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Abstract
Optimization problems under uncertain conditions abound in many real-life applications.
While solution approaches for probabilistic constraints are often developed in case the
uncertainties can be assumed to follow a certain probability distribution, robust approaches
are usually applied in case solutions are sought that are feasible for all realizations of
uncertainties within some predefined uncertainty set. As many applications contain differ-
ent types of uncertainties that require robust as well as probabilistic treatments, we deal
with a class of joint probabilistic/robust constraints. Focusing on complex uncertain gas net-
work optimization problems, we show the relevance of this class of problems for the task
of maximizing free booked capacities in an algebraic model for a stationary gas network.
We furthermore present approaches for finding their solution. Finally, we study the problem
of controlling a transient system that is governed by the wave equation. The task consists
in determining controls such that a certain robustness measure remains below some given
upper bound with high probability.
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1 Introduction

1.1 Joint Probabilistic/Robust Constraints

Decision making problems are more than often affected by parameter uncertainty. An
optimization problem dealing with uncertain variables has the typical form

min
x

g0(x)

subject to gi(x, z) ≥ 0 (i = 1, . . . , k).
(1)

Here x ∈ R
n is a decision vector, z ∈ R

m is an uncertain parameter, g0 : Rn → R is
the objective function and g : Rn × R

m → R
k is the constraint mapping. The decision

support schemes with non-deterministic parameters have to take into account the nature and
source of uncertainty while balancing the objective and the constraints of the problem. There
are two main approaches for dealing with uncertainty in the constraints of an optimization
problem: the first one is the use of probabilistic constraints. This approach is based on the
assumption that historical data is available to estimate the probability distribution of the
uncertain parameter and thus considering it as a random vector ξ taking values in R

m. Then
(1) may be given the form

min
x

g0(x)

subject to P (g(x, ξ) ≥ 0) ≥ p ∈ (0, 1]
(2)

(note that the first ‘≥’ sign is to be understood component-wise). Here, a decision x is
declared to be feasible if and only if the original random inequality system (1) is satisfied
with a prescribed probability p, a level usually chosen close to, but not identical to one.
Of course, higher values of p lead to a smaller set of feasible decisions x in (2), hence to
optimal solutions at higher costs. Concerning the random variable ξ we essentially focus
on continuous ones. For a standard reference on optimization problems with probabilistic
constraints we refer to the monograph [22].

An alternative approach is given by robust optimization. It applies when the uncertain
parameter u is completely unknown or non-stochastic due to a lack of available data. Then,
satisfaction of the uncertain inequality system (1) is required for every realization of the
uncertainty parameter within some uncertainty set U ⊆ R

m containing infinitely many
elements in general, so that one arrives at the following optimization problem:

min
x

g0(x)

subject to g(x, u) ≥ 0 ∀u ∈ U .
(3)

For a basic monograph on robust optimization, we refer to [3].
We notice that both optimization models with probabilistic and robust constraints are

deterministic reformulations of (1), since they depend only on the decision vector x but no
longer on the outcome of the uncertain parameter z.

A central issue in robust optimization is the appropriate choice of the uncertainty set U .
Simple-shaped sets like polyhedra or ellipsoids induce computationally tractability [2] and
allow one to deal with much larger dimensions than in the case of probabilistic constraints.
Moreover, when choosing U such that P(ξ ∈ U) = p, then the feasible set of decision
variables x of (3) is contained in that of probabilistic programming (2), so that an optimal
solution to (3) is a feasible solution to (2). For these two reasons, robust optimization is not
only preferred in the absence of statistical data, but also as a conservative approximation
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of the probabilistic programming setting. This conservatism, however, may be significant
up to the point of ending up at very small or even empty feasible sets possibly coming
at much higher costs than under a probabilistic constraints. This trade-off propels the use
of probabilistic constraints in the presence of statistical information at least in moderate
dimension.

Although these approaches, probabilistic programming and robust optimization are often
dealt with separately, in many applications, one is faced with uncertain variables of both
mentioned types. This leads us naturally to the consideration of uncertain inequalities (2)
in which the uncertain variable has a stochastic and a non-stochastic part, i.e., z = (ξ, u).
A typical example is optimization of gas transport in the presence of uncertain loads. His-
torical data are available (stochastic uncertainty) for the exit loads in many situations. On
the other hand, observations can hardly be accessed (non-stochastic uncertainty) for entry
loads, or for example, uncertain roughness coefficients in pipes. Therefore, it seems nat-
ural, to combine the originally separate models (2) and (3). An appropriate way to do so
is to formulate a probabilistic constraint (w.r.t. ξ ) involving a robustified (w.r.t. u) infinite
inequality system:

P (g(x, ξ, u) ≥ 0 ∀u ∈ U) ≥ p. (4)

This class of constraints has been recently investigated in [23] under the name of hybrid
robust/chance-constraints and in [10] under the name of probabilistic/robust constraints.
For easier reference, we shall be using in the following the natural acronym of probust
constraints. We note that even the more complex situation of the uncertainty set depending
on the decision and random variable plays an increasing role in applications. Here, the
constraint becomes

P (g(x, ξ, u) ≥ 0 ∀u ∈ U(x, ξ)) ≥ p, (5)

where the inner part resembles constraint sets arising in generalized semi-infinite optimiza-
tion [25].

We note that yet another form of combining the probabilistic and robust parts of the
inequality system would result from interchanging their arrangements in (4):

P (g(x, ξ, u) ≥ 0) ≥ p ∀u ∈ U .

In this way one does not arrive at a probabilistic constraint involving infinitely many ran-
dom inequalities as in (4) but rather at an infinite system of probabilistic constraints. This
setting is related to (robust) first-order stochastic dominance constraints [6] and to distribu-
tionally robust probabilistic constraints [26], which currently receives increased attention.
We won’t deal with this model here but rather focus our considerations on (4) and (5)
respectively, which impose stronger conditions in the sense of joint probabilistic constraints
compared to individual ones.

The aim of this paper is to illustrate the application of this new class of probust con-
straints to optimization problems in gas transport under uncertainty in the exit and entry
loads. Uncertainty in the roughness coefficients of the pipe is not a part of this paper and it
has been analysed for example in [1]. For a recent monograph on gas transport optimization
we refer to [18]. We will consider first the problem of maximizing free booked capacities
in an algebraic model for a stationary gas network. The corresponding model is presented
in Section 2. This overall problem is too complex, however, to be dealt with in this paper.

1099Optimization Problems with Probust Constraints



Therefore we will split it into two subproblems, namely capacity maximization at exits (con-
sumer side) which is discussed in Section 3 and capacity maximization at entries (provider
side) which is analyzed in Section 4. Without loss of generality, we follow the convention
of entry loads being non positive and exit loads being non negative.

While often the research in optimization in finite-dimensional spaces (including mixed-
integer nonlinear optimization) and PDE-constrained optimization takes place within
disjoint communities, we think that it is important to identify common problem structures
that occur in both classes of problems, in particular in the development of methods that
allow to take into account uncertainties. Therefore in Section 5 we discuss an optimization
problem with a probust constraint for a system that is governed by a PDE that is related to
the application in gas transport. The PDE model allows us to consider a transient System in
Section 5, whereas in the first two parts of the paper, stationary problems are studied. The
transient system is governed by the wave equation under probabilistic initial and Dirichlet
boundary data at one end of the space interval. At the other end of the space interval, Neu-
mann velocity feedback is active. For the system a desired stationary state is given. The
robustness of the system is measured by the L∞-norm of the difference between the actual
state ṽ and the desired state v̄. Due to the definition of the L∞-norm (as the essential supre-
mum of the absolute value), this approach gives information about the maximal pointwise
distance in space and time. Since our solutions are in fact continuous for appropriate initial
and boundary data, the L∞-norm is equal to the maximum norm. The robustness require-
ment is that this pointwise distance remains below a given upper bound vmax. In our system,
the state depends on uncertain initial and boundary data with a given probability distribu-
tion. The meaning of the probabilistic constraint is the following: The probability that the
robustness requirement is satisfied is sufficiently large, i.e., greater than or equal to a given
value p ∈ (0, 1]. This probabilistic constraint can be written in the form of (4); for details
see Section 5, (36). As a numerical example, we consider the optimization with respect to
the feedback parameter in Subsection 5.3.

2 Maximization of Free Capacities in a Stationary Network

We consider a passive stationary gas network given by a directed graph G = (V ,E) with a
set V of vertices and a set E of edges. We shall assume that the set of nodes decomposes
into a set V+ of entries, where gas is injected and a set V− of exits, where gas is withdrawn.
Hence, V = V+ ∪ V− and V+ ∩ V− = ∅. Without loss of generality we label the nodes in
a way that entries come first and exits last. The gas transport along the network is triggered
by bilateral delivery contracts between traders who inject gas at entries and traders covering
customer demands by withdrawing gas at exits. An amount of gas injected into or withdrawn
from the network at certain nodes is called a nomination. We shall refer to b ≤ 0 and ξ ≥ 0
as to the vectors of nominations at entries and exits, respectively.

Nominations have to satisfy three conditions:

1. At each node (entry or exit) of the network, nominations must not exceed the capacity
booked for that node by the respective trader.

2. Nominations must be balanced over the whole network, i.e., the sum of nominations at
entries equals the sum of nominations at exits.

3. Nominations must be technically feasible in the sense that there exist pressures within
given bounds at the nodes and a flow through the network such that the nominations at
the exits can be served by the nominations at the entries.
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The first condition has to be satisfied by the traders. Referring to C−, C+ ≥ 0 as to the
vectors of booked capacities at entries and exits, respectively, it can be written as

b ∈ [−C+, 0], ξ ∈ [0, C−], (6)

where the intervals are to be understood in a multidimensional sense. The second condition
is an automatic consequence of the collection of bilateral delivery contracts between entries
and exits and can be written as

1T+b + 1T−ξ = 0, (7)

where 1+ and 1− are vectors filled with entries 1 of the respective dimension of entries and
exits.

