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Abstract With a common background and motivation, the main contributions of
this paper are developed in two different directions. Firstly, we are concerned with
functions, which are the maximum of a finite amount of continuously differentiable
functions of n real variables, paying special attention to the case of polyhedral
functions. For these max-functions, we obtain some results about outer limits of sub-
differentials, which are applied to derive an upper bound for the calmness modulus of
nonlinear systems. When confined to the convex case, in addition, a lower bound on
this modulus is also obtained. Secondly, by means of a Karush–Kuhn–Tucker index
set approach, we are also able to provide a point-based formula for the calmness mod-
ulus of the argmin mapping of linear programming problems, without any uniqueness
assumption on the optimal set. This formula still provides a lower bound in linear
semi-infinite programming. Illustrative examples are given.
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1 Introduction

The present paper, was initially motivated by the problem of computing the calmness
modulus of linear programs having optimal sets which are not a singleton. In relation to
this problem, the immediate antecedents are gathered in [1–3], where the assumption
of the uniqueness of nominal optimal solution is essential. To this respect, we advance
that an exact formula for the aimed modulus is obtained in Sect. 4 and that it is given
in terms of the calmness moduli of certain sublevel multifunctions, which are nothing
else but feasible set mappings.

In the context of finite linear systems, the computation of the calmness modulus
for feasible set mappings is dealt in [4], where an operative expression (exclusively in
terms of the nominal data) for this modulus is provided. With respect to this subject,
the present work presents some extensions to the setting of C1-systems, where the
constraints are described by continuously differentiable (sometimes convex) functions.

According to Theorem 2.1 below, the key ingredient in the computation (or esti-
mation) of the calmness modulus for a C1-system at some feasible point is the outer
limit of subdifferentials, by approaching this point from outside the feasible set, of
a certain max-function associated with the system. Besides this original motivation
and its application to calmness moduli, the problem of analyzing this outer limit is
of independent interest, and it is tackled in the present paper in two stages: firstly, in
the particular case of polyhedral functions and, in a second step, in the more general
context of continuously differentiable functions. The reader is addressed to [1, The-
orem 3.1] for a direct antecedent to this problem, when confined to the convex case
(not necessarily differentiable).

The results about outer limits of subdifferentials obtained in the current work are
applied to derive an upper bound on the calmness modulus of the feasible set mapping
associated with a parameterized C1-system, under right-hand-side (RHS) perturba-
tions. If, additionally, functions defining the constraints are convex, thenwe also derive
a lower bound on the aimed calmnessmodulus. These results are inspired by the known
exact formula for linear systems, which is recalled in Theorem 2.2 for completeness
purposes. In this case of finite linear systems, it is well known that the feasible set
mapping is always calm at any point of its (polyhedral) graph as a consequence of a
classical result by Robinson [5].

The paper also deals with the calmness of the optimal set mapping (also called
argmin mapping), S, in the framework of linear problems with canonical perturba-
tions, i.e., where perturbations fall on the objective function coefficient vector and
on the RHS of the constraints. The same result by Robinson ensures that mapping
S is always calm at any point of its graph, since the Karush–Kuhn–Tucker (KKT)
conditions allow us to express the graph of S as a finite union of polyhedral sets. This
is no longer the case in the framework of perturbations of all data. In relation to this
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last framework, [2, Theorem 4.1] establishes a characterization for the calmness of
the corresponding argmin mapping (by combining two results from the seminal paper
[6]) and provides an operative upper bound for the corresponding calmness modulus,
assuming the uniqueness of nominal optimal solution.

Comprehensive studies on calmness and other variational properties for generic
multifunctions can be traced out from themonographs [7–10]; see also [11–14] in rela-
tion to the calmness of constraint systems in the context of RHS perturbations; where
calmness translates into the existence of a local error bound for the corresponding
supremum function (see [15–17]). Other subdifferential approaches to calmness/local
error bounds can be found in [18,19].

The structure of the paper is as follows: Sect. 2 provides the necessary notation,
definitions and preliminary results. Section 3 gathers the announced results on outer
limits of subdifferentials of max-functions under different assumptions. It is divided
into three subsections. The first one deals with the particular case of a polyhedral
function, where an exact formula is provided, while the second is focused on the
nonlinear case. The third subsection provides the application to the estimation of the
calmness modulus for the feasible set mapping in the context of C1-systemsmentioned
above, paying attention to the particular case of convex C1-systems. In Sect. 4, by
means of a KKT index set approach, we provide an operative expression for the
calmness modulus of S at a given nominal parameter in the case when the nominal
optimal set does not necessarily confine itself to a singleton. Moreover, we prove
that this expression still remains as a lower bound in the semi-infinite continuous
case, when the index set T is assumed to be a compact Hausdorff space and all the
constraints’ coefficients are continuous functions (with respect to the index) on T . The
reader is addressed to [20, Chapter 10] and [21] for details about stability in this semi-
infinite setting. Illustrative examples are provided in order to show that, in this general
case (without uniqueness of nominal optimal solution), the referred expression may
be strictly smaller than the upper bound given in [3, Theorem 7]. Section 5 offers some
perspectives for future research and specifies some open problems to this respect. We
finish the paper with a section of conclusions (Sect. 6).

2 Preliminaries

In this section, we introduce some notation, definitions and preliminary results which
are needed later on.Given A ⊆ R

k , we denote by convA and coneA the convex hull and
the conical convex hull of A, respectively. It is assumed that coneA always contains the
zero vector 0k , in particular cone(∅) = {0k}. If A is a subset of any topological space,
intA, clA and bdA stand, respectively, for the (topological) interior, the closure and
the boundary of A. If ‖·‖ is any norm in R

k , its corresponding dual norm is denoted
by ‖·‖∗, i.e., ‖u‖∗ = max‖x‖≤1

∣
∣u′x

∣
∣.

In the next paragraphs, we recall some definitions related to a generic mapping
M : Y ⇒ X between metric spaces (with distances denoted indistinctly by d). M is
said to be calm at (y, x) ∈ gphM (the graph of M) iff there exist a constant κ ≥ 0
and neighborhoods U of x and V of y such that
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d (x,M(y)) ≤ κd (y, y) (1)

whenever x ∈ M(y) ∩ U and y ∈ V ; where, as usual, d (x,�) is defined as
inf {d (x, z) : z ∈ �} for � ⊆ R

n , and d (x,∅) := +∞.
It is well known that the calmness of M at (y, x) is equivalent to the metric sub-

regularity of the inverse multifunction M−1 at (x, y) (see, for instance, [7, Theorem
3H.3 and Exercise 3H.4]), which reads as follows: there exist a constant κ ≥ 0 and a
(possibly smaller) neighborhood U of x such that

d (x,M(y)) ≤ κd
(

y,M−1(x)
)

, for all x ∈ U. (2)

The infimum of those κ ≥ 0 for which (1)—or (2)—holds (for some associated
neighborhoods) is called the calmness modulus of M at (y, x) and is denoted by
clmM (y, x). The case clmM (y, x) = +∞ corresponds to the one in which M is
not calm at (y, x).

