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We provide an explicit gradient formula for linear chance constraints under a (possibly singular) multivariate Gaussian
distribution. This formula allows one to reduce the calculus of gradients to the calculus of values of the same type of
chance constraints (in smaller dimension and with different distribution parameters). This is an important aspect for the
numerical solution of stochastic optimization problems because existing efficient codes for, e.g., calculating singular Gaussian
distributions or regular Gaussian probabilities of polyhedra can be employed to calculate gradients at the same time. Moreover,
the precision of gradients can be controlled by that of function values, which is a great advantage over using finite difference
approximations. Finally, higher order derivatives are easily derived explicitly. The use of the obtained formula is illustrated
for an example of a transportation network with stochastic demands.
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1. Introduction. A chance constraint (or probabilistic constraint) is an inequality of the type

�4g4z1 �5≤ 05≥ p1 (1)

where g is a mapping defining a (random) inequality system and � is an s-dimensional random vector defined
on some probability space 4ì1A1�5. The chance constraint expresses the requirement that a decision vector z
is feasible if and only if the random inequality system g4z1 �5≤ 0 is satisfied at least with probability p ∈ 60117.
The use of chance constraints is highly relevant for engineering problems involving uncertain data. Among
its numerous applications one may find topics like water management, telecommunications, electricity network
expansion, mineral blending, chemical engineering, etc. For a comprehensive overview on the theory, numerics,
and applications of chance constrained programming, we refer to, e.g., Prékopa [13, 14], and Shapiro et al. [15].

From a formal viewpoint, a chance constraint is a conventional constraint �4z5 ≥ p with �4z5 2=
�4g4z1 �5≤ 05 on the decision vector (because the dependence on � vanishes by taking the probability). However,
the major difficulty imposed by chance constraints arises from the fact that typically no analytical expression is
available for �. All one can hope for, in general, are efficient tools for numerically approximating �. On the
other hand, calculating just functional values of � is not enough for employing optimization algorithms in rea-
sonable dimension, one also has to have access to gradients of �. The need to calculate gradients of probability
functions has been recognized a long time ago and has given rise to many papers on representing such gradients
(e.g., Marti [9], Uryas’ev [18], Kibzun and Uryas’ev [8], Pflug and Weisshaupt [12], Garnier et al. [3]). The
resulting formulae can be used to approximate ï� via Monte Carlo methods similar to � itself.

On the other hand, for special cases much more efficient methods than Monte Carlo may exist for numerical
approximation. For instance, if in (1) the random vector is separated, i.e., g4z1 �5= � −h4z5, then

�4g4z1 �5≤ 05=�4� ≤ h4z55= F�4h4z551 (2)

where F� denotes the (multivariate) distribution function of �. We note that for many prominent multivariate dis-
tributions (like Gaussian, t-, Gamma, Dirichlet, Exponential, log-normal, truncated normal) there exist methods
for calculating the corresponding distribution function that clearly outperform a crude Monte Carlo approach
(see, e.g., Genz and Bretz [5], Szántai [16, 17], Gouda and Szántai [6], Olieman and van Putten [11]). When
it comes to calculating gradients of such distribution functions in the context of applying some optimization
algorithm, then, of course, it would be desirable to carry out this calculus in a similarly efficient way as it was
done for the values themselves. In some special cases it is possible indeed to analytically reduce the calculus of
gradients to the calculus of function values of the same distribution. This is true, for instance, for the Dirichlet
(see Gouda and Szántai [6, p. 195]) and for the Gaussian distribution. We cite here the corresponding result for
the Gaussian distribution, which will be the starting point for the investigations in this paper. We shall adopt the
usual notation � ∼ N4�1è5 to characterize an s-dimensional random vector having a normal distribution with
expected value � and covariance matrix è.
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Theorem 1.1 (Prékopa [13, p. 204]). Let � ∼ N4�1è5 with some positive definite covariance matrix
è= 4�ij5 of order 4s1 s5. Then, the distribution function F� is continuously differentiable at any z ∈�s and