The third condition of technical feasibility of some joint nomination vector (b, ξ) can be
characterized by the existence of vectors q of flows along the edges of the network and π

of pressure squares at the nodes satisfying the conditions

Aq =
(

b

ξ

)
; AT π = −�q|q|; π ∈ [π∗, π∗]. (8)

Here, A is the incidence matrix of the network graph, � := diag((�e))e∈E is a diagonal
matrix of roughness coefficients and the modulus sign for a vector has to be understood
componentwise. The first two equations in (8) correspond to the first two Kirchhoff’s Laws
(mass conservation and pressure drop), whereas the interval condition imposes bounds on
the pressure. It is actually these bounds that constrain the feasibility of nominations b, ξ ,
see, e.g., [18].

It is the network owners’ responsibility to make sure—without knowledge of concrete
bilateral delivery contracts between entries and exits—that condition 3. is satisfied for all
nominations fulfilling conditions 1. and 2. This requirement clearly imposes a constraint
on the booked capacities C+, C− via (6) saying for all (b, ξ) satisfying (6), (7) there exists
(q, π) satisfying (8). It can be formally written as:

∀(b, ξ) : (6), (7) ∃(q, π) : (8). (9)

Satisfying (9) in a rigorous way would yield (too) small booking capacities at the nodes
of the network. Here, the network owner can benefit from the fact that nominations at the
exits (gas withdrawn for consumption) are endowed with a typically large historical data
base so that they can be modeled as random vectors obeying some appropriate multivariate
distribution. This offers the possibility to relax the ‘for all’ condition on ξ in a probabilistic
sense as to satisfy (9) with sufficiently high probability p. In this way, by choosing p close
to one, it is possible to keep a robust satisfaction of technical feasibility while allowing for
considerably larger booked capacities. A similar probabilistic modeling of entry nomina-
tions would not be justified (although historical data might be available here too) because
their outcome is market driven and thus not a genuine random vector.

This motivates the network owner to relax the worst case condition in a probabilistic
sense on the side of exits but keeping it on the side of entries. He then arrives at the following
probabilistic formulation of feasible booked capacities C+, C−:

P

(
ξ ∈ [0, C−], ∀b ∈ [−C+, 0] : 1T+b + 1T−ξ = 0 ∃(q, π) : (8)

)
≥ p. (10)

Here, P refers to a probability measure related with the random vector ξ and p ∈ (0, 1]
is a desired probability level chosen by the network owner. The expression on the left-
hand side of this inequality provides the probability that a random exit nomination (within
booked capacity) combined with an arbitrary entry nomination (within booked capacity and
in balance with the exit nomination) is technically feasible.
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Now, for a given capacity vector (C+, C−) it may turn out that the associated probability
on the left-hand side of (10) is larger than the desired minimum probability p, e.g., 0.96 vs.
0.9. This would give the network owner the opportunity to offer larger capacities while still
keeping the desired probability p. Therefore, he might be led to determine the largest pos-
sible additional capacities (x+, x−) he could offer for booking by new clients. This would
lead to the following optimization problem:

maxx+,x− wT+x+ + wT−x− (11)

P

⎛
⎜⎜⎝

ξ ∈ [0, C−] ∀y ∈ [0, x−], ∀b ∈ [−C+ − x+, 0] :
1T+b + 1T−ξ + 1T−y = 0

∃(q, π) : Aq =
(

b

ξ + y

)
; AT π = −�q|q|; π ∈ [π∗, π∗]

⎞
⎟⎟⎠ ≥ p .

Here, the weight vector w in the objective reflects some preferences the network owner
could have in order to offer new booking capacities at different nodes. In the absence of
preferences, he could simply choose w := 1. Note, that the nomination vector at exits
has been split into ξ and y, where ξ refers to the nominations of already existing clients
(thus endowed with historical data and amenable to stochastic modeling) while y refers to
nominations of potentially new clients without nomination history. As these can therefore
not be treated stochastically, they are considered with a ‘for all’ requirement similar to
entry nominations. No such splitting is necessary on the side of entries because nominations
have to be considered there with a ‘for all’ requirement anyway as they cannot be modeled
stochastically in a straightforward manner. In the following section, we shall address in
detail the capacity maximization problem for exits only, a restriction which allows us to
solve numerically the arising entire optimization problem subject to probust constraints. In
contrast, Section 4 will focus on entries only and discuss essential issues related with the
solution of this alternatively restricted optimization problem.

3 Maximization of Booked Capacities for Exits in a Stationary Gas
Network

As mentioned in the introduction, the overall problem of capacity maximization (11) is
too complex to be dealt with here. Therefore, we shall focus in a first step on maximizing
capacities at exits.

3.1 The Capacity Maximization Problem for Several Exits and One Entry

In the following we will make the assumption that the network is a tree and that there
exists only one entry point serving m exits. The presence of cycles in the network would
significantly complicate the numerical solution of the problem. Nonetheless, in Section 3.4,
we sketch a possible methodology in the presence of cycles. The restriction to a single
entry is made here, in order not to deal with the robust uncertainty related with the splitting
of nominations within several entry nodes (see ‘∀b ∈...’ condition in (11)) which will be
considered later in Section 4 separately. Without loss of generality, we define the entry to
be the root of the network labeled by index ‘0’. For simplicity, we assume moreover that,
the booked capacity C+ of the entry is large enough to meet the maximum possible load by
all exits as well as possible extensions thereof after adding additional capacity at the exits
as a result of an optimization problem. As a consequence of this constellation our general
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capacity maximization problem (11) reduces to an exit capacity maximization problem of
the form

maxx− wT−x− (12)

P

⎛
⎝ ξ ∈ [0, C−] ∀y ∈ [0, x−] ∃(q, π) :
Aq =

(−1T−ξ − 1T−y

ξ + y

)
; AT π = −�q|q|; π ∈ [π∗, π∗]

⎞
⎠ ≥ p .

Here, the remaining decision variables are just the extensions of exit capacities. Since no
capacity extension for the single entry is intended and since its existing capacity is not con-
strained by our assumption, the corresponding constraint disappears as well as the balance
equation which is just substituted in the description of technical feasibility. The resulting
optimization problem does no longer contain entry nominations at all but only random
exit nominations ξ and deterministic exit nominations y of new clients along with the
additionally allocated booking capacities x−.

Clearly, the probabilistic constraint in (12) is not yet in the explicit form of the probust
constraint (4). This can be achieved in our case, thanks to the network being a tree having
the single entry as its root. Note that by this special structure the direction of the gas flow is
completely determined. Moreover, by directing all edges in E away from the root, according
to [8], a vector z of exit loads in this configuration is technically feasible, if and only if in
the notation introduced above, the inequality system

gk,l(z) := hk(z) + π∗
k − hl(z) − π∗,l ≥ 0 (k, l = 0, . . . , m) (13)

is satisfied, where

hk(z) :=
{∑

e∈�(k) �e

(∑
t�H(e) zt

)2
if k ≥ 1,

0 if k = 0.
(14)

In order to explain the definition of the functions hk above, we denote k � l for k, l ∈ V

if the unique directed path from the root to k, denoted �(k), passes through l. The term
H(e) refers to the head of the (directed) arc e ∈ E.

With these specifications, which are fully explicit in terms of the initial data of the
problem, we reformulate problem (12) with the aid of inequalities (13) as

max wT−x− (15)

P
(
ξ ∈ [0, C−], gk,l(ξ + y) ≥ 0 ∀y ∈ [0, x−]; ∀k, l = 0, . . . , m

) ≥ p.

The meaning of this constraint is as follows: The capacity extension x− is feasible if and
only if with probability larger than p ∈ (0, 1] the sum ξ +y of the original random nomina-
tion vector and of a new nomination vector can be technically realized for every such new
nomination vector in the limits [0, x−]. Clearly, the probust constraint (15) is of the form
(5), with u := y, x := x− and the uncertainty set U(x) := [0, x].

In [16] it is shown, that the infinite random inequality system

gk,l(ξ + y) ≥ 0 ∀y ∈ [0, x]; ∀k, l = 0, . . . , m
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inside (15) can be reduced—using (13) and (14)—to the following finite one

∑
e∈�(k)\�(l)

�e

⎛
⎝ ∑

t�H(e)

ξt

⎞
⎠

2

−
∑

e∈�(l)\�(k)

�e

⎛
⎝ ∑

t�H(e)

ξt + (x−)t

⎞
⎠

2

≥ π∗,l − π∗
k ; (16)

∀k, l = 0, . . . , m.

For the random vector ξ of stochastic exit nominations we will suppose that it follows a
truncated multivariate Gaussian distribution:

ξ ∼ T N (μ,�, [0, C−]).
More precisely, the distribution of ξ is obtained by truncating an m-dimensional Gaussian

distribution with mean μ and covariance matrix � to an m-dimensional rectangle [0, C−]
representing the (historical) booked capacity at all exit nodes. By definition of truncation,
this means that there exists a Gaussian random vector ξ̃ ∼ N (μ,�) such that

P(ξ ∈ A) =
P

(
ξ̃ ∈ A ∩ [0, C−]

)

P

(
ξ̃ ∈ [0, C−]

)

holds true for all Borel measurable subsets A ⊆ R
m. Hence, in order to determine

probabilities under a truncated Gaussian distribution, it is sufficient to be able to deter-
mine probabilities under a Gaussian distribution itself. Applying this observation to the
probabilistic constraint (15) and combining it with (16) yields the equivalent description

P

⎛
⎜⎝ξ̃ ∈ [0, C−] :

∑
e∈�(k)\�(l)

�e

⎛
⎝ ∑

t�H(e)

ξ̃t

⎞
⎠

2

−
∑

e∈�(l)\�(k)

�e

⎛
⎝ ∑

t�H(e)

ξ̃t + (x−)t

⎞
⎠

2

≥ π∗,l − π∗
k ; ∀k, l = 0, . . . , m

⎞
⎟⎠

≥ p · P
(
ξ̃ ∈ [0, C−]

)
. (17)

This is now, in contrast to (15) a conventional probabilistic constraint over a finite
inequality system. We are aiming to apply an efficient gradient based solution algorithm in
the framework of gradient based optimization methods. To this end, in order to deal algorith-
mically with the probabilistic constraint (17), one has evidently to be able to calculate for
each fixed decision vector x− the probabilities occurring there, as well as their derivatives
with respect to x−. In the following section we briefly sketch the methodology used here.