2.1 Preliminaries on the Feasible Set Mapping

We consider the parametrized C1-system

σ(b) := { fi (x) ≤ bi , for all i = 1, . . . ,m} , (3)

and the associated feasible set mapping F : R
m ⇒ R

n , given by

F(b) := {

x ∈ R
n : fi (x) ≤ bi , for all i = 1, . . . ,m

}

, (4)

where fi ∈ C1 (Rn) and bi ∈ R, i = 1, . . . ,m. In this setting, b ≡ (bi )i=1,...,m is the
parameter to be perturbed. The space of variables of the system, Rn , is equipped with
an arbitrary norm, while our parameter space, R

m , is endowed with the supremum
norm ‖b‖∞ := maxi=1,...,m |bi |, b ∈ R

m .
Associated with system (3), for a given nominal parameter b, we consider the

max-function

g := max
1,...,m

gi , where gi (x) = fi (x) − bi , i = 1, . . . ,m. (5)

Throughout the paper, we appeal to the set of active indices at x ∈ F(b), denoted by
Tb(x) and defined as

Tb(x) := {i ∈ {1, . . . ,m} : fi (x) = bi } .

If Tb(x) = ∅, x is a Slater point ofσ(b), and in this case, one trivially has clmF(b, x) =
0. So, along the paper we assume that our nominal solution x ∈ F (b) satisfies
Tb (x) = ∅, or, equivalently,

g (x) = 0.
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The following theorem constitutes our starting point in the estimation of
clmF(b, x). Statement (i) in this theorem comes from [16, Propositions 1, 11 and
5(ii)], whereas (ii) follows directly from [17, Theorem 1]. In it, we have taken into
account the well-known relationship between clmF(b, x) and the error bound mod-
ulus of g at x , specifically

clmF(b, x) = [Er g(x)]−1 , (6)

and the easily verifiable fact that

lim inf
x→x, g(x)>0

d∗ (0n, ∂g(x)) = d∗

(

0n, lim sup
x→x, g(x)>0

∂g(x)

)

, (7)

where d∗ stands for the distance in R
n associated with ‖·‖∗ and ∂g represents the

Clarke subdifferential of g.

Theorem 2.1 Let
(

b, x
) ∈ gphF such that g (x) = 0. Then:

(i) We have

clmF(b, x) ≤
[

d∗

(

0n, lim sup
x→x, g(x)>0

∂g(x)

)]−1

; (8)

(ii) If, additionally, functions fi in (5), i = 1, . . . ,m, are convex, then

clmF(b, x) =
[

d∗

(

0n, lim sup
x→x, g(x)>0

∂g(x)

)]−1

. (9)

Remark 2.1 In relation to the previous theorem, let us comment that:

(i) With respect statement (i), [16, Propositions 1, 11 and 5(ii)] refers to the Fréchet
subdifferential ∂̂ . In principle, from that results in [16] we deduce

Er g(x̄) ≥ lim inf
x→x̄,g(x)>0

d∗
(

0n, ∂̂g(x)
)

.

However, in our case we may replace ∂̂ by the Clarke subdifferential, ∂ , as con-
sequence of the Clarke regularity of g (see the beginning of Sect. 3), and then,
taking also (6) and (7) into account, we obtain inequality (8).

(ii) Equality (9) is held under convexity, even without differentiability assumptions
on the fi ’s (see again [17, Theorem 1]), in which case, ∂g stands for the usual
subdifferential of convex analysis.

Our next step is to obtain estimations for clmF(b, x)whichonly involve the nominal
data. Having the previous theorem in mind, as advanced in Sect. 1, a way of tackling
this problem consists of analyzing the outer limit inside. The next theorem, dealing
with the case of linear systems, provides a motivation for some results of the following
section (Theorems 3.1 and 3.2).
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The following theorem deals with the linear case, in which the fi ’s are given by

fi (x) := a′
i x, i = 1, . . . ,m,

where ai ∈ R
n , 1, . . . ,m, are fixed. Here, any vector y ∈ R

n is regarded as a column
vector, and y′ denotes its transpose (hence, y′x stands for the usual inner product).
In order to emphasize the difference between the linear and nonlinear contexts, the
feasible set mapping in the particular case of linear systems will be denoted by Fa ;
specifically,

Fa(b) := {

x ∈ R
n : a′

i x ≤ bi , for all i = 1, . . . ,m
}

. (10)

From now on, Db (x) denotes the family of all subsets D ⊆ Tb (x) such that system

{

a′
i d = 1, i ∈ D,

a′
i d < 1, i ∈ Tb (x) \D

}

(11)

is consistent (in the variable d ∈ R
n). In other words, D ∈ Db (x) iff there exists a

hyperplane containing {ai , i ∈ D} such that

{0n} ∪ {ai , i ∈ Tb (x) \D}

lies on one of the open half-spaces determined by this hyperplane.

Theorem 2.2 [4, Theorem 4] Given
(

b, x
) ∈ gphF , we have

clmFa(b, x) =
(

min
D∈Db(x)

d∗ (0n, conv {ai , i ∈ D})
)−1

.

2.2 Preliminaries on the Argmin Mapping

We consider the optimal set mapping S : R
n × R

m ⇒ R
n in the linear framework

under canonical perturbations, which is given by

S (c, b) := argmin{c′x : x ∈ Fa(b)}. (12)

The parameter space, R
n × R

m , is endowed with the norm

‖(c, b)‖ := max {‖c‖∗ , ‖b‖∞} , (c, b) ∈ R
n × R

m . (13)

The next theorem comes directly from [3, Theorem 7] and constitutes our starting
point of Sect. 4. In it, associated with a given

(

(c, b), x
) ∈ gphS, we appeal to

the following family of index subsets associated with the KKT conditions (hereafter
referred to as KKT index sets):

Kc,b (x) = {

D ⊆ Tb (x) : |D| ≤ n and − c ∈ cone {ai , i ∈ D}} ,
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where |D| stands for the cardinality of D and condition |D| ≤ n comes from
Carathéodory’s Theorem. For any D ∈ Kc,b (x), we consider the mapping LD :
R
m × R

D ⇒ R
n given by

LD (b, d) := {

x ∈ R
n : a′

i x ≤ bi , i = 1, . . . ,m; − a′
i x ≤ di , i ∈ D

}

. (14)

Observe that all preliminary results for the feasible set mappings Fa may be specified
forLD , which is nothing else but the feasible set mapping associated with an enlarged
system.

Theorem 2.3 [3, Theorem 7] Let
(

c, b
) ∈ R

n × R
m. Then

clmS(
(

c, b
)

, x) = clmSc
(

b, x
) ≤ max

D∈Kc,b(x)
clmLD

((

b,−bD
)

, x
)

, (15)

where bD stands for
(

bi
)

i∈D and Sc(b) := S (c, b) for b ∈ R
m.

Remark 2.2 Corollary 8 in [3] shows that (15) holds as an equality under the additional
assumption that S (c, b) = {x}.

3 Outer Limits of Subdifferentials and Calmness Modulus of
Differentiable Nonlinear Systems

The present section is divided into three subsections. The first one, inspired by The-
orem 2.2 (having also Theorem 2.1 in mind), establishes an exact expression for the
outer limit of subdifferentials of polyhedral functions. The second is focused on the
more general case of max-functions in a nonlinear differentiable framework. The third
applies some previous results to obtain estimations of the aimed clmF(b, x) for convex
and nonlinear systems.

