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Abstract. We consider probability functions of parameter-dependent random inequality systems under Gaus-
sian distribution. As a main result, we provide an upper estimate for the Clarke subdifferential
of such probability functions without imposing compactness conditions. A constraint qualification
ensuring continuous differentiability is formulated. Explicit formulae are derived from the general
result in the case of linear random inequality systems. In the case of a constant coefficient matrix,
an upper estimate for even the smaller Mordukhovich subdifferential is proven.
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1. Introduction. A probability function has the form

(1.1) ϕ(x) := P(g(x, ξ) ≤ 0),

where g : Rn × R
m → R

p is a mapping defining a (random) inequality system, x ∈ R
n is a

decision vector, and ξ is an m-dimensional random vector defined on some probability space
(Ω,A,P). The inequality sign in (1.1) is to be understood componentwise. Throughout the
paper we shall make the following basic assumptions:

(1.2)
g is continuously differentiable,
the mappings gj(x, ·) are convex for all x ∈ R

n and all j = 1, . . . , p,
ξ ∼ N (0, R) is nondegenerate Gaussian with Rii = 1 (i = 1, . . . ,m).

Here, we refer to the commonly used notation N (μ,Σ) for a Gaussian distribution with ex-
pectation μ and covariance matrix Σ. Our assumption implies that ξ is standard Gaussian
with components that are centered and have unit variances. In other words, the (nondegen-
erate) covariance matrix is actually a correlation matrix. This assumption is no restriction
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64 W. VAN ACKOOIJ AND R. HENRION

because it can always be achieved under an affine linear transformation of ξ whose action on
the mapping g would not affect the properties imposed in (1.2).

Probability functions (1.1) play a fundamental role in stochastic optimization problems,
either as an objective (reliability) to be maximized or when defining a constraint ensuring
the robustness of decisions (probabilistic or chance constraint). Applications can be found
in water management, telecommunications, electricity network expansion, mineral blending,
chemical engineering, etc. (see, e.g., [20, 21, 26]). Treating probability functions in the frame-
work of optimization problems (w.r.t. the decision variable x) requires calculating—or, bet-
ter, approximating—not only the probability ϕ(x) itself but also its gradient ∇ϕ. This is
why derivatives of probability functions have attracted so much attention in the past (see,
e.g., [8, 12, 14, 16, 19, 22, 24, 25, 28, 29, 31, 32]). Indeed, historically a first formula for the
gradient of a probability function in the form of an involved surface integral was derived in
[22]. This formula was later generalized into a combination of a surface and volume integral
in [28, 29]. Here is it also worthwhile to mention that [16] first suggested transforming the
probability function into a volume integral in order to ensure that the integration domain does
not depend on the decision vector. Many of these papers provide gradient formulae for fairly
general classes of distributions, for instance, in the form of surface and/or volume integrals
associated with the feasible set K := {z ∈ R

m : g(x̄, z) ≤ 0}, where x̄ is the point at which
the derivative ∇ϕ is supposed to be computed. This generality comes with two drawbacks:
first, the mentioned surface/volume integrals may be difficult to deal with numerically, at
least for nonlinear g (see, e.g., [20, p. 207], [25, p. 3]). Second, a principal assumption made
in order to derive differentiability of ϕ at all is the compactness of the set K (e.g., [28, p.
200, Assumptions (A2)], [25, Assumption 2.2(i)], [19, p. 902]). Indeed, without compactness,
one cannot expect differentiability of ϕ even with the nicest data. In [30, Proposition 2.2]
an example of only a single inequality g(x, ξ) ≤ 0 (i.e., p = 1) is provided, where the basic
assumptions (1.2) are fulfilled and where the set K satisfies Slater’s constraint qualification,
yet ϕ fails to be differentiable. On the other hand, compactness of K is a quite restrictive
assumption in probabilistic programming, and one would be interested in identifying situa-
tions where differentiability of ϕ holds true even in the unbounded case. There seems to be
a good chance to do so in case of Gaussian or Gaussian-like (e.g., Student or log-normally
distributed) random vectors.

Indeed, the compactness issue disappears in the case of mappings g which are linear in ξ,
when ξ has a multivariate Gaussian distribution. Extending a classical differentiability result
for the Gaussian distribution function (e.g., [20, p. 204]), corresponding gradient formulae
could be found for mappings g(x, ξ) = A(x)ξ ≤ b(x) in (1.1) with surjective A(x) [31] or
with possibly nonsurjective A(x) ≡ A under the linear independence constraint qualification
(LICQ) for the set K [12]. The important fact about all these gradient formulae is that they
provide a fully explicit reduction of partial derivatives of ϕ to values of Gaussian distribution
functions again. In this way, efficient tools for computing the latter, such as Genz’s code
[9], can be employed to calculate not only values of ϕ but also gradients ∇ϕ at the same
time. Moreover, using induction on the obtained formulae, explicit reductions to Gaussian
distribution functions are easily found for any higher order derivative of ϕ (see also [32]).
Finally, the precision for calculating ∇ϕ can be controlled by that for calculating Gaussian
distributions functions, for instance in Genz’s code [11, p. 662].
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(SUB-)GRADIENT FORMULAE FOR PROBABILITY FUNCTIONS 65

This methodology fails, however, when g is nonlinear in ξ. In such a case, while keeping
the Gaussian character of the random vector, one may resort to the so-called spheric-radial
decomposition of Gaussian distributions [4, 5, 9] (see section 2.1). Now, unlike the linear
situation, differentiability of ϕ can no longer be taken for granted (not even under a constraint
qualification and if g has just one component; see the counterexample mentioned above).
Gradient formulae based on spheric-radial decomposition can be found in [7] (without rigorous
proof) or in [24, 25], albeit under the restrictive compactness assumption on the set K. In
order to overcome this assumption, the work [30] identified an easy-to-check growth condition
on the partial derivatives of g guaranteeing differentiability of ϕ without compactness of K.
A corresponding result was derived for the setting of (1.2) with a single component of g
(i.e., p = 1) upon imposing Slater’s condition on K. When considering systems of random
inequalities rather than a single one (as is typical in most applications), Slater’s condition
is no longer sufficient to guarantee differentiability of ϕ even if K is compact and g a linear
mapping, as shown next.

Example 1.1. Let ξ have a one-dimensional standard Gaussian distribution, and define

g(x1, x2, x3, ξ) := (ξ − x1, ξ − x2,−ξ − x3).

Then, with Φ referring to the one-dimensional standard Gaussian distribution function, one
has that

ϕ(x1, x2) = max{min{Φ(x1),Φ(x2)} −Φ(x3), 0}.
Clearly ϕ fails to be differentiable at x̄ := (0, 0,−1), while K = [−1, 0] is compact and satisfies
Slater’s condition in the description via g.

This inherent nondifferentiability motivates us in the present paper not only to look for
conditions allowing us to generalize the differentiability result in [30] from a single inequality to
inequality systems, but even to take a more general, namely nonsmooth, analysis perspective
for viewing probability functions. We will show that the already mentioned growth condition
(but now imposed on each component of g) implies the local Lipschitz continuity of ϕ. This
motivates the computation of subdifferentials ∂ϕ in the sense of Clarke or Mordukhovich (see
section 2.3). For related work on the use of subdifferentials in settings similar to, but different
from, ours, we refer the reader to, for instance, [6, 33]. As a main result, we will derive in
section 3 an upper estimate for the Clarke subdifferential of ϕ under the assumption that g is
continuously differentiable and componentwise convex in ξ (no further assumption w.r.t. x).
This result allows us in section 4 to identify constraint qualifications—similar to those consid-
ered in a more general framework (but with compactness assumed for K) in [25, Assumption
2.2(iv)] and [14, Theorems 2.4 and 3.1]—ensuring the (continuous) differentiability of ϕ. The
obtained gradient formula is specialized then in section 5 to linear random inequality systems,
thus providing new representations in different disguise of the gradient formulae from [31, 12]
mentioned above, which were formulated in terms of Gaussian distribution functions. Finally,
in section 6 the paper addresses the issue of refining the nonsmooth formula toward the use of
the Mordukhovich rather than the bigger Clarke subdifferential. This will be possible in the
case of linear mappings g and thus improves the results on Clarke subdifferentials of singular
Gaussian distribution functions in [33].
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66 W. VAN ACKOOIJ AND R. HENRION

We note that the (sub-)differentiability results in this paper are not only of theoretical
but also of practical interest in that they provide easy-to-implement gradient formulae. This
relies on the fact that both values and partial derivatives of ϕ are represented as surface
integrals w.r.t. the uniform distribution on the unit sphere. In contrast, surface integrals in
the general derivative formulae mentioned above are typically taken over the boundary of the
set K, which may be difficult to compute. For the sphere, efficient sampling schemes are
reported, for instance, in [2, 5]. Those schemes can be employed in order to simultaneously
update approximations of ϕ and ∇ϕ with the same sample generated on the sphere. Finally,
we emphasize that the methodology described here for Gaussian distributions can be easily
adapted to Gaussian-like distributions (like Student, log-normal, etc.) by reducing them to
Gaussian ones after an appropriate transformation of the mapping g. We do not discuss this
issue here in detail because it is exactly the same methodology as was presented in the case
of a single inequality in [30].

Notation. Throughout this paper R will be a positive definite m×m correlation matrix
with associated matrix L resulting from the decomposition (e.g., Cholesky) R = LLT. For
a given set A ⊆ R

s and s ≥ 1, Co(A) will denote the convex hull of A, and the notation
R+A is to be interpreted as R+A := {ra : r ≥ 0, a ∈ A}. For a given finite subset J ⊆ N, #J
will denote its cardinal. Finally, for a k × p matrix B and vector b ∈ R

k, (B|b) denotes the
k × (p + 1) matrix resulting from B by appending b as the (p + 1)th column.