3.2 Spheric-Radial Decomposition of Gaussian Random Vectors

From the well-known spheric-radial decomposition (see, e.g., [7]) of a Gaussian random
vector ξ̃ ∼ N (μ,�) it follows that the probability of an arbitrary Borel measurable subset
M of Rm may be represented as the following integral over the unit sphere S

m−1:

P(ξ̃ ∈ M) =
∫

v∈Sm−1
μχ(E(v))dμη(v).
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Here, μχ refers to the one-dimensional Chi-distribution with m degrees of freedom, μη is
the uniform distribution on S

m−1 and

E(v) := {r ≥ 0 | μ + rP v ∈ M},
where P is a factor from a decomposition � = PP T of the covariance matrix �. Following
these remarks, the probability on the left-hand side of (17) (depending also on the decision
variable x−) can be represented as

∫
v∈Sm−1

μχ(E(v, x−))dμη(v), (18)

where

E(v, x−) = {r ≥ 0 | μ + rP v ∈ [0, C−]} ∩
⋂

k,l=0,...,m

Ek,l(v, x−) (19)

and, with Pt denoting row number t of P , for k, l = 0, . . . , m:

Ek,l(v, x−) :=

⎧⎪⎨
⎪⎩r ≥ 0 |

∑
e∈�(k)\�(l)

�e

⎛
⎝ ∑

t�H(e)

μt + rPtv

⎞
⎠

2

−
∑

e∈�(l)\�(k)

�e

⎛
⎝ ∑

t�H(e)

μt + rPtv + (x−)t

⎞
⎠

2

≥ π∗,l − π∗
k

⎫⎪⎬
⎪⎭ . (20)

In order to evaluate the integrand in (18), one has to be able to characterize (for each
given v ∈ S

m−1 and x− ∈ R
m) the set E(v, x−) and to determine its Chi probability. The

latter task is easily accomplished, whenever the set E(v, x−) can be represented as a finite
union of intervals because there exist numerically highly precise approximations of the one
dimensional Chi distribution function.

Hence, we are left with the task of efficiently representing E(v, x−) as a finite union of
intervals. This is easily done for the first set in the intersection providing E(v, x−) in (19)
which can be shown either to be empty or an interval:

{r ≥ 0 | μ + rP v ∈ [0, C−]} =
{∅ if ∃t ∈ {1, . . . , m} : Ptv = 0, μt /∈ [0, C−,t ],
[L,R] else; (21)

L := max

{
0, max

Pt v>0

−μt

Ptv
, max

Pt v<0

C−,t − μt

Ptv

}
and

R := min

{
min

Pt v>0

C−,t − μt

Ptv
, min

Pt v<0

−μt

Ptv

}
.

As for the second part of the intersection in (19), we will provide for each k, l an explicit
representation of the set Ek,l(v, x) either as a single interval or as the disjoint union of two
intervals, such that the intersection of all these sets (and the first set determined above) is
readily obtained in the form of a finite union of disjoint intervals. Indeed, upon developing
the expressions in (20) in terms of r , one arrives at the representation

Ek,l(v, x−) =
{
r ≥ 0 | αk,lr2 + βk,lr + γ k,l ≥ 0

}
(k, l = 0, . . . , m),
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where, for k, l = 0, . . . , m:

αk,l :=
∑

e∈�(k)\�(l)

�e

⎛
⎝ ∑

t�H(e)

Ptv

⎞
⎠

2

−
∑

e∈�(l)\�(k)

�e

⎛
⎝ ∑

t�H(e)

Ptv

⎞
⎠

2

βk,l := 2
∑

e∈�(k)\�(l)

�e

⎛
⎝ ∑

t�H(e)

μt

⎞
⎠
⎛
⎝ ∑

t�H(e)

Ptv

⎞
⎠

−2
∑

e∈�(l)\�(k)

�e

⎛
⎝ ∑

t�H(e)

μt + x−,t

⎞
⎠
⎛
⎝ ∑

t�H(e)

Ptv

⎞
⎠

γ k,l :=
∑

e∈�(k)\�(l)

�e

⎛
⎝ ∑

t�H(e)

μt

⎞
⎠

2

−
∑

e∈�(l)\�(k)

�e

⎛
⎝ ∑

t�H(e)

μt + x−,t

⎞
⎠

2

+ (
π∗

k

)2 − (
π∗,l

)2 .

This leads, by case distinction and elementary calculus, to the following explicit represen-
tation of Ek,l(v, x−) for k, l = 0, . . . , m:

Ek,l(v, x−) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅ 1) or 2),
R 3) or 4),[
− γ k,l

βk,l ,∞
)

5),(
−∞,− γ k,l

βk,l

]
6),(

−∞,
−βk,l−

√
(βk,l)

2−4αk,lγ k,l

2αk,l

]
∪
[

−βk,l+
√
(βk,l)

2−4αk,lγ k,l

2αk,l ,∞
)

7),
[

−βk,l+
√
(βk,l)

2−4αk,lγ k,l

2αk,l ,
−βk,l−

√
(βk,l)

2−4αk,lγ k,l

2αk,l

]
8),

where the case study is done according to

1) αk,l = βk,l = 0, γ k,l < 0,

2) αk,l < 0,
(

βk,l
)2

< 4αk,lγ k,l ,

3) αk,l = βk,l = 0, γ k,l ≥ 0,

4) αk,l > 0,
(

βk,l
)2

< 4αk,lγ k,l ,

5) αk,l = 0, βk,l > 0,

6) αk,l = 0, βk,l < 0,

7) αk,l > 0,
(

βk,l
)2 ≥ 4αk,lγ k,l ,

8) αk,l < 0,
(

βk,l
)2 ≥ 4αk,lγ k,l .

Along with (21) we may use this explicit description in order to efficiently represent
the set E(v, x−) in (19) as the desired finite union of intervals by determining the finite
intersection of sets which are intervals or disjoint unions of intervals.

It is important to note that, at the same time, the partial derivatives of the probability
with respect to the decision variable x− can be calculated as a spherical integral of type (18)
again, however with a different integrand which is easily obtained from the partial deriva-
tives of the initial data [24]. In this gradient formula, the same disjoint union of intervals
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as in the computation of the probability itself is employed. The spherical integrals can be
approximated by finite sums using Quasi-Monte Carlo sampling on the sphere (see, e.g.,
[4]). Then, for each sampled direction v on the sphere, one may update first the proba-
bility itself and then, simultaneously, the gradient of the probability with respect to x− by
using the same disjoint union of intervals in both cases. This approach makes the gradi-
ent come almost for free as far as computation time is concerned. Having access to values
and gradients of the probabilistic constraint (17), one may set up an appropriate nonlinear
optimization solver for solving (15). For the subsequent numerical results, we employed a
simple projected gradient method.

3.3 Numerical Results for an Example

As an illustrating example, similar to [16, Section 6], we considered a network as displayed
in Fig. 1 with one entry (filled black circle) and 26 exits. The parameters (i.e., pressure
bounds, roughness coefficients, truncated Gaussian distribution for the random nominations
at exits) were chosen from modified quantities of real network.

The applied gradient method cannot guarantee to find a global optimal solution because
the optimization problem is non-convex in x−. However, a stationary point can be computed
satisfying the probust constraint with a high accuracy. We are able to control the quality of
the accuracy via the Quasi-Monte Carlo sampling. In our computations a number of 10 000
samples turns out to allow for reasonably accurate results.

We did not assume any preferences in the allocation of new capacities, hence the weight
vector in the objective of (15) was chosen as w− := 1−. The colored rings around exit
points refer to the optimal cumulative capacities (historical+new), i.e., C− + x− after max-
imization, upon choosing probability levels p = 0.95, 0.9, 0.85, 0.8. The radii of the rings

Fig. 1 Solution of the capacity maximization problem at exits for different probability levels: 0.95 (top left);
0.9 (top right); 0.85 (bottom left); 0.8 (bottom right)
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are proportional to the available capacities. It can be clearly seen, how decreasing of the
probability level allows for increasing the allocation of capacity in certain regions of the
network.

Figure 2 illustrates how the computed solution for a probability level p = 0.8 works
for two random exit nomination scenarios ξ simulated a posteriori according to the cho-
sen truncated multivariate Gaussian distribution. The first scenario is feasible because one
could add a common capacity to every exit (green color) in order to satisfy this scenario. In
contrast, the second scenario is infeasible because one would have to reduce the capacities
by an amount corresponding to the dark red rings, in order to satisfy this scenario. When
simulating a large set of such scenarios, say 1000, it would turn out that according to the
probability level p = 0.8 approximately 800 are feasible, while 200 are infeasible.

3.4 Methodology in the Presence of Cycles

It is generally acknowledged that the presence of cycles in gas networks is both realistic
for applications and demanding for formal analysis. In what follows we elucidate this at
calculating the probability of feasible nominations in a gas network with cycles. Networks
with a single or with multiple node-disjoint cycles are covered in [8] which essentially relies
on explicit formulas for the roots of univariate real polynomials of degree less than 5.

If cycles in a gas network are sharing edges, then the approach via the mentioned formula
is no longer valid. It also cannot be stretched to more general cases. A first alternative
attempt in this respect has been undertaken recently in [9] for networks with up to three
mutually interconnected cycles.

