Chapter 2
Calmness as a Constraint Qualification
for M-Stationarity Conditions in MPECs

René Henrion

Abstract Mathematical programs with equilibrium constraints (MPECs) represent
an important class of nonlinear optimization problems. Due to their constraint set
being defined as the solution of some parameter-dependent generalized equation, the
application of standard constraint qualifications (CQs) from nonlinear programming
to MPEC:s is not straightforward. Rather than turning MPECs into mathematical pro-
grams with complementarity constraints (MPCCs) and applying specially adapted
CQs, we want to present here a variational-analytic approach to dual stationarity
conditions for MPECs on the basis of Lipschitzian properties of the perturbed gen-
eralized equation. The focus will be on the so-called calmness property, ensuring an
appropriate calculus rule for the Mordukhovich normal cone.

2.1 Introduction

This chapter is devoted to a rather self-contained introduction to the calmness concept
of multifunctions and its application as a constraint qualification to Mathematical
Programs with Equilibrium Constraints, MPECs for short. Here, under a constraint
qualification we understand a property ensuring the derivation of dual necessary opti-
mality conditions. We shall follow a variational-analytic approach to this problem.
For this purpose, we consider an MPEC as a special case of an abstract optimization
problem

min{f x)|[Gx) e C} f:R"—>R; G:R" - R’; C CR’, 2.1)

where the objective f and the constraint mapping G are continuous and the set C
is supposed to be closed. An obvious instance of (2.1) is a conventional nonlinear
optimization problem with equality and inequality constraints, which results upon
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putting C := {0}, x R’f with p; + p, = p and f, G being continuously differen-
tiable.

An MPEC is an optimization problem whose constraint is given by a parameter-
dependent generalized equation:

min{p(x, y)|0 € F(x,y) + Nr(y)} ¢ :R"™ > R, F:R"™™ » R™ (2.2)

Here, I' € R™ is closed and ‘N’ refers to an appropriate normal cone (e.g. normal
cone of convex analysis if I" is convex or Fréchet normal cone). Such problems
have a wide range of applications in mechanics or economy (e.g. in the description
of equilibria in electricity spot markets [3]). In order to derive dual stationarity
conditions for (2.2), we provide first some introduction to some necessary concepts
of nonsmooth calculus and to Lipschitzian properties of set-valued mappings. The
role of calmness as a constraint qualification is illustrated then before discussing
several options to check this property. Finally, M-stationarity conditions are derived
and made fully explicit.

2.2 Some Tools from Variational Analysis

We recall that a set-valued mapping @ : X = Y between topological spaces X, Y
is a conventional (single-valued) mapping @ : X — 2" assigning to each x € X a
subset @ (x) C Y. A set-valued mapping is uniquely defined by its graph

grd:={x,y)eX xY|yed©x)}.
The inverse of @ is defined as

o'y ={xeX |yedw)

2.2.1 Elements of Nondifferentiable Calculus

We recall the definition of the contingent cone and the Fréchet normal cone to a
closed set:

Definition 2.1 Let C € R” be closed and x € C. The contingent cone and the
Fréchet normal cone, respectively, to C at x are defined as

Te(X) :={deR" |3, | 03Ix, € C:¢t  (x, — %) — d}

n

Ne@) := & e R" | (x*,d) <0 Vd € Te(®)).
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Fig. 2.1 Illustration of the
contingent and the Fréchet
normal cone to a closed set
Catsomex € C

For an illustration, see Fig.2.1. Clearly, the contingent cone is nonconvex in
general, whereas the Fréchet normal cone as its negative polar cone is always convex.
In order to define T¢, ﬁc as set-valued mappings, we formally put T¢(x) := @ and
ﬁc()'c) := ), whenever x ¢ C.

Exercise 2.1 Show the following statements:

1. If C is a closed cone, then T¢(0) = C.
2. Tre(x) ={theR"|x; >0=h; 20 Vi=1,...,n}
3. Nrr (x) = {x* e R” | (x*, x) = 0}.

Since, by convention, ﬁc (x) =@ forx ¢ C, 3. in Exercise 2.1 amounts to
gr Nign = {(x,x) € R" x R" | (x,x*) = 0}, (2.3)

If the closed set C happens to be convex, then the Fréchet normal cone to C coincides
with the normal cone of convex analysis. The use of the Fréchet normal cone suffers
from a lack of good calculus rules due to its graph being not closed in general.
Therefore, it makes sense rather to consider a normal cone whose graph is the closure
of the graph of the Fréchet normal cone [6]. Translating this into an explicit definition
yields.

Definition 2.2 Let C € R” be closed and X € C. The Mordukhovich normal cone
to C at x is defined as

Ne(®) = ("3, x) — & x*) 1 x, € C, x* € Ne(x,)}

Figure 2.2 illustrates the computation of the Mordukhovich normal cone to some
closed set C at one of its points x. In a first step, Fréchet normal cones to C in a
neighbourhood of x are computed. In the example, these are onedimensional linear
subspaces for points x # x (normals to curves in the sense of classical analysis) and a
solid polyhedral cone in x itself. In the second step, all limits of such Fréchet normals
are aggregated according to Definition 2.2 to yield the Mordukhovich normal cone,
which in contrast to the Fréchet normal cone may be nonconvex (see Fig. 2.2). Similar
to the Fréchet normal cone, the Mordukhovich normal cone coincides with the one
of convex analysis for convex sets.

