 : g(x, y,μ+ rLv) ≤ 0 ∀ y ∈ T(x)}) dμζ (v)

=
∫
v∈Sm−1

e(x, v) dμζ (v)
(
x ∈ R

n) . (11)

The study of the integrand e : R
n × S

m−1 → [0, 1] defined by

e(x, v) := μR({r ≥ 0 | g(x, y,μ+ rLv) ≤ 0, ∀ y ∈ T(x)}). (12)

will be of great importance in this paper. We will to refer to it as the radial
probability function.
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3. Continuity properties

3.1. (Semi-) continuity of the probability function

When studying the infinite inequality system [g(x, y, z) ≤ 0 ∀ y ∈ T(x)], it will
be useful to consider the following maximum function gT : R

n × R
m → R̄

given by:

gT(x, z) :=
{

max
y∈T(x)

g(x, y, z) if T(x) �= ∅,
−∞ if T(x) = ∅.

(13)

Note that writing ‘max’ in this definition is justified from assumptions (4)–(5) by
g being continuous and T having compact values. Clearly, gT is convex in the sec-
ond argument as a consequence of our convexity assumption in (4). The following
equivalence is immediate:

g(x, y, z) ≤ 0 ∀ y ∈ T(x) ⇐⇒ gT(x, z) ≤ 0. (14)

In particular, our probability function ϕ in (3) may be equivalently written as

ϕ (x) = P
(
gT(x, ξ) ≤ 0

)
. (15)

The results of the following Lemma are well known (see, e.g. [16, p.401]):

Lemma 3.1: Let (x̄, z̄) ∈ R
n × R

m be arbitrary such that T(x̄) �= ∅. Then, under
our assumptions (4)–(5) it holds that

(1) gT is upper semicontinuous at (x̄, z̄).
(2) If, in addition, T is inner semicontinuous at x̄ (i.e. inner semicontinuous at

every (x̄, y) ∈ gphT), then gT is also lower semicontinuous, hence continuous
at (x̄, z̄).

From here, we derive the following properties for the probability function ϕ
in (3):

Proposition 3.2: Let x̄ ∈ R
n be arbitrary such that T(x̄) �= ∅. Then, under our

assumptions (4)–(6) it holds that

(1) If there is some z̄ ∈ R
m and some ε > 0 such that

g(x̄, y, z̄) ≤ −ε ∀ y ∈ T(x̄), (16)

then ϕ is lower semicontinuous at x̄.
(2) If T is inner semicontinuous at x̄, then ϕ is upper semicontinuous at x̄.

Proof: Observe first, that (16) implies z̄ to be a strong Slater point for the con-
vex inequality system g(x̄, y, z) ≤ 0 (y ∈ T(x)) in the variable z. It follows that
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gT(x̄, z̄) ≤ −ε < 0 by compactness of T(x̄), whence z̄ is a Slater point of the (sin-
gle) convex inequality gT(x̄, z) ≤ 0 in the variable z. This provides that (with ‘bd’
= boundary){

z ∈ R
m | gT(x̄, z) = 0

} ⊆ bd
{
z ∈ R

m | gT(x̄, z) ≤ 0
}
.

Since the boundary of a convex set has Lebesgue measure zero, the set on the
left-hand side itself has Lebesgue measure zero. Since our random vector ξ is
absolutely continuous with respect to the Lebesgue measure (by having a density
according to (6)), one infers that

P
(
gT(x̄, ξ) = 0

)
.

Moreover, we know from (1) in Lemma 3.1 that gT is upper semicontinuous
at (x̄, z) for any z ∈ R

m. Then, taking into account (15), it follows from [17,
Lemma 2] (with the inequality system and thus lower and upper semicontinuity
reversed there), that ϕ is lower semicontinuous at x̄ as claimed in (1). As for (2),
(2) in Lemma 3.1 yields that gT is lower semicontinuous at (x̄, z) for any z ∈ R

m.
Then, again from [17, Lemma 2], one derives that ϕ is upper semicontinuous
at x̄. �

Of course, joining all assumptions in the previous Proposition would ensure
the continuity of the probability function ϕ in (3).

We complete this section by an openness result for the Aubin property needed
later:

Proposition 3.3: Fix x̄ ∈ R
n. Assume that our set-valued index set mapping T :

R
n ⇒ R

p satisfies the Aubin property at all (x̄, y) ∈ gphT. Then, under assump-
tion (5) there is a neighbourhood U of x̄, such that T has the Aubin property at
all (x, y) ∈ gphT with x ∈ U and with some common (independent of x and y)
modulus K ≥ 0. Moreover,∥∥x∗∥∥ ≤ K

∥∥y∗∥∥ ∀ y∗ ∀ x∗ ∈ D∗T(x, y)
(
y∗) ∀ y ∈ T(x) ∀ x ∈ U. (17)

Proof: Since T satisfies the Aubin property at all (x̄, y) with y ∈ T(x̄), a standard
compactness argument with respect to the set T(x̄) (which is compact by (5))
yields the existence of a neighbourhood U of x̄ of a neighbourhood V of the
compact set T(x̄) and of a constant K ≥ 0 such that

d
(
y,T (x2)

) ≤ Kd (x1, x2) ∀ y ∈ T (x1) ∩ V ∀ x1, x2 ∈ U. (18)

We claim that T has the Aubin property at all (x, y) ∈ gphT with x ∈ U with the
common modulus K. Assuming the contrary would provide us with a sequence
(xk, yk) ∈ gphT such that xk →k x̄ and T fails to have the Aubin property at
(xk, yk) with modulus K. The local boundedness of T at x̄ (see (5)) implies that
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for ykl →l ȳ for some subsequence and some ȳ. By gphT being closed (see (5)),
we have that (x̄, ȳ) ∈ gphT. Since T fails to have the Aubin property at (xkl , ykl)
with modulus K, we may find a sequence (x̃l, x̂l, ỹl) satisfying

d
(
x̃l, xkl

)
, d
(
x̂l, xkl

)
, d
(
ỹl, ykl

) ≤ l−1, ỹl ∈ T
(
x̃l
)
,

d
(
ỹl,T

(
x̂l
))
> Kd

(
x̃l, x̂l

) ∀ l. (19)

Clearly, x̃l, x̂l →l x̄ and ỹl →l ȳ ∈ T(x̄) ⊆ V . In particular, for l large enough, we
have that ỹl ∈ T(x̃l) ∩ V and x̃l, x̂l ∈ U. Hence, d(ỹl,T(x̂l)) ≤ Kd(x̃l, x̂l) for l large
enough by (18) which contradicts (19).

It remains to prove (17). From [3, (3.10)] we infer with the result proven so far,
that

∥∥x∗∥∥ ≤ K ∀ x∗ ∈ D∗T(x, y)(y∗) :
∥∥y∗∥∥ ≤ 1 ∀ y ∈ T(x) ∀ x ∈ U.

Combining this with (8) yields

‖x∗‖∥∥y∗∥∥ ≤ K ∀ y∗ �= 0 ∀ x∗ ∈ D∗T(x, y)(y∗) ∀ y ∈ T(x) ∀ x ∈ U.