2. Preliminaries.

2.1. Spheric-radial decomposition of a Gaussian distribution. Let ξ be anm-dimensional
Gaussian random vector normally distributed according to ξ ∼ N (0, R) for some positive defi-
nite correlation matrix R. Then ξ = ηLζ, where R = LLT is some factorization (e.g., Cholesky
decomposition) of R, η has a Chi-distribution with m degrees of freedom, and ζ has a uniform
distribution on the Euclidean unit sphere

S
m−1 :=

{
z ∈ R

m

∣∣∣∣∣
m∑
i=1

z2i = 1

}

of Rm. As a consequence, for any Lebesgue measurable set M ⊆ R
m its probability may be

represented as

(2.1) P(ξ ∈ M) =

∫
v∈Sm−1

μη ({r ≥ 0 : rLv ∩M �= ∅}) dμζ(v),

where μη and μζ are the laws of η and ζ, respectively. The consideration of distributions
N (0, R) is no loss of generality, because this standardized form is well known to be achieved
under a linear transformation of a given general Gaussian random vector. Then, (2.1) keeps
holding true upon transforming the set M accordingly.

2.2. Probability function in spheric-radial form and preliminary results. Given the con-
straint mapping g in (1.1), we pass to the maximum function gm : Rn × R

m → R over its
components by defining

(2.2) gm(x, z) = max
j=1,...,p

gj(x, z).

D
ow

nl
oa

de
d 

01
/1

5/
17

 to
 6

2.
14

1.
17

7.
11

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

(SUB-)GRADIENT FORMULAE FOR PROBABILITY FUNCTIONS 67

Evidently, the probability function (1.1) can be written as ϕ(x) = P(gm(x, ξ) ≤ 0). By (2.1)
we have that

(2.3) ϕ (x) =

∫
v∈Sm−1

μη ({r ≥ 0 : gm(x, rLv) ≤ 0}) dμζ(v) =

∫
v∈Sm−1

e(x, v)dμζ (v),

where

(2.4) e(x, v) := μη ({r ≥ 0 : gm(x, rLv) ≤ 0}) ∀x ∈ R
n, ∀v ∈ S

m−1.

As a consequence of (1.2), gm is convex in the second argument. In [30], probability functions
of a single continuously differentiable inequality, convex in the Gaussian random vector ξ,
have been investigated. Because our inequality gm(x, ξ) ≤ 0 fails to be differentiable as a
maximum function, we cannot directly apply those results. Nonetheless, several of them are
useful for the generalization to our setting.

Throughout the paper we will consider arguments x for which gm(x, 0) < 0, i.e., for which
0 is a Slater point of the inequality system g(x, z) ≤ 0 in z. This is no severe restriction
because in the case that gm(x, 0) ≥ 0, the feasible set {z|g(x, z) ≤ 0} would be a subset of
some half-space containing zero by convexity of gm(x, ·). As a consequence of ξ having a
symmetric and centered distribution (see (1.2)), the probability of this half-space would be
0.5, implying that ϕ(x) ≤ 0.5. In many practical applications, however, values of probability
functions close to 1 are considered.

The assumption gm(x, 0) < 0, along with the convexity of gm(x, ·), implies that, for each
x ∈ R

n and each v ∈ S
m−1, (2.4) can be simplified as

e(x, v) = μη([0, r
∗]),

where r∗ = ∞ in the case that gm (x, rLv) < 0 for all r > 0 or r∗ is the unique solution of
gm (x, rLv) = 0 in r ≥ 0. Since this case distinction is essential when dealing with potentially
unbounded sets, we are led to the definition of the following set-valued mappings Fj , Ij , F, I :
R
n ⇒ S

m−1 for j = 1, . . . , p:

F (x) :=
{
v ∈ S

m−1|∃r > 0 : gm (x, rLv) = 0
}
,

I(x) :=
{
v ∈ S

m−1|∀r > 0 : gm (x, rLv) < 0
}
,

Fj(x) :=
{
v ∈ S

m−1|∃r > 0 : gj (x, rLv) = 0
}
,

Ij(x) :=
{
v ∈ S

m−1|∀r > 0 : gj (x, rLv) < 0
}
.

The following lemma collects some elementary properties needed later.

Lemma 2.1. Let x ∈ R
n be such that gm(x, 0) < 0. Then the following hold:

1. Fj(x) ∪ Ij(x) = F (x) ∪ I(x) = S
m−1 for all j = 1, . . . , p.

2. For j ∈ {1, . . . , p} and v ∈ Fj(x) let r > 0 be such that gj (x, rLv) = 0. Then,

〈∇zgj (x, rLv) , Lv〉 ≥ −gj (x, 0)

r
.

3. F (x) = ∪p
j=1Fj(x), I(x) = ∩p

j=1Ij(x).D
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68 W. VAN ACKOOIJ AND R. HENRION

4. e(x, v) = 1 if v ∈ I(x), and e(x, v) < 1 if v ∈ F (x).

Proof. Statements 1 and 3 are obvious, whereas 2 follows easily from the convexity of
g(x, ·) (see [30, Lemma 3.1]). As for 4, v ∈ I(x) entails that

{r ≥ 0 : g(x, rLv) ≤ 0} = R+

and hence, by (2.4), e(x, v) = μη (R+) = 1 because the support of the Chi-distribution is R+.
Otherwise, if v ∈ F (x), then again via point 1 and by the convexity of g(x, ·), we see that

{r ≥ 0 : g(x, rLv) ≤ 0} = [0, R]

for some R > 0, whence e(x, v) = μη ([0, R]) = 1 − μη([R,∞)). With the Chi-density being
strictly positive for all arguments, we conclude that μη ([R,∞)) > 0 such that e(x, v) < 1.

Lemma 2.2 (Lemma 3.2 in [30]). Let j = 1, . . . , p be arbitrary, and let (x, v) be such that
gj(x, 0) < 0 and v ∈ Fj(x). Then there exist neighborhoods Uj of x and Vj of v as well as a
continuously differentiable function ρx,vj : Uj × Vj → R+ with the following properties:

1. For all (x′, v′, r′) ∈ Uj × Vj × R+ the equivalence gj(x
′, r′Lv′) = 0 ⇔ r′ = ρx,vj (x′, v′)

holds true.
2. For all (x′, v′) ∈ Uj × Vj one has the gradient formula

∇xρ
x,v
j

(
x′, v′

)
= − 1〈∇zgj(x′, ρ

x,v
j (x′, v′)Lv′), Lv′

〉∇xgj(x
′, ρx,vj (x′, v′)Lv′).

Definition 2.3. Let h : Rn × R
m → R be a differentiable function. We say that h satisfies

the exponential growth condition at x if there exist constants C, δ0 and a neighborhood U(x)
such that

∥∥∇xh
(
x′, z

)∥∥ ≤ δ0e
‖z‖ ∀x′ ∈ U(x), ∀z : ‖z‖ ≥ C.

Lemma 2.4 (Lemmas 3.3 and 3.7 in [30]). Let j = 1, . . . , p be arbitrary, and let x ∈ R
n be

such that gj(x, 0) < 0. Moreover, let v ∈ Ij(x), and consider any sequence (xk, vk) → (x, v)
with vk ∈ Fj(xk). Then ρxk,vk

j (xk, vk) →k ∞. If, in addition, gj satisfies the exponential
growth condition at x, then also

χ
(
ρxk,vk
j (xk, vk)

)
∇xρ

xk,vk
j (xk, vk) →k 0.

Here, χ is the density of the Chi-distribution with m degrees of freedom, and ρxk,vk
j is the

resolving function defined in a neighborhood of (xk, vk) as in Lemma 2.2.

2.3. Clarke and Mordukhovich subdifferential. In this section, we recall the definitions
of some well-known subdifferentials of nonsmooth functions (see [3, 17]).

Definition 2.5. Let f : Rn → R be an arbitrary function, and fix any x̄ ∈ R
n. Then,

• the Fréchet subdifferential of f at x̄ is the set

∂̂f(x̄) =

{
x∗ ∈ R

n | lim inf
x→x̄

f(x)− f(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖ ≥ 0

}
;
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• the Mordukhovich or limiting subdifferential of f at x̄ is the set

∂Mf(x̄) =
{
x∗ ∈ R

n | ∃xn → x̄, x∗n → x∗ : f(xn) → f(x̄), x∗n ∈ ∂̂f(xn)
}
;

• if f is locally Lipschitz continuous around x̄, then the Clarke subdifferential of f at x̄
is the set

∂cf(x̄) = Co {x∗ ∈ R
n | ∃xn → x̄,∇f(xn) → x∗} .

Note that, thanks to Rademacher’s theorem, a locally Lipschitz continuous function is dif-
ferentiable almost everywhere, and hence its Clarke subdifferential is nonempty. Moreover, for
such functions, the Clarke subdifferential is always the closed convex hull of the Mordukhovich
subdifferential, the latter being a nonconvex set and, thus, strictly smaller than the former,
in general. The partial subdifferential of a function depending on two variables is defined as
the subdifferential of the partial function, similar to the definition of partial derivatives.

3. Clarke subdifferential of ϕ. The aim of this section is to provide an upper estimate
for the Clarke subdifferential of the probability function (1.1). The main result of this section
is formulated in Theorem 3.6. It will be based on interchanging subdifferentiation and inte-
gration in (2.3). This requires calculating the Clarke subdifferential of the function e in (2.4)
first. To start, we prove the following auxiliary result.