Example 2.1 As an illustration, we compute the normal cone to different points of
the set C := gr Nz, C IR2. By convexity of R, and by (2.3), we have that
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Given closed set Fréchet normal cones in a neighbourhood Mordukhovich normal cone

Fig. 2.2 Given closed set C and point x € C (left), all Fréchet normal cones in a neighbourhood
of x (middle) and Mordukhovich normal cone in x (right)

Fig. 2.3 Illustration of the

sets gr Ng, (left) and , P

Ny, (0,0) (right) gr Na, Vor iy, 12400
gr Nz, = gr N, = [R x {0} U[{0} x R_] (2.4)

(see Fig.2.3). Hence, there are three possibilities for a point x belonging to gr Ng, :
first, one may have that x; > 0 and X, = 0. Then, T, Ne, (x) = R x {0} and, hence,
ﬁgr Na, (x) = {0} x R. Similarly, in the second case, x; = 0 and x, > 0, we derive
that ﬁgr Ne, (x) = R x {0}. Finally, for the remaining third case, x = (0, 0), the fact
that gr Ng, is a closed cone implies via 1. of Exercise 2.1 that T, Ng, (0,0) = gr Ng,.
Consequently,

Nerne, (0,0) = {x* | (x*,h) <0 VhegrNa }=R_ xRy,

where the last equation follows from (2.4). Now, aggregating all limits of Fréchet
normals in the neighbourhood of x in the sense of Definition 2.2 amounts in our
example simply to collecting the union of Fréchet normal cones in the three discussed
cases. Hence, at x = (0, 0) we have that (see Fig.2.3)

Nerng, (0,0) = [Ro x Ry JU {0} x RJU[R x {0}].

As the first and second cases considered above (x # (0, 0)) are stable (i.e. remain
unchanged under a small perturbation of x € gr Ng, ), the Fréchet normal cones are
locally constant around x and, consequently, coincide with the Mordukhovich normal
cone.

An important property of the normal cone is that it commutes with the Cartesian
product (see [6, Proposition 1.2]):
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Nc, x..xc,(X1, ..., Xy) = N¢,(x1) X --- X N¢, (x,) (2.5)
Exercise 2.2 Using the Cartesian product formula above, show that
gr N = L7'(A),
where

Lxt, .o Xp, Y15 ee s Yp) = (X1, Y10 -2 X, Yp), A= grNg, X --- X grNg,.

As usual in nondifferentiable calculus, a normal cone induces a subdifferential of
lower semicontinuous (possibly extended-valued) functions:

Definition 2.3 Letf : R" — R U {00} be lower semicontinuous and define (closed)
epigraph as epif := {(x,1) € R*"! | t > f(x)}. Then, the subdifferential of f at X
is defined as

of (@) = {x* € R"|@", =1) € Nepi (&.f (©))}.

Analogous to the normal cone, the subdifferential is nonconvex in general, but coin-
cides with the subdifferential of convex analysis for convex functions. If / happens
to be continuously differentiable, then df (x) = Vf (x).

Exercise 2.3 Show that for f (x) := —|x| one has that 9f (0) = {—1, 1}. Hint: Verify
that
R 0, 0) ift>f(x)orx=1t=0
Nepip(x, 1) =y Ry(1,—1)) ift=f(x)andx <0
Ry(—1,-1)) ift=f(x)andx > 0

Using this, aggregate Fréchet normals for (x,?) € epif in a neighbourhood of
(x, f (%)) in order to derive that Nepi ¢ (x, f (x)) = grf. Apply Definition 2.3.
The subdifferential satisfies the following important sum rule

Theorem 2.1 (see [6], Theorem 2.33) Let f| : R" — R be locally Lipschitzian, and
let f> : R* — R be lower semicontinuous. Then,

(i +2)(X) € 3fi(xX) + 0f2(%).

The normal cone and the subdifferential introduced so far can be employed in order
to state the following necessary optimality conditions for an abstract optimization
problem:

Theorem 2.2 (see [8], Theorem 8.15) Let f : R" — R be locally Lipschitzian, and
let x be a local solution of the optimization problem

min{f (x)|x € C} (C C R"closed)

Then, 0 € 3f (¥) + Ne (%)
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We note that a similar formula would not be valid for Fréchet normal cones.
Finally, again based on the definition of the Mordukhovich normal cone, we
introduce a concept for the derivative of a general set-valued mapping:

Definition 2.4 Let @ : R” == R™ have a closed graph. Fix any (x, y) € gr @. Then,
the coderivative of @ at (x, y) is defined as a multifunction D*® (x, y) : R" = R”
such that

D*®(x, y)(y") == {xX*|(x*, =y") € Nyro (X, )}

One should observe that the coderivative is not just defined at an argument x of
the preimage space but also needs the specification of a pointy € @ (x) in the image
@ (x). Indeed, the coderivative is generally a different mapping for differenty € @ (x)
even for foxed x. In case of single-valued @, one necessarily has y = @ (x), so the
specification of y is omitted and one simply writes D* @ (x) rather than D*® (x, f (X)).
It can be shown that for single-valued, continuously differentiable mappings @ the
coderivative of @ at (x) reduces to its adjoint Jacobian D" @ ().