On the other hand, D∗T(x, y)(0) = {0} by Theorem 2.7. Altogether, this
proves (17). �

3.2. ( Lipschitz- ) continuity and subdifferential of the radius function and of
the radial probability function

We define the following function ρ : R
n × R

p × R
m → R+ ∪ {∞}:

ρ(x, y, v) := sup{r ≥ 0 | g(x, y,μ+ rLv) ≤ 0}. (20)

(compare (12)). If the set of r ≥ 0 with g(x, y,μ+ rLv) ≤ 0 is empty, then we
define ρ(x, y, v) := 0. It follows immediately from the definition that

ρ(x, y, tv) = t−1ρ(x, y, v) ∀ t > 0. (21)

Let x̄ ∈ R
n, ȳ ∈ R

p and v̄ ∈ R
m be given. Suppose that g(x̄, ȳ,μ) < 0. Then, by

continuity and convexity of g(x̄, ȳ, ·) as assumed in (4), either ρ(x̄, ȳ, v̄) = ∞ –
in which case g(x̄, ȳ,μ+ rLv̄) < 0 for all r ≥ 0 – or ρ(x̄, ȳ, v̄) < ∞ is the unique
solution of g(x̄, ȳ,μ+ rLv̄) = 0. The following lemma follows from Lemmas 3.1,
3.2 and 3.3 in [8]. The latter ones were proven just in case of a single constraint
g(x, z) ≤ 0, i.e. withmissing variable y for indexing the inequality in our possibly
infinite system. It turns out, however, that by treating the couple (x, y) exactly as
the single variable x has been treated in [8], one may copy the original proofs to
get the following results:
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Lemma3.4: Assume that x̄ ∈ R
n, ȳ ∈ R

p and v̄ ∈ S
m−1 are such that g(x̄, ȳ,μ) <

0. Then, the extended-valued function ρ is continuous at (x̄, ȳ, v̄) with respect to
the topology of R+ ∪ {∞}. Moreover, if ρ(x̄, ȳ, v̄) < ∞, then, ρ is continuously
differentiable on a neighbourhood W of (x̄, ȳ, v̄) and

∇x/yρ(x, y, v) = − ∇x/yg(x, y,μ+ ρ(x, y, v)Lv)
〈∇zg(x, y,μ+ ρ(x, y, v)Lv), Lv〉 (22)

〈∇zg(x, y,μ+ ρ(x, y, v)Lv), Lv〉 ≥ −g(x, y,μ)
ρ(x, y, v)

> 0 (23)

holds true for all (x, y, v) ∈ W.

As an immediate consequence of Lemma 3.4 and of (21), we have

Corollary 3.5: Assume that x̄ ∈ R
n, ȳ ∈ R

p are such that g(x̄, ȳ,μ) < 0. Then,
the extended-valued function ρ is continuous at (x̄, ȳ, v̄) for every v̄ ∈ R

m\{0}with
respect to the topology of R+ ∪ {∞}.

Next, we define the radius function ρT : R
n × R

m → R+ ∪ {∞} by

ρT(x, v) := inf
y∈T(x)

ρ(x, y, v). (24)

Proposition 3.6: Under (4)–(6), for every v ∈ S
m−1 and every x with gT(x,μ) <

0 it holds that

{r ≥ 0 | gT(x,μ+ rLv) ≤ 0} = [0, ρT(x, v)], (25)

where [0,∞] = [0,∞) is intended. Moreover, if ρT(x, v) is finite, then it is the
unique solution r of the equation gT(x,μ+ rLv) = 0.

Proof: If T(x) = ∅, then, by definitions in (13) and (24) we have that ρT(x, v) =
∞ and gT(x,μ+ rLv) = −∞ for every r ≥ 0, hence both sets in (25) coin-
cide. Next, assume that T(x) �= ∅. If ρT(x, v) = ∞, then, ρ(x, y, v) = ∞ for all
y ∈ T(x) which entails that g(x, y,μ+ rLv) ≤ 0 for all r ≥ 0 and all y ∈ T(x). It
follows that gT(x,μ+ rLv) ≤ 0 for all r ≥ 0 and, hence, (25) holds true again.
Therefore, we may assume now in addition that ρT(x, v) < ∞.

Let r ∈ [0, ρT(x, v)] be given. Then, by (24 ) and (20)

sup{r′ ≥ 0 | g(x, y,μ+ r′Lv) ≤ 0} = ρ(x, y, v) ≥ r ∀ y ∈ T(x).

Let y ∈ T(x) be arbitrary. If there existed some r∗ ≥ rwith g(x, y,μ+ r∗Lv) ≤ 0,
then by our assumption gT(x,μ) < 0 and by convexity of g(x, y, ·) it would fol-
low that g(x, y,μ+ rLv) ≤ 0. Otherwise, the relation above entails the existence
of some sequence rk ↑ r such that g(x, y,μ+ rkLv) ≤ 0. Then, again g(x, y,μ+
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rLv) ≤ 0. Since y ∈ T(x)was arbitrary, one infers that gT(x,μ+ rLv) ≤ 0 which
establishes the inclusion ′ ⊇′ of (25).

Conversely, let gT(x,μ+ rLv) ≤ 0 for some r ≥ 0. Then, g(x, y,μ+ rLv) ≤ 0
and, hence, r ≤ ρ(x, y, v) for all y ∈ T(x) which entails that ρT(x, v) ≥ r. This
finally proves (25).

Concerning the final statement of the proposition, note first that the assump-
tion ρT(x, v) < ∞ along with the already proven identity (25) yields that

gT(x,μ+ ρT(x, v)Lv) ≤ 0; gT(x,μ+ (ρT(x, v)+ 1/k)Lv) > 0 ∀ k.

The assumption ρT(x, v) < ∞ implies that T(x) �= ∅. Consequently, Lemma 3.1
ensures the upper semicontinuity of gT . Thus,

gT(x,μ+ ρT(x, v)Lv) ≥ lim sup
k

gT(x,μ+ (ρT(x, v)+ 1/k)Lv) ≥ 0,

so that ρT(x, v) is a solution r of the equation gT(x,μ+ rLv) = 0. Unique-
ness of this solution now follows from the convexity of gT(x, ·) along with our
assumption gT(x,μ) < 0. �

Corollary 3.7: Assume that (4)–(6) holds true. If gT(x,μ) < 0, then the radial
probability function in (12) can be represented as

e(x, v) =
{

FR(ρT(x, v)) if ρT(x, v) < ∞
1 if ρT(x, v) = ∞ ∀ x ∈ R

n ∀ v ∈ S
m−1, (26)

where FR is the cumulative distribution function of the one-dimensional probability
measure μR.

Proof: From (12), (14) and (25), we derive

e(x, v) = μR({r ≥ 0 | gT(x,μ+ rLv) ≤ 0}) = μR([0, ρT(x, v)]).

If ρT(x, v) = ∞, then [0, ρT(x, v)] = R+, and so

e(x, v) = μR(R+) =
∫ ∞

0
fR(t) dt = 1,

where the last identity follows from the fact that the density fR takes value
zero for negative arguments (see (10)). If, in contrast, ρT(x, v) < ∞, then
μR([0, ρT(x, v)]) = FR(ρT(x, v)) by definition of a distribution function and
again by (see (10)). �

The next result characterizes the continuity of the radial function ρT .