We consider the max-function g : R
n → R

g(x) := max
i=1,...,m

gi (x),

where the gi ’s are continuously differentiable on R
n . As a consequence, g is a reg-

ular function in the sense of Clarke (see, for instance, [10, Examples 10.24(e) and
10.25(a)]), and we have

∂g(x) = conv{∇gi (x) : i ∈ I (x)}

(see [22, 2.3.12]), where

I (x) := {i = 1, . . . ,m : gi (x) = g(x)}.

Note that always I (x) = ∅. It is a known fact that for each x ∈ R
n , there exists εx > 0

such that
I (z) ⊆ I (x) whenever ‖z − x‖ < εx . (16)
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Finally, inspired by Db (x) (see (11)) we define the family D (x) formed by all
subsets of indices D ⊆ I (x) such that the system

{∇gi (x)′ d = 1, i ∈ D,

∇gi (x)′ d < 1, i ∈ I (x) \D
}

(17)

is consistent in the variable d ∈ R
n .

3.1 Outer Limits of Subdifferentials of Polyhedral Functions

This subsection deals with the particular case when the gi ’s are affine functions, i.e.,

gi (x) := a′
i x − bi , i = 1, . . . ,m,

where ai ∈ R
n and bi ∈ R are fixed. In this case, the corresponding max-function

g(x) := max
i=1,...,m

{a′
i x − bi }, (18)

is a polyhedral function, and its subdifferential (in the sense of Clarke, which in this
case coincides with the usual subdifferential of convex analysis) writes as

∂g(x) = conv {ai : i ∈ I (x)} . (19)

Theorem 3.1 Let g be defined in (18). We have

lim sup
x→x, g(x)>g(x)

∂g(x) =
⋃

D∈D(x)

conv {ai , i ∈ D} .

Proof First, let us prove the ‘⊇’ inclusion. Pick any D ∈ D (x) and consider d ∈ R
n

such that (17) fulfills. Then, for any α > 0 one has

gi (x + αd) = a′
i (x + αd) − bi = gi (x) + α = g(x) + α for i ∈ D

gi (x + αd) = a′
i (x + αd) − bi < gi (x) + α = g(x) + α for i ∈ I (x) \D

}

.

(20)
Suppose 0 < α ‖d‖ < εx , with εx being as in (16). Then, (20) ensures g (x + αd) =
g(x) + α and

∂g (x + αd) = conv {ai , i ∈ D} .

Therefore

conv {ai , i ∈ D} = lim sup
α→0+

∂g (x + αd) ⊆ lim sup
x→x, g(x)>g(x)

∂g(x).
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In order to prove the ‘⊆’ inclusion, take any u ∈ lim sup
x→x, g(x)>g(x)

∂g(x). Let us write

u = limk→∞ uk withuk ∈ ∂g (xk), g (xk) > g (x) (for all k ∈ N) and xk → x (without
loss of generality we assume ‖xk − x‖ < εx for all k). Then, the sequence (I (xk))k∈N
has a constant subsequence because I (xk) ⊆ {1, . . . ,m} for all k. Accordingly, let us
assume without loss of generality that

I (xk) = D ⊆ I (x) for all k ∈ N.

Since ∂g (xk) = conv {ai , i ∈ D} is a compact set (independent on k), we obtain

u ∈ conv {ai , i ∈ D} . (21)

Pick any particular k ∈ N and define

d := xk − x

g (xk) − g (x)
.

Then, we have

a′
i d = a′

i xk − a′
i x

g (xk) − g (x)
= gi (xk) − gi (x)

g (xk) − g (x)

{= 1 for all i ∈ D,

< 1 for all i ∈ I (x) \D.

Accordingly, D ∈ D (x), and the proof ends by appealing to (21). ��
Remark 3.1 Since (17) clearly implies that, for each D ∈ D (x), conv{ai , i ∈ D} is
contained in a supporting hyperplane to conv {ai , i ∈ I (x)}, it follows that

lim sup
x→x, g(x)>g(x)

∂g(x) =
⋃

D∈D(x)

conv {ai , i ∈ D}

⊆ bd conv {ai , i ∈ I (x)}) = bd∂g (x) .

The next example shows that the previous inclusion may be strict.

Example 3.1 (see [4, Example 4]) Consider the system (in R
2 endowed with the

Euclidean norm)

{x1 ≤ b1, x2 ≤ b2, x1 + x2 ≤ b3} ,

and the nominal data b = 03 and x = 02. The associated supremum function is given
by

g(x) = max {x1, x2, x1 + x2} ,

and accordingly

bd conv {ai , i ∈ I (x)} = conv {a1, a2} ∪ conv {a1, a3} ∪ conv {a2, a3} .
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However,

⋃

D∈D(x)

conv {ai , i ∈ D} = conv {a1, a3} ∪ conv {a2, a3} .

3.2 Extensions to the Nonlinear Differentiable Case

In the following theorem, associated with a fixed point x ∈ R
n , we appeal to the new

family of subsets of indices
DAI (x) ⊆ D (x) , (22)

formed by all D ∈ D (x) such that {∇gi (x) , i ∈ D} is affinely independent. We also
appeal to the family D0 (x) defined by replacing 1 with 0 in the definition of D (x),
see (17), with d being nonzero.

Theorem 3.2 Let g(x) := max
i=1,...,m

gi (x), with gi : R
n → R continuously differen-

tiable for all i , and let x ∈ R
n. We have:

(i)

⋃

D∈DAI (x) conv {∇gi (x) , i ∈ D} ⊆ lim sup
x→x, g(x)>g(x)

∂g(x)

⊆ ⋃

D∈D(x)∪D0(x) conv {∇gi (x) , i ∈ D} ⊆ bd ∂g (x) ;
(ii) lim sup

x→x, x =x
∂g(x) ⊆ bd∂g (x).

Moreover, the converse inclusion of (ii) also holds if, for all supporting hyperplane H
to ∂g(x̄), we have that {∇gi (x̄), i ∈ I (x̄)} ∩ H is affinely independent.

Proof (i) Take any D ∈ DAI (x). For the sake of simplicity, let us assume that D :=
{1, 2, . . . , i0} (i0 ≤ n+1 because of the definition ofDAI (x)) and consider the system
of equations

{hi (x) := gi+1(x) − g1(x) = 0, i = 1, . . . , i0 − 1} . (23)

Since D ∈ DAI (x), there exists d ∈ R
n such that

∇gi (x)
′ d = 1, i = 1, . . . , i0, (24)

which entails

∇hi (x)
′ d = 0, i = 1, . . . , i0 − 1.

Moreover, vectors ∇hi (x), i = 1, . . . , i0 − 1, are linearly independent and d = 0n
because of (24), which actually entails i0 ≤ n. If we write system (23) in the vectorial
form

h(x) = 0i0−1, (25)
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observe that x is a regular point of the surface S defined by (25). Moreover, if we
denote by ∇h (x) the matrix whose columns are ∇h1 (x) , . . . ,∇hi0−1 (x), we have

∇h (x)′ d = 0i0−1.

Then, there exists a differentiable curve α such that the arc

{α (t) , −a < t < a} ⊆ S, (a > 0) (26)

verifies

α(0) = x and
•
α(0) = d

(see, for example, [23, p. 325]), where we use a dot standing for derivatives (recall
that we are using the prime for transposition). Let us consider a sequence of scalars
0 < tk < a, k ∈ N such that tk → 0 and define

xk := α (tk) , for all k.