Exercise 2.4 Let (x, y) € gr Nz, . Using Example 2.1 for computing N, (%, y),
show that

R ify*=0
If (x,y) =(0,0) = D*Ng, (x,»)(y") = { {0} if y* > 0
R_ify* <0

If x>0, y=0= D*Ng, (x,y)(y*) = {0}
- A= " — o JRify*=0

The following important scalarization formula for coderivatives of single-valued
mappings and subdifferentials of their components holds true:

Proposition 2.1 (see [6], Theorem 1.90) If @ : R" — R™ is locally Lipschitzian,
then D*® (x)(y*) = 9(y*, @) (x) for all y* € R™.

2.2.2 Lipschitz Properties of Set-Valued Mappings

In this section, we consider a set-valued mapping F : X = Y between metric spaces,
i.e. a mapping assigning to each x € X an image set F'(x) C Y. We want to introduce
two generalizations of Lipschitz properties from single-valued to set-valued map-
pings. We recall that a single-valued mapping f : X — Y is locally Lipschitzian at
some x € X if there exists some L > O such that d(f (x;), f (x2)) < Ld(x;, x;) for all
X1, xp inaneighbourhood of x. A strictly weaker, yet related to Lipschitzian behaviour
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property results from fixing one of the two arguments in the previous definition. More
precisely, f is calm at x, if d(f (x), f (x)) < Ld (x, x) for all x in a neighbourhood of
X. A function which is calm but fails to be locally Lipschitz (due to unbounded slopes
for pairs of points close to the fixed point) is illustrated in Fig.2.4.

When transferring these concepts to set-valued mappings, one has to take into
account first that images F'(x) are sets now. A straightforward generalization would
be obtained by considering the Hausdorff distance between subsets of the image
space (see Fig.2.4):

dy (A, B) :== max{supd(a, B),supd(b,A)} VA,BCY.
acA beB

Then, for instance, local Lipschitz continuity of F at some x € X would amount to
the relation dy (F(x1), F(x;)) < Ld(x1, x») for all x;, x, in a neighbourhood of x.
However, the use of the Hausdorff distance in variational analysis has several draw-
backs: first, if the considered sets are unbounded, then convergence of sets may
not be well reflected (see Fig.2.4, where ‘intuitively’ sets A, converge to A while
dy(A,, A) = 00); second, the Hausdorff distance is a global measure and may even
for bounded sets not well describe the local convergence of sets around a fixed point
in the limit set (see Fig.2.4).

In order to circumvent the mentioned inconveniences of the use of the Hausdorff
distance, the following definitions have proven to be useful for describing the (locally)

Fig. 2.4 Top left: example for a calm function not being locally Lipschitzian; top right: illustration
of the Hausdorff distance as maximum of the excesses of one set over the other; bottom left:
‘convergence’ of sets having Hausdorft distance co to the limit set; bottom right: the sequence of
sets does not converge to the set A in a global sense, although it does so locally around the fixed
point
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Lipschitzian behaviour of a set-valued mapping F : X = Y between metric spaces
(see, e.g. [8]):

Definition 2.5 F has the Aubin property at (x, y) € gr F if there are L, § > 0 with
d(y,F (x1)) < Ld (x1,x)) Vxi,x € Bs(X), Vy € [F (x2) NBs ()] .
F is said to be calm at (x, y) € gr F if there are L, § > O such that
d(y,F(x) <Ld(x,x) VxeDBsx), Vye [F (%) ﬂBg()_I)].

Here, B (z) refers to the closed ball around z with radius §.

One immediately verifies that the Aubin property and calmness presented in Defi-
nition 2.5 reduce in the case of single-valued functions to local Lipschitz continuity
and calmness as introduced in the beginning of this section. Therefore, it is clear that
for set-valued mappings too, calmness is strictly weaker than the Aubin property.
Observe also that, in contrast to single-valued mappings, we now have not only to fix
some argument x € X but also a point y € F(x) in the image set, because the local
behaviour of F at (x, y) may be different for different y € F ().

Exercise 2.5 Show that the mapping F (¢) := {x | x> > t} is calm but fails to have
the Aubin property at the point (0, 0) of its graph.

2.3 Calmness and Aubin Property in Optimization
Problems

2.3.1 Calmness as a Constraint Qualification for Abstract
Optimization Problems

In this section, we want to derive dual necessary optimality conditions for the abstract
optimization problem (2.1). Observe first that (2.1) can be compactly rewritten as
min{f (x)|x € G~!(C)}. Therefore, we may apply Theorem 2.2 to derive the follow-
ing

Corollary 2.1 Let x be a local solution of problem (2.1), where we assume that f is
locally Lipschitzian, G is continuous, and C is closed. Then, 0 € 9f (x) + Ng-1(c)(%).