To display the state-of-the-art in calculating by spheric-radial decomposition probabili-
ties of sets of feasible nominations in gas networks with cycles, consider again

Ei := E(vi) = {r ≥ 0 | μ + rP vi ∈ M}
for every sample v1, . . . , vs on the sphere. Analogously to the case of trees, the set Ei can
be expressed as a finite union of disjoint intervals, Ei = ∪l

j=1[aj , bj ], for calculating its
probability, it is sufficient to determine all points where the ray rP vi +μ enters or exits the
set of feasible load vectors M .

With cycles, the matrix A decomposes into a basis part AB and a non-vacuous non-
basis part AN whose columns correspond to the fundamental cycles with respect to the tree
behind AB . Accordingly q, � are split into qB , qN and �B , �N .

Fig. 2 Two scenarios for random exit loads ξ according to the chosen multivariate truncated Gaussian
distribution. Left: feasible scenario; Right: infeasible scenario
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In [8] it is shown that a given load (−1�ξ, ξ) is feasible iff there exists a qN such that

A�
Ng(ξ, qN) = �N · | qN | · qN,

min
i=1,...,|V |−1

[
π∗

i + gi(ξ, qN)
] ≥ max

i=1,...,|V |−1

[
π∗,i + gi(ξ, qN)

]
,

π∗,0 ≤ min
i=1,...,|V |−1

[
π∗

i + gi(ξ, qN)
]
,

π∗
0 ≥ max

i=1,...,|V |−1

[
π∗,i + gi(ξ, qN)

]

with the function g : R|V |−1 × R
|N | → R

|V |−1 where

g(s, t) :=
(
A�

B

)−1
�B |A−1

B (s − AN t)|
(
A−1

B (s − AN t)
)

∀(s, t) ∈ R
|V |−1 × R

|N |.

Having in mind the spheric-radial decomposition and the sets Ei , we insert ξ(r) = rP vi +μ

into the above characterization of feasible loads and reformulate the min, max expressions.
Then Ei consists of all r ∈ R≥0 for which there is a qN such that

A�
Ng(rPvi + μ, qN) = �N |qN |qN (22)

π∗
j + gj (rP vi + μ, qN) ≥ π∗,k + gk(rPvi + μ, qN) for all j, k = 1, . . . , |V | − 1, j �= k, (23)

π∗,0 ≤ π∗
j + gj (rP vi + μ, qN) for all j = 1, . . . , |V | − 1, (24)

π∗
0 ≥ π∗,j + gj (rP vi + μ, qN) for all j = 1, . . . , |V | − 1. (25)

To decide, for a given sample point vi , whether the ray rP vi +μ enters or exits the set of
feasible load vectors M and, in the affirmative, compute an entry or exit point, the following
basic procedure is possible: Augment one of the inequalities of the system (23–25) as an
equation to (22) yielding a system of |N | + 1 degree-2 multivariate polynomial equations
with |N | + 1 unknowns.

Notice that the above considerations hold for gas networks with arbitrary cardinality |N |
of non-basis columns in A. Of course, the number of augmentations, and hence the number
of passes through some polynomial-equation solver can become exorbitant.

A first attempt on solving systems with multivariate polynomials via computer algebra
is reported in [9] for |N | ≤ 3. In the core of the method there are Gröbner bases inducing
“triangular” representations of the polynomial equations, allowing for “reverse propagation”
of solutions, in the spirit of Gaussian elimination, with multivariate quadratic polynomials
instead of linear forms.

In contrast with gradient-type analytical solvers, algebraic solvers using symbolic com-
putation usually detect infeasibility of the system under consideration much faster, which
can be crucial as the decision of (in-)feasibility is one of the fundamental tasks in this con-
text. These methods rely on iterating bases of ideals. Emptiness follows as soon as there
arises a constant polynomial in the current ideal basis.

There are a number of possible improvements, some of which investigated in [9] that
deserve further explorations: identifying and removing redundant inequalities in (23–25),
studying the special structure of the system (22) and exploring the impact of “Compre-
hensive Gröbner Systems” that were developed for parametric polynomial equations, see
[20].
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4 Capacity Maximization Under Uncertain Loads and Uncertain
Distribution of Entry Nominations

After discussing the methodology for the case of uncertain exit loads, we address the case of
uncertain entry loads and fixed exit capacities, i.e., x− = 0, and we only take extensions x+
of the entry capacities C+ into account. Thus, we consider the following optimization problem:

max
x+

wT+x+ (26)

P

⎛
⎝ ξ ∈ [0, C−] ∀b ∈ [−C+ − x+, 0] : 1T+b + 1T−ξ = 0

∃(q, π) : Aq =
(

b

ξ

)
; AT π = −�q|q|; π ∈ [π∗, π∗]

⎞
⎠ ≥ p.

In other words, for a realization d of the random variable ξ and for an extension x+, we
want every entry nomination of the uncertainty set

U(d, x+) := {b ∈ [−C+ − x+, 0] : 1T+b + 1T−d = 0} (27)

to be feasible with probability p. The set of realizations of ξ for which every entry
nomination is feasible for a given x+ is henceforth denoted as D(x+):

D(x+) :=
{
d ∈ [0, C−] : ∀b ∈ U(d, x+) ∃(q, π) : Aq =

(
b

ξ

)
,AT π = −�|q|q, π ∈ [π∗, π∗]

}
.

Applying this notation, we can formulate the probust constraint of problem (26) more
compactly:

max
x+

wT+x+ (28)

P(ξ ∈ D(x+)) ≥ p.

We note that the ‘probust’ nature of the constraint is ‘hidden’ in the probability constraint
that is expressed in D(x+).

Analogously to Section 3, we assume that ξ ∼ T N (μ, �, [0, C−]). Furthermore, we
assume that the following mild condition holds:

(C1) There is a bound y+ ≥ 0, such that μ ∈ D(x+) for all x+ ∈ [0, y+], i.e., the mean μ

of ξ is a feasible exit booking nomination for all admissible x+.

Since ξ is based on historical data, the mean being feasible for a capacity extension x+
is a natural assumption for practical applications at least if the upper bound y+ is not too
large. Furthermore, since there is, naturally, no infinite amount of capacity extension, such
a bound y+ does naturally exist.

In the following, we apply the spherical radial decomposition, see Section 3.2, to
reformulate the probust constraint of problem (28) with an integral:

max
x+∈[0,y+] w

T+x+ (29)

∫
v∈Sm−1

μχ (E(v, x+)) dμη(v) ≥ p.
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As before, m is the number of exit nodes, Sm−1 the unit sphere, μχ refers to the one-dimen-
sional χ -distribution with m degrees of freedom, μη is the uniform distribution on S

m−1 and

E(v, x+) := {r ≥ 0 | μ + rP v ∈ D(x+)},
where P is a factor from a decomposition � = PP T of the covariance matrix �.

We aim to solve problem (29) numerically and we approximate the integral. We briefly
summarize the method of Section 3.2 for our purposes: We sample N vectors v1, . . . , vN of
the unit sphere S

m−1 and compute E(vi, x+) for each sampled vector vi . Hence∫
v∈Sm−1

μχ (E(v, x+)) dμη(v) ≈ 1

N

N∑
i=1

μχ (E(vi, x+)) . (30)

In [8], it is pointed out that E(vi, x+) is a finite union of intervals:

E(vi, x+) =: ∪k
j=0[aj , bj ]

and that in this case,

μχ(E(vi, x+)) =
k∑

j=0

Fχ(bj ) − Fχ(aj ), (31)

where Fχ is the distribution function of the respective χ distribution. Now, for the numerical
accessibility of (31) we make an additional assumption:

(C2) For any x+ ≥ 0, D(x+) is star-shaped with respect to μ.

Using (C2), it is immediately seen that E(vi, x+) = [a0, b0], i.e., E(vi, x+) is a simple
interval. Thus, (31) becomes

μχ(E(vi, x+)) = Fχ(b0) − Fχ(a0).

Furthermore, due to condition (C1), we have 0 ∈ E(vi, x+) which implies a0 = 0. With
this b0 is the length of the interval E(v, x+), i.e., b0 = |E(vi, x+)|. As there exist high-
quality numerical approximations for Fχ , the value of μχ(E(vi, x+)) can be computed, if
b0 is numerically accessible.

In summary, under conditions (C1) and (C2), approximating the integral in (30) for a
given capacity extension x+ effectively reduces to sampling vectors vi on the unit sphere
and determining |E(vi, x+)|.

Before we continue, we briefly discuss the role of (C2). First of all, it is important to
state that without (C2) it is not clear, how (30) can be evaluated numerically. Second, to the
best of our knowledge, there is no applicable criterion for testing (C2). That means, we need
to assume that in practice (C2) holds. Fortunately, this is not as bad as it sounds at the first
glance. The reason is that we are able to show that in the case where E(vi, x+) consisted of
more than one interval, our algorithm would always correctly approximate the length of the
first interval, i.e., the interval with lower bound 0. Due to the simple estimate∫

v∈Sm−1
μχ (E(v, x+)) dμη(v) ≈ 1

N

N∑
i=1

μχ(E(vi, x+)) ≥ 1

N

N∑
i=1

μχ(E0(vi, x+)),

this would mean that, instead of approximating |E(v, x+)|, we would compute a valid lower
bound. As a consequence, the computed result would be feasible for the optimization prob-
lem (29) and thus a (potentially conservative) valid underestimator of the true maximizer.

During the remainder of this section, we will present and discuss an algorithm for
approximating |E(vi, x+)| for any sampled vi . In particular, we will apply binary search:
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In every iteration, it will be decided whether a given r ≥ 0 is an element of E(vi, x+).
This decision is made by solving a nonlinear optimization problem (NLP) which, for
all b ∈ U(μ + rP v, x+), checks whether the henceforth called pressure flow solution
(π, q) fulfills (8). We prove the correctness of this decision procedure under the following
assumption:

(C3) There is a node j ∈ V with fixed pressure, i.e., πj,∗ = π∗
j .

Condition (C3) implies that there exists exactly one solution (π, q) which fulfills Aq =
(b, ξ)T and AT π = −�|q|q, see for example Theorem 7.2. of [18]. As we will see later, the
uniqueness of the pressure flow solution is crucial for the correctness of the presented algorithm.