Lemma 3.1. Let x ∈ R
n be such that gm(x, 0) < 0, and let v ∈ F (x). Then, introducing

the index set Jx,v
F := {j ∈ {1, . . . , p}|v ∈ Fj(x)}, the functions ρx,vj from Lemma 2.2 are well

defined for j ∈ Jx,v
F on the neighborhood Ũ × Ṽ of (x, v), where, with Uj, Vj from Lemma 2.2,

Ũ :=
⋂

j∈JF
Uj, Ṽ :=

⋂
j∈JF

Vj .

Moreover, there exist neighborhoods U ⊆ Ũ of x and V ⊆ Ṽ of v with the following properties:
1. For all (x′, v′, r′) ∈ U × V × R+ the equivalence gm(x′, r′Lv′) = 0 ⇔ r′ = ρx,v(x′, v′)

holds true, where the resolving function ρx,v : Ũ × Ṽ → R+ is defined as

(3.1) ρx,v(x′, v′) := min
j∈Jx,v

F

ρx,vj (x′, v′) ∀ (x′, v′) ∈ Ũ × Ṽ .

2. For all (x′, v′) ∈ U × V , the partial Clarke subdifferential of ρx,v (w.r.t. x) is given by

(3.2) ∂c
xρ

x,v(x′, v′) = Co
{
∇xρ

x,v
j (x′, v′) : j ∈ J x,v(x′, v′)

}
,

where J x,v(x′, v′) := {j ∈ Jx,v
F |ρx,vj (x′, v′) = ρx,v(x′, v′)} is the active index set.

Proof. Our assumptions and Lemma 2.1.3 imply that gj(x, 0) < 0 for all j ∈ {1, . . . , p}
and Jx,v

F �= ∅. Hence, the set Ũ × Ṽ defined in the statement of this lemma is indeed a
neighborhood of (x, v), and Lemma 2.2.1 yields the equivalence

(3.3) gj(x
′, r′Lv′) = 0 ⇔ r′ = ρx,vj (x′, v′) ∀ (x′, v′, r′) ∈ Ũ × Ṽ × R+, ∀j ∈ Jx,v

F .

In particular, the min-function ρx,v in (3.1) is well defined and continuous on Ũ × Ṽ . We may
clearly shrink Ũ × Ṽ to a neighborhood U × V of (x, v) which is bounded and—by continuity
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of gm—satisfies that gm(x′, 0) < 0 for all x′ ∈ U . Boundedness of U × V and continuity of
ρx,v imply the existence of some R > 0 with

(3.4) ρx,v(x′, v′) ≤ R ∀ (x′, v′) ∈ U × V.

Moreover, since j ∈ (Jx,v
F

)c
entails v ∈ Ij(x) (by Lemma 2.1 parts 1 and 3), Lemma 2.4 allows

us to shrink U × V once more such that

(3.5) ρx
′,v′

j (x′, v′) ≥ R+ 1 ∀ (x′, v′) ∈ U × V : v′ ∈ Fj

(
x′
)
, ∀j ∈ (Jx,v

F

)c
.

Here, ρx
′,v′

j refers to the resolving function in Lemma 2.2 whose existence around (x′, v′) is
guaranteed by v′ ∈ Fj (x

′).
Now, in order to prove statement 1 of this lemma, let (x′, v′, r′) ∈ U × V × R+ be such

that gm(x′, r′Lv′) = 0. Assuming that r′ > ρx,v(x′, v′), there would exist some j ∈ Jx,v
F with

r′ > ρx,vj (x′, v′). From (3.3), we then derive the contradiction

0 = gj(x
′, ρx,vj (x′, v′)Lv′) ≤ gm(x′, ρx,vj (x′, v′)Lv′) < gm(x′, r′Lv′) = 0,

where the strict inequality follows from gm(x′, 0) < 0 and from the convexity of gm(x′, ·).
Hence, r′ ≤ ρx,v(x′, v′). If, in contrast, r′ < ρx,v(x′, v′), then with the same arguments as
before, we arrive at

(3.6) gj(x
′, ρx,vj (x′, v′)Lv′) = 0 = gm(x′, r′Lv′) < gm(x′, ρx,v(x′, v′)Lv′) ∀j ∈ Jx,v

F .

Hence, for any j ∈ Jx,v
F , we have the relations

gj(x
′, 0) ≤ gm(x′, 0) < 0, gj(x

′, ρx,vj (x′, v′)Lv′) = 0, ρx,v(x′, v′) ≤ ρx,vj (x′, v′).

Now, convexity of gj(x
′, ·) provides that gj(x

′, ρx,v(x′, v′)Lv′) ≤ gj(x
′, ρx,vj (x′, v′)Lv′). This

allows us to conclude from (3.6) that

gj(x
′, ρx,v(x′, v′)Lv′) < gm(x′, ρx,v(x′, v′)Lv′) ∀j ∈ Jx,v

F .

Consider now an arbitrary j ∈ (JF )
c. In the case of v′ ∈ Ij (x

′) one has that

(3.7) gj(x
′, ρx,v(x′, v′)Lv′) < 0 < gm(x′, ρx,v(x′, v′)Lv′),

with the first inequality following from the definition of Ij (x
′) and the second one following

from (3.6). In the opposite case, one has that v′ ∈ Fj (x
′) by Lemma 2.1.1. Then, exploiting

(3.4) and (3.5), we end up with ρx
′,v′

j (x′, v′) > ρx,v(x′, v′). Hence, with the same convexity
argument as before,

(3.8) 0 = gj(x
′, ρx

′,v′
j (x′, v′)Lv′) > gj(x

′, ρx,v(x′, v′)Lv′).

Combining this with (3.7), we have shown that

gj(x
′, ρx,v(x′, v′)Lv′) < gm(x′, ρx,v(x′, v′)Lv′) ∀j ∈ (Jx,v

F

)c
.
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Together with (3.6), this brings us to the contradiction

gj(x
′, ρx,v(x′, v′)Lv′) < gm(x′, ρx,v(x′, v′)Lv′) ∀j ∈ Jx,v

F ∪ (Jx,v
F

)c
= {1, . . . , p}

with the definition of gm. Summarizing, we have proven that r′ = ρx,v(x′, v′), which shows
the part “⇒” in the equivalence claimed in statement 1 of this lemma.

Conversely, assume that r′ = ρx,v(x′, v′) for some (x′, v′, r′) ∈ U × V × R+. Select any
j∗ ∈ Jx,v

F with ρx,v(x′, v′) = ρx,vj∗ (x′, v′). Then, by (3.3),

(3.9) gj∗(x
′, r′Lv′) = gj∗(x

′, ρx,vj∗ (x′, v′)Lv′) = 0.

On the other hand, if j ∈ Jx,v
F is arbitrary, then r′ = ρx,v(x′, v′) ≤ ρx,vj (x′, v′) and

0 = gj(x
′, ρx,vj (x′, v′)Lv′) ≥ gj(x

′, r′Lv′)

by gj(x
′, 0) < 0 and the convexity of gj(x

′, ·). Finally, for j ∈ (Jx,v
F

)c
one has that v ∈ Ij(x).

In the case where also v′ ∈ Ij(x
′), we have that gj(x

′, r′Lv′) < 0. In the opposite case of

v′ ∈ Fj(x
′), (3.4) and (3.5) yield that ρx

′,v′
j (x′, v′) > ρx,v(x′, v′). Then, by Lemma 2.2.1 and

applying the same convexity argument as before, we get

0 = gj(x
′, ρx

′,v′
j (x′, v′)Lv′) > gj(x

′, ρx,v(x′, v′)Lv′) = gj(x
′, r′Lv′).

Summarizing, we have shown that gj(x
′, r′Lv′) ≤ 0 for all j = 1, . . . , p, which, together with

(3.9), leads to the desired relation gm(x′, r′Lv′) = 0. This proves statement 1 of our lemma.
As for statement 2, we may apply [3, Proposition 2.3.12] to −ρx,v = maxj∈Jx,v

F
−ρx,vj in

order to derive the equality

∂c
x(−ρx,v(x′, v′)) = Co {−∇xρ

x,v
j (x′, v′) | j ∈ J x,v(x′, v′)}.

On the other hand, ∂c
x(−ρx,v(x′, v′)) = −∂c

xρ
x,v(x′, v′) by [3, Proposition 2.3.1], which allows

us to prove (3.2) since Co (−A) = −CoA for any set A.

If one dealt with a single component of g only (i.e., p = 1), then trivially the functions gm in
(2.2) and ρx,v in (3.1) would be continuously differentiable, and hence Lemma 3.1.1 would allow
us to invoke two results [30, Lemma 3.3 and Corollary 3.4] derived in this restricted setting.
Of course, for p > 1, gm and ρx,v are just locally Lipschitz continuous and, in particular,
continuous. Continuity is indeed immediate from the given max- and min-operations in (2.2)
and (3.1) applied to the (differentiable) components gj and ρx,vj , respectively. Since neither of
the two above-mentioned results exploits differentiability arguments and since only continuity
is needed there, we do not provide a proof of the following lemma, which is literally a copy of
the proofs of those results.