The necessary optimality condition obtained in the Corollary is also referred to
as an abstract M-stationarity condition because it is based on the Mordukhovich
normal cone and the associated subdifferential. As the name suggests, the condition
is abstract in that it does not provide yet an expression for the normal cone in terms
of the data G and C of problem (2.1). Any condition providing such resolution of
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normal cones in terms of constraint data is usually called a constraint qualification. A
key constraint qualification in the context of M-stationarity is calmness as introduced
in Definition 2.5. This is explained by the following preimage formula:

Theorem 2.3 (see [2], Theorem 4.1) Let G : R" — R™ be locally Lipschitz, and let
C C R™ be closed. If. for some X € G~'(C) the multifunction ¥ (y) := {x|G(x) +
y € C}is calm at (0, x), then

Ng-1(¢)(®) € D*G(X) [Nc(G(X))].

Combining this preimage formula with Corollary 2.1 leads immediately to the fol-
lowing resolved M-stationarity conditions for problem (2.1):

Corollary 2.2 Letx be alocal solution of problem (2.1), where we assume that f and
G are locally Lipschitzian and C is closed. Under the calmness assumption for ¥ in
Theorem 2.3, there exists some v* € Nc(G (X)) such that 0 € df (x) + D*G (x)(v¥).

In the special case that f and G are continuously differentiable and that C = R,
the last corollary yields the classical Karush—Kuhn—Tucker conditions of classi-
cal nonlinear optimization under inequality constraints. Indeed, recalling that in
this smooth case df (x) = Vf(x) and the coderivative coincides with the adjoint
Jacobian D’ G (%), the inclusion from Corollary 2.2 reduces to the equation 0 =
9f (X) + DT G (x)v*. On the other hand, v* € NR{; Gkx) = I/V\Rgr G (x) by convexity of
R”_. Now, (2.3) entails the complementarity relations

r
GE® =0, v'<0, > vGix) =0.

=1

These statements suggest to compare the constraint qualification (CQ) via calmness
in Theorem 2.3 with known CQs in nonlinear programming. One can show that
calmness implies the Abadie CQ but is implied by the Mangasarian—Fromovitz CQ
(MFCQ) which in turn is equivalent to the stronger Aubin property of ¥ in Theo-
rem 2.3 (see Exercise 2.6). This observation from nonlinear programming already
provides some idea of how calmness could work as a strictly weaker CQ in MPECs
than the (easier to characterize algebraically) Aubin property.

2.3.2 Verification of Calmness and Aubin Property

As far as the Aubin property of set-valued mapping is concerned, the coderivative
introduced in Definition 2.4 provides a powerful equivalent characterization via the
celebrated Mordukhovich criterion:

Theorem 2.4 (see [8], Theorem 9.40) Let F : R" = R™ have a closed graph. Then,
F has the Aubin property at (x,y) € grF if and only if
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D*F(x, y)(0) = {0}

This criterion may be used, in order to derive an easy-to-verify algebraic character-
ization of the Aubin property for smooth constraint systems:

Proposition 2.2 Consider the set-valued mapping given by the perturbation
Fp) ={xeR"Gx)—peC}

of the constraint G(x) € C in the abstract optimization problem (2.1). Here, we
assume that G is continuously differentiable and C is closed. Let x be a feasible
point of the unperturbed problem, i.e. G(x) € C. Then,

F has the Aubin property at (0, x) < Ker[VG®)]' NNc(G(X)) = {0}

Proof Define é(p,x) ;= G(x) —p. Then, grF = G_I(C). Clearly, the Jacobian
V@(O, x) = (=1, VG(x)) is surjective. This allows us to invoke the following preim-
age formula N N

Ng-1¢)(0, %) = [VG(0, %) Ne(G(0, X))

(see [8], [Exercise 6.7]), which in our special case with smooth mappings corresponds
to the inclusion of Theorem 2.3 being actually satisfied as an equality. Hence,

Neg# (0, %) = Ng-1(¢(0, ) = ( ) Ne(G(0, 0)).

—1I
[VG®)]"

Observing that 5(0, x) = G(x), we derive from this last relation that for all p* the
following holds true:

(p*,0) € Ngr(0,%) < Iz* € Ne(G(X)) : p* = —z*, [VG®)]'z* =0
— —p* e Ker|[ VG @' N Nc(G(X)).

By Definition 2.4, this amounts to
D*F(0,%)(0) = {p*|(p*, 0) € Ngr (0, 1)} = — {Ker[VG(®)]" N No (G(¥))} .

The result now follows from Theorem 2.4.

Exercise 2.6 For a smooth inequality system G (x) € R” the Aubin property of the
perturbation mapping F(p) := {x € R"|G(x) — p € R} at some feasible point x
is equivalent to the validity of the Mangasarian—-Fromovitz CQ at X, i.e. with the
existence of some d such that

(VG;(X),d) <0 Vi:G;x) =0 (2.6)
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Hint: using Proposition 2.2 and (2.3) show that F' has the Aubin property at (0, x) if
and only if the following relation holds true:

[VGEOIPA=0,1>0, ,,=0Vi: G;(x) <0=Ar=0,

which by Motzkin’s Theorem of the alternative is equivalent to (2.6).