From (26), we have
g1 (xk) = · · · = gi0 (xk) , k ∈ N. (27)

Let j ∈ I (x) �D and consider the function

h j := g1 − g j .

Observe that

∇h j (α(0))′ •
α(0) = ∇h j (x)

′ d > 0,

which entails (by a standard argument of differential calculus)

h j (xk) = g1 (xk) − g j (xk) > 0

for k sufficiently large. By the previous inequality and taking (27) into account, recall
also (16), we have that

I (xk) = D, for k large enough, (28)

and then

∂g (xk) = conv {∇gi (xk) , i ∈ D} .

Moreover, for i ∈ D, we have that

gi (xk) > gi (x) , for k large enough,

123



936 J Optim Theory Appl (2016) 169:925–952

since ∇gi (x)′ d = 1 > 0. Then,

g (xk) > g (x) , for k large enough

[recall (28)]. Finally,

lim
k→∞ ∂g (xk) = lim

k→∞ conv {∇gi (xk) , i ∈ D} = conv {∇gi (x) , i ∈ D}

(with the limits being understood in the Painlevé–Kuratowski sense), yielding the
aimed inclusion

conv {∇gi (x) , i ∈ D} ⊆ lim sup
x→x, g(x)>g(x)

∂g(x).

Now let us prove the second inclusion of (i). Take u ∈ lim sup
x→x, g(x)>g(x)

∂g(x) written in

the form u = limk→∞ uk with uk ∈ ∂g (xk), g (xk) > 0, and xk → x as k → ∞.
Recall that, for each k ∈ N, ∂g (xk) = conv{∇gi (xk), i ∈ I (xk)}, and we can assume
without loss of generality that I (xk) = D (independent of k) for all k, with D ⊆ I (x).
Then, we prove that u ∈ conv {∇gi (x) , i ∈ D}. In fact, from

uk ∈ ∂g (xk) = conv {∇gi (xk) | i ∈ D}

it follows that uk = ∑

i∈D λki ∇gi (xk) for some sequence λk ∈ R
D+ satisfying

∑

i∈D λki = 1 for all k. By compactness of the standard simplex in R
D , we may

assume again without loss of generality that, upon passing to another subsequence
which we do not relabel, there exists some λ̄ ∈ R

D+ satisfying
∑

i∈D λ̄i = 1 such that
λk → λ̄. Consequently,

uk →
∑

i∈D
λ̄i∇gi (x̄) = u,

showing that
u ∈ conv {∇gi (x̄), i ∈ D} . (29)

Let us see now that D is contained in a certain member of the family D (x) ∪D0 (x).
It is not restrictive to assume that (for a suitable subsequence, without relabeling)
xk−x̄

‖xk−x̄‖ → z for a certain z ∈ R
n with ‖z‖ = 1. Then, for any i ∈ D and any k ∈ N

we have

0 <
g (xk) − g (x)

‖xk − x̄‖ = gi (xk) − gi (x̄)

‖xk − x̄‖ (30)

= ∇gi (x̄)
′
(

xk − x̄

‖xk − x̄‖
)

+ o (‖xk − x̄‖)
‖xk − x̄‖ → ∇gi (x̄)

′z =: α,
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where

o (‖xk − x̄‖)
‖xk − x̄‖ → 0.

Observe that α does not depend on i ∈ D. On the other hand, for any j ∈ I (x) \D
and any k ∈ N, we have

∇g j (x̄)
′
(

xk − x̄

‖xk − x̄‖
)

+ o (‖xk − x̄‖)
‖xk − x̄‖ = g j (xk) − g j (x̄)

‖xk − x̄‖ ≤ g (xk) − g (x)

‖xk − x̄‖ ,

and letting k → ∞ in both sides we have ∇g j (x̄)′z ≤ α. Let us consider first the case
α > 0. Then, defining

d := z/α = lim
k→∞ (xk − x̄) / (g (xk) − g (x)) ,

we immediately check that

D ⊆ {

i ∈ I (x) : ∇g j (x̄)
′d = 1

} ∈ D (x) .

In the case α = 0, we directly have D ⊆ {

i ∈ I (x) : ∇g j (x̄)′z = 0
} ∈ D0 (x).

The last inclusion of (i) comes straightforwardly from the fact that each
conv {∇gi (x) , i ∈ D} with D ∈ D (x) ∪ D0 (x) is contained in a supporting hyper-
plane to ∂g (x).

(ii) Let u ∈ lim sup
x→x̄,x =x̄

∂g(x) be arbitrary. By definition, there exists a sequence

(xk, uk) → (x̄, u) such that xk = x̄ and uk ∈ ∂g (xk). After passing to a subsequence
which we do not relabel, we may assume without loss of generality that there exists
an index set I ⊆ I (x̄) and a vector d = 0n such that

I (xk) = I ∀k and
xk − x̄

‖xk − x̄‖ → d.

Here, the first statement follows from the fact that I (xk) ⊆ I (x̄) for k large enough
and that there exist only finitely many subsets of I (x̄). From

uk ∈ ∂g (xk) = conv {∇gi (xk) | i ∈ I (xk)} = conv {∇gi (xk) | i ∈ I }

it follows again that
u ∈ conv {∇gi (x̄), i ∈ I } . (31)

Next, we prove the following relation involving the vector d introduced above:

∇gi (x̄)
′d ≥ ∇g j (x̄)

′d ∀i ∈ I ∀ j ∈ I (x̄). (32)

Indeed, if, reasoning by contradiction, (32) fails, then there exist i ∈ I and j ∈ I (x̄)
such that ∇gi (x̄)′d < ∇g j (x̄)′d. Observe that I ⊆ I (x̄) implies that gi (x̄) = g j (x̄).
As xk = x̄ , we get that
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gi (xk) − g j (xk)

‖xk − x̄‖ = gi (xk) − gi (x̄)

‖xk − x̄‖ − g j (xk) − g j (x̄)

‖xk − x̄‖
= (∇gi (x̄) − ∇g j (x̄))

′
(

xk − x̄

‖xk − x̄‖
)

+ o (‖xk − x̄‖)
‖xk − x̄‖ .

It follows that

gi (xk) − g j (xk)

‖xk − x̄‖ → ∇gi (x̄)
′d − ∇g j (x̄)

′d < 0.

Consequently, gi (xk) < g j (xk) for k large enough which entails the contradiction
i /∈ I (xk) = I . Now, (32) means that for all i ∈ I

∇gi (x̄) ∈ argmax
{

z′d | z ∈ {∇g j (x̄), j ∈ I (x̄)
}}

= argmax
{

z′d | z ∈ conv
{∇g j (x̄), j ∈ I (x̄)

}}

= argmax
{

z′d | z ∈ ∂g(x̄)
} =: A.

Now, since d = 0n , one has that A ⊆ bd ∂g(x̄). On the other hand, A is convex by
convexity of ∂g(x̄). Therefore, the proven relation ∇gi (x̄) ∈ A for all i ∈ I along
with (31) imply the desired relation

u ∈ conv {∇gi (x̄), i ∈ I } ⊆ A ⊆ bd ∂g(x̄).