In order to ensure that all potential violations of pressure bounds are detected, globally
optimal solutions are required. In order to achieve this, we relax the NLP to a mixed-integer
linear problem (MIP) by interpolating the nonlinearities with linear splines and model-
ing these splines through linear constraints and additional binary and continuous variables.
The resulting MIP can be solved globally with off-the-shelf-software. The effects of the
linearization are pointed out in the remainder of the section.

We would like to point out that, like condition (C1), condition (C3) is not a critical
assumption in reality. Since gas is injected at some entry node, we can assume that the
pressure at this node is known.

We conclude this section by the presentation of computational results that show the
effectiveness of our method.

4.1 Methodology for General Stationary Networks

As discussed beforehand, approximating the integral under conditions (C1) and (C2) can be
reduced to deciding whether r ∈ E(v, x+) for a real number r ≥ 0 and a sampled vector
v ∈ S

m−1. In other words, we need to check whether μ + rP v ∈ D(x+), i.e., whether
μ + rP v is robust feasible:

Definition 1 Let d be a realization of the random variable ξ and let x+ be an entry capacity
extension. If d ∈ D(x+), d is called robust feasible. The problem of deciding d ∈ D(x+) is
denoted as DecProb(d, x+). Analogously, for a sampled vector v ∈ S

m−1, the real number
r ≥ 0 is called robust feasible for v, if μ+rP v ∈ D(x+), i.e., r ∈ E(v, x+). The problem of
deciding the robust feasibility of a number r for a vector v is denoted as DecProb(r, v, x+).

In the special case of unbounded pressure at every node, DecProb(d, x+) would be answered
positively for every feasible realization d and every extension x+ (see [18], Theorem 7.1).
Although in real gas network operations and in our setting the pressures are bounded, we
can use the following: We introduce penalty functions for every u ∈ V , in formulas,

fu : R → R
+, πu �→ max{0, π∗,u − πu, πu − π∗

u }.

If fu(πu) > 0 for a node u ∈ V , πu lies outside its bounds. Consequently, π ∈ [π∗, π∗]
if and only if

∑
u∈V

fu(πu) = 0. (32)
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Now consider a balanced nomination (b, d)T and the optimization problem

max
π,q

∑
u∈V

fu(πu) (33)

s.t. Aq =
(

b

d

)
,

AT π = −�|q|q.

Since the pressure is unbounded, there exists a pressure flow solution (π, q) and since
condition (C3) holds, it is unique and the feasible set of problem (33) is atomic. Consequently,
(b, d) is a realizable nomination if the optimal value of problem (33) is 0, i.e., (32) holds.

However, for a given sampled vector v and a real number r , we want to check whether
DecProb(r, v, x+) is answered positively, i.e., if for any b which results in a balanced nomi-
nation (μ+ rP v, b), there exists a pressure flow solution which satisfies (8). Therefore, we
modify (33):

max
b,π,q

∑
u∈V

fu(πu) (Pen (r, v, x+))

s.t. Aq =
(

b

μ + rP v

)
,

AT π = −�|q|q,

1T−(μ + rP v) + 1T+b = 0,

b ∈ [−C+ − x+, 0].
The feasible set of Pen (r, v, x+) consists of the vectors (b, π, q) for which (μ+ rP v, b)

is a balanced nomination and for which there exists a pressure flow solution which satisfies
(8) but could violate the pressure bounds.

In particular, we will show in the following theorem that r is robust feasible for v if and
only if the optimal value of problem Pen (r, v, x+) is 0.

Theorem 1 Let v ∈ S
m−1, r ≥ 0 and let x+ ≥ 0 be a capacity extension at the entries.

Assume that condition (C3) holds. Then DecProb(r, v, x+) is answered positively if and
only if problem Pen (r, v, x+) is solvable with optimal value 0.

Proof Since fu(πu) is nonnegative for all nodes u ∈ V , the optimal value of Pen (r, v, x+)
is at least zero.

Assume on the one hand that DecProb(r, v, x+) is answered positively, i.e., μ + rP v

is robust feasible. Now consider a solution (b, π, q) which is feasible for problem
Pen (r, v, x+). If the objective value of (b, π, q) was strictly positive, there would exist a
node j ∈ V with πj /∈ [π∗,j , π

∗
j ]. Since the pressure flow solution is unique (due to condi-

tion (C3)), this contradicts the robust feasibility of μ + rP v. Therefore, the objective value
is 0. Since this applies for every feasible solution, the optimal value of Pen (r, v, x+) is 0.

On the other hand, assume that the optimal value is 0. We maximize which implies that
for all feasible solutions (b, π, q), π lies in its prescribed bounds. In other words, for every
b ∈ U(μ+ rP v, x+), the unique pressure flow solution (π, q) satisfies (8). This implies the
robust feasibility of (μ + rP v, x+), i.e., DecProb(r, v, x+) is answered positively.
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We note that condition (C3) is crucial in the proof of Theorem 1. Without pressure
bounds, the projection of the pressure flow solutions to the squared pressure component has,
for a fixed π , the form{

π + η1 | η ∈
[

max
u∈V

{π∗,u − πu}, min
u∈V

{π∗
u − πu}

]}
,

see Theorem 7.2. of [18]. Hence, unless one pressure is fixed, the pressure values are not nec-
essarily unique and problem Pen (r, v, x+) can be unbounded although r is robust feasible.

As already discussed, we need to determine the length of the interval E(v, x+) and as a
consequence of Theorem 1, problem Pen (r, v, x+) can be used to determine the length. In
particular, by applying a binary search, which solves the subproblem Pen (r, v, x+) in every
iteration, we can determine the length of E(v, x+).

A binary search algorithm requires a lower and an upper bound. Since 0 ∈ E(v, x+) ⊂
R≥0 (condition (C1)), we choose 0 as a lower bound. A trivial upper bound for E(v, x+) is
given by the exit capacities

0 ≤ μ + rP v ≤ C−.

However, we can even give a tighter bound. Due to (8), the pressure drop constraint

πi − πj = �i,j

∣∣qi,j

∣∣ qi,j (34)

holds for every arc (i, j) ∈ E. Since the pressures are bounded and �i,j > 0 for every
arc (i, j), we can derive flow bounds for every arc which do not depend on the actual
nomination. In the following, these flow bounds, which are called implicit flow bounds and
are denoted by q∗ and q∗, are exploited to determine a tighter upper bound for E(v, x+):

Lemma 1 Let v ∈ S
m−1, let q∗ and q∗ be the implicit flow bounds and x+ ≥ 0 be a capacity

extension at the entry nodes. For a node u ∈ V , let δ−(u) denote the set of incoming arcs
and let δ+(u) denote the set of outgoing arcs. Then an upper bound for E(v, x+) is given
by the optimal value of the optimization problem

max
r

r (UB(v, x+))

s.t. 0 ≤ μ + rP v ≤ C−,∑
e∈δ−(u)

q∗
e −

∑
e∈δ+(u)

q∗,e ≥ μu + r(P v)u ∀u ∈ V−,

∑
e∈δ−(u)

q∗,e −
∑

e∈δ+(u)

q∗
e ≤ μu + r(P v)u ∀u ∈ V−,

r ≥ 0.

Proof Since we are interested in an upper bound for E(v, x+), 0 ≤ μ + rP v ≤ C− and
r ≥ 0 are satisfied. Furthermore, Kirchoff’s first law demands∑

e∈δ−(u)

qe −
∑

e∈δ+(u)

qe = μu + r(P v)u ∀u ∈ V−

for a flow q. Substituting the flow variables by the implicit flow bounds q∗ and q∗ results in∑
e∈δ−(u)

q∗
e −

∑
e∈δ+(u)

q∗,e ≥ μu + r(P v)u ∀u ∈ V−
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and ∑
e∈δ−(u)

q∗,e −
∑

e∈δ+(u)

q∗
e ≤ μu + r(P v)u ∀u ∈ V−.

This concludes the proof.

With Lemma 1, the prerequisites for the binary search have been taken. However, prob-
lem Pen (r, v, x+) is a non-convex non-linear optimization problem. Since we require global
optima, we aim to linearize the non-linear constraints of problem Pen (r, v, x+), i.e., the
Weymouth equation

πi − πj = �i,j

∣∣qi,j

∣∣ qi,j

by interpolating �i,j |qi,j |qi,j with linear splines si,j (qi,j ). For a given linearization error
ε > 0, the linear splines are constructed such that

si,j (qi,j ) − ε ≤ �i,j |qi,j |qi,j ≤ si,j (qi,j ) + ε

for every (i, j) ∈ E. Therefore, in Pen (r, v, x+), we relax (34) with

si,j (qi,j ) − ε ≤ πi − πj ≤ si,j (qi,j ) + ε

for all (i, j) ∈ E. The splines si,j (qi,j ) are modeled with the incremental method, see [21],
using an additional set of linear inequalities and equations and additional continuous and
binary variables. Hence subproblem Pen (r, v, x+) is relaxed to a MIP which can be solved
to global optimality. The optimal value of the relaxation is an upper bound for the optimal
value of problem Pen (r, v, x+). Due to the objective being non-negative, if the optimal value
of the linearized problem is zero, the optimal value of problem Pen (r, v, x+) is zero as well.
The linearized version of problem Pen (r, v, x+) is henceforth denoted as Pen(r, v, x+, ε).

Before we summarize our algorithm for finding a lower bound for the length of E(v, x+),
we note that the incremental method is applied for modeling linear splines which are defined
on compact intervals. In our case, the spline variables are the flow variables which are, at
least by definition, unbounded. In practice, one can for example apply the preprocessing
developed in [1] for determining flow bounds. This method neglects the pressure bounds as
well, which is the reason why we can apply it.

In the following, we summarize our procedure to find a lower bound for the length of
E(v, x+). The tolerance for the binary search is henceforth given by tol > 0: Algorithm 1
bounds |E(v, x+)| from below with an error of at most tol. Due to Theorem 1 and Lemma 1,
Algorithm 1 terminates with a correct lower bound.