¡F�

¡zj
4z5= f�j 4zj5 · F�̃4zj 54z11 : : : 1 zj−11 zj+11 : : : 1 zs5 4j = 11 : : : 1m50

Here, f�j denotes the one-dimensional Gaussian density of the component �j , �̃4zj5 is an (s − 1)-dimensional

Gaussian random vector distributed according to �̃4zj5∼N4�̂1 è̂5, �̂ results from the vector �+�−1
jj 4zj −�j5�j

by deleting component j , and è̂ results from the matrix è− �−1
jj �j�

T
j by deleting row j and column j , where

�j refers to column j of è. Moreover, è̂ is positive definite.

An important consequence of this theorem is that the same efficient tool used to calculate values of multivariate
Gaussian distribution functions (e.g., the MVNDST code by Genz and Bretz [5]) can be employed to calculate
the gradient of such distribution functions. All one has to do is to adjust the distribution parameters according
to the rule specified in the theorem. The purpose of this paper is to generalize this idea to a setting where the
Gaussian random vector is not separated as in (2) but subject to a possibly nonregular linear transformation that
has important applications in engineering.

2. Linear chance constraints with Gaussian distribution. We are interested in linear chance constraints
of the type

�4A� ≤ z5≥ p1 (3)

where z ∈�m is a decision vector, A denotes a matrix of order 4m1 s5, and � is a s-dimensional Gaussian random
vector distributed according to � ∼N4�1è5. We shall assume that � has a regular Gaussian distribution, i.e., è is
positive definite. Applications of linear chance constraints of type (3) are abundant in engineering and finance
(e.g., water reservoir management (van Ackooji et al. [19]) or cash matching problems (Dentcheva et al. [2])).
For applying algorithms to solve optimization problems involving a constraint like (3) we are interested in
calculating values and gradients of the function

�4z5 2=�4A� ≤ z50 (4)

When passing to the linearly transformed random vector � 2= A�, it is well known that � ∼ N4A�1AèAT 5,
i.e., � has a Gaussian distribution too and one knows exactly how to derive the parameters of this distribution
from those of �. This allows then to rewrite � in the form

�4z5=�4� ≤ z5= F�4z50

In other words, � is the distribution function of some Gaussian distribution with well-known parameters. At this
point, care has to be taken with respect to the transformation matrix A. In the most favorable situation the rank
of A equals m, i.e., the rows of A are linearly independent. Then, the covariance matrix AèAT of � is positive
definite (of order 4m1m5) because so was è by assumption. In other words, F� is again a regular multivariate
Gaussian distribution function and so one is completely led back to the situation discussed in the introduction:
one may calculate F� using appropriate codes and one may also compute ïF� via Theorem 1.1 upon respecting
the transformed parameters A� and AèAT . Hence, there is no substantial impact of the linear transformation
A� in this case. A situation like this arises, for instance, in reservoir problems, where the cumulative amount
of time-dependent random inflows enters the description of the chance constraint. Accumulation of components
can be described by a regular lower triangular matrix A.