Lemma 3.2. Let x ∈ R
n be such that gm(x, 0) < 0. The following hold:

1. If v ∈ F (x), then there exist neighborhoods U of x and V of v such that e(x′, v′) =
Fη(ρ

x,v (x′, v′)) for all (x′, v′) ∈ U×V , where e and ρx,v are defined in (2.4) and (3.1),
respectively, and Fη is the distribution function of the Chi-distribution with m degrees
of freedom.
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2. If v ∈ I(x), then ρxk,vk (xk, vk) → ∞ for any sequence (xk, vk) → (x, v) with vk ∈
F (xk).

3. The function e is continuous at (x, v) for any v ∈ S
m−1.

Corollary 3.3. Let x ∈ R
n be such that gm(x, 0) < 0 and v ∈ F (x). Then there exists a

neighborhood U × V of (x, v) such that e is Lipschitz on U × V and

∂c
xe(x

′, v′) = Co
{
χ
(
ρx,v(x′, v′)

)∇xρ
x,v
j (x′, v′) : j ∈ J x,v(x′, v′)

}
∀(x′, v′) ∈ U × V.

Here χ is the density of the Chi-distribution with m degrees of freedom, and J x,v is as intro-
duced in Lemma 3.1.

Proof. From Lemma 3.2.1, we know that e = Fη ◦ ρx,v in a neighborhood U × V of (x, v).
We may assume this neighborhood small enough so that ρx,v is Lipschitz there as a minimum
of smooth functions, by (3.1). Since the mapping Fη is continuously differentiable with F ′

η = χ,
Clarke’s chain rule [3, Theorem 2.3.9(ii)] yields that

∂c
xe(x

′, v′) = χ
(
ρx,v(x′, v′)

)
∂c
xρ

x,v(x′, v′) ∀(x′, v′) ∈ U × V.

The assertion now follows from (3.2).

In the following we want to generalize Corollary 3.3 and to establish the local Lipschitz
continuity of the partial mapping e (·, v) around any x ∈ R

n with gm(x, 0) < 0 and any
v ∈ S

m−1 and to provide a formula for its Clarke subdifferential. To this aim, we need the
following auxiliary results.

Lemma 3.4. Let x ∈ R
n be such that gm(x, 0) < 0, and assume that all components gj of

g satisfy the exponential growth condition at x. Consider any sequence (xk, vk) → (x, v) for
some v ∈ I(x) such that vk ∈ F (xk). Then,

lim
k→∞

∂c
xe(xk, vk) = {0},

where the latter is to be understood as the Painlevé–Kuratowski limit.

Proof. By Corollary 3.3 it follows that any sk ∈ ∂c
xe(xk, vk) can be written as

sk = χ(ρxk,vk(xk, vk)) ·
∑

j∈J xk,vk (xk,vk)

λ
(k)
j ∇xρ

xk,vk
j (xk, vk),

where λ
(k)
j ≥ 0 for all j ∈ J xk,vk(xk, vk) and

∑
j∈J xk,vk (xk,vk)

λ
(k)
j = 1. Since, according to

Lemma 3.1.2, ρxk,vk(xk, vk) = ρxk,vk
j (xk, vk) for j ∈ J xk,vk(xk, vk), one may characterize sk

alternatively by

sk =
∑

j∈J xk,vk (xk,vk)

λ
(k)
j χ(ρxk,vk

j (xk, vk))∇xρ
xk,vk
j (xk, vk) =

p∑
j=1

μ
(k)
j ,
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where we have put

μ
(k)
j :=

{
λ
(k)
j χ(ρxk,vk

j (xk, vk))∇xρ
xk,vk
j (xk, vk) (j ∈ J xk,vk(xk, vk)),

0 (j ∈ {1, . . . , p}\J xk,vk(xk, vk)).

The assertion of our lemma will follow if we can show that μ
(k)
j →k 0 for all j ∈ {1, . . . , p}.

In order to do so, fix any j ∈ {1, . . . , p}. If there is only a finite number of indices k with

j ∈ J xk,vk(xk, vk), then μ
(k)
j = 0 for all k large enough, whence the claimed convergence holds

true. Otherwise, consider the subsequence kl consisting of all indices k with j ∈ J xk,vk(xk, vk).
Then, (xkl , vkl) →l (x, v) and vkl ∈ F (xkl) for all l. Moreover, our assumption v ∈ I(x) implies
that v ∈ Ij(x) by Lemma 2.1.3. Therefore, Lemma 2.4 allows us to conclude that

χ(ρ
xkl

,vkl
j (xkl , vkl))∇xρ

xkl
,vkl

j (xkl , vkl) →l 0,

whence μ
(kl)
j →l 0 due to λ

(kl)
j ∈ [0, 1]. Consequently, if ε > 0 is arbitrarily given, then there

exists some l′ such that

(3.10)
∥∥∥μ(kl)

j

∥∥∥ ≤ ε ∀l ≥ l′.

Set k′ := kl′ . Then, for any k ≥ k′ one either has that j ∈ J xk,vk(xk, vk), in which case k = kl
for some l ≥ l′ and hence (3.10) holds true, or j /∈ J xk,vk(xk, vk), in which case μ

(k)
j = 0. The

claimed convergence again follows, μ
(k)
j →k 0, i.e., ‖μ(k)

j ‖ ≤ ε for all k ≥ k′.

Corollary 3.5. Let x be such that gm(x, 0) < 0 and that gj satisfies the exponential growth
condition at x for all j = 1, . . . , p. Then, for any v ∈ S

m−1, the function e(·, v) is Lipschitz
continuous in a neighborhood of x, and its Clarke subdifferential is given by

∂c
xe(x, v) =

{
Co

{
− χ(ρx,v(x,v))

〈∇zgj(x,ρx,v(x,v)Lv),Lv〉∇xgj (x, ρ
x,v (x, v)Lv) j ∈ J x,v(x, v)

}
if v ∈ F (x),

{0} if v ∈ I(x).

Here χ is the density of the Chi-distribution with m degrees of freedom, ρx,v refers to the
resolving function, and J x,v(x, v) is the active index set (the latter two were introduced in
Lemma 3.1).

Proof. Fix arbitrary x and v as indicated above. If v ∈ F (x), then e(·, v) = Fη(ρ
x,v (·, v))

in a neighborhood of x by Lemma 3.2.1; hence e(·, v) is Lipschitz continuous on this neigh-
borhood, and the asserted formula for ∂c

xe(x, v) follows from Corollary 3.3 and Lemma 2.2.2.
Therefore, we may assume v ∈ I(x) now. We start by verifying local Lipschitz continuity of
e(·, v) around x. If this were not true, then there would exist sequences xk →k x and yk →k x
with

(3.11) |e(xk, v) − e(yk, v)| > k ‖xk − yk‖ ∀k ∈ N.

By Lemma 3.2.3, we may assume that all xk, yk are contained in a ball around x such that
e(·, v) is continuous in this ball. Moreover, we may assume that this ball is small enough to
guarantee that

(3.12) gm(x′, 0) < 0 ∀x′ ∈ [xk, yk] , ∀k ∈ N.
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We will show that for all k ∈ N there exist zk ∈ [xk, yk] and x∗k ∈ ∂c
xe (zk, v) such that

(3.13) v ∈ F (zk) and |e(xk, v)− e(yk, v)| ≤
(‖x∗k‖+ k−1

) ‖xk − yk‖ .
To show this claim, let us fix an arbitrary k now. If v ∈ I(xk) ∩ I(yk), then Lemma 2.1.4
leads to a contradiction with (3.11). Hence, without loss of generality, v ∈ F (xk). Define
xt := (1− t)xk + tyk for all t ∈ [0, 1] and

τ := sup
{
t ∈ [0, 1] |e(xt′ , v) < 1 ∀t′ ∈ [0, t]

}
.

Since e(x0, v) = e(xk, v) < 1 by Lemma 2.1.4, the continuity of e(·, v) on the line segment
[xk, yk] provides that τ ∈ (0, 1]. Moreover, we may find an α ∈ (0, τ) with

|e(xα, v) − e(xτ , v)| ≤ k−1 ‖xk − yk‖ .
Since α ∈ (0, τ), this implies that e(xt

′
, v) < 1 for all t′ ∈ [0, α], and Lemma 2.1.5 yields that

(3.14) v ∈ F (xt
′
) ∀t′ ∈ [0, α] .

Taking into account (3.14) and that, by (3.12), gm(xt
′
, 0) < 0 for all t′ ∈ [0, α], Corollary 3.3

yields that e(·, v) is locally Lipschitz continuous on an open neighborhood of the line segment
[x0, xα]. This allows us to invoke Lebourg’s mean value theorem [15, Theorem 1.7] in order
to derive the existence of some t∗ ∈ [0, α] and some x∗ ∈ ∂c

xe(x
t∗ , v) such that

∣∣e (x0, v)− e (xα, v)
∣∣ ≤ ‖x∗‖∥∥x0 − xα

∥∥ .
Therefore, recalling that xk = x0 and that xα ∈ [xk, yk], we arrive at

(3.15) |e (xk, v)− e (xτ , v)| ≤ ‖x∗‖ ‖xk − xα‖+ k−1 ‖xk − yk‖ ≤ (‖x∗‖+ k−1
) ‖xk − yk‖ .