This concludes the presentation of our method to determine a lower bound for |E(v, x+)|
under the conditions (C1), (C2) and (C3). We note that there are several sources of approx-
imation errors which are caused by the binary search and the linearization of Pen (r, v, x+).
Yet, those can be limited by reducing tol and ε in Algorithm 1, respectively. However, one
has to keep in mind that reducing tol results in more iterations and that reducing ε, i.e., a
tighter linearization, results in more binary variables for Pen(r, v, x+, ε). Both lead to an
increase of the running time, see Section 4.2.
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Before we discuss our numerical results, we would like to demonstrate, how our algo-
rithm could be modified to produce a lower bound on E(v, x+) in the case when condition
(C2) fails to hold. As pointed out before, without condition (C2), the set E(v, x+) is
in general not an interval but a finite union of intervals. Due to condition (C1), one of
those intervals, henceforth denoted as E0(v, x+), has 0 as its lower bound. Obviously,
R ∈ E0(v, x+) only holds if [0, R] ⊂ E0(v, x+), i.e., if all r ∈ [0, R] are robust feasible for
v. Therefore, we can check whether R ∈ E0(v, x+) by modifying problem Pen (r, v, x+)
and solving

max
r,b,π,q

∑
u∈V

fu(πu)

s.t. Aq =
(

b

μ + rP v

)
,

AT π = −�|q|q,

1T−(μ + rP v) + 1T+b = 0,

b ∈ [−C+ − x+, 0],
r ∈ [0, R].

The feasible set of this optimization problem consists of the vectors (r, b, π, q) for which
(μ + rP v, b) is a balanced nomination (with r ≤ R) with pressure flow solution (π, q)

which is unique due to condition (C3). Thus, the only difference in problem Pen (r, v, x+)
and the above optimization problem is r being a variable since we have to check whether
μ + rP v is robust feasible for every r ∈ [0, R]. Consequently, using this modified problem
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in Algorithm 1 instead of problem Pen (r, v, x+) yields a lower bound for E0(v, x+) and
thus a (potentially conservative) lower bound on E(v, x+).

In the next subsection, we evaluate Algorithm 1 with respect to quality of the obtained
solutions and running time.

4.2 Numerical Results

We modify the gas network instance of Section 3.3 by adding a second entry next to the first
entry (the black filled node) which implies that x+ ∈ R

2. We note that the instance is still
a tree and that the structure of the instance has not changed substantially which has been
desired since we do not want to analyze an instance which is very different from the one of
Section 3. However, if the instance had only one entry, the uncertainty set would have only
one element which is not interesting in the context of this section. In addition, we fix the
pressure at a leaf node. Beyond that, we provide sphere vectors v by sampling a collection
of 10 000 elements on the unit sphere using a Quasi-Monte Carlo method. Our goal is to
approximate the probability of robust feasibility for this network and uncertain entry loads
by using a spheric radial decomposition and applying Algorithm 1. Since we can not verify
condition (C2), we assume that D(x+) is not star-shaped with respect to the mean.

The performance of the algorithm is investigated by testing the algorithm on the given
instance under a variety of parameter combinations. All experiments were carried out using
GUROBI 7.5 [15] with 4 threads running on machines with Xeon E3-1240 v5 CPUs (4 cores,
3.5 GHz each).

We apply Algorithm 1 to all 10 000 rays using all combinations of relaxation parameters
ε ∈ {2−6, 2−5, . . . , 24} and bisection termination tolerances tol ∈ {0.001, 0.01, 0.1}. Exper-
iments for smaller tolerances down to tol = 10−6 were carried out as well but are omitted
here since they produced almost identical probabilities, when compared to tol = 10−3. The
results of this study are displayed in Fig. 3. The approximated probabilities for robust fea-
sibility of the exit nomination and the capacity extension of the instance are displayed in
Fig. 3(a). We approximate the overall probability to be between 78 % and 78.5 %, depending
on ε and tol. As expected, we obtain more conservative solutions for increasing approxi-
mation parameters ε. However, the influence of ε is much smaller than expected, even for
large ε. In the same fashion, increasing the bisection termination tolerances tol leads to
more conservative solutions. We note that for both parameters, a combination of ε = 1

2 and
tol = 0.001 produces solutions that can be improved only very little (within the scope of
this study) by decreasing both parameters further. The overall running times for all rays, i.e.,
the cumulated running time of Algorithm 1, applied for each ray, are plotted in Fig. 3(b).
As expected, the running times increase for decreasing parameter ε, as the latter leads to
more complex MIP models. A decrease of the tolerance tol leads to a larger number of iter-
ations of the bisection algorithm and thus to longer running times as well. In the previous
experiments, we focused on the influence of the relaxation parameter ε and the bisection
precision tolerance tol on the algorithm’s running time and on the reliability of the obtained
probability. Another important impact on the overall running time is the number of rays that
needs to be used. Fig. 4(a) shows the resulting probability when only the first k rays of the
10 000 given samples are used for the probability approximation. At a glance, we observe
large fluctuations when using only up to about 2500 rays. A considerable decrease in the
magnitude of the probability fluctuation can be seen for values of k ≥ 2500. We further
strengthen this observation in Fig. 4(b) by comparing the first graph with a second graph
that was obtained from 5000 other random sphere vectors in the same fashion. Since the sec-
ond graph follows the same pattern, we conclude that for the instance considered here, the
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Fig. 3 Resulting probability and total running time for 10 000 rays using different relaxation qualities ε and
bisection termination tolerances tol

number of rays should not be smaller than 2500 if the approximation of the probability has
been supposed to be reliable. Assuming that the parameter selection k = 2500, ε = 1

2 , and
tol = 0.001 is sufficient for a reliable probability calculation, the sum of all MIP running
times is about 8 min.

As a final experiment, we demonstrate the practical applicability of our method by solv-
ing a simple optimization task where we assume that the number of sampled points k is large
enough and that our approximation is good enough to check whether the probust constraint
is satisfied for a given capacity extension.

The goal is to determine capacities for the two entry nodes such that the probability of
robust feasibility is at least 75%. We use a linear cost function with equal costs for expansion
at each node. In Section 3, the capacity problem with uncertain exit loads has been solved
using (sub)gradient information in the sense of [24]. However, due to the different situation
here caused by the MIP-approximations and the robust constraints, the derivation of suitable
(sub)gradients needs further research that is beyond the scope of this article. Instead, we

Fig. 4 Probability plot when using only the first k rays for its computation. Parameters used in ray length
calculation: ε = 1

2 and tol = 0.001
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Fig. 5 Contour plot of the probability for robust feasible entry capacities together with the trajectory of a
gradient-free optimization method to determine a capacity with 75% feasibility

decided to apply a gradient free pattern search algorithm available in MATLAB [19]. It is
important to note that—due to the fact that the probust constraint is in general non-smooth—
no convergence of this algorithm to a stationary point can be guaranteed. Instead, one can
expect convergence to a point in which directional derivatives are nonnegative for all direc-
tions in the positive basis used by the algorithm. We refer to [5] for a further discussion on
this, as well as a general overview of derivative-free optimization.

In every major iteration, a capacity extension x+ has been proposed by the algorithm.
For all sampled vectors vi , Algorithm 1 is applied to approximate |E0(vi, x+)|. Hence, the
probability of robust feasibility is estimated from below by 1

2500

∑2500
i=1 Fχ(|E0(vi, x+)|)

and thus, the inequality

1

2500

2500∑
i=1

Fχ(|E0(vi, x+)|) ≥ 0.75

is checked.
In our experiment, we consider the entry capacities in the box [28000, 32000] ×

[4000, 8000] and start with C+ = (−28000,−4000). In other words the extension x+ is an
element of the box [0, 4000] × [0, 4000] and our starting point is (0, 0).

Overall, the pattern search algorithm converged after 149 function evaluations. The red
lines which connect the black, filled dots show the trajectory of the pattern search algorithm,
with the optimum marked by a red cross. The extra function evaluations are represented
by black circles. Obviously, the probability is not very sensitive with respect to capacity
changes at entry 1 but clearly decreases, when the capacity is increased at entry 2. (Fig. 5)

This concludes the discussion and presentation of the methodology for stationary gas
networks. In the next section, transient systems controlled by the wave equation are
discussed.
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5 Stabilization with Probabilistic Constraints of a System Governed
by theWave Equation

Now, we consider a transient system that is governed by the wave equation. The wave equa-
tion is a linear model of the gas flow in gas pipelines for sufficiently small velocities. The
state is determined by an initial boundary value problem with Dirichlet boundary data at
one end and Neumann boundary feedback at the other end of the space interval. The initial
data and the boundary data are given by a stochastic process. The aim is to maximize the
probability to stay near a desired state everywhere in the time space domain.

Let a finite length L > 0 and a finite time T > 0 be given. In this section, let U =
[0, T ] × [0, L]. Let c > 0 denote the sound speed in the gas. Let a stationary velocity field
v̄ be given, see [13]. Let v = ṽ − v̄ denote the difference between the velocity and the
stationary state. If the norm of v̄ is sufficiently small, the dynamics for v are governed by
the wave equation vtt = c2 vxx . Moreover the gas density ρ satisfies the wave equation
ρtt = c2ρxx and the flow rate q of the gas satisfies the wave equation qtt = c2qxx ; see [14].
For given uncertain boundary data (that model the uncertain demand) ξ ∈ L∞(0, T ), an
uncertain initial state (v0, v1) ∈ L∞(0, L)×L1(0, L) and a feedback parameter η > 0,
we consider the closed loop system that is governed by the initial boundary value problem
for (t, x) ∈ U ⎧⎨

⎩
v(0, x) = v0(x), vt (0, x) = v1(x),

vx(t, 0) = ηvt (t, 0), v(t, L) = ξ(t),

vtt (t, x) = c2vxx(t, x).
(S)

An explicit representation of the generated state in terms of travelling waves
(d’Alembert’s solution) is given in [11, 12]. This allows the computation of the system state
v ∈ L∞(U) without discretization errors. In the operation of pipeline networks, there is
a constraint on the magnitude of the flow velocity in the pipe. Let vmax > 0 be an upper
bound for the velocity. We consider the probabilistic constraint for the probability

P (‖v‖L∞ ≤ vmax) , (35)

where v solves (S) and ‖ · ‖L∞ denotes the norm on L∞(U).
In order to write the probabilistic constraint similar to (4), we introduce the notation

g(ṽ, ξ, u) := vmax − |ṽ(u) − v̄(u)|, (36)

with ξ = (a, b), a = (ak)
N
k=1, b = (bk)

N
k=1, u = (t, x) ∈ U , where ṽ solves the initial

boundary value problem (S) with initial and boundary data that depend on the parameter
(a, b) (see (KL-id) and (KL-bd) below).