In many other applications however (e.g., network optimization with random demands or avoidance of poly-
hedral random obstacles in robotics), A has typically more rows than columns (m> s) so that definitely rank
A < m. In this case, the covariance matrix AèAT becomes necessarily singular and, hence, F� is a singular
multivariate Gaussian distribution function. In particular, Theorem 1.1 does not apply (and cannot apply because
F� is not differentiable in general). Nevertheless, values of F� can still be calculated efficiently in moderate
dimension. One possibility is to employ an algorithm specially designed for singular Gaussian distribution func-
tions (see Genz and Kwong [4]). A second possibility is to use Deák’s method for computing regular Gaussian
probabilities of convex sets, which applies of course to the polyhedron A� ≤ z (see Deák [1]). Now the important
question arises, whether in the vein of Theorem 1.1 it is again possible to analytically reduce the calculus of gra-
dients of F� to that of values of F� and thus to benefit from the aforementioned algorithmic approaches in order
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to obtain sufficiently precise approximations for the gradients with reasonable effort. The answer given in this
paper is affirmative, and, in the main result proved in the following section, we shall present a generalization of
Theorem 1.1 to the singular case (of course under an additional assumption guaranteeing differentiability). Apart
from the just mentioned important algorithmic aspect, our gradient formula has further impact on numerics in
that it allows to control the precision of the gradient by that of function values (and thus promises much better
results than by using finite difference approximations, which are prone to noise) and to explicitly calculate higher
order derivatives. These issues are discussed in detail in §4. The relation with existing gradient formulae as they
were mentioned in the beginning of the introduction is also addressed in this same section. Finally, §5 presents
an application to network capacity optimization illustrating the numerical use of the gradient formula.

3. Main result. We start by introducing the family of active index sets associated with the polyhedron
Ax ≤ z given A and z as introduced in (3) (with aT

i denoting the rows of A):

I4A1 z5 2= 8I ⊆ 811 : : : 1m9 � ∃x ∈�s2 aT
i x = zi 4i ∈ I51 aT

i x < zi 4i ∈ 811 : : : 1m9\I590 (5)

Definition 3.1. The linear inequality system Ax ≤ z is called nondegenerate if

rank8ai9i∈I = #I ∀ I ∈I4A1 z50

In the language of optimization theory, nondegeneracy means that the inequality system Ax ≤ z satisfies the
linear independence constraint qualification. Observe that, if the linear inequality system Ax ≤ z is nondegen-
erate and has a solution at all then the set of solutions has a nonempty interior, whence � ∈ I4A1 z5 (see
Corollary A.1).

The following theorem is a translation of a result by Naiman and Wynn [10, Theorem 2] to our notation and
our setting (see also Theorem 3.2. in Henrion and Römisch [7]):

Theorem 3.1. Let z be such that the system Ax ≤ z is nondegenerate. Furthermore, let � be an s-dimensional
random vector distributed according to � ∼N4�1è5 with some positive definite è. Then, the distribution function
associated with � 2=A� satisfies

F�4z5=
∑

I∈I4A1 z5

4−15#IF−�I 4−zI51 (6)

where �I and zI are subvectors of � and z, respectively, according to the index set I . In (6), the corresponding
term for I 2= � is defined to take value 1. Moreover, for I 6= �, the random vectors −�I have a regular Gaussian
distribution according to

−�I
∼N4−AI�1AIè4AI5T 51 (7)

where AI is the submatrix of A defined by selecting rows according to the index set I .

Remark 3.1. In (6) we make the convention that the value of the sum equals zero if I4A1 z5 = �. Doing
so, we include the case that the system Ax ≤ z does not have a solution at all.

Theorem 3.1 allows one to reduce the calculus of a possibly singular Gaussian distribution function F� to the
calculus of (possibly many) regular Gaussian distribution functions F−�I 4I ∈I4A1 z55. An important consequence
of the theorem is that it provides us with a tool for calculating the gradient of a singular Gaussian distribution
function (under the nondegeneracy assumption made) because the terms on the right-hand side of (6) do have
gradients as regular Gaussian distribution functions (recall Theorem 1.1). More precisely, we have the following
Theorem, where the meaning of superscript index sets is as in Theorem 3.1:

Theorem 3.2. Under the assumptions of Theorem 3.1, F� is continuously differentiable and it holds that

¡F�

¡zj
4z5= −fj4zj5

∑

I∈I4A1 z52 j∈I

4−15#IF�̃4I1 j54−zI\8j95 4j = 11 : : : 1m50 (8)

Here, fj denotes the one-dimensional Gaussian density of the component �j ∼N4aT
j �1a