Clearly, v ∈ F (xt
∗
) by (3.14). If τ = 1, then xτ = yk, and (3.13) follows upon putting zk := xt

∗

and x∗k := x∗. Otherwise, τ < 1, and then e (xτ , v) = 1 by continuity of e(·, v) on the line
segment [xk, yk]. We have to distinguish two cases. First, if v ∈ I(yk), then e (yk, v) = 1 by
Lemma 2.1.4, and so (3.13) follows from (3.15) and e (yk, v) = e (xτ , v) with the same zk, x

∗
k

as before. In the second case, v ∈ F (yk), so the roles of xk and yk can be interchanged in
deriving (3.15). Therefore, we may assume without loss of generality that e(yk, v) ≥ e(xk, v).
Then, with e being bounded from above by 1,

|e (xk, v)− e (xτ , v)| = 1− e (xk, v) ≥ e(yk, v) − e (xk, v) = |e(xk, v)− e(yk, v)| .
Now, (3.13) follows once more from (3.15) with the same zk, x

∗
k as before. Since k ∈ N was

chosen arbitrarily, we have altogether verified (3.13). Clearly, zk ∈ [xk, yk] implies zk →k x.
Since also v ∈ F (zk) and v ∈ I(x), Lemma 3.4 yields that ‖x∗k‖+ k−1 is a bounded sequence
contradicting (3.11). Summarizing, we have proven Lipschitz continuity of e(·, v) around x.

It remains to calculate the Clarke subdifferential of e(·, v). By [3, Theorem 2.5.1] we have
that

∂c
xe(x, v) = Co {x∗|∃xl → x : e(·, v) differentiable at xl and ∇xe(xl, v) →l x

∗}.
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Therefore, in order to prove the remaining assertion ∂c
xe(x, v) = 0 of our corollary, we have

to show that ∇xe(xl, v) →l 0 holds true for any sequence xl → x with e(·, v) differentiable at
all xl. Let us fix any such sequence and assume that the asserted convergence would not hold
true. Then,

(3.16) ‖∇xe(xlk , v)‖ ≥ ε ∀k

for some subsequence and some ε > 0. If v ∈ I(xlk) for some k, then e(·, v) reaches its
maximum possible value at xlk (see Lemma 2.1.4). Since e(·, v) is differentiable at xlk , the
contradiction ∇xe(xlk , v) = 0 follows with (3.16). Hence, v ∈ F (xlk) for all k, and so by
Lemma 3.4 we have that

{0} = lim
k→∞

∂c
xe(xlk , v).

On the other hand, ∇xe(xlk , v) ∈ ∂c
xe(xlk) by [3, Proposition 2.2.2], whence ∇xe(xlk , v) →k 0,

which is a contradiction with (3.16) again. Summarizing, we have shown that ∇xe(xl, v) → 0
along any sequence xl at which e(·, v) is differentiable. This finishes the proof.

Now, we are in a position to prove the main result of this paper. The set-valued integral
appearing in (3.17) has to be interpreted as explained in Remark 3.1 below.

Theorem 3.6. In addition to our basic assumptions (1.2), let the following conditions be
satisfied at some fixed x̄ ∈ R

n:
1. gm (x̄, 0) < 0.
2. gj satisfies the exponential growth condition at x̄ (Definition 2.3) for all j = 1, . . . , p.

Then, ϕ in (1.1) is locally Lipschitz continuous on a neighborhood U of x̄, and it holds that

∂cϕ (x) ⊆(3.17)∫
v∈F (x)

Co

{
− χ (ρ̂ (x, v))

〈∇zgj (x, ρ̂ (x, v)Lv) , Lv〉∇xgj (x, ρ̂ (x, v)Lv)

∣∣∣∣ j ∈ Ĵ (x, v)

}
dμζ(v)

for all x ∈ U . Here, ρ̂ (x, v) refers to the unique solution in r ≥ 0 of the equation gm(x, rLv) =
0 and

Ĵ (x, v) := {j ∈ {1, . . . , p}|gj(x, ρ̂ (x, v)Lv) = 0} (v ∈ F (x)).

Proof. Assumptions 1 and 2 continue to hold on an appropriate neighborhood of x̄. Hence,
there exists an open neighborhood Ũ of x̄ such that

(3.18) gm (x, 0) < 0, gj satisfy the exponential growth condition ∀j = 1, . . . , p, ∀x ∈ Ũ .

According to Lemma 3.2.3, e is continuous on Ũ × S
m−1. Consequently, for each x ∈ Ũ the

mapping v ∈ S
m−1 �→ e(x, v) is measurable. Next, we show that the function

α (x, v) := max {‖s‖ : s ∈ ∂c
xe(x, v)}D
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76 W. VAN ACKOOIJ AND R. HENRION

is upper semicontinuous on Ũ × S
m−1. In order to do so, fix an arbitrary (x, v) ∈ Ũ × S

m−1

and an arbitrary sequence (xk, vk) →k (x, v) with (xk, vk) ∈ Ũ × S
m−1 for all k. Assume first

that v ∈ F (x). By a continuity argument, there exists k0 such that

J x,v(xk, vk) ⊆ J x,v(x, v) ∀k ≥ k0

holds true for the index set mapping J x,v introduced in Lemma 3.1. Then, by Corollary 3.3,

α (xk, vk) = max
{
‖s‖ |s ∈ Co

{
χ (ρx,v(xk, vk))∇xρ

x,v
j (xk, vk) : j ∈ J x,v(xk, vk)

}}
≤ max

{
‖s‖ |s ∈ Co

{
χ (ρx,v(xk, vk))∇xρ

x,v
j (xk, vk) : j ∈ J x,v(x, v)

}}
→k max

{
‖s‖ |s ∈ Co

{
χ (ρx,v(x, v))∇xρ

x,v
j (x, v) : j ∈ J x,v(x, v)

}}
= α (x, v) .

Since the sequence (xk, vk) →k (x, v) was arbitrarily chosen, it follows that

lim sup
(x′,v′)→(x,v), (x′,v′)∈Ũ×Sm−1

α
(
x′, v′

) ≤ α (x, v) ,

which is the upper semicontinuity of α at (x, v). Now assume that v ∈ I(x), whence α (x, v) =
0. We claim that α (xk, vk) →k 0. If this was not the case, then α (xkl , vkl) ≥ ε for some
subsequence (xkl , vkl) →l (x, v) and some ε > 0. Assume that vkl ∈ I(xkl) for some l.
Since the assumptions of the theorem hold on a neighborhood of x, they may be assumed to
continue to hold at xkl . Then, ∂

c
xe(xkl , vkl) = {0} by Corollary 3.5, whence the contradiction

α (xkl , vkl) = 0. Therefore, vkl ∈ F (xkl) for all l and hence, by Lemma 3.4,

lim
l→∞

∂c
xe(xkl , vkl) = {0}.

This yields once more a contradiction α (xkl , vkl) →l 0 with α (xkl , vkl) ≥ ε. Consequently,
α (xk, vk) →k 0 as claimed, so that α is continuous at (x, v). Summarizing, we have shown
that α is upper semicontinuous on Ũ × S

m−1.
Let B (x̄; r) be a closed ball centered at x̄ and with radius r > 0 such that B (x̄; r) ⊆ Ũ . By

the Weierstrass theorem, the upper semicontinuous function α realizes its maximum on the
compact set B (x̄; r)× S

m−1; hence α is bounded on this set by some constant M > 0. Define
the open neighborhood U := intB (x̄; r), and choose arbitrary x, y ∈ U and v ∈ S

m−1. Observe
that e(·, v) is locally Lipschitz continuous on U ⊆ Ũ by Corollary 3.5 and as a consequence of
(3.18). Lebourg’s mean value theorem [15, Theorem 1.7] then implies the existence of some x̃
in the line segment [x, y] and of some s∗ ∈ ∂c

xe(x̃, v) such that

e(x, v) − e(y, v) = 〈s∗, x− y〉.
Since x̃ ∈ B (x̄; r), we conclude that ‖s∗‖ ≤ α(x̃, v) ≤ M . Summarizing, we have shown that

|e(x, v) − e(y, v)| ≤ M ‖x− y‖ ∀x, y ∈ U, ∀v ∈ S
m−1.

This property allows us to invoke Clarke’s theorem on the interchange of integral and sub-
differential [3, Theorem 2.7.2] in order first to conclude that ϕ is locally Lipschitz continuous
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on U and second to derive from (2.3) and from Corollary 3.5 the formula

∂cϕ (x) = ∂c

∫
v∈Sm−1

e(x, v)dμζ(v) ⊆
∫
v∈Sm−1

∂c
xe(x, v)dμζ (v) =

∫
v∈F (x)

∂c
xe(x, v)dμζ(v)

=

∫
v∈F (x)

Co

{
− χ (ρx,v (x, v))

〈∇zgj (x, ρx,v (x, v)Lv) , Lv〉∇xgj (x, ρ
x,v (x, v)Lv)

∣∣∣∣ j ∈ J x,v(x, v)

}
dμζ(v).

By Lemma 3.1.1, ρx,v (x, v) is the unique solution in r of the equation gm(x, rLv) = 0, and
hence ρ̂(x, v) = ρx,v (x, v) with ρ̂ as introduced in the statement of this theorem. It remains
to show that

J x,v(x, v) = Ĵ (x, v) ∀x ∈ U, ∀v ∈ F (x)

for Ĵ as introduced in the statement of this theorem. To this aim, fix arbitrary x ∈ U and
v ∈ F (x). Let also j ∈ J x,v(x, v) be arbitrarily given. By definition, ρx,vj (x, v) = ρx,v(x, v) =
ρ̂(x, v), whence

gj(x, ρ̂(x, v)Lv) = gj(x, ρ
x,v
j (x, v)Lv) = 0,

and so j ∈ Ĵ (x, v). Conversely, let j ∈ Ĵ (x, v) be arbitrary. Then, gj(x, ρ̂(x, v)Lv) = 0,
which entails that v ∈ Fj(x) and that j ∈ Jx,v

F with the latter set as introduced in Lemma
3.1. By Lemma 2.2.1, ρx,vj (x, v) is the unique solution in r ≥ 0 of the equation gj(x, rLv) = 0.
Consequently, by (3.1),

ρx,vj (x, v) = ρ̂(x, v) = ρx,v(x, v) = min
j′∈Jx,v

F

ρx,vj′ (x, v).