Theorem 3.8: Assume that (4)–(6) hold true. Let x be such that gT(x,μ) < 0.
Then, ρT (as a possibly extended-valued function) is lower semicontinous at (x, v)
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for every v ∈ S
m−1 in the topology of R+ ∪ {∞}. If,moreover, T is inner semicon-

tinuous at x, then ρT is also upper semicontinous, hence, continuous at (x, v) for
every v ∈ S

m−1 in the topology of R+ ∪ {∞}.

Proof: As for the verification of lower semicontinuity, consider a sequence
(xk, vk) → (x, v) with

ρT(xk, vk) → α := lim inf
(x′,v′)→(x,v)

ρT(x′, v′).

We have to show that ρT(x, v) ≤ α. This is trivial if α = ∞, hence assume that
α < ∞. Consequently, ρT(xk, vk) < ∞ for k large enough. This entails, on the
one hand, thatT(xk) �= ∅ by (24), whenceT(x) �= ∅ according to Proposition 2.2.
On the other hand, by the last statement of Proposition 3.6,

gT(xk,μ+ ρT(xk, vk)Lvk) = 0

for k large enough. Now, we may exploit the upper semicontinuity of gT at
(x,αLv), which is guaranteed by Lemma 3.1, in order to derive that

0 = lim
k

gT(xk,μ+ ρT(xk, vk)Lvk) ≤ gT(x,μ+ αLv). (27)

If ρT(x, v) = ∞, then gT(x,μ+ rLv) ≤ 0 for all r ≥ 0 by (25). In particu-
lar gT(x,μ+ αLv) ≤ 0 and also gT(x,μ+ (α + 1)Lv) ≤ 0, whence gT(x,μ+
αLv) = 0 by (27). This provides a contradiction with gT(x,μ) < 0 and the con-
vexity of gT(x, ·). Therefore, ρT(x, v) < ∞, and so, by the last statement of
Proposition 3.6, gT(x,μ+ ρT(x, v)Lv) = 0. The assumptionρT(x, v) > αwould
then imply with gT(x,μ) < 0 and the convexity of gT(x, ·) that gT(x,μ+ αLv) <
0 contradicting (27). Hence, ρT(x, v) ≤ α, as was to be shown.

The upper semicontinuity of ρT at (x, v) is trivial in case that ρT(x, v) = ∞,
hence we assume that ρT(x, v) < ∞ which in particular implies that T(x) �= ∅.
Then, by (13), for an arbitrary ε > 0 there exists some yε ∈ T(x) such that

g(x,μ+ yε, (ρT(x, v)+ ε)Lv) = gT(x,μ+ (ρT(x, v)+ ε)Lv) > 0,

where the strict inequality follows from (25). Let (xk, vk) → (x, v) be a sequence
with

ρT(xk, vk) → β := lim sup
(x′,v′)→(x,v)

ρT(x′, v′).

By the inner semicontinuity of T at x, there exists a sequence yk → yε with yk ∈
T(xk). Then, by continuity of g,

lim
k

g(xk, yk,μ+ (ρT(x, v)+ ε)Lvk) = g(x, yε ,μ+ (ρT(x, v)+ ε)Lv) > 0.

It follows that

gT(xk,μ+ (ρT(x, v)+ ε)Lvk) ≥ g(xk, yk,μ+ (ρT(x, v)+ ε)Lvk) > 0
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for k large enough. Therefore, again by (25), one has that ρT(x, v)+ ε >

ρT(xk, vk) for k sufficiently large. Hence, β ≤ ρT(x, v)+ ε. Since ε > 0 was
chosen arbitrarily, the claimed upper semicontinuity of ρT at (x, v) follows. �

Corollary 3.9: Assume that (4)–(6) hold true. Let x be such that gT(x,μ) < 0.
Then, for every v ∈ S

m−1, e is lower semicontinuous at (x, v). If, moreover, T is
inner semicontinuous at x, then for every v ∈ S

m−1, e is also upper semicontinous,
hence continuous at (x, v).

Proof: Let v ∈ S
m−1 be arbitrarily given. Observe first that gT(x′,μ) < 0 holds

locally around x by gT(x,μ) < 0 and by upper semicontinuity of gT at (x,μ), (see
Proposition 3.1). Suppose that e fails to be lower semicontinuous at (x, v). Then,
there exist sequences xk →k x and vk →k v such that e(x, v) > limk e(xk, vk).
Observe first that, for k large enough,

e (xk, vk) < e (x, v) ≤ 1

because e, as a probability function, takes values not larger than one. In particular,
for k large enough, Corollary 3.7 implies that

ρT (xk, vk) < ∞, e (xk, vk) = FR (ρT (xk, vk)) .

In the case of ρT(x, v) = ∞, the lower semicontinuity of ρT at (x, v) guaranteed
by Theorem 3.8 entails that lim infk ρT(xk, vk) = ∞, whence ρT(xk, vk) →k ∞.
FR, as a one-dimensional distribution function, satisfies limt→∞ FR(t) = 1. This
allows us to derive the contradiction

e (x, v) > lim
k

e (xk, vk) = lim
k

FR (ρT (xk, vk)) = 1 ≥ e (x, v) .

Consequently, wemay assume that ρT(x, v) < ∞. Then, once more, we establish
a contradiction

e (x, v) > lim
k

e (xk, vk) = lim
k

FR (ρT (xk, vk)) ≥ FR
(
lim inf

k
ρT (xk, vk)

)

≥ FR (ρT (x, v)) = e (x, v) .

Here we exploited the fact that FR as a one-dimensional distribution function
having a density, is non-decreasing and continuous, so that the liminf of the
function can be estimated from below by the function value at the liminf. The
remaining relations follow once more from the lower semicontinuity of ρT at
(x, v) and from Corollary 3.7. Altogether, this shows the claimed lower semi-
continuity of e at (x, v). The verification of continuity of e at (x, v) under the
additional assumption of T being inner semicontinuous at x follows similar lines
upon exploiting the continuity of ρT thanks to Theorem 3.8. �
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Our next step is to provide an upper estimate for the Mordukhovich subd-
ifferential of our radius function ρT . To this aim, we will apply the following
result:

Theorem3.10 ([3], Theorem4.1): We consider themarginal functionβ : R
n1 →

R̄ defined by

β (z) := inf
{
α
(
z, y

) | y ∈ G(z)
}
,

where α : R
n1 × R

n2 → R̄ is a lower semicontinuous extendended-valued func-
tion and G : R

n1 ⇒ R
n2 is a multifunction with closed graph. Define the argmin-

mapping� : R
n1 ⇒ R

n2 by

� (z) := {
y ∈ G(z) |β (z) = α

(
z, y

)}
.

Fix some z̄ ∈ R
n1 withβ(z̄) < ∞ and�(z̄) �= ∅. Assume that� is locally bounded

around z̄ and that the condition

∂∞α
(
z̄, y

) ∩ −NgphG
(
z̄, y

) = {0} ∀ y ∈ � (z̄) (28)

is satisfied (see Definition 2.4). Then, the following inclusion holds true:

∂β (z̄) ⊆
⋃{

z∗ + D∗G
(
z̄, y

)
(y∗) | (z∗, y∗) ∈ ∂α (z̄, y) , y ∈ � (z̄)} .