Theorem 2 (Solution of system (S)) Consider system (S) with ξ ∈ L∞(0, T ) and (v0, v1) ∈
L∞(0, L) × L1(0, L) for the feedback parameter η = 1

c
. Define the antiderivative of v1 by

V1(x) :=
∫ x

0
v1(s)ds

and define for

α(s) :=
{

v0(cs) + 1
c
V1(cs) for s ∈ [0, L

c

)
,

2ξ
(
s − L

c

)− β
(
s − L

c

)
for s ∈ [L

c
, T + L

c

]
and

β(s) :=
{

v0(L − cs) − 1
c
V1(L − cs) for s ∈ [0, L

c

)
,

v0(0) for s ∈ [L
c
, T + L

c

]
.
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Then the function
v(t, x) := 1

2α
(
t + x

c

)+ 1
2 β
(
t + L−x

c

)
(37)

solves system (S) and the solution v lies in L∞(U).

Proof We show that v defined in (37) fulfills the PDE system (S). First we see that v

satisfies the wave equation, because we have

vtt = 1
2α′′ (t + x

c

)+ 1
2 β′′ (t + L−x

x

)
,

vxx = 1
2c2 α′′ (t + x

c

)+ 1
2c2 β′′ (t + L−x

c

) = 1
2c2 vtt .

Now we show that v satisfies the initial conditions. At t = 0, we have for all x ∈ (0, L)

v(0, x) = 1
2α
(

x
c

)+ 1
2 β
(

L−x
c

)
= 1

2

[
v0(x) + 1

c
V1(x)

]
+ 1

2

[
v0(x) − 1

c
V1(x)

]
= v0(x).

For the time derivative at t = 0, x ∈ (0, L) we have

vt (0, x) = 1
2α′ ( x

c

)+ 1
2 β′ (L−x

c

)
= 1

2

[
v′

0(x) + v1(x)
]− 1

2

[
v′

0(x) − v1(x)
] = v1(x),

where the derivatives are to be understood in the sense of distributions. Finally, we show that
the boundary conditions are fulfilled. Now, we prove that the Dirichlet boundary condition
at x = L is fulfilled for t > 0. We have

v(t, L) = 1
2α(t + L

c
) + 1

2 β(t) = 1
2 [2ξ(t) − β(t)] + 1

2 β(t) = ξ(t).

For the feedback law at x = 0, we have

vx(t, 0) = 1
2c

α′(t) − 1
2c

β′ (t + L
c

) = 1
2c

α′(t) − 1
2c

v′
0(0),

ηvt (t, 0) = η
2 α′(t) − η

2 β′ (t + L
c

) = 1
2c

α′(t) − 1
2c

v′
0(0).

Now we show that v lies in L∞(U). By the assumptions, we have v0 ∈ L∞(0, L) and
ξ ∈ L∞(0, L). The claim is true if V1 is in L∞(0, L). We know that v1 is in L1(0, L). This
implies

‖V1‖L∞ = ess sup
x∈(0,L)

∣∣∣∣
∫ x

0
v1(s)ds

∣∣∣∣ ≤ ess sup
x∈(0,L)

∫ x

0
|v1(s)|ds ≤

∫ L

0
|v1(s)|ds = ‖v1‖L1 .

This finishes the proof Theorem 2.

Theorem 3 (Value of ‖v‖L∞ in terms of initial and boundary data) Let v be a solution of
system (S) under the assumptions of Theorem 2. For (t, x) ∈ U , define

m1(t, x) := 1
2

[
v0(x + ct) + 1

c
V1(x + ct)

]
+ 1

2

[
v0(x − ct) − 1

c
V1(x − ct)

]
,

m2(t, x) := 1
2

[
v0(ct + x) + 1

c
V1(ct + x) + v0(0)

]
,

m3(t, x) := ξ
(
t + x−L

c

)+ 1
2

[
v0(ct + x) − 1

c
V1(ct + x)

−v0(2L − x − ct) + 1
c
V1(2L − x − ct)

]
,

m4(t, x) := ξ
(
t + x−L

c

)+ 1
2

[
1
c
V1(2L − x − ct) + v0(0) − v0(2L − x − ct)

]
,

m5(t, x) := ξ
(
t + x−L

c

)
.
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Set

�1 := {
(t, x) ∈ U | t < min

{
L−x

c
, x

c

}}
,

�2 := {
(t, x) ∈ U | x

c
≤ t < L−x

c

}
,

�3 := {
(t, x) ∈ U | L−x

c
≤ t < x

c

}
,

�4 := {
(t, x) ∈ U | max

{
L−x

c
, x

c

} ≤ t < L
c

+ L−x
c

}
,

�5 := {
(t, x) ∈ U | t ≥ L

c
+ L−x

c

}
(see Fig. 6). Furthermore, for i ∈ {1, . . . , 5}, set

Mi := sup{|mi(t, x)| : (t, x) ∈ �i}.
Then the L∞-norm of the velocity v is given by

‖v‖L∞ = max{M1,M2,M3,M4,M5}.

Proof By Theorem 2 the solution of system (S) is given by

v(t, x) := 1
2α
(
t + x

c

)+ 1
2 β
(
t + L−x

c

)
.

By the definition of α and β, there are four cases to consider. The last case is split into two
subcases. The first case t < min

{
x
c
, L−c

c

}
is the first case for both α and β. We have

v(t, x) = 1
2

[
v0(x + ct) + 1

c
V1(x + ct)

]
+ 1

2

[
v0(x − ct) − 1

c
V1(x − ct)

]
.

For x
c

≤ t < L−x
c

, we are in the first case for α and in the second case for β. Note that the
interval for t can only be nonempty for x ∈ (0, L

2 ). We have

v(t, x) = 1
2

[
v0(ct + x) + 1

c
V1(ct + x) + v0(0)

]
.

For L−x
c

≤ t < x
c

, we are in the second case for α and in the first case for β. Note that the
interval for t can only be nonempty for x ∈ (L

2 , L). Since t < x
c

< L
c

and x−L
c

< 0, we

Fig. 6 Decomposition of the space-time domain U
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have t + x−L
c

< L
c

and therefore

v(t, x) = 1
2

[
2ξ
(
t + x−L

c

)− β
(
t + x−L

c

)+ β
(
t + L−x

c

)]
= ξ

(
t + x−L

c

)− 1
2 β
(
t + x−L

c

)+ 1
2

[
v0(ct + x) − 1

c
V1(ct + x)

]

= ξ
(
t + x−L

c

)− 1
2

[
v0(2L − x − ct) − 1

c
V1(2L − x − ct)

]

+ 1
2

[
v0(ct + x) − 1

c
V1(ct + x)

]
.

The last case to consider is t ≥ max{L−x
c

, x
c
}. It leads to

v(t, x) = 1
2

[
2ξ
(
t + x−L

c

)− β
(
t + x−L

c

)+ v0(0)
]

=
{

ξ(t + x−L
c

) + 1
2

[
1
c
V1(2L − x − ct) + v0(0) − v0(2L − x − ct)

]
, t < L

c
+ L−x

c
,

ξ(t + x−L
c

), t ≥ L
c

+ L−x
c

.

This yields the assertion of Theorem 3.

5.1 Boundary Data with RandomAmplitude, Frequency and Phaseshift

For the boundary data, we consider the parametric family

ξ(t) := λ cos(ωt + κ) (cos-bd)

with a random variable (λ, κ, ω) and the compatible initial data

v0(x) = λ cos(κ), v1 = 0. (cos-id)

We assume that (λ, κ, ω) is normally distributed with expected value μ ∈ R
3 and a posi-

tive definite covariance matrix � ∈ R
3×3. For the numerical computation of the probability,

we use the spheric radial decomposition described in Section 3.2.

Corollary 1 (Analytic formula for ‖v‖L∞ ) Let v be a solution of system (S) under the
assumptions of Theorem 2 for the initial conditions given by (cos-id) and the Dirichlet
boundary data at x = L given by (cos-bd). Then

‖v‖L∞ ≤ |λ|.

Proof With the definitions from Theorem 3 and (cos-bd) as well as (cos-id), we have

m1(t, x) := v0(ct + x) = λ cos(κ),

m2(t, x) := 1
2

[
v0(ct + x) + 1

c
V1(ct + x) + v0(0)

]
= λ cos(κ),

m3(t, x) := ξ
(
t + x−L

c

)+ 1
2

[
v0(ct + x) − 1

c
V1(ct + x)

−v0(2L − x − ct) + 1
c
V1(2L − x − ct)

]

= λ cos
(
ω
(
t + x−L

c

)+ κ
)
,

m4(t, x) := ξ(t + x−L
c

) + 1
2

[
1
c
V1(2L − x − ct) + v0(0) − v0(2L − x − ct)

]

= λ cos
(
ω
(
t + x−L

c

)+ κ
)
,

m5(t, x) := ξ
(
t + x−L

c

) = λ cos
(
ω
(
t + x−L

c

)+ κ
)

.