If it comes to check the calmness property of a set-valued mapping, then one could
of course keep using the criterion of Theorem 2.4 for the stronger Aubin property.
But in this way, one might loose the potential of strictly weakening the assumptions
needed, for instance, for the derivation of necessary optimality conditions. Refining
the criterion of Theorem 2.4 towards calmness seems to be possible only in special
cases (see [1, Theorem 3.1], [2, Theorem 3.2]). An instance, where calmness (but
not necessarily the Aubin property) may always be taken for granted without further
assumptions, is polyhedral mappings, i.e. set-valued mappings whose graph is a finite
union of convex polyhedra. The following result is a slight reduction of a theorem
by Robinson:

Proposition 2.3 ([7], Proposition 1) A polyhedral set-valued mapping is calm at
any point of its graph.

Note that the graph of a polyhedral mapping need not be convex. A prototype example
is the set gr Nge :

Example 2.2 From (2.4), we know that gr Ngr is the union of two polyhedra:

griNg, = [R+ X {0}] U [{O} X R_]

Ay Ay

so that the set A from Exercise 2.2 may be represented as a finite union of polyhedra
because the Cartesian product of polyhedra is a polyhedron again:

A= U Ailx"'XAi/"
(itvennip)€(0,1)7 "
polyhedron

Now, owing to Exercise 2.2 and the mapping L defined there, we arrive at

aoNw = | LA x-x4).
(i1,-.ip) €{0, 1)P

polyhedron

showing that gr Ngs is a polyhedron as the preimage of a polyhedron under a linear
mapping. Consequently, the normal cone mapping x > N is polyhedral.

In many applications, set-valued mappings are neither polyhedral nor satisfy the
Aubin property, so that the previous approaches for verifying calmness would not
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apply. On the other hand, more than often a structure is present which is partially
polyhedral and partially ‘Aubin-like’. In such cases, the following useful character-
ization of structured calmness can be useful:

Theorem 2.5 ([5], Theorem 3.6) Let Ty : X1 = X and T, : X, = X be multifunc-
tions between metric spaces Xy, X2, X. If

1. Ty iscalmat (x;,x) € gr T,

2. Tyiscalmat (x;,x) € gr'T;

3. Ty Y has the Aubin property at (x, x,)
4. Ty (x1) NT, (+) is calm at (x, x),

then the multifunction (T) N Ty) (x1, x2) := T (x1) N T5 (x2) is calm at (x1, x2, X).

Exercise 2.7 Provide an example for two set-valued mappings being calm but with-
out their pointwise intersection being calm likewise.

The previous exercise illustrates, why the first two conditions of Theorem 2.5 alone
are not sufficient to yield the calmness of the intersection mapping.

2.4 M-Stationarity Conditions for MPECs

We consider the MPEC introduced in (2.2) and specify now that the normal cone
N appearing there refers to the Mordukhovich normal cone, so for convex sets I”
it coincides with the normal cone of convex analysis. On the other hand, the use of
the Mordukhovich normal cone allows an application to general closed sets and, in
contrast to the Fréchet normal cone, its graph will be always closed (see Sect.2.2.1).
Observe that by passing to the concept of the graph of a multifunction, one may
equivalently rewrite it as

mm{‘ﬂ(%)’)l(y, —F(X,Y)) S ngF}v (27)
[ ———
H(x,y)
which is exactly of the form of (2.1) with f := ¢, G := H [(as defined in (2.7)]
and C := gr Nr. This being done, we may immediately apply Corollary 2.2 on M-

stationarity conditions for abstract optimization problems in order to specify them
in the case of MPECs:

Proposition 2.4 Let (X, y) be a local solution of the MPEC (2.2), where we assume
that ¢ and F are locally Lipschitzian and I' is closed. Then, if the mapping

Y (p1,p2) = {(x,y)|p2 € F(x,y) +Nr(y + p1)} (2.8)

is calm at (0,0, X,y), then there exists an MPEC multiplier v* € Ny n,.(H (X, y))
(with H as introduced in (2.7)) such that
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0 € dp(x,y) + D™ (H (X, y)(v). (2.9)

Proof We consider the MPEC (2.2) in its equivalent form (2.7). Since F is locally
Lipschitzian, the same holds true for H. Moreover, as mentioned above, the set C :=
gr N is closed. Finally, we observe that the calmness assumption in our proposition
amounts in graphical form to the calmness of the mapping

Y(p1,p2) = {(x, V|1 +y,p2 — F(x,y)) € grNr}

at (0,0, x, y). Recalling the definition of H and putting p := (p1, p2) this can be
rephrased as the calmness of the mapping ¥ (p) := {(x, y)|(p + H(x, y)) € gr Nj-}
occurring in Theorem 2.3 and needed in Corollary 2.2. Summarizing, all assumptions
of Corollary 2.2 are satisfied for problem (2.7) and the assertion follows.

The necessary optimality condition (2.9) is not fully efficient, yet in that it is formu-
lated in terms of the intermediary mapping H rather than the input mapping F of
(2.7). Moreover, one can simplify the calmness condition according to the following
statement.

Lemma 2.1 (see [9], Proposition 5.2) The full perturbation mapping ¥ in (2.8)
is calm at (0,0, x,Yy) if and only if the associated reduced perturbation mapping
Y(p) = {(x, »lp € Fx,y)+Nr(y)}is calmar (0, x, y).