Before applying this result, we introduce the argmin mapping M : R
n ×

R
m ⇒ R

p associated with our problem and defined by

M(x, v) := {y ∈ T(x) | ρT (x, v) = ρ
(
x, y, v

)}. (29)

Proposition 3.11: Assume that (4)–(6) hold true. Let (x̄, v̄) ∈ R
n × S

m−1 be such
that gT(x̄,μ) < 0, T(x̄) �= ∅ and ρT(x̄, v̄) < ∞. Then,

∂ρT (x̄, v̄) ⊆
⋃

y∈M(x̄,v̄)

[{∇xρ
(
x̄, y, v̄

)} + D∗T
(
x̄, y

)
(∇yρ

(
x̄, y, v̄

)
)
]

× {∇vρ (x̄, y, v̄)} .
Proof: By upper semicontinuity of gT (see (1) in Lemma 3.1), there exists a
compact neighbourhood Ū of x̄ such that gT(x,μ) < 0 for all x ∈ Ū. Then,

g(x, y,μ) < 0 ∀ x ∈ Ū ∀ y ∈ T(x). (30)

DefineB := (Ū × R
p) ∩ gphT which is closed since gphT is so (see (5)). By local

boundedness of T (see (5)), we may assume Ū to be small enough, such that
T(x) ⊆ W for all x ∈ Ū and some bounded set W. Consequently, B is a closed
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subset of the bounded set Ū × W and, hence, is compact. Since (30) may be writ-
ten as g(x, y,μ) < 0 for all (x, y) ∈ B, the continuity of g and the compactness of
B ensure the existence of some compact set V̄ with B ⊆ int V̄ and

g(x, y,μ) < 0 ∀ (
x, y

) ∈ V̄ .

Then, by Corollary 3.5, ρ is continuous on the compact set

A := V̄ ×
{
v ∈ R

m
∣∣∣ 1
2

≤ ‖v‖ ≤ 2
}

with respect to the topology of R+ ∪ {∞}. Observe that B × S
m−1 ⊆ intA. We

define the function ρ̃ : R
n × R

p × R
m → R+ ∪ {∞} as ρ̃ := ρ + iA where iA is

the indicator function of A. Then, ρ̃ is lower semicontinuous. Define ρ̃T : R
n ×

R
m → R+ ∪ {∞} by

ρ̃T(x, v) := inf
y∈T(x)

ρ̃
(
x, y, v

)
. (31)

For x ∈ Ū, y ∈ T(x) and v with 1
2 ≤ ‖v‖ ≤ 2, one has that (x, y, v) ∈ A, so that

ρ(x, y, v) = ρ̃(x, y, v). Consequently

ρT(x, v) = inf
y∈T(x)

ρ(x, y, v) = inf
y∈T(x)

ρ̃(x, y, v) = ρ̃T(x, v)

∀ x ∈ Ū ∀ v :
1
2

≤ ‖v‖ ≤ 2. (32)

Now, ρ̃T above can be formally written as

ρ̃T(x, v) = inf
y∈K(x,v)

ρ̃(x, y, v), (33)

where the multifunctionK : R
n × R

m ⇒ R
p is defined asK(x, v) := T(x) for all

(x, v) ∈ R
n × R

m. In this form, ρ̃T is amarginal function as isβ in Theorem3.10.
We check that the assumptions of that Theorem are fulfilled for the setting of
z := (x, v), β(z) := ρ̃T(x, v), α(z, y) := ρ̃(x, y, v), G(z) := K(x, v) and �(z) :=
M̃(x, v), where M̃ : R

n × R
m ⇒ R

p is defined by

M̃(x, v) := {y ∈ K(x, v) | ρ̃T(x, v) = ρ̃
(
x, y, v

)}.
First, recall that ρ̃ is lower semicontinuous and that gphK is closed due to gphT
being closed.Moreover, we easily observe from the respective definitions and (32)
that

M̃(x, v) = M(x, v) ⊆ T(x) ∀ x ∈ Ū ∀ v :
1
2

≤ ‖v‖ ≤ 2. (34)

for M introduced in (29). As a consequence, M̃ is locally bounded at (x̄, v̄)
because T is so by (5). Next, since T(x̄) �= ∅ by assumption, there exists a
sequence yk ∈ T(x̄) with ρ(x̄, yk, v̄) →k ρT(x̄, v̄). By compactness of T(x̄), one
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has that ykl →l ȳ for some subsequence and some ȳ ∈ T(x̄). Now, the continuity
of ρ on A with respect to the topology of R+ ∪ {∞} ensures that

ρ
(
x̄, ykl , v̄

) →l ρ
(
x̄, ȳ, v̄

) = ρT (x̄, v̄) .

Hence,M(x̄, v̄) �= ∅ and M̃(x̄, v̄) �= ∅ by (34). Finally, ρ̃T(x̄, v̄) = ρT(x̄, v̄) < ∞
by assumption and by (32). Therefore, it remains to check condition (28). Clearly
it would be sufficient to show that

∂∞ρ̃
(
x̄, y, v̄

) = {0} ∀ y ∈ M̃(x̄, v̄) = M(x̄, v̄).

Fix an arbitrary such ȳ ∈ M(x̄, v̄). By definition and assumption,

ρ
(
x̄, ȳ, v̄

) = ρT (x̄, v̄) < ∞.

Moreover, our assumption gT(x̄,μ) < 0 implies that g(x̄, ȳ,μ) < 0. This allows
us to invoke Lemma 3.4, in order to derive that ρ is continuously differentiable
in a neighbourhood of (x̄, ȳ, v̄). In particular, it is locally Lipschitz there, which
implies that ∂∞ρ(x̄, ȳ, v̄) = {0} (see [3, Theorem 1.22]). On the other hand (see
above), (

x̄, ȳ, v̄
) ∈ B × S

m−1 ⊆ intA.

Since ρ̃ and ρ agree on A, they agree on a neighbourhood of (x̄, ȳ, v̄). Hence,

∂∞ρ̃(x̄, ȳ, v̄) = ∂∞ρ(x̄, ȳ, v̄) = {0}.

Summarizing, all assumptions of Theorem 3.10 applied to the marginal func-
tion (33) are satisfied and we derive the uper estimate

∂ρ̃T (x̄, v̄) ⊆
⋃{(

x∗, v∗) + D∗K
(
x̄, v̄, y

)
(y∗) | (x∗, y∗, v∗)

∈ ∂ρ̃ (x̄, y, v̄) , y ∈ M̃(x̄, v̄)
}
. (35)

Once more we exploit that ρ is continuously differentiable and agrees with ρ̃ in a
neighbourhood of (x̄, y, v̄) for an arbitrary y ∈ M̃(x̄, v̄) = M(x̄, v̄). Similarly, ρ̃T
and ρT coincide on a neighbourhood of (x̄, v̄) by (32).Therefore,

∂ρ̃
(
x̄, y, v̄

) = ∂ρ
(
x̄, y, v̄

) = {∇ρ (x̄, y, v̄)} ; ∂ρ̃T (x̄, v̄) = ∂ρT (x̄, v̄) .

