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a b s t r a c t

The paper deals with joint probabilistic constraints defined by a Gaussian coefficient matrix. It is shown

how to explicitly reduce the computation of values and gradients of the underlying probability function

to that of Gaussian distribution functions. This allows us to employ existing efficient algorithms for

calculating this latter class of functions in order to solve probabilistically constrained optimization

problems of the indicated type. Results are illustrated by an example from energy production.

© 2011 Elsevier B.V. All rights reserved.

An important class of probabilistic programming problems is given
by

min{f (x) | P(Ξx ≤ a) ≥ p}, (1)

where f is an objective, x is a decision variable and Ξ is a random
coefficient matrix. The probabilistic constraint in this problem
expresses the wish to find a decision x which guarantees that
the random inequality system Ξx ≤ a is satisfied at least with
a probability p ∈ [0, 1]. Problems of this type have abundant
applications in engineering (e.g. blending problems) and finance
(e.g. portfolio problems). In this paper we want to show how to
deal with such probabilistic constraints under the assumption that
the elements of Ξ have a joint Gaussian (multivariate normal)
distribution. Observe first that the constraint Ξx ≤ a can be
equivalently written as T (x)ξ ≤ a, where ξ refers to the row-wise
vectorization of Ξ and T (x) is a matrix having row i

Ti(x) = (0T , . . . , 0T , xT︸︷︷︸
i

, 0T , . . . , 0T ).

The use of this equivalent form of the constraint has some
notational convenience and also allows us to slightly generalize the
model (as needed, for instance in the example presented below).
Therefore, we are led to consider probabilistic constraints of the
form ϕ(x) ≥ p, where

ϕ(x) := P(T (x)ξ ≤ α(x)) (2)
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for some s-dimensional Gaussian random vector ξ with expec-

tation μ and (positive definite) covariance matrix Σ (notation:

ξ ∼ N (μ, Σ)) and for some continuously differentiablemappings

T : R
n → R

m×s and α : R
n → R

m. Clearly, (2) provides a frame-

work including the probabilistic constraint in (1) as a special case.

When dealing with inequality constraints like ϕ(x) ≥ p in

algorithms of nonlinear optimization, it is necessary to have access

at least to values and gradients of ϕ. For simpler probabilistic con-

straints of the separated form P(ξ ≤ T (x)) ≥ pwith Gaussian ran-

dom vector ξ , successful numerical results are reported (e.g., [4])

which are based on an efficient computation of multivariate Gaus-

sian distribution functions using a code by Genz [1]. A key issue

here was the well-known possibility to reduce the computation of

gradients for Gaussian distribution functions to such distribution

functions again (see (9)), so that Genz’s could be employed to cal-

culating values and gradients of Gaussian distribution functions at

the same time.We shall see that, on amore involved level, it is also

possible to completely break down the computation of ϕ and ∇ϕ
in (2) to that of Gaussian distribution functions so that the same

algorithmic approach for nonlinear optimization can be applied

as in the case of the simpler probabilistic constraint. Our aim is

to derive formulae for ϕ and ∇ϕ which are completely in terms

of Gaussian distribution functions and of the problem data. Under

the problem data of (2) we understand the mappings T , α and

their gradients (to be provided) ∇T , ∇α as well as the distribution

parameters μ, Σ of the random vector ξ . Since a closed form

expression for ϕ and ∇ϕ in the desired explicit form is almost

impossible to represent, we shall recursively break down parts of

the corresponding formulae.
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First observe that, by a well-known formula for parameter
transformation of Gaussian distributions, our initial assumption
ξ ∼ N (μ, Σ) leads to

T (x)ξ ∼ N (μ(x), Σ(x)),

where

μ(x) := T (x)μ, Σ(x) := T (x)Σ[T (x)]T . (3)

Putting

D(x) := diag (Σ
−1/2

ii (x))i=1,...,m; R(x) := D(x)Σ(x)D(x), (4)

one gets that the normalized vector η(x) := D(x)[T (x)ξ − μ(x)]
is distributed according to η(x) ∼ N (0, R(x)). In particular, R(x)
is a correlation matrix by (4). Consequently, ϕ(x) = ΦR(x)(β(x)),
where

β(x) := D(x)(α(x) − μ(x)) (5)

and ΦR denotes the distribution function of a standard Gaussian
distribution with zero mean, unit variances and correlation matrix
R. In this way, the first task is achieved, namely the evaluation of
ϕ is reduced to that of a Gaussian distribution function applied
to a mapping β which via (3) and (4) can be explicitly led back
to the problem data. In order to do so for the gradient of ϕ as
well, we define the mapping γ (R, z) := ΦR(z). Note that γ will
be differentiable provided that R is positive definite which can
be ensured by requiring surjectivity of T (x) (see (3) and (4)).
Clearly, ϕ(x) = γ (R(x), β(x)) and deriving this expression at some
arbitrarily fixed x yields