Next, we develop a more handy expression for the coderivative of H(x,y) =
(v, —F(x,y)) in (2.9). Put H := (H,, H,). The scalarization formula of Proposition
2.1 and the sum rule of Theorem 2.1 yield that

D™H (x,y) (™, v¥) = (", v"), (H1, H2))(x, y)
C o(u", Hi)(x,y) + 0(v*, Ho)(x, y)
= {(0, u™)} + D*H> (x, y) (v')
= {(0,u")} + D*(=F)(x, p) (). (2.10)

Here, we made use of the fact that (u*, H;) = (1™, y) is a linear function of (x, y) and,
hence, the subdifferential reduces to its gradient. Combining (2.10) with Lemma 2.1,
Proposition 2.4 yields the following M-stationarity conditions for the MPEC (2.2)
with locally Lipschitzian mappings completely in terms of the input data of the
problem:

Theorem 2.6 Let (x,y) be a local solution of the MPEC (2.2), where ¢ and F are
locally Lipschitzian and I is closed. Then, if the mapping @ in Lemma 2.1 is calm
at (0,Xx,y), then there exist MPEC multipliers (u*,v*) € Ngn.(y, —F (X, y)) such
that

0 € dp(x,y) + {(0, u")} + D*(=F)(x, ) (v").

In the following, we are going to specify the M-stationarity conditions of Theorem
2.6 to the case of smooth input data for the MPEC (2.2):
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Corollary 2.3 Let (x, y) be a local solution of the MPEC (2.2), where ¢ and F are
continuously differentiable and I' is closed. Then, if the mapping ¥ in Lemma 2.1
is calm at (0, x, y), then there exists an MPEC multiplier v* such that

0= V.3 + [ViF & 5] v*
0 € Vyo(x, ) + [V,F(X, y)]T Vv  + D*Nr (3, —=F (%, ) (v).

Proof In the case of smooth data, the subdifferential and coderivative, respectively,
reduce to

09X, 5) = (Vap(E. 7). V,0(F, 7))
D*(~F)&. M) = (= [ViFE D] v, = [MFGE ] v

Now, Theorem 2.6 guarantees the existence of (u*, v*) € Ngn,. (v, —F (x,y)) such
that

0= Vip@&3) — [V.FE ] v*
0= V&7 —[VFED] v +u*

Since (u*,v*) € Ny, (y, —F(x,y)) if and only if u* € D*Np(y, —F(x, y))(—v*)
(see Definition2.4), we can substitute for the second multiplier #* by turning the
second equation above into an inclusion.

We note that the preceding Corollary has been proven firstin [10, Theorem 3.2] using
a different way of reasoning. Looking at Corollary 2.3, there remain two issues to be
clarified for an efficient application of the obtained M-stationarity conditions: first,
the calmness of the perturbation mapping ¥ has to be verified, and second, explicit
formulae for the coderivative D* N have to be found. This will be the object of the
following two sections.

2.5 Verification of Calmness for the Perturbation Mapping

2.5.1 Using the Aubin Property

We start by providing an algebraic condition ensuring the calmness of the mapping
¥ introduced in Lemma 2.1 via checking the stronger Aubin property for the pertur-
bation mapping (2.8). Observe first the general relation l’17(1?2) = ¥ (0, p) between
both mappings. This means that the perturbation of ¥ is richer than that of @ while
@(0) =¥ (0,0). As a consequence, ¥ having the Aubin property at (0, 0, x, y)
would imply 1 having the Aubin property at (0, x, ¥) which in turn would imply
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o being calm at (0, x, y). Therefore, the following proposition yields a sufficient
algebraic condition for the calmness of ¥ as required in Corollary 2.3:

Proposition 2.5 Let F be continuously differentiable, let I' be closed, and let (x, y)
be such that 0 € F(x,y) + N (y)}. Then, the perturbation mapping ¥ defined in
(2.8) has the Aubin property at (0, 0, x, y) if and only if the following implication
holds true:

[V.FE D] v =0, [VF& »)] v € DNy G, —=FE ) (—v*) = v* =0

As a consequence, this implication guarantees the calmness of ¥ at (0,x,y) as
required in Corollary 2.3.

Proof By (2.8), ¥ may be rewritten in graphical form as

Y (p1,p1) = {(x, VIH(x,y) — (p1,p1) € grNr},

where H is defined in (2.7). Now, by Proposition 2.2, ¥ has the Aubin property at
(0,0, x, y) if and only if

i (o —[V.F&E ]

Non. (v, —F(x,y)) = {0}.
I —[VyF()_C,)_/)]T) N gNr(y (x y)) { }

which is equivalent to the implication
[VoFE D] v =0, u* = [WF&EH] v =0, u* e DNrG, —FE7))(—")
== u* =0, v*=0.
This yields the assertion.