Furthermore, the definition of the coderivative and K(x, v) = T(x) immediately
yield that

D∗K
(
x̄, v̄, y

)
(y∗) = D∗T

(
x̄, y

)
(y∗)× {0} .

Summarizing, (35) implies the inclusion claimed in this proposition. �
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Theorem 3.12: If, in addition to the assumptions of Proposition 3.11, T has
the Aubin property at every (x̄, y) ∈ gphT, then ρT is locally Lipschitz continu-
ous around (x̄, v̄). Moreover, the partial subdifferential (subdifferential of partial
function) of ρ satisfies

∂xρT (x̄, v̄) ⊆
⋃

y∈M(x̄,v̄)

{∇xρ
(
x̄, y, v̄

)} + D∗T
(
x̄, y

)
(∇yρ

(
x̄, y, v̄

)
).

Proof: Referring to themarginal function ρ̃T in (31) and to the derivationsmade
in Proposition 3.11, it follows from Corollary 4.3. in [3] that ρ̃T is locally Lips-
chitzian at (x̄, v̄) if it is lower semicontinuous around this point. From (32) we
know that ρ̃T and ρT coincide on a neighbourhood of (x̄, v̄). On the other hand,
ρT is lower semicontinuous on aneighbourhoodof (x̄, v̄). To see this, observe first
that ρT is lower semicontinuous on Ū × S

m−1 for Ū defined in the beginning of
the proof of Proposition 3.11. Since, by (24) and (21), ρT(x, rv) = r−1ρT(x, v) for
any r>0, we conclude that ρT is lower semicontinuous on Ū × (Rm\{0}) with
respect to the topology of R+ ∪ {∞}. As a consequence ρ̃T is lower semicontin-
uous itself around (x̄, v̄). This proves the local Lipschitz continuity of ρ̃T at (x̄, v̄).
Conversely, as ρ̃T and ρT coincide locally around (x̄, v̄), ρT itself must be locally
Lipschitzian around (x̄, v̄) which also implies that ∂∞ρT(x̄, v̄) = {(0, 0)} (see [3,
Theorem 1.22]). Now, [22, Cor. 10.11] yields the inclusion

∂xρT (x̄, v̄) ⊆ {
x∗ ∈ R

n | ∃v∗ ∈ R
m :

(
x∗, v∗) ∈ ∂ρT (x̄, v̄)

}
.

Then, the desired formula follows from the upper estimate obtained in Proposi-
tion 3.11. �

Corollary 3.13: Under the assumptions of Theorem 3.12, the partial radial prob-
ability function e(·, v) is locally Lipschitz around x̄ for every v ∈ S

m−1 close to v̄
with some common Lipschitz constant independent of v. Moreover,

∂xe (x, v) ⊆ fR(ρT (x, v))∂xρT (x, v)

for x and v ∈ S
m−1 locally around (x̄, v̄), where fR refers to the density in (10).

Proof: By assumption (3), the generator θ of the density fR and, hence, fR itself is
continuous. Consequently, the associated one-dimensional cumulative distribu-
tion function FR is continuously differentiable with F′

R = fR. Since, moreover,
ρT is locally Lipschitz around (x̄, v̄) by Theorem 3.12, it follows from ρT(x̄, v̄) <
∞ that ρT(x, v) < ∞ locally around (x̄, v̄). Hence, by Corollary 3.7,

e(x, v) = FR(ρT(x, v)) (36)

for x and v ∈ S
m−1 locally around (x̄, v̄). In particular, since FR is locally Lip-

schitz and ρT is locally Lipschitz around (x̄, v̄), it follows that e(·, v) is locally
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Lipschitz around x̄ for every v ∈ S
m−1 close to v̄ with some common Lips-

chitz constant independent of v. Then, the chain rule for subdifferentials [2,
Corollary 3.43] yields for x and v ∈ S

m−1 locally around (x̄, v̄):

∂xe (x, v) = ∂e (·, v) (x) = F′
R(ρT (x, v))∂ρT (·, v) (x)

= fR(ρT (x, v))∂xρT (x, v) . �

4. Subdifferential of the probability function ϕ

In this section, we present the main result of this paper, namely a fully explicit
(in terms of the problem data) subdifferential formula for the (total) probability
function ϕ defined in (3). We start by collecting the necessary preparations.

4.1. Preparatory results

As observed in [5,8] the probability function ϕ can not be expected to be dif-
ferentiable, actually not even locally Lipschitzian, even in the simplest possible
settings. This is mainly due to the unboundedness of the support of the given
random vector ξ . The missing data property can be formulated as the following
growth condition:

Definition 4.1 (Growth condition): We say that our problem data (g,T)
from (3) satisfies the ψ-growth condition at x̄ if for some R, ε > 0 it holds that:

‖∇(x,y)g(x, y, z)‖ ≤ ψ(‖z‖) ∀ y ∈ T(x) ∀ x ∈ B(x̄, ε) ∀ ‖z‖ ≥ R.

Here ψ : R+ → R is a non-decreasing function such that (with fR from (10)):

lim
r→∞ rfR(r)ψ(δr) = 0 ∀ δ > 0.

For the existence and verification of such growth condition in concrete set-
tings, we refer to the discussion of Section 4.3. The key for proving ourmain result
in the next section is the following statement on the partial Fréchet subdifferential
of the radial probability function:

Lemma 4.2: Assume that (4)–(6) hold true. Let x̄ ∈ R
n be such that gT(x̄,μ) <

0 and T(x̄) �= ∅. In addition, assume that T has the Aubin property at (x̄, ȳ) for
every ȳ ∈ T(x̄) and that the data couple (g,T) satisfies the ψ-growth condition
at x̄ according to Definition 4.1. Then, there exists a neighbourhood U of x̄ and a
constant K ≥ 0 such that, with B denoting the unit ball in R

n,

∂̂xe (x, v) ⊆ KB ∀ (x, v) ∈ U × S
m−1. (37)
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Proof: We recall first, that the assumed Aubin property of T at every (x̄, ȳ) with
ȳ ∈ T(x̄) entails the inner semicontinuity ofT at x̄. The assertion will follow from
a standard compactness argument (w.r.t. S

m−1) if we are able to show that for
every v̄ ∈ S

m−1 there exist neighbourhoods Uv̄ of x̄ and Wv̄ of v̄ as well as a
constant Kv̄ ≥ 0 such that

∂̂xe (x, v) ⊆ Kv̄B ∀ (x, v) ∈ Uv̄ × [
Wv̄ ∩ S

m−1] . (38)

In order to verify (38), fix an arbitrary v̄ ∈ S
m−1. Consider first the case

ρT(x̄, v̄) < ∞. Then, Corollary 3.13 implies that e(·, v) is locally Lipschitz in a
neighbourhood Uv̄ of x̄ for every v ∈ S

m−1 in a neighbourhood Wv̄ of v̄ and
with Lipschitz constant L not depending on v. By [2, Theorem 3.52],

∂̂xe (x, v) ⊆ LB ∀ (x, v) ∈ Uv̄ × [
Wv̄ ∩ S

m−1] .
This yields (38) with Kv̄ := L.