∇ϕ(x) =
m∑
i=1

∂γ

∂zi
(R(x), β(x))∇βi(x)

+
∑

1≤i<j≤m

∂γ

∂Rij

(R(x), β(x))∇Rij(x). (6)

Here, the second sum runs over indices i < j only, because the
corresponding entries Rij(x) already determine the symmetric

correlation matrix R(x). Accordingly, the partial derivative
∂γ

∂Rij
is

meant to be with respect to symmetric variations of coefficients Rij

in the matrix R(x).
Let us focus now on the first term in this sum. By (5) and (4), we

have

∇βi(x) = (αi(x) − μi(x))∇Σ
−1/2

ii (x)

+ Σ
−1/2

ii (x)(∇αi(x) − ∇μi(x)). (7)

The values forμi(x) andΣ
−1/2

ii (x) are obtained from themodel data
via (3). Deriving these expressions, one gets

∇μi(x) =
s∑

j=1

μj∇Tij(x); ∇Σ
−1/2

ii (x) = −1

2
Σ

−3/2

ii (x)∇Σii(x).

As far as the evaluation of ∇Σ
−1/2

ii (x) is concerned, the expression

Σ
−3/2

ii (x) follows immediately from (3), whereas for the gradient
∇Σii(x)wemake a forward reference to (11) in order to develop (7)
explicitly in terms of α, ∇α, T , ∇T , μ, Σ . Next, we observe that

∂γ

∂zi
(R(x), β(x)) = ∂ΦR(x)

∂zi
(β(x)) (i = 1, . . . ,m). (8)

Consequently, one is left with the task of calculating the gradient
of a Gaussian distribution function (with correlation matrix fixed
as R(x)). Here, one may rely on the well-known formula (see [3],
p. 204)

∂ΦR

∂zi
(z) = h(zi)Φ̃

R̃i(z̃i). (9)

for an arbitrary correlation matrix R. In the context of (8), we

put R := R(x) and z := β(x) in (9). In this formula, h denotes

the density of the one-dimensional standard Gaussian distribution.

The argument z̃i ∈ R
m is obtained from z and from R by

z̃i =
⎛
⎝ z1 − r1,izi√

1 − r21,i

, . . . ,
zi−1 − ri−1,izi√

1 − r2i−1,i

,

zi+1 − ri+1,izi√
1 − r2i+1,i

, . . . ,
zm − rm,izi√

1 − r2m,i

⎞
⎠ , (10)

where the ri,j refer to the entries of R. Moreover, Φ̃ R̃i is the

distribution function of the (m−1)-dimensional standardGaussian

distributionwith correlationmatrix R̃i which itself is obtained from

R by deleting the ith row and column of thematrix R̂whose entries

are defined as

r̂j,k := rj,k − rj,irk,i√
1 − r2j,i

√
1 − r2k,i

(j, k = 1, . . . ,m).

Summarizing, we have made the first term in the sum (6) fully

explicit in terms of the model data. Turning to the second term,

observe that by (4)

Rij(x) = Σij(x)√
Σii(x)Σjj(x)

(i, j = 1, . . . ,m).

Therefore, for i, j = 1, . . . ,m,

∇Rij(x) = Σii(x)Σjj(x)∇Σij(x) − 1
2
Σij(x)[Σjj(x)∇Σii(x) + Σii(x)∇Σjj(x)]

(Σii(x)Σjj(x))3/2
.

We can develop ∇Rij(x) in terms of the model data upon noting
that by (3)

∇Σij(x) =
s∑

k,l=1

Σkl[Tjl(x)∇Tik(x) + Tik(x)∇Tjl(x)]

(i, j = 1, . . . ,m). (11)

It remains to analyze the expression
∂γ

∂Rij
(R(x), β(x)) in (6). By

definition,

∂γ

∂Rij

(R(x), β(x)) = ∂ΦR(x)

∂Rij

(β(x)) (12)

with the convention of symmetric variation mentioned above.
Hence, we have to know, how to calculate sensitivities of Gaussian
distribution functions with respect to correlation coefficients.
Here, we rely on Gupta’s formula ([2], eq. (53)):

∂ΦR

∂Rij

(z) =
∫ z1

−∞
· · ·

∫ zm

−∞
∂2g

∂zi∂zj
(ζ1, . . . , ζm)dζm · · · dζ1

= ∂2

∂zi∂zj

(∫ z1

−∞
· · ·

∫ zs

−∞
g(ζ1, . . . , ζm)dζm · · · dζ1

)

= ∂2ΦR

∂zi∂zj
(z) (1 ≤ i < j ≤ m).