This shows that j ∈ J x,v(x, v) and finishes the proof of the theorem.

Remark 3.1. The integral in (3.17) is to be understood as the set of integrals over all
measurable selections (see, e.g., [23, Chapter 14]) of the set-valued integrand. More precisely,
(3.17) means that for any x∗ ∈ ∂cϕ(x) there exists a measurable function β such that for
μζ-almost every v ∈ F (x)

β(v) ∈ Co

{
− χ (ρ̂ (x, v))

〈∇zgj (x, ρ̂ (x, v)Lv) , Lv〉∇xgj (x, ρ̂ (x, v)Lv)

∣∣∣∣ j ∈ Ĵ (x, v)

}

and x∗ =
∫
v∈F (x) β(v)dμζ (v).

Remark 3.2. Let us end this section with a remark concerning the interest of disposing of
outer characterizations of the subdifferential. Frequently, in optimization problems, wherein
a constraint or objective function involving the mapping ϕ of the type (1.1) appears, first
order optimality conditions involve a condition of the type 0 ∈ ∂cϕ(x). Disposing of an outer-
estimate of the subdifferential, as in (3.17), then allows us to formulate a relaxed condition
which always admits a feasible solution whenever the original equation admitted one. This
is not true for an inner-characterization, which would lead to a more restrictive condition,
potentially not admitting any solution. Outer-approximations are also frequently used in
mathematical programs with equilibrium constraints (see, e.g., [27, Theorem 4.1] and the
subsequent discussion).
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78 W. VAN ACKOOIJ AND R. HENRION

4. Differentiability of ϕ and a gradient formula. Theorem 3.6 provides an immediate
characterization for the differentiability of the probability function ϕ, given next.

Theorem 4.1. In addition to the assumptions of Theorem 3.6 suppose that

(4.1) μζ({v ∈ F (x̄)|#Ĵ (x̄, v) ≥ 2}) = 0.

Then, ϕ is Fréchet differentiable at x̄ and
(4.2)

∇ϕ(x̄) = −
∫
v∈F (x̄),#Ĵ (x̄,v)=1

χ (ρ̂ (x̄, v))〈∇zgj(v) (x̄, ρ̂ (x̄, v)Lv) , Lv
〉∇xgj(v) (x̄, ρ̂ (x̄, v)Lv) dμζ(v),

where ρ̂ (x̄, v) is the unique solution in r ≥ 0 of the equation gm(x̄, rLv) = 0 and j(v) is the
unique index j ∈ {1, . . . , k} satisfying gj(x̄, ρ̂ (x̄, v)Lv) = 0. If (4.1) holds locally around x̄,
i.e., if there is a neighborhood U of x̄ such that

(4.3) μζ({v ∈ F (x)|#Ĵ (x, v) ≥ 2}) = 0 ∀x ∈ U,

then ϕ is continuously differentiable in U .

Proof. Under (4.1), the integrand in (3.17) (for x := x̄) is single-valued μζ-almost every-
where on F (x̄); hence the integral is single-valued. Since ∂cϕ(x̄) is nonempty by local Lipschitz
continuity of ϕ, on the one hand [3, Proposition 2.1.2], and is contained in the single-valued
integral by (3.17), on the other hand, it follows that ∂cϕ(x̄) coincides with the integral. In
particular, ∂cϕ(x̄) is single-valued, and hence ϕ is Fréchet differentiable [3, Proposition 2.2.4].
Moreover, ∂cϕ(x̄) = {∇ϕ(x̄)} and (4.2) follows from (3.17) upon observing that the integra-
tion domain can be reduced to those v ∈ F (x̄) for which Ĵ (x̄, v) is a singleton (by (4.1))
and recalling the definition of Ĵ (x̄, v). The second assertion of the theorem follows from [3,
corollary to Proposition 2.2.4].

Condition (4.3) may be difficult to verify in a concrete context, as it refers to the uniform
measure on the sphere of the radial projection of some set. In the following, we want to
identify an explicit constraint qualification for the inequality system g(x, z) ≤ 0 under which
ϕ is (continuously) differentiable. In order to do so, we need the following characterization of
the uniform measure over Sm−1 as a so-called cone measure (see also [18]).

Lemma 4.2. Let A ⊆ S
m−1 be a Borel measurable subset. Then, the uniform measure μζ

on S
m−1 can be represented as

(4.4) μζ(A) =
1

λ(B)
λ(cone(A) ∩ B),

where B is the closed unit ball, λ is the Lebesgue measure in R
m, and cone(A) is the cone

generated by the set A.

For any x ∈ R
n and z ∈ R

m we denote by

(4.5) I (x, z) := {j ∈ {1, . . . , p} |gj (x, z) = 0}
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the active index set of g at (x, z). We say that the inequality system g (x, z) ≤ 0 satisfies the
rank-2-constraint qualification (R2CQ) at x ∈ R

n if

(R2CQ) rank {∇zgj (x, z) ,∇zgi (x, z)} = 2 ∀i, j ∈ I (x, z), i �= j, ∀z ∈ R
m : g (x, z) ≤ 0.

Note that (R2CQ) is substantially weaker than the usual linear independence constraint qual-
ification (LICQ) common in nonlinear optimization and requiring the linear independence of
all gradients to active constraints.

Lemma 4.3. Let g be as in Theorem 3.6. Moreover, let x̄ ∈ R
n be given such that

1. gm (x̄, 0) < 0,
2. g satisfies (R2CQ) at x̄.

Then μζ (M
′) = 0 for M ′ :=

{
v ∈ S

m−1|∃r > 0 : g (x̄, rLv) ≤ 0, #I (x̄, rLv) ≥ 2
}
.

Proof. For i, j ∈ {1, . . . , k}, let

Mi,j :=
{
v ∈ S

m−1|∃r > 0 : g (x̄, rLv) ≤ 0, gi (x̄, rLv) = gj (x̄, rLv) = 0
}
.

Since the union

M ′ =
⋃

i,j∈{1,...,k},i<j

Mi,j

is finite, it is evidently sufficient to show that μζ (Mi,j) = 0 for any i, j ∈ {1, . . . , k} with i < j.
Without loss of generality, it is enough to verify that μζ (M1,2) = 0. Define

M∗
1,2 := {z ∈ R

m|g (x̄, z) ≤ 0, g1 (x̄, z) = g2 (x̄, z) = 0}
and observe that R+M1,2 = L−1

(
R+M

∗
1,2

)
. We note first that M1,2 is a Borel measurable

subset of Sm−1. Indeed, for any l ∈ N the set [0, l] · (M∗
1,2 ∩B (0, l)) is closed by the closedness

of M∗
1,2. Consequently

R+M
∗
1,2 =

⋃
l∈N

[0, l] · (M∗
1,2 ∩ B (0, l)

)

is Borel measurable in R
m and so is R+M1,2 = L−1

(
R+M

∗
1,2

)
. Since trivially M1,2 = R+M1,2∩

S
m−1, it follows that M1,2 is a Borel measurable subset of Sm−1. This allows us to apply

Lemma 4.3, in order to derive that

μζ (M1,2) =
λ (R+M1,2 ∩ B)

λ (B)
=

λ
(
L−1(R+M

∗
1,2) ∩ B

)
λ (B)

.

Hence, in order to prove the lemma, it will be sufficient to show that

(4.6) λ
(
L−1

(
R+M

∗
1,2

) ∩ B
)
= 0.

In order to do this, notice that rank {∇zgj (x, z)}j=1,2 = 2 for all z ∈ M∗
1,2 as a consequence

of assumption 2. One may define for each z ∈ M∗
1,2 an open neighborhood W (z) such that
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80 W. VAN ACKOOIJ AND R. HENRION

the rank condition above extends to the whole neighborhood. Then, W :=
⋃

z∈M∗ W (z) is an
open set containing M∗

1,2 such that

(4.7) rank {∇zgj (x, z)}j=1,2 = 2 ∀z ∈ W.

Defining M̂ := {z ∈ W |gj (x̄, z) = 0 (j = 1, 2)}, the respective definitions yield that M∗
1,2 ⊆

M̂ .
We show next that the set L−1

(
R+M̂

)\{0} is a differentiable manifold of dimension m−1.
Observe first that, by assumption 1, we have the following equivalence:

(4.8) w ∈ L−1
(
R+M̂

)
\{0} ⇔ ∃t > 0 : gj (x̄, tLw) = 0 (j = 1, 2) and tLw ∈ W.

Let t̄ > 0 and w̄ be arbitrarily chosen such that t̄Lw̄ ∈ W and gj (x̄, t̄Lw̄) = 0 for j = 1, 2. In
particular, w̄ ∈ Fj (x̄) for j = 1, 2. Define a mapping β by βj (w, t) := gj (x̄, tLw) for j = 1, 2.
Then,

(4.9) ∇β (w̄, t̄) = ∇zg (x̄, t̄Lw̄) (t̄L|Lw̄) =: (A|b) .