T
j èaj5 and the �̃4I1 j5

are Gaussian random vectors of dimension #I − 1 with distribution �̃4I1 j5∼N4�4I1 j51è4I1 j55, where

�4I1 j5 2= −AI\8j9

(

�+
zj − aT

j �

aT
j èaj

èaj

)

(9)

è4I1 j5 2=AI\8j9

(

è−
1

aT
j èaj

èaja
T
j è

)

4AI\8j95T 0 (10)

Moreover, the è4I1 j5 are positive definite.
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Proof. Fix an arbitrary differentiation index j ∈ 811 : : : 1m9. According to Prop. 3.1 in Henrion and
Römisch [7], the nondegeneracy assumption on the inequality system Ax ≤ z implies that I4A1 z′5 = I4A1 z5
for all z′ close to z. As a consequence, the index sets I ∈I4A1 z5 in (6) do not change under small perturbations
of z and, hence, we are allowed to differentiate F�4z5 in (6) term by term with respect to zj . Doing so first for
index sets I with j y I , we obviously get

¡F−�I

¡zj
4−zI5= 00

Therefore, differentiation of (6) yields

¡F�

¡zj
4z5=

∑

I∈I4A1 z52 j∈I

4−15#I ¡F−�I

¡zj
4−zI50 (11)

Now, for the remaining terms one has j ∈ I and, because by Theorem 3.1 the −�I have a regular Gaussian
distribution according to (7), we may apply Theorem 1.1 to see that

¡F−�I

¡zj
4−zI5= −f−�j

4−zj5F�̃4I1 j54−zI\8j95= −f�j
4zj5F�̃4I1 j54−zI\8j951 (12)

where �̃4I1 j5∼N4�4I1 j51è4I1 j55 for certain mean vectors and covariance matrices to be determined according
to the rules of Theorem 1.1. A combination of (11) and (12) yields (8), hence it remains to verify (9) and (10).
Observe first that the diagonal element of the matrix AIè4AI5T corresponding to index j ∈ I equals aT

j èaj .
Note that aT

j èaj 6= 0 because è is positive definite and aj 6= 0 (see Corollary A.1). Moreover, the column of the
matrix AIè4AI5T corresponding to index j ∈ I equals AIèaj . Therefore, applying Theorem 1.1 to the parameters
of (7), �4I1 j5 results from the vector

−AI�+
1

aT
j èaj

4−zj + aT
j �5A

Ièaj

by deleting the component corresponding to index j . This, of course, yields (9). Similarly, è4I1 j5 results from
the matrix

AIè4AI5T −
1

aT
j èaj

AIèaja
T
j è4A

I5T =AI

(

è−
1

aT
j èaj

èaja
T
j è

)

4AI5T

by deleting the row and column corresponding to index j . This yields (10). That the è4I1 j5 are positive definite,
follows from the corresponding last statement of Theorem 1.1. �

In principle, Theorem 3.2 already comes close to our intentions: it represents the gradient ïF� in terms
of values of regular Gaussian distribution functions F�̃4I1j5, which can be efficiently calculated. However, the
practical use of the derived formula is limited because the number of terms in the alternating sum (8) may become
extremely large. Nonetheless, Theorem 3.2 is crucial for proving our main result, which provides a practicable
representation of gradients. The following lemma compiles some elementary statements needed further on.

Lemma 3.1. For the following expressions occuring in (9) and (10),

S4j5 2=è−
1

aT
j èaj

èaja
T
j è1 w4j5 2=�+

zj − aT
j �

aT
j èaj

èaj 4j = 11 : : : 1m51

one has that
(i) S4j5 is symmetric and positive semidefinite;

(ii) ker S4j5 =�8aj9;
(iii) there exists a factorization S4j5 = L4j5L4j5T , where L4j5 is of order 4s1 s − 15 and rank L4j5 = s − 1;
(iv) aT

j L
4j5 = 0; and

(v) aT
j w

4j5 = zj .