The following paragraphs are devoted to establish the equality

lim sup
x→x, x =x

∂g(x) = bd∂g (x)

under the following condition: “for all supporting hyperplane H to ∂g(x̄), we have that
{∇gi (x̄), i ∈ I (x̄)} ∩ H is affinely independent”. So, we have to prove the remaining
inclusion “⊇”. To this aim, take any u ∈ bd ∂g(x̄) and let us show the existence of a
sequence (xk) ⊂ R

n converging to x , with xk = x for all k, such that

u ∈ lim
k→∞ ∂g (xk) .

Since u ∈ bd ∂g(x̄), there exists a supporting hyperplane H to ∂g(x̄) at u; so, we can
write H = {

z ∈ R
n : z′d = δ

}

, with 0n = d ∈ R
n , δ ∈ R,

u′d = δ and w′d ≤ δ, ∀w ∈ ∂g(x̄) = conv {∇gi (x̄), i ∈ I (x)} . (33)

Let I ⊆ I (x̄) be such that {∇gi (x̄), i ∈ I (x̄)}∩H = {∇gi (x̄), i ∈ I }; in other words,

∇gi (x)
′ d = δ for all i ∈ I, and ∇gi (x)

′ d < δ when i ∈ I (x) \I. (34)

Then, one easily checks that
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u ∈ conv {∇gi (x̄), i ∈ I }.

In fact, if we write

u =
∑

i∈I (x)
λi∇gi (x)

for some λ ∈ R
I (x)
+ with

∑

i∈I (x) λi = 1, we have

δ = u′d =
∑

i∈I
λi∇gi (x)

′ d +
∑

i∈I (x)\I
λi∇gi (x)

′ d,

which implies λi = 0 for all i ∈ I (x) \I , as consequence of (34). By the cur-
rent assumption, {∇gi (x̄), i ∈ I } is affinely independent and, by simplicity, we may
assume I = {1, . . . , i0} (i0 ≤ n since dim H = n − 1). Then, from

gi (x) = g1 (x) , and (∇gi (x̄) − ∇g1(x̄))
′ d = 0, for all i ∈ I,

by proceeding as in the proof of condition (i) above, we can establish the existence of
a differentiable curve α such that

gi (α (t)) − g1 (α (t)) = 0, whenever − a < t < a (a > 0),

and

α(0) = x,
•
α(0) = d.

Again, let us consider a sequence of scalars 0 < tk < a, k ∈ N, such that tk → 0 and
define

xk := α (tk) , for all k.

Since
•
α(0) = d = 0n , we may assume that xk = x for all k. Then, as in the proof of

condition (i), we have for k large enough

g1 (xk) = · · · = gi0 (xk) ,

g j (xk) < g1 (xk) , j ∈ I (x) \{1, . . . , i0}, (35)

which yields

I (xk) = I, and so ∂g (xk) = conv {∇gi (xk) , i ∈ I }.

Consequently,

u =
∑

i∈I
λi∇gi (x) = lim

k→∞
∑

i∈I
λi∇gi (xk) ∈ lim

k→∞ ∂g (xk) ,
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which finishes the proof. ��
Remark 3.2 Theorem 3.1 in [1] shows that condition (ii) in the previous theorem
also holds as equality in the case when function g is convex, without differentiability
assumptions, in which case, ∂g represents the usual subdifferential of convex analysis.

Remark 3.3 (i) Observe that under the linear independence constraint qualification
(LICQ), all inclusions in Theorem 3.2 become equalities. Specifically, if {∇gi (x) ;
i ∈ I (x)} is linearly independent (and hence affinely independent), then the system
{∇gi (x)′ d = 1; i ∈ I (x)} obviously has a solution; in other words,

I (x) ∈ DAI (x) .

Consequently, under LICQ,

⋃

D∈DAI (x)
conv {∇gi (x) , i ∈ D} = conv {∇gi (x) , i ∈ I (x)}

= bdconv {∇gi (x) , i ∈ I (x)} = bd∂g (x) .

(ii) On the other hand, the well-known Mangasarian–Fromovitz constraints qualifi-
cation (MFCQ) is not sufficient to guarantee equality in any of the inclusions
in Theorem 3.2. For instance, if we consider g(x) := max{ 12 (x1 + x2), x1 +
x2, x1, x1 − x2}, and take x = (0, 0), it is immediate that

{(1, 1) , (1,−1)} =
⋃

D∈DAI (x)

conv {∇gi (x) , i ∈ D}

� lim sup
x→x, g(x)>g(x)

∂g(x) = conv{(1, 1) , (1,−1)}

�

⋃

D∈D(x)∪D0(x)

conv {∇gi (x) , i ∈ D}

= conv{(1, 1) , (1,−1)} ∪ conv{(1, 1) , ( 12 ,
1
2 )}

� bd∂g (x) = bdconv{(1, 1) , (1,−1), ( 12 ,
1
2 )}.

3.3 Application to the Calmness Modulus of C1-Systems

As immediate consequence of Theorems 2.1 and 3.2, we obtain the following result
which provides an upper bound for the calmness modulus of C1-systems and, in addi-
tion, a lower bound in the case of C1-convex systems.

Corollary 3.1 Let us consider the C1-system introduced in (3). LetF be the associated
feasible set mapping, i.e.,

F(b) := {

x ∈ R
n : fi (x) ≤ bi , for all i = 1, . . . ,m

}

.

Consider a given
(

b, x
) ∈ gphF such that g (x) = 0, where g is the max-function (5),

i.e.,
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g(x) := max
i=1,...,m

{ fi (x) − bi }, x ∈ R
n .

Then:

(i) We have

clmF(b, x) ≤
(

min
D∈D(x)∪D0(x)

d∗ (0n, conv {∇ fi (x) , i ∈ D})
)−1

≤ (d∗ (0n, bd∂g (x)))−1 ;

(ii) If, additionally, the functions fi , i = 1, . . . ,m, are convex, then

(

min
D∈DAI (x)

d∗ (0n, conv {∇ fi (x) , i ∈ D})
)−1

≤ clmF(b, x).

Proof (i) The proof comes straightforwardly from Theorems 2.1(i) and 3.2(i). (ii) It
is a direct consequence of Theorems 2.1(ii) and 3.2(i). ��
Remark 3.4 (i) According to Remark 3.3(i) and Theorem 2.1(ii), for any C1 convex

system verifying LICQ at (b, x), all inequalities in the previous corollary become
equalities.

(ii) On the other hand, all inequalities of the previous corollary may be strict. Specifi-
cally, in the example given in Remark 3.3(ii), withR

2 endowed with the Euclidean
norm, one has

clmF (b, x) = 1,
(

min
D∈DAI (x)

d∗ (0n, conv {∇ fi (x) , i ∈ D})
)−1

= 1√
2
,

(

min
D∈D(x)∪D0(x)

d∗ (0n, conv {∇ fi (x) , i ∈ D})
)−1

= √
2,

(d∗ (0n, bd∂g (x)))−1 =
√
10

2
.

In the following example, inequalities in Corollary 3.1(i) are strict, whereas the
lower bound in Corollary 3.1(ii) is attained.