Thanks to (4.7), the matrix A is surjective; hence it contains a quadratic submatrix Ã of order
(2, 2) which is regular. Without loss of generality, we may assume that Ã consists of the first
two columns of A. On the other hand, we know from Lemma 2.1.2 that 〈∇zgj (x̄, t̄Lw̄) , Lw̄〉 >
0 for j = 1, 2. As a consequence, ∇tβ (w̄, t̄) = b �= 0 in (4.9). Therefore, we can exchange a
suitable column in the regular matrix Ã with the vector b without destroying its regularity.
Assume, without loss of generality, that the last column of Ã can be replaced by b such that
the resulting matrix A′ remains regular. Then, by the implicit function theorem, the equations
βj (w, t) = 0 (j = 1, 2) can be resolved in a neighborhood Uw̄ × Ut̄ of (w̄, t̄) as

w1 = ϕ̃1 (w2, . . . , wm) ,(4.10)

t = ϕ̃2 (w2, . . . , wm) ,(4.11)

with certain continuously differentiable functions ϕ̃j (j = 1, 2). Since t̄ > 0 and t̄Lw̄ ∈ W , we
may further assume Uw̄ × Ut̄ to be small enough such that

(4.12) tLw ∈ W, t > 0, ∀ (w, t) ∈ Uw̄ × Ut̄.

Now, g1 (x̄, t̄Lw̄) = 0 and (4.8) imply that w̄ �= 0 and ‖w̄‖−1 w̄ ∈ F1(x̄). Hence, Lemma
2.2 guarantees the existence of a neighborhood V of ‖w̄‖−1 w̄ and a continuously differentiable
function α : V → R+ such that for all (v, r) ∈ V × R+ the equivalence

(4.13) g1 (x̄, rLv) = 0 ⇔ r = α (v)

holds true. In particular, t̄ = ‖w̄‖−1 α
(‖w̄‖−1w̄

)
. This allows us to define a neighborhood

Ũ ⊆ Uw̄ of w̄ such that for all w ∈ Ũ one has that ‖w‖−1 w ∈ V and ‖w‖−1 α
( ‖w‖−1w

) ∈ Ut̄.
We claim that

(4.14) w ∈ Ũ ∩ L−1
([

R+M̂
]
\{0}

)
⇔ w ∈ Ũ and w1 = ϕ̃j (w2, . . . , wm) .
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Indeed, if w ∈ Ũ∩L−1
(
[R+M̂ ]\{0}), then by (4.8) there is some t > 0 such that gj (x̄, tLw) = 0

for all j = 1, . . . , l. Since ‖w‖−1 w ∈ V , we infer from (4.13) that t = ‖w‖−1 α
( ‖w‖−1w

) ∈ Ut̄.
Hence, (w, t) ∈ Uw̄ × Ut̄, and the direction “⇒” of our asserted equivalence follows from
(4.10). Conversely, let w ∈ Ũ satisfy (4.10). Then, with t defined by (4.11), one has that
gj (x̄, tLw) = 0 for all j = 1, 2. Taking into account (4.12), the direction “⇐” of our asserted
equivalence then follows from (4.8).

In conclusion, as w̄ ∈ L−1
(
[R+M̂ ]\{0}) was arbitrary, the equivalence (4.14) shows

that L−1
(
[R+M̂ ]\{0}) is a differentiable manifold of dimension m − 1 < m. As a conse-

quence, λ
(
L−1

(
[R+M̂ ]\{0})) = 0 (e.g., [10, Lemma 1.5]). Since M∗

1,2 ⊆ M̂ , we infer that

λ
(
L−1

([
R+M

∗
1,2

] \{0})) = λ
(
L−1

[
R+M

∗
1,2

] \{0}) = 0, whence λ
(
L−1

[
R+M

∗
1,2

] )
= 0, im-

plying (4.6) as desired. This completes the proof.

By combination of Lemma 4.3 and Theorem 4.1, we arrive at the main result of this
section.

Corollary 4.4. In addition to the assumptions of Theorem 3.6, suppose that (R2CQ) is
satisfied at x̄. Then ϕ is Fréchet differentiable at x̄, and the gradient formula (4.2) holds true.
If (R2CQ) is satisfied locally around x̄, then ϕ is continuously differentiable on an appropriate
neighborhood of x̄.

Remark 4.1. We note that neither (4.3) nor (R2CQ) is a new condition for ensuring dif-
ferentiability of probability functions. They can be found in [25, Assumption 2.2(iv)] in the
context of spheric-radial decomposition, and in [14, Theorem 3.1, Assumption(vi)] in a general
setting. However, in both references, compactness of the set {z|g(x̄, z) ≤ 0} is needed, which
we do not impose here.

5. Probability functions for linear random inequality systems. In this section, we are
going to apply the previously obtained results to probability functions for linear random
inequality systems:

(5.1) ϕ(x) := P (A(x)ξ ≤ b(x)) ;

i.e., in (1.1) we have g (x, ξ) = A(x)ξ − b(x) for matrix and vector functions A : R
n →

R
p×m, b : Rn → R

p. In this special case not only does the resulting gradient formula becomes
more explicit but, more importantly, several assumptions made before (exponential growth
condition, local validity of (R2CQ)) can be omitted. The subsequently derived gradient for-
mulae are fully explicit and “ready to use,” similar to those obtained in [31, 12, 20] for the
same probability function but in a different form. The different representations of the same
gradient may turn out to be advantageous depending on the concrete problem considered. In
the following, for a matrix P we denote by Pj its jth row and by Pj,i its entry in row j and
column i.

Theorem 5.1. In (5.1) let A, b be continuously differentiable, and let ξ ∼ N (0, R) for some
positive definite correlation matrix R admitting a decomposition R = LLT. Fix any x̄ ∈ R

n

such that bj(x̄) > 0 for all j ∈ {1, . . . , p}. Finally, assume that any two rows of the matrix
A(x̄) are linearly independent. Then, ϕ in (1.1) is continuously differentiable at x̄, and it
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holds that
(5.2)

∇ϕ(x̄) = −
∫
{v∈Sm−1|J∗(v)�=∅,#J∗∗(v)=1}

χ (ρ̂ (v))

Aj(v)(x̄)Lv

(
ρ̂ (v)

m∑
i=1

∇Aj(v),i(x̄)Liv −∇bj(v)(x̄)

)
dμζ(v),

where

J∗(v) : = {j ∈ {1, . . . , p} |Aj(x̄)Lv > 0},
ρ̂ (v) : = min

j∈J∗(v)
{bj(x̄)/(Aj(x̄)Lv)},

J∗∗(v) : = {j ∈ J∗(v)|ρ̂ (v) = bj(x̄)/(Aj(x̄)Lv},
and j(v) is the unique element of the index set J∗∗(v), i.e., j(v) is the unique index j ∈
{1, . . . , p} satisfying Aj(x̄)Lv > 0 and bj(x̄) = ρ̂ (v)Aj(x̄)Lv.

Proof. In order to prove the result, we want to apply Corollary 4.4. To do so, we have first
to check the assumptions of Theorem 3.6. The general assumptions of this theorem as well as
assumption 1 are clearly satisfied by the hypotheses we made. Concerning assumption 2 of
Theorem 3.6, we claim that the exponential growth condition (Definition 2.3) is satisfied for
all j = 1, . . . , p. Indeed, by A being continuously differentiable, there exists a neighborhood
U of x̄ and a constant K such that ‖∇Aj,i(x)‖ ≤ K for all x ∈ U and all i, j ∈ {1, . . . , p}.
Then, Definition 2.3 holds true because of

‖∇xgj (x, z)‖ =

∥∥∥∥∥
m∑
i=1

zi∇Aj,i(x)

∥∥∥∥∥ ≤ K ‖z‖1 ≤ Ke‖z‖1 ∀z ∈ R
m.

In order to verify the asserted continuous differentiability of ϕ via Corollary 4.4, it remains to
check that the constraint qualification (R2CQ) is satisfied on a neighborhood of x̄. Clearly,
our assumption on pairwise linear independence of the rows of A(x̄) implies that (R2CQ)
holds at x̄ itself. If it didn’t hold locally around x̄, then there would be sequences xk ∈ R

n,
zk ∈ R

m, λk ∈ R, and ik, jk ∈ {1, . . . , p} such that

xk → x̄, Aik(xk)zk = bik(xk), Ajk(xk)zk = bjk(xk), Aik(xk) = λkAjk(xk), ik �= jk.

By passing to a subsequence which we do not relabel, we may assume the existence of i, j ∈
{1, . . . , p} such that

Ai(xk)zk = bi(xk), Aj(xk)zk = bj(xk), Ai(xk) = λkAj(xk), i �= j.

We infer that λkbj(xk) = bi(xk) for all k. From bi(xk) → bi(x̄) > 0 and bj(xk) → bj(x̄) > 0
we conclude that

λk → λ :=
bi(x̄)

bj(x̄)
�= 0,

whence the contradiction Ai(x̄) = λAj(x̄) with our assumption on pairwise linear indepen-
dence of the rows of A(x̄). Consequently, we have shown that ϕ is continuously differentiable
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at x̄. It remains to prove that the general gradient formula (4.2) ensured by Corollary 4.4
reduces in the special case of (5.1) to the asserted formula (5.2). This follows easily upon
specifying the partial derivatives of g and the concrete shape of ρ̂ (v), and upon observing the
relations

F (x̄) =
{
v ∈ S

m−1|J∗(v) �= ∅} , Ĵ (x̄, v) = J∗∗(v).

Next, we specialize the previous result to linear inequality systems Az ≤ b(x) with constant
coefficient matrix. Without loss of generality, we may assume that b(x) = x because the
difference in the resulting gradient formulae consists just in a postmultiplication by the explicit
derivative Db according to the chain rule. Hence, consider now the probability function

(5.3) ϕ(x) := P (Aξ ≤ x) .