We now turn to the more involved case ρT(x̄, v̄) = ∞. We will show a slightly
stronger property than needed in (38), namely that for each η > 0 there exist
neighbourhoods Uv̄ of x̄ andWv̄ of v̄ such that

∂̂xe (x, v) ⊆ ηB ∀ (x, v) ∈ Uv̄ × [
Wv̄ ∩ S

m−1] , (39)

Of course, this will imply (38) and finally prove our Proposition. Now, let η > 0
be arbitrary. As a first part of (39), we show that

∂̂xe (x, v) ⊆ ηB ∀ (x, v) ∈ Uv̄ × [
Wv̄ ∩ S

m−1] : ρT(x, v) = ∞. (40)

Thanks to the upper semicontinuity at (x,μ) of gT ((1) in Lemma 3.1) we may
assume that gT(x,μ) < 0 for all x ∈ Uv̄ . Corollary 3.9 then guarantees that e(·, v)
is lower semicontinuous on Uv̄ for any v ∈ S

m−1 and Corollary 3.7 yields that

e (x, v) = 1 ∀ (x, v) ∈ Uv̄ × S
m−1 : ρT(x, v) = ∞.

Since e is a probability function and as such takes values not larger than one, x
must be a (global) maximizer of the function e(·, v) for every x ∈ Uv̄ and every
v ∈ S

m−1 such that ρT(x, v) = ∞. However, it is easily shown that the Fr échet
subdifferential of a lower semicontinuous function at a local maximizer must be
contained in zero (possibly empty), see, e.g. Proof of [5, Corollary 1(ii)]. In other
words, we actually have that ∂̂xe(x, v) ⊆ {0}. This proves (40). It remains to verify
the relation

∂̂xe (x, v) ⊆ ηB ∀ (x, v) ∈ Uv̄ × [
Wv̄ ∩ S

m−1] : ρT(x, v) < ∞. (41)

By virtue of the upper semicontinuity at (x,μ) of gT ((1) in Lemma 3.1) we may
define a neighbourhood Uv̄ of x̄ such that

gT(x,μ) ≤ 1
2
gT(x̄,μ) < 0, ∀ x ∈ Uv̄ . (42)

We next address Definition 4.1: Thanks to the continuity of ρT at (x̄, v̄) with
ρT(x̄, v̄) = ∞ in the topology of R+ ∪ {∞} (see Theorem 3.8) we may further
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shrink Uv̄ and also find a neighbourhood Wv̄ of v̄ such that, for R appearing in
Definition 4.1, for L from (9) and for η fixed above,

‖μ+ ρT(x, v)Lv‖ ≥ R, ρT(x, v) ‖L‖ ≥ ‖μ‖
ρT(x, v)fR(ρT(x, v))ψ(2‖L‖ρT(x, v)) ≤ η, (43)

for all (x, v) ∈ Uv̄ × [Wv̄ ∩ S
m−1]. Here, in the first relation, we used the fact that

the covariance matrix � (see Definition 2.8) and, hence, L from (9) are regular,
so that

‖Lv‖ ≥ c := min
w∈Sm−1

Lw > 0 ∀ v ∈ S
m−1.

Next, we shrink Uv̄ once more such that, thanks to Proposition 3.3, T has the
Aubin property at all (x, y) ∈ gphT with x ∈ Uv̄ and with some common (inde-
pendent of x and y) modulus K ≥ 0. In particular, (17) is satisfied then with
U := Uv̄ .

Now, consider arbitrary (x, v) ∈ Uv̄ × [Wv̄ ∩ S
m−1] such that ρT(x, v) < ∞

and x∗ ∈ ∂̂xe(x, v). In particular, T(x) �= ∅ by (24). Then, by our previous defini-
tions of neighbourhoods, the assumptions of Theorem 3.12 are satisfied at (x, v),
hence, along with Corollary 3.13, we derive the existence of some y ∈ M(x, v)
(withM defined in (29), hence ρ(x, y, v) = ρT(x, v)) and some

w∗ ∈ D∗T
(
x, y

)
(∇yρ

(
x, y, v

)
)

such that

x∗ = fR(ρT (x, v))
(∇xρ

(
x, y, v

) + w∗) . (44)

For the purpose of abbreviation, we put (see (23))

λ := 〈∇zg(x, y,μ+ ρT(x, v)Lv), Lv〉 > 0.

Then (8) yields λw∗ ∈ D∗T(x, y)(λ∇yρ(x, y, v), which along with (17) and (22)
gives

∥∥λw∗∥∥ ≤ K
∥∥λ∇yρ

(
x, y, v

)∥∥ = K
∥∥∇yg(x, y,μ+ ρ(x, y, v)Lv)

∥∥ . (45)

Recall, that the constant K does not depend on x and y. Next, (42) and (23) lead
to the estimate

0 < λ−1 = 1
〈∇zg(x, y,μ+ ρ(x, y, v)Lv), Lv〉 ≤ −ρ(x, y, v)

g(x, y,μ)

≤ −ρT(x, v)
gT(x,μ)

≤ 2ρT(x, v)∣∣gT(x̄,μ)∣∣ .
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Now, (44), (22) and (45) provide∥∥x∗∥∥ ≤ λ−1fR(ρT (x, v))
(∥∥∇xg(x, y,μ+ ρ(x, y, v)Lv)

∥∥ + ∥∥λw∗∥∥)
≤ 2ρT(x, v)∣∣gT(x̄,μ)∣∣ fR(ρT (x, v)) (K + 1)

∥∥∇(x,y)g(x, y,μ+ ρ(x, y, v)Lv)
∥∥ .

From the first two relations of (43) and Definition 4.1 (recalling that ψ is non-
decreasing) we infer that∥∥∇(x,y)g(x, y,μ+ ρ(x, y, v)Lv)

∥∥ = ∥∥∇(x,y)g(x, y,μ+ ρT(x, v)Lv)
∥∥

≤ ψ (‖μ+ ρT(x, v)Lv)‖)
≤ ψ (‖μ‖ + ρT(x, v) ‖L‖)
≤ ψ (2 ‖L‖ ρT(x, v)) .

Consequently, there is a constant C := 2(K + 1)/|gT(x̄,μ)| > 0 such that, along
with the third relation of (43),∥∥x∗∥∥ ≤ CρT(x, v)fR(ρT (x, v))ψ (2 ‖L‖ ρT(x, v)) ≤ Cη.

Since η > 0 was arbitrary and since C does not depend on η (because K doesn’t),
we may apply the result to η̃ := η/C. Hence, we find neighbourhoods Uv̄ × Wv̄

such that ‖x∗‖ ≤ Cη̃ = η for every x∗ ∈ ∂̂xe(x, v) and every (x, v) ∈ Uv̄ × [Wv̄ ∩
S
m−1] such that ρT(x, v) < ∞. This proves (41) and the whole Lemma. �

Corollary 4.3: The assertion of Lemma 4.2 remains true if theψ-growth condition
is replaced by the following assumption: There exists some y ∈ T(x̄) such that the
set {z ∈ R

m | g(x̄, y, z) ≤ 0} is bounded.

Proof: The assumption implies by definition that ρ(x̄, y, v) < ∞ for every v ∈
S
m−1. Hence, ρT(x̄, v) < ∞ for every v ∈ S

m−1. In that case, the proof of
Lemma 4.2 does not rely on the ψ-growth condition and is finished after the
first paragraph upon proving (38). �

Corollary 4.4: Under the assumptions of Lemma 4.2 one has that ∂xe(x̄, v̄) = {0}
for every v̄ ∈ S

m−1 such that ρT(x̄, v̄) = ∞.