Proof. Symmetry of S4j5 is evident. With the Cholesky decomposition è= PP T of the positive definite and
symmetric matrix è, the Cauchy-Schwarz inequality yields that

vT S4j5v = vTèv− 4aT
j èaj5

−14vTèaj5
2
= �P T v�2

− �P T aj�
−2

�P T v1P T aj�
2

≥ �P T v�2
− �P T aj�

−2
�P T v�2

�P T aj�
2
= 0
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for all v ∈�s . Hence, S4j5 is positive semidefinite. Evidently, aj ∈ ker S4j5, whence �8aj9⊆ ker S4j5. Conversely,
v ∈ ker S4j5 implies

è

(

v−
aT
j èv

aT
j èaj

aj

)

= 00

Because è is regular, one derives that v = 4aT
j èaj5

−14aT
j èv5aj , whence v ∈ �8aj9. Therefore, ker S4j5 = �8aj9

and, consequently, rank S4j5 = s − 1. Because S4j5 is also symmetric and positive semidefinite, there exist an
orthogonal matrix V 4j5 and a diagonal matrix å4j5 2= diag6�4j5

1 1 : : : 1 �
4j5
s−1107 with �

4j5
1 > 01 : : : 1 �4j5

s−1 > 0 such
that S4j5 = V 4j5å4j5V 4j5T = L4j5L4j5T . With Ṽ 4j5 resulting from V 4j5 by deleting the last column, we may put
L4j5 2= Ṽ 4j5 diag6

√

�
4j5
1 1 : : : 1

√

�
4j5
s−17 and conclude that S4j5 = L4j5L4j5T , where L4j5 is of order 4s1 s − 15 and

rank L4j5 = s − 1. Finally, �aT
j L

4j5�2 = aT
j S

4j5aj = 0 (see (ii)), whence assertion (iv) holds true. Assertion (v) is
obvious from the definition of w4j5. �

Now, we are in a position to prove our main result:

Theorem 3.3. Let z ∈ �m be such that the system Ax ≤ z is nondegenerate, where A is of order 4m1 s5.
Furthermore, let � ∼N4�1è5 with � ∈�s and positive definite è of order 4s1 s5. Then, for j = 11 : : : 1m, one
has the formula

¡

¡zj
�4A� ≤ z5= fj4zj5�4A

4j5L4j5�4j5
≤ z4j5 −A4j5w4j551

where �4j5 ∼N401 Is−15, A
4j5 results from A by deleting row j , z4j5 results from z by deleting component j , L4j5

and w4j5 are defined in Lemma 3.1, and fj is the one-dimensional Gaussian density with mean value aT
j � and

variance aT
j èaj . Moreover, the inequality system

A4j5L4j5y ≤ z4j5 −A4j5w4j5 (13)

occuring in the second case of the formula is nondegenerate.

Proof. To unburden the notation, we assume without loss of generality that j = m. Now, Proposition A.1
(with j =m) proved in the appendix yields the identity

I4m5
= 8I\8m9 � I ∈I4A1 z51 m ∈ I91 (14)

where I4m5 is introduced in (27) as the family of active indices of the inequality system (13) (for j =m). Now,
let Î ∈I4m5 be arbitrarily given. Then, (14) yields the existence of some index set I ∈I4A1 z5 such that m ∈ I
and Î = I\8m9. From (10) in Theorem 3.2 and (iii) in Lemma 3.1, we infer that the matrix

AÎL4m5L4m5T 4AÎ5T

is positive definite. Consequently, rankAÎL4m5 = #Î , which proves that the inequality system (13) is nondegen-
erate (for j =m) in the sense of Definition 3.1.