By |mi(t, x)| ≤ |λ| for i = 1, . . . , 5 the claim follows.
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Fig. 7 The solution v of the wave equation for nine samples (λ, ω, κ) on the sphere. The radius r is scaled
such that ‖v‖L∞ = vmax holds. The value of the cumulative distribution of the Chi distribution evaluated
at this radius is given on top of each picture. The probability for the solution to be bounded by vmax is
P(‖v‖L∞ ≤ vmax) ≈ 0.7856 for the data T = 6, L = 2, c = 0.5, vmax = 1.8. The random vector (λ, ω, κ) is
normal distributed with expected value μ = (1, 1, 1) and covariance matrix � = I . The number of samples
used to approximate the probability is 20000

Remark 1 If ω �= 0 and T is sufficiently large, then ‖v‖∞ = |λ| holds.

5.2 Karhunen–Loève Approximation of aWiener Process as Initial and Boundary
Data

We consider the Karhunen–Loève representation (see [17]) of a Wiener process on [0, T ]
with covariance function Cov(Wt , Ws) = min(s, t) given by

Wt = √
2T

∞∑
k=1

ak

sin
(
ωkπ

t
T

)
ωkπ

, ωk = k − 1
2 ,

with independently normally distributed random variables ak . It is reasonable to use a finite
approximation of it as boundary data, i.e.,

ξ(t) = √
2T

N∑
k=1

ak

sin
(
ωkπ

t
T

)
ωkπ

, ωk = k − 1
2 on [0, T ]. (KL-bd)

Analogously, we choose the compatible initial data

v0(x) = √
2L

N∑
k=1

bk

sin
(
ωkπ

L−x
L

)
ωkπ

, ωk = k − 1
2 on [0, L], (KL-id)

with independently normally distributed random variables bk . We have the compatibility
condition ξ(0) = v0(L) = 0. Furthermore, set v1 = 0 (Fig. 7). Different realizations of the
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initial and boundary data can be seen in Figs. 8 and 9. The solution of the wave equation for
different realizations of the initial and boundary data is depicted in Fig. 10.

The case is much more involved than that in Section 5.1, since the value of ‖v‖L∞ is
not easily expressed as an analytic function of the random variables. This means a sampling
scheme based on spheric radial decomposition can not be directly be applied. We use a quasi
Monte Carlo method based on a Sobol sequence instead.

If one wants to approximate the L∞-norm of the velocity by pointwise evaluation on a
grid, Lipschitz continuity of the velocity is required.

Theorem 4 (Lipschitz continuity of the solution) Assume the boundary data ξ ∈ C0,1(0, T )

and initial data v0 ∈ C0,1(0, L) to be Lipschitz continuous and assume that Lipschitz
compatibility over the edge holds, i.e., we have

|ξ(t) − v0(L − x)| ≤ K|t − L + x| for (t, x) ∈ U
with a Lipschitz constant K > 0. Furthermore, let v1 ∈ L∞(0, L).
Then, under the assumptions of Theorem 2, the solution v of system (S) is Lipschitz
continuous on U , i.e., v ∈ C0,1(U).

Proof The sum of Lipschitz continuous functions is Lipschitz continuous. It is therefore
sufficient to show the Lipschitz continuity of α and β defined as in Theorem 2. Without loss
of generality—by going to the maximum of the occurring Lipschitz constants—we assume
that they are all the same and denote each of them by K > 0. First, we show the Lipschitz
continuity of V1. We have, for x, y ∈ [0, L]

|V (x) − V (y)| =
∣∣∣∣
∫ x

0
v1(s)ds −

∫ y

0
v1(s)ds

∣∣∣∣ =
∣∣∣∣
∫ x

y

v1(s)ds

∣∣∣∣
≤ |x − y| ‖v1‖L∞ ≤ K|x − y|.

Fig. 8 Different realizations (21)
of the initial data for a Karhunen–
Loève sum with 20 standard
normally distributed coefficients
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Fig. 9 Different realizations (21)
of the boundary data for a
Karhunen–Loève sum with 20
standard normally distributed
coefficients

Fig. 10 The solution v of the wave equation with boundary and initial data given by the functions in (KL-bd)
and (KL-id) for nine samples of the standard normal distributed random vector (a, b) with realizations in
R

40, i.e., N = 20. The constants T = 6, L = 2, c = 0.5 were used. The bound vmax = 5 was chosen and
v̄ = 0 was used. The probability of ‖v + v̄‖L∞ ≤ vmax is 0.8808 with 10 000 samples used. The value of
the L∞-norm is approximated by evaluation on a 100 × 100 grid on U . The points, where the value of the
L∞-norm is attained are marked with a point
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The Lipschitz continuity of β is clear in the individual intervals
[
0, L

c

)
and

[
L
c
, T + L

c

)
.

Consider s ∈ [0, L
c

)
and r ∈ [L

c
, T + L

c

)
. Then, using V1(0) = 0 and

∣∣L
c

− s
∣∣ = L

c
− s ≤

r − s = |r − s|, leads to

|β(s) − β(r)| = 1
c
|cv0(L − cs) − V1(L − cs) − cv0(0) + V1(0)|

≤ K
c
|L − cs| ≤ K|r − s|.

The Lipschitz continuity of β of ξ imply that α is Lipschitz on t ≥ L
c

and by the Lipschitz
continuity of v0 and V1 it is Lipschitz on

[
0, L

c

)
. Again, the case s ∈ [

0, L
c

)
and r ≥ L

c
is

remaining. We obtain

|α(s) − α(r)| =
∣∣∣v0(cs) + 1

c
V1(cs) − 2ξ

(
r − L

c

)+ β
(
r − L

c

)∣∣∣ .

For L
c

≤ r < 2L
c

, this yields by the definition of β

|α(s) − α(r)| =
∣∣∣v0(cs) + 1

c
V1(cs) − 2ξ

(
r − L

c

)+ v0(2L − cr) − 1
c
V1(2L − cr)

∣∣∣
= ∣∣v0(cs) − v0(L) + 2

(
v0(L) − ξ

(
r − L

c

))
+v0(2L − cr) − v0(L) + 1

c
(V1(cs) − V1(2L − cr))

∣∣∣ .

By the triangle inequality and the compatibility v0(L) = ξ(0), we obtain

|α(s) − α(r)| ≤ |v0(cs) − v0(L)| + 2
∣∣ξ(0) − ξ

(
r − L

c

)∣∣
+|v0(2L − cr) − v0(L)| + 1

c
|V1(cs) − V1(2L − cr)|

≤ K|cs − L| + 2K
∣∣−r + L

c

∣∣+ K|L − cr|
+K

c
|cs − L| + K

c
| − L + cr|

= K
[
L − cs + 2

(
r − L

c

)+ cr − L + L
c

− s + r − L
c

]
≤ K[c(r − s) + 2(r − s) + (r − s)] = K(c + 3)|r − s|,

since −L
c

≤ −s. For r ≥ 2L
c

, we have by the definition of β and V1(0) = 0

|α(s) − α(r)| =
∣∣∣v0(cs) + 1

c
V1(cs) − 2ξ

(
r − L

c

)+ v0(0)

∣∣∣
= ∣∣v0(cs) − v(L) + 2

(
v0(L) − ξ

(
r − L

c

))+ v0(0)

−v0(L) + 1
c
V1(cs) − 1

c
V1(0)

∣∣∣
≤ |v0(cs) − v(L)| + 2

∣∣ξ(0) − ξ
(
r − L

c

)∣∣
+|v0(0) − v0(L)| + 1

c
|V1(cs) − V1(0)|

≤ K|cs − L| + 2K
∣∣−r + L

c

∣∣+ K|L| + K
c
|cs|

= K
[
L − cs + 2

(
r − L

c

)+ L + s
]

≤ K[c(r − s) + 2(r − s) + (r − s)] ≤ K(c + 3)|r − s|,
because 2L ≤ rc, −L

c
≤ −s and r − s ≥ 2L

c
− s ≥ L

c
≥ s. This shows the Lipschitz

continuity of α and concludes the proof.

Remark 2 Also for general feedback gains η > 0, results similar to Theorems 2 and 4 hold.
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Fig. 11 The probability to stay under the bound vmax = 5 over the feedback parameter η for the data L = 2,
c = 0.5, T = 2 using 2000 samples. The maximum of the probability is reached for completely absorbing
feedback η = 1/c = 2

5.3 Optimization of the Feedback Parameter

The feedback parameter η can be chosen such that the probability (35) as a function of η

is maximized. We call this function G(η). We consider the probability to stay under the
bound vmax = 5 for different feedback parameters η > 0 on a grid with stepsize 0.05
between 1.5 and 4. The data for the example has been chosen as L = 2, T = 2, c = 0.5.
For the approximation of the probability, 2000 samples were used for each value of η. The
maximum of the probability is reached for completely absorbing feedback η = 1/c = 2.
The peak in probability is very distinct. At the peak the probability function appears to be
nonsmooth. Numerically, we find that the choice η = 1/c is optimal; see Fig. 11.

6 Conclusion

In this paper we dealt with a joint model of probabilistic and robust constraints, so-called
probust constraints and illustrated their importance for gas transport under uncertainty. In
particular, we addressed the problem of capacity maximization under uncertainty thereby
distinguishing between the cases of uncertain exit and uncertain entry loads. Moreover, we
considered a stabilization problem in a transient system governed by the wave equation and
subject to probust constraints. By applying the spheric radial decomposition of Gaussian
random vectors, we approximated the occurring probabilities and—where possible—their
sensitivities with respect to the decision variables in order to numerically solve the result-
ing optimization problems. There are a lot of remaining challenges for future work, such as
efficient incorporation of cycles or active elements in the network. Moreover, a full integra-
tion of the methodology outlined in Section 4 for the robust treatment of uncertain entries
with the capacity maximization problem described in Section 3 ultimately would allow an
application of the probust approach to arbitrary network topologies.
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Holger Heitsch3 ·René Henrion3 · Frauke Liers1 · Sabrina Nitsche4 ·Rüdiger Schultz4 ·
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