Example 3.2 Consider the system, in R
2 with the Euclidean norm,

σ(b) :=
⎧

⎨

⎩

g1(x) := 2x21 + x22 + 4x1 + 2x2 ≤ b1,
g2(x) := x21 + x22 − 4x1 ≤ b2,
g3(x) := − 1

2 x1 ≤ b3,

⎫

⎬

⎭

and take b = 03 and x = 02. Now, the associated max-function g : R
2 → R is given

by

g(x) = max{g1(x), g2(x), g3(x)}.
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In this case, we easily see that:

⋃

D∈DAI (x)

conv {∇gi (x) , i ∈ D} = conv {(−4, 0), (4, 2)} . (36)

Moreover, let us see that

lim sup
x→x, g(x)>0

∂g(x) = conv {(−4, 0), (4, 2)} .

Observe that g(x) > 0 implies g(x) = max{g1(x), g2(x)} > g3(x). In fact, one
can easily check that g2(x) ≤ g3(x) yields g3(x) ≤ 0 and, then, if simultaneously
g1(x), g2(x) ≤ g3(x), we have g(x) ≤ 0. As a consequence of that,

lim sup
x→x, g(x)>0

∂g(x) ⊆ lim sup
x→x, g(x)>g3(x)

∂g(x)

⊆ lim
x→x

conv {∇g1(x),∇g2(x)} = conv(−4, 0), (4, 2)} .

Then, by the first inclusion in Theorem 3.2(i) and (36),

clmF(b, x) = [d∗ (0n, conv {(−4, 0), (4, 2)})]−1 =
√
17

4
.

However,

⋃

D∈D(x)∪D0(x)

conv {∇gi (x) , i ∈ D}

= conv(−4, 0), (4, 2)} ∪ conv(−4, 0), (− 1
2 , 0)}

� bd∂g (x) = bd conv
{

(−4, 0), (4, 2),
(− 1

2 , 0
)}

,

and the reader can immediately check that both inequalities in Corollary 3.1(i) are
strict.

Remark 3.5 Let us remark that in the last two examples, ifwe approach x bydirectional
sequences, i.e., sequences of the type xk = x + tku with u = 02 and tk → 0, and

we represent this directional convergence with the symbol x
d→ x , we shall obtain

only the extreme points of the sets generated by arbitrary convergent sequences. More
specifically, in Example 3.2,

lim sup
x

d→x, g(x)>0

∂g(x) = {(−4, 0), (4, 2)} .

This observation corresponds to the statement in Theorem 6.3.6 in [24].

The following example illustrates a situation in which calmness fails, i.e.,
clmF(b, x) = +∞, and the lower bound in Corollary 3.1(ii) is finite.
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Example 3.3 Consider the system

σ(b) :=
{

x21 + x22 ≤ b1,
x1 + x2 ≤ b2,

}

and take b = 02 and x = 02.
In this case,

⋃

D∈DAI (x)

conv {∇gi (x) , i ∈ D} = {(1, 1)}.

However, one obtains from [1, Theorem 3.1] (observing that g(x) > 0 ⇔ x = x ; see
Remark 3.2)

lim sup
x→x, g(x)>0

∂g(x) = lim sup
x→x, x =x

∂g(x) = bd∂g(x) = conv {(0, 0), (1, 1)} ,

and then clmF(b, x) = +∞.

Remark 3.6 (i) If we modify g1 in the previous example by adding 1
2 (x1 + x2), i.e.,

g1(x) := x21 + x22 + 1

2
(x1 + x2),

then one still has DAI (x) = {{2}} and, by approaching 02 by points of the
circumference x21 + x22 = 1

2 (x1 + x2) different from 02 one checks

lim sup
x→x, g(x)>0

∂g(x) = bd∂g(x) = conv
{

( 12 ,
1
2 ), (1, 1)

}

,

and then clmF(b, x) = ∥
∥( 12 ,

1
2 )
∥
∥

−1
∗ .

(ii) Ifwe replace thismodified systemby its first-order approach at 02, i.e.,we consider
g1(x) = 1

2 (x1 + x2) by removing the second-order term, then clmF(b, x) =
‖(1, 1)‖−1∗ .

We finish this subsection paying attention to the particular casewhenF is isolatedly
calm at (b, x), i.e., when together with calmness we have the uniqueness assumption
F(b) = {x}. Firstly, we show that the specification of Theorem 3.2(i) to this case reads
in a simpler way, as far asD0 (x) can be removed of the statement. Secondly, it is well
known from variational analysis (see, for example, [7]) that if F is isolatedly calm at
(

b̄, x̄
)

, then its calmness modulus equals the outer norm of its graphical derivative,
DF; formally,

clmF(b̄, x̄) = sup
{‖w‖ |w ∈ DF(b̄, x̄)(u), ‖u‖ ≤ 1

}

. (37)

Recall that, by definition,

w ∈ DF(b̄, x̄)(u) ⇐⇒ (u, w) ∈ TgphF (b̄, x̄),

where TgphF refers to the contingent cone of the graph of F .
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Theorem 3.3 Let F be the feasible set mapping (4) and g the max-function (5).
Assume that F is isolatedly calm at (b, x). Then:

(i) lim sup
x→x, g(x)>g(x)

∂g(x) ⊆ ⋃

D∈D(x) conv {∇gi (x) , i ∈ D}
(ii) clmF(b̄, x̄) = sup {‖w‖ : ‖u‖∞ ≤ 1, 〈∇ fi (x̄), w〉 ≤ ui (i ∈ I (x̄))}.
Proof (i) The proof follows the same argument as in the second part of the proof of
Theorem 3.2(i), just observing that under the current isolated calmness assumption
the case α = 0 cannot occur. This fact allows us to remove D0 (x) in the statement of
that theorem. Specifically, keeping the notation of that proof, from (30) we can write

0 <
g (xk) − g (x)

‖xk − x̄‖ → α.

Then, we have α > 0 as consequence of

lim
k→∞

‖xk − x̄‖
g (xk) − g (x)

= lim
k→∞

d(xk,F(b̄, x̄))

g (xk) − g (x)
≤ clmF(b̄, x̄) < +∞.

(ii) Define the mapping H(b, x) := f (x) − b ≡ ( fi (x) − bi )1≤i≤m and observe
that gphF = H−1

(

R
m−
)

. Moreover, ∇H(b̄, x̄) = (−I |∇ f (x̄)′
)

is surjective. Then,
(see [10]),

TgphF (b̄, x̄) = [∇H(b̄, x̄)
]−1

TRm−(H(b̄, x̄)),

where the upper index ‘−1’ refers to the set-valued inverse. Finally, it is well known
that

TRm−(H(b̄, x̄)) = {y|yi ≤ 0; i ∈ I (x̄)} .

It follows from the structure of ∇H(b̄, x̄) that

(u, w) ∈ TgphF (b̄, x̄) ⇐⇒ −u + ∇ f (x̄)′w ∈ TRm−(H(b̄, x̄)).

In other words,

(u, w) ∈ TgphF (b̄, x̄) ⇐⇒ 〈∇ fi (x̄), w〉 ≤ ui (i ∈ I (x̄)) ,

which in combination with (37) yields the asserted formula. ��

4 Computing the Calmness Modulus of the Argmin Mapping for Linear
Programs

In this section, a suitable Karush–Kuhn–Tucker (KKT) index set approach will allow
us to derive the exact calmness modulus of S, defined in (12), at

((

c, b
)

, x
) ∈ gphS
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under non-uniqueness assumptions, i.e., without assuming S(c, b) = {x}. In our way
to prove this result, we have to extend the lower bound and sharpen the upper bound
given, respectively, in [3, Theorems 6 and 7] (see Sect. 2 for more details).