Now, let some Gaussian random vector �4m5 ∼ N401 Is−15 be given. The just shown nondegeneracy of the
inequality system (13) for j =m, allows us to put �̂ 2=A4m5L4m5�4m5 and to apply Theorem 3.1:

�4A4m5L4m5�4m5
≤ z4m5

−A4m5w4m55 = F�̂4z
4m5

−A4m5w4m55 (15)

=
∑

Î∈I4m5

4−15#ÎF
−�̂Î 4−4z4m5

−A4m5w4m55Î50 (16)

Here, we have taken into account the above mentioned fact that I4m5 is the family of active indices of (13) (for
j = m). By definition in the statement of this theorem, z4m5 and A4m5w4m5 result from the vectors z and Aw4m5

by deleting the respective component m. Moreover, the upper index set Î indicates that only components with
indices from Î have to be retained in the given vector (see statement of Theorem 3.1). Furthermore, (14) implies
that my Î for Î ∈I4m5. Therefore, we may conclude that

4z4m5
−A4m5w4m55Î = 4z4m55Î − 4A4m55Îw4m5

= zÎ −AÎw4m5
∀ Î ∈I4m50

Similarly,
�̂Î

= 4A4m5L4m5�4m55Î =AÎL4m5�4m5
∀ Î ∈I4m50
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This allows us, upon taking into account (14) again, to continue (16) as

�4A4m5L4m5�4m5
≤ z4m5

−A4m5w4m55 =
∑

I∈I4A1 z52m∈I

4−15#4I\8m95F−�̂I\8m94AI\8m9w4m5
− zI\8m95

=
∑

I∈I4A1 z52m∈I

4−15#4I\8m95�4−AI\8m9L4m5�4m5
≤AI\8m9w4m5

− zI\8m950 (17)

From �4m5 ∼N401 Is−15, (10) and the definition of S4m5 and L4m5 in Lemma 3.1, we infer that for any index set
I ∈I4A1 z5 with m ∈ I

−AI\8m9L4m5�4m5
∼N401AI\8m9L4m5L4m5TAI\8m9T 5=N401è4I1m550

Consequently, by (9) and the definition of w4m5 in Lemma 3.1,

−AI\8m9L4m5�4m5
−AI\8m9w4m5

∼N4−AI\8m9w4m51è4I1m55=N4�4I1m51è4I1m551

and, hence, the random vectors �̃4I1m5 from Theorem 3.2 (for j =m) have the same distribution as the random
vectors −AI\8m9L4m5�4m5 −AI\8m9w4m5. Then, (17) may be continued as

�4A4m5L4m5�4m5
≤ z4m5

−A4m5w4m55 =
∑

I∈I4A1 z52m∈I

4−15#4I\8m95�4�̃4I1m5≤ −zI\8m95

= −
∑

I∈I4A1 z52m∈I

4−15#IF�̃4I1m54−zI\8m950

Now, Theorem 3.2 (for j =m and with � 2=A�) yields that

fm4zm5�4A
4m5L4m5�4m5

≤ z4m5
−A4m5w4m55=

¡F�

¡zm
4z5=

¡

¡zm
�4A� ≤ z50

This, however, is the asserted formula for j =m. �

4. Discussion of the result.

4.1. Reduction of gradients to function values. The importance of Theorem 3.3 relies on the fact that it
reduces the computation of gradients to Gaussian probabilities of polyhedra to the computation of objects of
the same type, namely Gaussian probabilities of polyhedra (in different dimension, with different parameters).
Hence, one may employ, for instance, Deák’s method (Deák [1]) in order to calculate both objects (function
values and gradients) by means of the same efficient code. But there also exists an alternative numerical approach
to dealing with the chance constraint (3) offered by the same theorem: according to §2, the value of �4A� ≤ z5
can be interpreted as the value F�4z5 of the possibly singular Gaussian distribution function of the random vector
� 2= A�. As already mentioned before, singular Gaussian distribution functions can be calculated by means
of an algorithm described in Genz and Kwong [4]. Now, when it comes to gradients ïF�4z5, one would be
interested of course in a similar representation in terms of objects of the same nature, namely, singular Gaussian
distribution functions (in different dimension, with different parameters). Such conclusions can be indeed drawn
from Theorem 3.3 as shown in the next section.