This specialization of (5.1) leads not only to a substantially simpler gradient formula but also
to a weakened constraint qualification, where only active rows of the matrix A come into play
now in order to guarantee continuous differentiability of ϕ.

Corollary 5.2. In (5.3) let ξ ∼ N (0, R) for some positive definite correlation matrix R
admitting a decomposition R = LLT. Fix any x̄ ∈ R

n such that x̄j > 0 for all j ∈ {1, . . . , p}.
Finally, assume that any two active rows of the matrix A are linearly independent:

(5.4) Az ≤ x̄, Aiz = x̄i, Ajz = x̄j, i �= j =⇒ rank {Ai, Aj} = 2.

Then, ϕ in (1.1) is continuously differentiable at x̄, and it holds that

(5.5)
∂ϕ

∂xj
(x̄) =

∫
{v∈Sm−1|AjLv>0,x̄j=ρ̂(v)AjLv}

χ (ρ̂ (v))

AjLv
dμζ(v) (j = 1, . . . , p) .

Proof. Clearly, the gradient formula (5.5) follows from (5.2) in the special setting of (5.3).
Evidently, (5.4) corresponds to the general constraint qualification (R2CQ). In order to derive
continuous differentiability of ϕ via Corollary (4.4), it is sufficient to verify that it automat-
ically holds locally around x̄. If this were not the case, we could repeat the argument from
the proof of Theorem 5.1 in order to derive the existence of sequences xk, zk, λk and of
indices i �= j such that xk → x̄, Ai = λkAj , and i, j ∈ I (xk, zk). As in that proof, it follows
that λk → λ := x̄i/x̄j > 0 and Ai = λAj . As a consequence of the Hausdorff continuity of
the set-valued mapping x �→ {z|Az ≤ x} (see [1, Theorem 3.4.1], [13, p. 121]), the relation
i ∈ I (xk, zk) implies the existence of some z̄ such that Az̄ ≤ x̄ and Aiz̄ = x̄i. Then, also
Ajz = λ−1x̄i = x̄j but rank {Ai, Aj} = 1, a contradiction with (5.4).

Finally, we consider a gradient formula for the distribution function

(5.6) Fξ(x) := P (ξ ≤ x)

associated with a Gaussian random vector.
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Corollary 5.3. Let ξ ∼ N (0, R) for some positive definite correlation matrix R admitting
a decomposition R = LLT. Fix any x̄ ∈ R

n such that x̄j > 0 for all j ∈ {1, . . . , p}. Then, ϕ
in (1.1) is continuously differentiable at x̄, and it holds that

∂ϕ

∂xj
(x̄) =

∫
{v∈Sm−1|Ljv>0,x̄j=ρ̂(v)Ljv}

χ (ρ̂ (v))

Ljv
dμζ(v) (j = 1, . . . , p) .

Proof. Equation (5.6) follows from (5.3) by setting A := I. Clearly, any two rows of I are
linearly independent. The gradient formula follows from AjLv = Ljv in this special case.

6. Mordukhovich subdifferential of probability functions for linear random inequality
systems. We reconsider the probability function ϕ in (5.3) under the assumptions of Corollary
5.2 except the constraint qualification (5.4). Without this constraint qualification, we cannot
hope for differentiability of ϕ (see Example 1.1). Nevertheless, it is still locally Lipschitzian
and admits an upper estimate for its Mordukhovich subdifferential which is more precise
than its Clarke subdifferential. This allows us to sharpen the upper estimate in the general
result (3.17) for this special class of problems. In order to prepare a corresponding result, we
introduce the following equivalence class within the index set {1, . . . , p} of rows of the matrix
A in (5.3):

i ∼ j ⇐⇒ ∃λ ∈ R : Ai = λAj , x̄i = λx̄j.

By the assumption x̄j > 0 for all j ∈ {1, . . . , p} made in Corollary 5.2, i ∼ j implies that
λ > 0 in the defining relation. Similarly, i � j implies that (5.4) is satisfied. Denote by p̃ ≤ p
the number of different equivalence classes [i]. Without loss of generality, we may assume that
the first p̃ rows of A belong to different equivalence classes. Then, it obviously holds for any
i = 1, . . . , p̃ that

(6.1) Ajz ≤ xj ∀j ∈ [i] ⇐⇒ Aiz ≤ hi(x) := min
j∈[i]

λ−1
j xj.

We denote by Ã the submatrix of the first p̃ rows of A.

Theorem 6.1. In (5.3) let ξ ∼ N (0, R) for some positive definite correlation matrix R
admitting a decomposition R = LLT. Fix any x̄ ∈ R

n such that x̄j > 0 for all j ∈ {1, . . . , p}.
Then, ϕ is locally Lipschitz continuous, and its Mordukhovich subdifferential can be estimated
from above by

∂Mϕ(x̄) ⊆
p̃∑

i=1

∫
{v∈Sm−1|ÃiLv>0,ȳi=ρ̂(v)ÃiLv}

χ (ρ̂ (v))

ÃiLv
dμζ(v)·

⋃{
λ−1
j ej |j ∈ [i] : λ−1

j x̄j = hi(x̄)
}
,

where

ρ̂ (v) := min
{
ȳj/(AjLv)|j ∈ {1, . . . , p̃} : ÃjLv > 0

}
.

Proof. We introduce the modified probability function ϕ̃(y) := P(Ãξ ≤ y) (for y ∈ R
p̃)

and observe that, thanks to (6.1), the original probability function ϕ in (5.3) can be written
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as the composition ϕ = ϕ̃ ◦ h with a Lipschitz continuous mapping h = (h1, . . . , hp̃). Since
the rows of Ã refer to rows belonging to different equivalence classes in A, they satisfy (5.4)
(see the remarks preceding the statement of this theorem). Furthermore, ȳ := h(x̄) satisfies
ȳi > 0 for i = 1, . . . , p̃. This allows us to derive from Corollary 5.2 that ϕ̃ is continuously
differentiable in a neighborhood of ȳ and that

∂ϕ̃

∂yi
(ȳ) =

∫
{v∈Sm−1|ÃiLv>0,ȳi=ρ̂(v)ÃiLv}

χ (ρ̂ (v))

ÃiLv
dμζ(v) (i = 1, . . . , p̃) ,

where ρ̂ (v) is defined in the statement of this theorem. The chain rule for the Mordukhovich
subdifferential [17, Theorem 1.110(ii)] now yields that

∂Mϕ(x̄) = ∂M 〈∇ϕ̃(h(x̄)), h〉 (x̄) = ∂M

(
p̃∑

i=1

∂ϕ̃

∂yi
(h(x̄)) · hi

)
(x̄)

⊆
p̃∑

i=1

∂M

(
∂ϕ̃

∂yi
(h(x̄)) · hi(x̄)

)
,

where the last inclusion follows from the sum rule in [17, Theorem 2.33(c)]. Next, we observe
that ∂ϕ̃

∂yi
(h(x̄)) ≥ 0 for all i = 1, . . . , p̃ because ϕ̃ is evidently nondecreasing w.r.t. the partial

order of Rp̃. This allows us by [17, p. 112] to continue the previous relation as

(6.2) ∂Mϕ(x̄) ⊆
p̃∑

i=1

∂ϕ̃

∂yi
(h(x̄)) · ∂Mhi(x̄).

Given the definition of components hi in (6.1), we conclude from [17, Theorem 1.113] that

∂Mhi(x̄) ⊆
⋃{

λ−1
j ej |j ∈ [i] : λ−1

j x̄j = hi(x̄)
}

(i = 1, . . . , p̃) ,

where ej refers to the jth canonical unit vector in R
n. (Actually, as the components hi are

minima over linear functions, it is easy to show that even equality holds in the previous
relation; we cannot benefit from this improvement, however, because (6.2) already involves
an inclusion anyway.)

7. Conclusions and perspectives. In this paper we have investigated differentiability of
probability functions acting on nonlinear systems of inequalities. The underlying random
vectors have been assumed to be multivariate Gaussian or Gaussian-like. The underlying
system of inequalities need not define a compact set, and under mild conditions an outer-
approximation of the Clarke subdifferential of the probability function is obtained. In the
case that this system of inequalities is linear with constant coefficient matrix, we also obtain
an upper estimate of the smaller Mordukhovich subdifferential. The presented formulae for
the subdifferentials and/or gradients are explicit in the nominal entry data and can therefore
be readily implemented by a practitioner familiar with Monte Carlo sampling. We are keen
to investigate extensions of these results by relaxing the convexity assumption of the system
in the argument represented by the random vector.
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Optim. 9, SIAM and MPS, Philadelphia, 2009, pp. 87–153.

[7] O. Ditlevsen and H. O. Madsen, Structural Reliability Methods, Wiley, New York, 1996.
[8] J. Garnier, A. Omrane, and Y. Rouchdy, Asymptotic formulas for the derivatives of probability

functions and their Monte Carlo estimations, European J. Oper. Res., 198 (2009), pp. 848–858,
https://doi.org/10.1016/j.ejor.2008.09.026.

[9] A. Genz and F. Bretz, Computation of Multivariate Normal and t Probabilities, Lecture Notes in
Statistics 195, Springer, Dordrecht, The Netherlands, 2009.

[10] M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities, Grad. Texts Math. 14,
Springer-Verlag, New York, 1973.

[11] R. Henrion, Gradient estimates for Gaussian distribution functions: Application to probabilistically
constrained optimization problems, Numer. Algebra Control Optim., 2 (2012), pp. 655–668, https://
doi.org/10.3934/naco.2012.2.655.
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