Of course, the application of Proposition 2.5 hinges on concrete formulae for the
coderivative D*N . Possibilities to do so will be discussed in Sect. 2.6. Alternatively,
one could try to check the Aubin property of v directly using the definition in order
to deduce its calmness. This is illustrated in the following example:

Example 2.3 Let F : R x R> — R? be given by F(x, y;, y2) := (0, 1) and
r={yeRy, =0 y=>y}
Then, @ introduced in Lemma 2.1 takes the form

@ (p1,p2) = (6, y1, y)(p1. p2 — 1) € Nr(y))

We verify the Aubin property of ¥ at the point (p1, p2, X, y1,y2) := (0,0,0,0,0)
which belongs to gr¥ due to (0, —1) € Np(y). If y € int I, then Np(y;,y2) =
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{(0, 0)}. Therefore, (y;, y2) € bd I" for all (x, y1, y2) € @(pl,pz) and (pi, p2) close
to (p1, p2). In particular, y, = y%. The first inequality in the definition of I” has been
arranged to be redundant. Hence, Ni(y) = R {(2y;, —1)} for all (y;,y;) e bd I".
This implies that

PLp2—1) =A2()2y1, —1)

vﬁv/ith some function A(y) > 0 for all (p;, p2) close to (py,p2) and (x, y1, ) €
¥ (p1, p2). A comparison of components along with y, = y% yields the relations

A =1=pa, yi=pi1/2(0=p2), y2 = (p1/2(1 — p2))*.

Consequently, for p close to p we have that

W (p) = {(x, M) y1 = p1/2(1 = p2), y2 = (p1/2(1 = p))?}.

Clearly, the images of ¥ do not involve x. Moreover, the y-components are locally
Lipschitzian functions of (p;, p») in a neighbourhood of (p, p»). Therefore, ¥ has
the Aubin property at (p1, p2, X, y1, ¥2)-

2.5.2 Using Polyhedrality or Structured Calmness

If the MPEC (2.2) is governed by a linear generalized equation (i.e. F is affine
linear and I” is a convex polyhedron), then calmness of the perturbation mapping v
introduced in Lemma 2.1 comes for free and, hence, the M-stationarity conditions
of Corollary 2.3 can be derived without any further assumptions. More precisely, we
have the following result:

Proposition 2.6 [finthe MPEC (2.2) (or (2.7), respectively) I is a polyhedron and
F(x,y) = Ax + By + c is an affine linear mapping, then the perturbation mapping
V¥ introduced in Lemma 2.1 is calm at all points of its graph.

Proof By definition of &, it holds that

g ¥ = {(p,x,y)| (y,p —Ax —By —¢) € grNr} = H™'(gr Ny)

H(p,x.y)

Since H is an affine linear mapping, it will be sufficient to verify that gr N is
a finite union of polyhedra, because then so is gr ¥ and the result follows from
Proposition 2.3.
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In order to carry out this verification, we describe the polyhedron I" explicitly as
the solution of a finite inequality system: I" = {y|Cy < d}. It is well known that the
normal cone to a polyhedron of such description calculates as

Nr = C"Ny (Cy — d).
It follows that
(v,2) €grNr & z€Np(y) © L €N (Cy—d): z=C"1.
Therefore, gr N = P(®) with P(y, z, A) := (v, z) and
O :={(.z. Mz =C"x, (A, Cy—d) € grNp}.
Here, we exploited that
x* € Npr (x) & x € NIRi(X*)- (2.11)

Defining
H()’, Z, )") = (Z - CT)‘-’)\'v Cy _d),

we then have that ©® = H~! ({O} X gr Nr ) Thus, by Example 2.2, ® is the preim-

age of a finite union of polyhedra under a linear mapping and as such is a finite union
O = U?zlAi of certain polyhedra A;. But then,

grNr = P(UL A) = UL | P(A)).
As the projection of a polyhedron is a polyhedron again, I” is a polyhedral map.

Finally, we give an idea about how to employ structured calmness by formulating
without proof a result which can be derived from Theorem 2.5 along the lines of [3,
Theorem 7.1]:

Theorem 2.7 For the mapping lT/(p) defined in Lemma 2.1 fix any (x,y) € ¥ (0).
Assume that I' is polyhedral and

Fi(x,y)

) with F, affine linear and V,F)(x,y) surjective.

Then, W is calm at 0, x,y).

Note that in this theorem, neither the stronger Aubin property (or its equivalent
characterization via Proposition 2.5) nor the (full) affine linearity of the mapping F
as in Proposition 2.6 is required.
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2.6 Coderivative Formulae and Fully Explicit
M-Stationarity Conditions

After providing various possibilities of verifying the calmness property of the per-
turbation mapping, the missing link for an efficient application of Corollary 2.3 is
the computation of the coderivative to the normal cone mapping of the set I". Several
results in this direction are known. We content ourselves here with the case of I’
being described by a finite system of smooth inequalities, i.e.

r={eR"g(»=0G=1,....p} (2.12)

where the g = (g;) is a twice continuously differentiable. As unbinding constraints
are of no interest for a local analysis, we assume without loss of generality that
g(y) = 0 at some fixed point of interesty € I". The following result is a consequence
of a chain rule for second-order subdifferentials presented in [6, Theorem 1.127]:

Theorem 2.8 In (2.12), fix any y € I' and v € Np(y). Assume that g(y) = 0. If
Vg (y) is surjective, then

P

* = 5 * 7 = * =17 % =\ 7 =\ Lk

DNM»@@)=(§3MW&@0v—+Wg@ﬂIDMg@@mevwwvy
i=1

Here, ) is the unique multiplier satisfying v = V' g(¥)A.