Proof: The inclusion (37) yields, by virtue of [2, Theorem 3.52], that e(·, v̄) is
locally Lipschitzian at x̄. As a consequence, ∂xe(x̄, v̄) �= ∅. From the proof of
Lemma 4.2, we know the following result in the case of ρT(x̄, v̄) = ∞ (see (39)):
For each η > 0 there exist neighbourhoods Uv̄ of x̄ andWv̄ of v̄ such that

∂̂xe (x, v) ⊆ ηB ∀ (x, v) ∈ Uv̄ × [
Wv̄ ∩ S

m−1] .
Then, it follows from (7) that x∗ ∈ ∂xe(x̄, v̄) implies x∗ = 0. �
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4.2. Main result

We are now in a position to formulate the main result of this paper, namely a
subdifferential estimate for the (total) probability function ϕ in (3):

Theorem 4.5: Assume that (4)–(6) hold true. Let x̄ ∈ R
n be such that gT(x̄,μ) <

0 and T(x̄) �= ∅. In addition, assume that T has the Aubin property at (x̄, ȳ) for
every ȳ ∈ T(x̄). Finally let one of the following conditions be satisfied:

(1) There exists some y ∈ T(x̄) such that the set {z ∈ R
m | g(x̄, y, z) ≤ 0} is

bounded.or:
(2) the data couple (g,T) satisfies the ψ-growth condition at x̄ according to

Definition 4.1.

Then, ϕ in (3) is locally Lipschitzian at x̄ and the following upper estimate for its
subdifferential holds true:

∂ϕ(x̄) ⊆
∫
F(x̄)

fR(ρT (x̄, v)) ·
⎡
⎣ ⋃
y∈M(x̄,v)

{∇xρ
(
x̄, y, v

)}

+D∗T
(
x̄, y

)
(∇yρ

(
x̄, y, v

)
)

⎤
⎦ dμζ (v), (46)

where F(x̄) := {v ∈ S
m−1 | ρT(x̄, v) < ∞}.

Proof: According to Lemma 4.2 and Corollary 4.3, either of the assumptions (1)
or (2) imply the estimate (37)which in turn, by virtue of [2, Theorem3.52], entails
that there exists a neighbourhoodU of x̄ such that for every v ∈ S

m−1 the partial
function e(·, v) is locally Lipschitzian onU with a commonmodulusK (indepen-
dent of v). Clearly, this modulus (considered as a constant function) is integrable
with respect to the uniform measure on the sphere since the latter is compact.
Moreover, for every x ∈ U, the function e(x, ·) is lower semicontinuous, hence
measurable on S

m−1.
Altogether, this allows us to apply Clarke’s Theorem for subdifferentiation of

integral functionals [24, Theorem 2.7.2] to (11). First this Theorem guarantees
that ϕ is locally Lipschitzian at x̄. Second, it allows to interchange subdifferentia-
tion and integration in the following way:

∂Cϕ(x̄) = ∂C
∫
v∈Sm−1

e(x̄, v) dμζ (v) ⊆
∫
v∈Sm−1

∂Cx e(x̄, v) dμζ (v).

Here, the upper index ‘C’ is meant to indicate Clarke’s subdifferential. In the fol-
lowing we make use of the well known relation ∂Cf (x̄) = co ∂f (x̄) (with ‘co’
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referring to the convex hull) for functions being locally Lipschitzian at x̄ [3,
(1.83)]. In particular, Corollary 4.4 yields that

∂Cx e(x̄, v) = co∂xe (x̄, v) = co {0} = {0}
for every v ∈ S

m−1 such that ρT(x̄, v) = ∞. Hence, the inclusion above
simplifies to

∂Cϕ(x̄) ⊆
∫
{v∈Sm−1 | ρT(x̄,v)<∞}

∂Cx e(x̄, v) dμζ (v).

On the other hand, the same inclusion is obtained for the Mordukhovich subd-
ifferential due to

∂ϕ(x̄) ⊆ co ∂ϕ(x̄) = ∂Cϕ(x̄) ⊆
∫
{v∈Sm−1 | ρT(x̄,v)<∞}

∂Cx e(x̄, v) dμζ (v)

=
∫
{v∈Sm−1 | ρT(x̄,v)<∞}

co∂xe (x̄, v) dμζ (v)

=
∫
{v∈Sm−1 | ρT(x̄,v)<∞}

∂xe (x̄, v) dμζ (v),

where the last equality is a consequence of Aumann’s Theorem. Now, taking into
account that for (x̄, v) with ρT(x̄, v) < ∞ the assumptions of Theorem 3.12 and
Corollary 3.13 are satisfied, wemay derive our desired formula from the resulting
inclusion

∂xe (x̄, v) ⊆ fR(ρT (x̄, v)) ·
⋃

y∈M(x̄,v)

{∇xρ
(
x̄, y, v

)} + D∗T
(
x̄, y

)
(∇yρ

(
x̄, y, v

)
).

�

The interpretation of (46) is as follows: For every x∗ ∈ ∂ϕ(x̄), there exists a
measurable function β : S

m−1 → R such that

β(v) ∈ ∂xe (x̄, v)μζ − a.e. and x∗ =
∫
{v∈Sm−1 | ρT(x̄,v)<∞}

β(v) dμζ (v).

We conclude this section by formulating a condition for the differentiability of
the probability function:

Corollary 4.6: In addition to the assumption of Theorem 4.5, suppose that at x̄ we
have μζ (V2\V1) = 0 for the two sets

V2 :=
{
v ∈ S

m−1 | ρT (x̄, v) < ∞}
,

V1 :=
{
v ∈ V2 | ∃ (ȳ, x∗) ∈ R

p × R
n : M(x̄, v) = {ȳ},

D∗T
(
x̄, y

)
(∇yρ

(
x̄, y, v

)
) = x∗} .
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Then ϕ in (3) is (strictly) differentiable at x̄ and the following (exact) gradient
formula applies:

∇ϕ(x̄) =
∫
{v∈Sm−1 | ρT(x̄,v)<∞}

fR(ρT (x̄, v)) · (∇xρ
(
x̄, ȳ(v), v

)+x∗(v)
)
dμζ (v),

where ȳ(v) is the unique element of M(x̄, v) and x∗(v) = D∗T(x̄, ȳ(v))(∇yρ(x̄, ȳ
(v), v)). Moreover, ϕ is continuously differentiable if the measure zero condition
above holds true locally around x̄.