To start with, the next example shows that inequality in (15) may be strict when
S (c, b) is not a singleton (see Remark 2.2) and gives a hint to sharpen such an upper
bound. In Corollary 4.1, we will see that this sharpened upper bound is in fact the
exact calmness modulus of S.
Example 4.1 Consider the nominal problem (in R

2 endowed with the Euclidean
norm)

P
(

c, b
) : Min x1

s.t. −x1 ≤ 0, (i = 1),
−x2 ≤ 0, (i = 2),
−x1 − x2 ≤ 0, (i = 3).

Let x := 02. By appealing to Theorem 2.2, applied to mappings LD—which
are nothing else but feasible set mappings associated with enlarged systems—at
((

b,−bD
)

, x
) ∈ gphLD with D ∈ Kc,b (x), we obtain the following table:

D ∈ Kc,b (x) clmLD
((

b,−bD
)

, x
)

{1} , {1, 2} √
2

{1, 3} √
5

Now Theorem 2.3 ensures clmS(
(

c, b
)

, x) ≤ √
5.

An ad hoc geometrical argument could show that clmS(
(

c, b
)

, x) = √
2 in the

previous example. The underlying idea is that those D ∈ Kc,b (x) with some zero
KKT multiplier λi in an expression −c = ∑

i∈D λi ai are not relevant. In other words,
the key fact consists of confining ourselves to those KKT subsets which are minimal
with respect to the inclusion order, and consequently the associated multipliers are all
of them nonzero. Accordingly, we consider, associated with (

(

c, b
)

, x) ∈ gphS, the
family of minimal KKT subsets given by

Mc,b (x) =
{

D ∈ Kc,b (x) : D is minimal for the inclusion order
}

.

Observe that in the previous example one has Mc,b (x) = {{1}} .
Remark 4.1 In the special case c = 0n , it is easy to see (thanks to Theorem 2.3) that

clmS(
(

c, b
)

, x) = clmSc(b, x) = clmF(b, x),

and we already have an expression for the latter. So, in the sequel we could assume
c = 0n . Nevertheless, the case c = 0n is also included in our results if we use the
convention Mc,b (x) = {∅} whenever c = 0n , and L∅ := F .
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Theorem 4.1 Let
(

c, b
) ∈ R

n × R
m, and assume x ∈ S (c, b). Then

clmS(
(

c, b
)

, x) ≤ max
D∈Mc,b(x)

clmLD
((

b,−bD
)

, x
)

. (38)

Proof Under the current hypotheses, Theorem 2.3 establishes

clmS(
(

c, b
)

, x) = clmSc(b, x),

where Sc := S (c, ·) , i.e., Sc(b) = S (c, b) for each b ∈ R
m . Let us write

clmSc(b, x) = lim
r→∞

d
(

xr ,S (c, b))
∥
∥br − b

∥
∥∞

(39)

for some R
m � br → b (with br = b for all r ∈ N) and some Sc(br ) � xr → x .

According to the KKT conditions, take for each r a certain Dr ⊆ Tbr (xr ) with
|Dr | ≤ n (because of Carathéodory’s Theorem) such that

− c ∈ cone {ai , i ∈ Dr } . (40)

The finiteness of {1, . . . ,m} enables us assume for a suitable subsequence (denoted
as the whole sequence for simplicity) that Dr = D (independent of r ). Then, it is
clear that, for such a subsequence, in (40) we may assume that all KKT multipliers
are nonzero and that set D is minimal with this property. Moreover, D ⊆ Tbr (xr ) for
all r clearly implies D ⊆ Tb (x) by just taking limits in a′

i x
r = bri for each i ∈ D.

Accordingly, we can write

D ∈ Mc,b (x) .

Since, on the one hand, D ⊆ Tbr (xr ) clearly implies xr ∈ LD
(

br ,−brD
)

and, on the
other hand, LD

(

b,−bD
) ⊆ S (c, b) (i.e., every KKT point is optimal), (39) entails,

taking into account the obvious fact that

∥
∥
(

br , brD
)− (b,−bD

)∥
∥∞ = ∥

∥br − b
∥
∥∞

(the first one in R
m × R

D and the second in R
m),

clmSc(b, x) ≤ lim sup
r→∞

d
(

xr ,LD
(

b,−bD
))

∥
∥
(

br , brD
)− (b,−bD

)∥
∥∞

≤ clmLD
((

b,−bD
)

, x
)

.

��
Next, we are going to see that the right-hand side of (38) already stands as a lower

bound on clmSc(b, x) (and hence on clmS(
(

c, b
)

, x)) in the following semi-infinite
setting, which obviously includes the case when T is finite:
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• T is a compact Hausdorff space,
• The given function a ≡ (at )t∈T belongs to C (T, R

n),
• Parameter b ≡ (bt )t∈T belongs to C (T, R),
• The optimal set mapping S : R

n × C (T, R) ⇒ R
n is defined by

S(c, b) := argmin{c′x : a′
t x ≤ bt , t ∈ T },

which is a natural extension of (12). The rest of notation (sets Kc,b (x) and
Mc,b (x), and mappings Sc and LD) also remains unchanged, but adapted to
the new setting.

Hereafter, in this section, let us assume the previous framework. Theorem 6 in [3]
shows that the last term in (15), i.e., maxD∈Kc,b(x)

clmLD
((

b,−bD
)

, x
)

, is a lower

bound on clmSc(b, x) in this new setting when we also assume: (i) S(c, b) = {x},
(ii) the Slater constraint qualification at the nominal parameter b (i.e., the existence of
some x̂ ∈ R

n such that a′
t x̂ < bt for all t ∈ T ). In Theorem 4.2 below, we show that

the (possibly) sharper upper bound maxD∈Mc,b(x)
clmLD

((

b,−bD
)

, x
)

also stands
as a lower bound without assuming neither (i) nor (ii).

For any D ∈ Mc,b̄ (x), we consider the supremum function, fD : R
n → R given

by

fD(x) := sup
{〈at , x〉 − b̄t , t ∈ T ; − 〈at , x〉 + b̄t , t ∈ D

}

= sup
{〈at , x〉 − b̄t , t ∈ T \D; ∣∣〈at , x〉 − b̄t

∣
∣ , t ∈ D

}

,

Observe that

LD
(

b̄,−b̄D
)= [ fD = 0] ⊆ S (c̄, b̄) for all D ∈ Mc,b̄ (x) . (41)

Let us also observe that, as a direct consequence of Theorem 2.1,

clmLD
((

b̄,−b̄D
)

, x
) = lim sup

x→x
fD(x)>0

1

d∗ (0n, ∂ fD(x))
. (42)

Proposition 4.1 In our current semi-infinite setting, let
((

c̄, b̄
)

, x
) ∈ gphS. Then

LD
(

b,−bD
) = S (c̄, b̄) , for all D ∈ Mc,b̄ (x) .

Proof We only have to prove the inclusion “⊇” [recall (41)]. Reasoning by con-
tradiction, assume the existence of a certain D ∈ Mc,b̄ (x) and some x̂ ∈
S (c̄, b̄) \LD

(

b,−bD
)

. Observe that, since x̂ is feasible for P
(

c̄, b̄
)

, we have

a′
t (x − x̂) = bt − a′

t x̂ ≥ 0, for all t ∈ D, (43)

while condition x̂ /∈ LD

(

b,−bD
)

yields
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a′
t (x − x̂) = bt − a′

t x̂ > 0, for some t ∈ D. (44)

Moreover, D ∈ Mc,b̄ (x) entails the existence of a λt > 0, for each t ∈ D such that

−c =
∑

t∈D
λt at .