Given Theorem 2.8, the last step needed for calculating the coderivative of N con-
sists in specifying the coderivative of Ny . We will only need the formula evaluated
at points (0, y) here.

Lemma 2.2 Lety € Ngr (0). Then,
D*Nge (0, y)(y*) = @ if there exists some isuch thaty; > 0, y; #0

Otherwise:
D*Nge (0, y)(y*) = {x*

XF=0ify =0 y' <0
XF=0ify =0y >0

Proof From (2.11) and Exercise 2.2, we conclude that gr Nz = ! (A), where
Z(xl, e X Ve V) = (VL X e Y Xp), A= grNg X - X gr Vg, .
Clearly, Lis surjective (actually regular) and L=1L"=T1I". Therefore, as in the

proof of Proposition 2.2, we are allowed to invoke the preimage formula from [8,
Exercise 6.7] in order to verify that

Noen (5, ) = Nay (x, ) = INA(L(x, ).
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Hence, by (2.5),

(x*’ y*) € Nng]Rli (xv Y)

= L%, y*) € Na(L(x, )
— ()’TJCT, . -7)’;7)6;) S NngR+ (}71,x1) Xoeee XNngR+(yp7xp)'

In other words, x* € D*Ngr (0, y)(y*) if and only if —y* € D*Ng, (y;, 0)(—x7) for
alli =1, ...p. Now, using Exercise 2.4, one arrives at the asserted formula: Indeed,
to see it for example for the first statement, let there exist some i such that y; > 0,
yi # 0. If there was some x* € D*Ngr (0, y)(y*), then —y* € D*Ng, (y;, 0)(—x7).
Then, the second case in Exercise 2.4 yields the contradiction y; = 0. Hence, we
infer the desired statement D*Ngr (0,y)(y*) = . The second asserted statement
follows similarly.

The finally obtained coderivative formula allows us to combine Theorem 2.8 with
Lemma 2.2 in order to make the M-stationarity conditions of Corollary 2.3 fully
explicit:

Theorem 2.9 Let (x, V) be a local solution to the MPEC with smooth data

mm{‘p(x’)’)lo € F(x»)’) +NF(y)}7 I = {V € IRplgl(y) = 0 (l = 1’ .. -»P)},

where ¢, F are once and g is twice continuously differentiable. Assume that g (y) = 0,
that Vg(y) is surjective and that the perturbation mapping ¥ from Lemma 2.1 is
calm at (0, x, y). Then, there exist MPEC multipliers u*, v* such that

0= V&7 + [VFE ] v

V4
- - - 1T = - * 17 &

0= V03 + ([VyF(x, »| + Zkivzgi@)) Vi [Ve®)] u
i=1

0=VgGW* Vi:a; >0

O=u Vi:a =0, Vgi(G* <0

0<ul Vi:a =0, Vgi(G* >0

Here, M is the unique solution of F(x,7) = [Vg @)]T M.

Proof By Corollary 2.3, there exist multipliers w*, v* such that the first of our
asserted equations and

0= Vyp(x,y) — [VyF(&, y)]T v+ w*, w* e D*Np (3, —F (%, y)(v)
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hold true. By Theorem, 2.8, there exists some u* € D*Ngr (g(3), 1)) (Vg () v¥)
with

p
W = (Z X,-vzgi@)) v+ [Ve®] w

i=1

yielding the second of the asserted equations. Now, Lemma 2.2 provides the last
asserted relations of Theorem upon recalling that g(y) = 0 and that

" € D*Nw (¢(), 1) (Vg ) v*) #90.

In the special case of a polyhedral set I", the surjectivity condition Vg(y) in Theorem
2.8 can be dispensed with and a precise coderivative formula is available too. More
precisely, let I" := {x € R"|Ax < b} for some (g, n)-matrix A. Denote the rows of A
by a;. Fixx € I"and v € Ny (%), i.e. v = AT\ for some A € R?. Foreach x € I let
I (x) := {ila;x = b;}. Define the family of active index sets as

Fo={C{l,....q)|Ixel:1=I1x)

Then, the following coderivative formula holds true for N:

Theorem 2.10 ([4], Proposition 3.2)

D*Nr ()_C, 1_/) (V*) ={x* (X*, —V*) [S U P11=12 X Q[l’lz s

JSh<hCl(X)
Here,

Py, 1, = con{a;li € x (I))\I} + span{a;|i € I}
Onpn=1{heR"{a,h)=0 (el), (a,h) <0 (Geyx)\)}

and ‘con’ and ‘span’ refer to the convex conic and linear hulls, respectively. More-
over,

Ji={jellr;>0} and x(I):=nN{JeF|I'CJ} VI'C{l,...,q}.

This last theorem can be combined, for instance, with Proposition 2.6 in order to
derive fully explicit M-stationarity conditions in the spirit of Theorem 2.9 without
any further assumptions (with the perturbation mapping 1 being automatically calm
thanks to Proposition 2.6).
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