To apply this formula in the context of (12), we have to set R :=
R(x) and z := β(x). In this formula, g is the density associated with
ΦR. The formula tells us, that the sensitivitieswith respect to corre-
lation coefficients can be obtained as second partial derivatives of
the Gaussian distribution function ΦR. As we already know how to
calculate first order partial derivatives of ΦR via (9) and this leads
back to the calculus of (different) Gaussian distribution functions
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Fig. 1. Illustration of results for an example (details see text).

again, we may apply the same formula a second time in order to
derive the desired second partial derivatives:

∂2ΦR

∂zi∂zj
(z) = h(zi)

∂Φ̃ R̃i

∂zj
(z̃i)

1√
1 − r2j,i

(1 ≤ i < j ≤ m).

Here, we used the corresponding inner derivatives of (10) with

respect to zj. Now, the partial derivatives ∂Φ̃ R̃i

∂zk
(z̃i) occurring in

the formula above can be calculated exactly in the same way as

described in (9) for the partial derivatives ∂ΦR

∂zi
(z) but this time

applied to the new correlation matrix R̃i and the new argument
z̃i. Hence, we have provided a fully explicit way to calculate the
gradient (6).

As an application we consider the following simple unit
commitment problem (for details of the model, we refer to [5]):
Given a time horizon of 12 months and stochastic electricity
demands in each of the 12 time periods, we are looking for a
minimal cost portfolio of 4 power generation units (nuclear, coal,
fuel, gas) such that the demands are met at a probability of at
least p = 0.9. Apart from the demands, also the availability of
power plants is assumed to be random. This will be described
by random availability coefficients (between zero and one) which
have to be multiplied with the committed production in order
to determine the actual production of a plant. Let us denote by
xi := (xi1, xi2, xi3, xi4) the production committed to units 1 to 4 in

month i. Similarly, denote by ξ̂i := (ξ̂i1, ξ̂i2, ξ̂i3, ξ̂i4) the availability
coefficients for units 1 to 4 in month i. Let the demand vector
be given by ξ̃ := (ξ̃1, . . . , ξ̃12). Then, demand satisfaction as a
probabilistic constraint at level p can bemodeled by the inequality

P(xTi ξ̂i ≥ ξ̃i (i = 1, . . . , 12)) ≥ p.

This constraint fits to the model ϕ(x) ≥ p and ϕ defined as in (2)
with the model data

T (x) :=
⎛
⎜⎝

−xT1 · · · 0 1 · · · 0

0
. . .

...
...

. . .
...

0 · · · −xT12 0 · · · 1

⎞
⎟⎠ ;

ξ :=
(

ξ̂

ξ̃

)
; α(x) := 0. (13)

Observe that T (x) is surjective for all x as required above for
differentiability reasons. Apart from the probabilistic constraint,
deterministic time-dependent upper levels are given for the
production of each unit. We collect these upper levels in a
vector x̄ obeying the same partition of components as x. Finally,
production costs cj (j = 1, . . . , 4) are assumed to depend just
on the considered unit but not on time. We aim at minimizing
the expected production costs, hence our optimization problem

writes as

min

4∑
j=1

cj

12∑
i=1

xijEξ̂ij subject to x ≤ x̄, P(T (x)ξ ≤ 0) ≥ p.

The random vector is supposed to have a joint Gaussian
distribution with parameters which we do not specify here.

Components of ξ̂ (availability coefficients for different units at
different times) are assumed to be uncorrelated, whereas the
following correlation pattern is considered for the components

of ξ̃ (demands at different times): for subsequent time steps,
correlation is 0.6, over two time steps it is 0.1 and over more than
two time steps it equals 0. The probability level is specified as
p = 0.9. The dimensions of the problem are 48 for the decision
and 60 for the random vector. The formulae for calculating
φ and ∇φ presented above are used to employ Genz’s code
inside numerical optimization. Results are presented in Fig. 1.
The first diagrams show the solutions for production profiles
of the 4 units (left top: nuclear, middle top: coal, left bottom:
fuel, middle bottom: gas). Black lines refer to the solutions
of our probabilistic constrained problem, whereas dashed lines
illustrate the corresponding solutions one would obtain upon
replacing the random vector by its expectation (which allows a
simple linear programming solution approach). Upper production
limits are plotted as dotted gray lines. While nuclear energy is
fully employed in both solutions, the other units run on their
maximum limits only for certain periods of time, where a certain
complementarity between coal and gas becomes evident. Since the
expected value solution does not take into account the random
nature of availability coefficients and demands, it can afford lower
production profiles leading to smaller costs than the probabilistic
solution (465.420 versus 539.338). On the other hand, there is a
tremendous difference in the robustness of the solutions obtained.
To illustrate this, 100 profiles for the overall random vector ξ were
simulated according to the chosen distribution parameters and
subjected to the optimal decisions obtained for the expected value
and the probabilistic solution. The right diagrams illustrate the
resulting differences between production and demand of energy
(which should be non-negative). While, in good accordance with
the chosen probability level of p = 0.9, there are only 10 out of 100
trajectories ever falling below zero during the whole time horizon
in case of the probabilistic solution (right, top), all trajectories
resulting from the expected value solution violate the required
offer-demand relation at least once in the considered period (right,
bottom).
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