Proof: The assumption implies that the integrand in (46) is single-valued μζ −
a.e. and, hence, the whole integral on the right-hand side reduces to a single-
ton. On the other hand, ∂ϕ(x̄) on the left-hand side is non-empty due to the
already shown Lipschitz continuity of ϕ at x̄. Hence, the only way for ∂ϕ(x̄) being
included in the right-hand side is to coincide with it. Consequently ∂ϕ(x̄) is a sin-
gleton too. This implies first, that ϕ is strictly differentiable at x̄ [3, Theorem 4.17]
and second that the asserted gradient formula comes as consequence
of (46). �

4.3. Discussion of hypotheses

In this section we provide a short discussion of the assumptions we imposed in
order to derive the results of the previous section:

• The assumption gT(x̄,μ) < 0 expresses the fact that the mean of the ran-
dom parameter should be strictly feasible for the infinite inequality system
g(x̄, y, z) ≤ 0 (y ∈ T(x̄)). It can be easily seen (see, e.g. [8, Prop. 3.11] that,
thanks to the convexity of g with respect to the third variable and thanks
to the symmetry of elliptic distributions around their mean, this assump-
tion will fulfilled be satisfied if ϕ(x̄) ≥ 0.5, i.e. if under the fixed decision
x̄ the probability (3) is not smaller than one half. This assumption is by no
means restrictive when taking into account that in probabilistic programming
probabilities close to one are required.

• The assumption T(x̄) �= ∅ is not restrictive either since the case T(x̄) = ∅
entails the trivial situation ∇ϕ(x̄) = 0 as pointed out in Proposition 2.2.

• For T to have the Aubin property at (x̄, ȳ) for every ȳ ∈ T(x̄) is a central
stability requirement for the whole analysis. For the case of T describing
a smooth finite parameter-dependent inequality system – as discussed in
the following section – it is well-known to be equivalent with the classical
Mangasarian–Fromovitz ConstraintQualification in nonlinear programming.
Without this assumption we could not hope for the local Lipschitz continuity
ϕ so that also the subdifferential formula (46) for a just continuous ϕ would
become much more involved (see, e.g. [5] for fixed index mapping T).
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• As for the ψ-growth condition, this is necessary to impose only if the set {z ∈
R
m | g(x̄, y, z) ≤ 0} is unbounded for all y ∈ T(x̄), see Theorem 4.5. If so, then

it turns out that the ψ-growth condition is satisfied in basically all practical
applications. We refer to the discussion in [11, Section 4.2], which was done,
however, in the context of a fixed and finite indexmapping T. Nonetheless, the
cases considered there, referring to a situation where the dependence on z of
the mapping g is separable with respect to the second variable x can be carried
over to the setting of this paper by keeping separability of g between z and the
two remaining variables (x, y).

• The measure zero condition μζ (V2\V1) = 0 in Corollary 4.6 is indispensable
in order to derive (strict or continuous) differentiability of ϕ at x̄. An similar
condition can be already found in the early paper [14, Assumption 2.2(iv)].
Of course, such condition with respect to the measure of the uniform distri-
bution on the spheremay be hard to verify from the originally given inequality
system. In the context again of a fixed and finite index mapping T, this issue
could be reduced to the verification of the so-called rank-2-constraint quali-
fication for the original inequality system induced by g [6, Lemma 4.3]. This
CQ is well-known and easy to check. It is in particular weaker than the stan-
dard Linear Independence Constraint Qualification considered in nonlinear
programming. In the context of our infinite andmoving index setT(x) a corre-
sponding result seems much harder to prove and will be the subject of further
investigations.

4.4. Application

Inmany applications themoving index setT(x)will have the concrete description
as a finite parametric inequality system:

T(x) := {y ∈ R
p | hj(x, y) ≤ 0

(
j = 1, . . . , q

)}. (47)

Our aim is to ensure all assumptions of the main result related with T by means
of concrete assumptions with respect to the description (47):

Theorem 4.7: Consider the probability function (3)with a moving index set given
by (47). Let x̄ ∈ R

n be such that gT(x̄,μ) < 0. Apart from (4) and (6), we suppose
that

(1) The hj in (47) are continuously differentiable and they are convex with respect
to y.

(2) There exists some ȳ ∈ R
p such that hj(x̄, ȳ) < 0 (j = 1, . . . , q) (Slater point).

(3) T(x̄) is bounded.
(4) One of the assumptions (1) or (2) in Theorem 4.5 applies.
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Then, ϕ is locally Lipschitzian at x̄ and the following upper estimate for its
subdifferential holds true:

∂ϕ(x̄) ⊆
∫
F(x̄)

fR(ρT (x̄, v)) ·
⎡
⎣ ⋃
y∈M(x̄,v)

{∇xρ
(
x̄, y, v

)}

+
⋃

λ∈�(y,v)

q∑
j=1

λj∇xhj(x̄, y)

⎤
⎦ dμζ (v), (48)

where, F(x̄) := {v ∈ S
m−1 | ρT(x̄, v) < ∞} and for y ∈ T(x̄) and v ∈ S

m−1

�
(
y, v

)
:=

{
λ ∈ R

q
+
∣∣∣∇yρ

(
x̄, y, v

) = −∇T
y h(x̄, y)λ, λ

Th(x̄, y) = 0
}
. (49)

Proof: Our assumptions imply by well-known arguments that T(x̄) �= ∅ (due to
(2)), that T has closed graph and is locally bounded (due to being bounded at x̄
by (3) and convex-valued by (1)). Moreover, T has the Aubin property at (x̄, ȳ)
for every ȳ ∈ T(x̄) thanks to the existence of a Slater point in (2). Altogether, this
allows us to derive the inclusion (46). The claimed formula then follows upon
using the representation

D∗T
(
x̄, y

)
(∇yρ

(
x̄, y, v

)
) =

⋃
λ∈�(y,v)

q∑
j=1

λj∇xhj(x̄, y) (50)

of the coderivative of T with the set �(y, v) introduced in the statement of
this Theorem. This representation follows from [2, Corollary 4.35] upon noting
that our Slater point assumption is equivalent with the so-called Mangasar-
ian–Fromovitz Constraint Qualification in the setting of (47). �

The previous result can be slightly improved if the Slater Condition is strength-
ened:

Corollary 4.8: If, in Theorem 4.7, condition (2) is replaced by the Linear Indepen-
dence Constraint Qualification (LICQ){∇yhj(x̄, y)

}
{j | hj(x̄,y)=0} islinearlyindependentforally ∈ T (x̄)

and, in addition, μζ (V2\Ṽ1) = 0 for V2 as defined in Corollary 4.6 and

Ṽ1 := {v ∈ V2 | #M(x̄, v) = 1} ,
then ϕ is (strictly) differentiable at x̄ and the following (exact) gradient formula
applies:

∇ϕ(x̄) =
∫
{v∈Sm−1 | ρT(x̄,v)<∞}

fR(ρT (x̄, v))
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·
⎛
⎝∇xρ

(
x̄, ȳ(v), v

) +
q∑

j=1
λj(y, v)∇xhj(x̄, y)

⎞
⎠ dμζ (v),

where λ(y, v) is the unique element in�(y, v) as defined in (49).

Proof: The stronger (LICQ) yields that the Lagrange multiplier in Theorem 4.7
is uniquely defined, i.e.�(y, v) = {λ(y, v)} for all y ∈ T(x̄) and v ∈ S

m−1. Then,
by (50),

D∗T
(
x̄, y

)
(∇yρ

(
x̄, y, v

)
) =

q∑
j=1

λj(y, v)∇xhj(x̄, y) =: x∗(v).

As a consequence, the sets Ṽ1 and V1 introduced above and in Corollary 4.6
coincide and, thus, this Corollary provides the claimed gradient formula. �
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