Then

−c′(x − x̂) =
∑

t∈D
λt a

′
t (x − x̂).

Observe that c′(x − x̂) = 0 (since x, x̂ ∈ S (c̄, b̄)), which, according to (43), yields

λt a
′
t (x − x̂) = 0, for all t ∈ D.

Then, applying (44) we attain the contradiction (with the minimality condition of D)

λt = 0, for some t ∈ D.

��
Theorem 4.2 In our current semi-infinite setting, let

((

c̄, b̄
)

, x
) ∈ gphS. Then

clmS ((c̄, b̄) , x) ≥ clmSc̄
(

b̄, x
) ≥ sup

D∈Mc,b̄(x)
clmLD

((

b̄,−b̄D
)

, x
)

.

Proof The first inequality comes directly from the definition of calmness modulus.
Now, we are going to prove the second inequality in the non-trivial case c̄ = 0n
(see Remark 4.1). Take any D ∈ Mc,b̄ (x) and let us see that clmSc̄

(

b̄, x
) ≥

clmLD

((

b̄,−b̄D
)

, x
)

. From (42), we can write

clmLD

((

b̄,−b̄D
)

, x
) = lim

r→+∞
1

‖ur‖∗
,

for a certain sequence {ur }r∈N verifying ur ∈ ∂ fD (xr ), for all r , where {xr }r∈N is
such that

lim
r→+∞ xr = x and fD

(

xr
)

> 0, for all r.

In particular, xr /∈ LD

(

b̄,−b̄D
)

, for all r , and then, applying Proposition 4.1,

xr /∈ Sc̄
(

b̄
)

, for all r.
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For each r , let x̃r ∈ Sc̄
(

b̄, x
)

a best approximation of xr in Sc̄
(

b̄
)

, i.e.,

∥
∥xr − x̃r

∥
∥ = d

(

xr ,Sc̄(b̄)
)

, for all r.

We have, for each r ,

∥
∥xr − x̃r

∥
∥
∥
∥ur

∥
∥∗ ≥ (ur )′(xr − x̃r ) ≥ fD

(

xr
)− fD

(

x̃r
) = fD

(

xr
)

,

where we have appealed again to the previous proposition to ensure that fD (̃xr ) = 0,
for all r . Consequently,

∥
∥xr − x̃r

∥
∥ ≥ fD (xr )

‖ur‖∗
, for all r. (45)

Now, following the same argument as is the last part of the proof of [3, Theorem 6]
(just by adapting the notation), we may construct a sequence {br } ⊂ C (T, R) such
that

xr ∈ Sc̄
(

br
)

and
∥
∥br − b

∥
∥∞ ≤

(

1 + 1

r

)

fD
(

xr
)

, for all r. (46)

Just for completeness, at this moment we write the definition of br . For each r ,

brt := (1 − ϕr (t)) a′
t x

r + ϕr (t)
(

bt + fD
(

xr
))

,

where ϕr (t) is a continuous function from T to [0, 1] such that

ϕr (t) =
{

0 if t ∈ D,

1 if a′
t x

r − bt ≤ − (1 + 1
r

)

fD (xr ) ,

whose existence is guaranteed by Urysohn’s lemma. Finally, taking (45) and (46) into
account, we obtain the aimed inequality

clmSc̄
(

b̄, x
) ≥ lim

r→∞
‖xr − x̃r‖
∥
∥br − b

∥
∥∞

≥ lim
r→∞

(

1 + 1

r

)−1
∥
∥ur

∥
∥

−1
∗

= clmLD

((

b̄,−b̄D
)

, x
)

.

��

Corollary 4.1 Assume that T is finite and let
((

c̄, b̄
)

, x
) ∈ gphS. Then

clmS ((c̄, b̄) , x) = clmSc̄
(

b̄, x
) = max

D∈Mc,b̄(x)
clmLD

((

b̄,−b̄D
)

, x
)

.
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5 Perspectives

Concerning possible perspectives for future research, we point out the fact that in
our analysis of outer subdifferentials and calmness moduli, we are looking for con-
ceptually tractable expressions (exact formulae or estimations), in the sense that they
only involve the nominal data (nominal point and nominal parameter). In this line,
there are at least three open problems to tackle: first, the possibility to sharpen some
of our estimations (subsets and supersets) for the outer limit of subdifferentials, with
the associated repercussions on the calmness modulus of the feasible set mapping;
second, the possibility to extend our analysis of the calmness modulus of the argmin
mapping to nonlinear problems; and third, the analysis of semi-infinite systems and
problems, starting with the linear case.

More specifically, in relation to the first problem (sharper estimations), it would be
of interest to explore the possibility of replacingDAI (x)withD (x) in the first term of
the chain of inclusions provided in Theorem 3.2(i). Of course the affine independence
assumption is essential in the current proof; so that the inclusion

⋃

D∈D(x)

conv {∇gi (x) , i ∈ D} ⊆ lim sup
x→x, g(x)>g(x)

∂g(x)

remains as an open problem.
In relation to the second problem (calmness modulus of the argmin mapping for

nonlinear problems), we would like to mention the gap which occurs when passing
from linear to nonlinear problems pointed out in [25, Section 3], where a charac-
terization of the calmness property of the argmin mapping becomes just a sufficient
condition when replacing a linear function (either in the objective function or in the
constraints) with a convex quadratic one.

Finally, in relation to the third problem (the semi-infinite setting), we point out that
linear semi-infinite systems naturally appear when we apply the standard linearization
technique (by means of the Fenchel–Legendre conjugate) to (finite or semi-infinite)
convex inequality systems. Equality in Theorem 4.2 for linear semi-infinite programs
remains as an open problem.

6 Conclusions

The main contributions of this work are developed in two different directions: the
analysis of certain outer limits of subdifferentials of max-functions under different
assumptions, and the computation of the calmness moduli for certain feasible and
optimal set mappings. We point out the fact that the two different kind of results have
a common starting point: the background about the calmness modulus of feasible set
mappings associated with linear inequality systems.

With respect to the outer limit of subdifferentials, we deal with two different situ-
ations depending on the way of approaching the nominal point: either through points
which are different from it or through points where the function under consideration
takes greater values than the nominal value. The first case was already dealt in [1] for a
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convex function (without differentiability assumptions), and the new results provided
in this paper constitute its (nonconvex) differentiable counterpart. The second type of
outer limits is the one which constitutes a key ingredient in the estimations of the calm-
ness modulus of feasible set mappings associated with right-hand-side perturbations
of a nominal system (recall Theorem 2.1) under differentiability/convexity assump-
tions. So, advances in the knowledge of this second outer limit yield advances in the
knowledge of the calmness modulus of the feasible set mapping. In relation to this
point, with the aim of developing practical implementations of this calmness modulus,
we point out the importance of obtaining formulae which only depend on the nominal
elements. As it is specifically shown in the paper, the polyhedral case, corresponding
to linear systems under right-hand-side perturbations, admits a particularly tractable
formulation.
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