4.2. A gradient formula for singular Gaussian distribution functions. The following theorem is a direct
generalization of the classical Theorem 1.1 by substantially weakening the assumption of positive definiteness
for the covariance matrix made there, in other words it generalizes the gradient formula for regular Gaussian
distribution functions to singular ones.

Theorem 4.1. Let � ∼N4�1è5 with some (possibly singular) covariance matrix è= 4�ij5 of order 4s1 s5.
Denote by è = AAT any factorization of the positive semidefinite matrix è (see, e.g., (iii) in Lemma 3.1). Let
z be such that the inequality system Ax ≤ z−� is nondegenerate. Then, for j = 11 : : : 1m one has the formula

¡F�

¡zj
4z5= f�j 4zj5 · F�̃4zj 54z11 : : : 1 zj−11 zj+11 : : : 1 zs50

Here, f�j denotes the one-dimensional Gaussian density of the component �j , �̃4zj5 is an (s − 1)-dimensional

(possibly singular) Gaussian random vector distributed according to �̃4zj5∼N4�̂1 è̂5, �̂ results from the vector
�+ �−1

jj 4zj −�j5�j by deleting component j , and è̂ results from the matrix è− �−1
jj �j�

T
j by deleting row j

and column j , where �j refers to column j of è.
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Proof. We fix an arbitrary j ∈ 811 : : : 1m9. Let � be a t-dimensional (with t being the number of columns
of the matrix A) Gaussian random vector distributed according to � ∼N401 It5. Then, the transformed random
vector A�+�∼N4�1AItA

T 5=N4�1è5 has the same distribution as �. Therefore,

¡F�

¡zj
4z5=

¡

¡zj
�4� ≤ z5=

¡

¡zj
�4A� ≤ z−�50

Theorem 3.3 (applied to � rather than � and to right-hand side z−� rather than just z) then yields that

¡F�

¡zj
4z5= fj4zj −�j5�4A

4j5L4j5�4j5
≤ z4j5 −�4j5

−A4j5w4j551 (18)

where �4j5 ∼ N401 It−15, A
4j5 results from A by deleting row j , z4j5 and �4j5 result from z and �, respectively,

by deleting component j , L4j5 and w4j5 are defined in Lemma 3.1, respectively, (but applied to the distribution
parameters of � rather than �), and fj is the one-dimensional Gaussian density with mean value 0 and variance
aT
j Itaj = �aj�

2. First observe that, by assumption, component j of � is distributed according to �j ∼N4�j1�jj5.
Hence, �j −�j ∼N401�jj5=N401�aj�

25 by è=AAT . It follows that the density fj coincides with the density
f�j−�j

and we obtain that
f�j 4zj5= f�j−�j

4zj −�j5= fj4zj −�j50

Next, introduce the random vector

�̃4zj5 2=A4j5L4j5�4j5
+�4j5

+A4j5w4j50 (19)

Then, (18) may be written as

¡F�

¡zj
4z5= f�j 4zj5F�̃4zj 54z

4j55= f�j 4zj5F�̃4zj 54z11 : : : 1 zj−11 zj+1: : : 1 zs51 (20)

where F�̃4zj 5 refers to the distribution function of �̃4zj5. Since �4j5 ∼N401 It−15, we derive from (19) that

�̃4zj5∼N4�4j5
+A4j5w4j51A4j5L4j5L4j5TA4j5T 50

In view of (20), the theorem will be proved, once we have checked that the above parameters of �̃4zj5 coincide
with those asserted in the statement of the theorem, i.e., we have to show that

�̂=�4j5
+A4j5w4j51 and (21)

è̂=A4j5L4j5L4j5TA4j5T 0 (22)

As far as (22) is concerned, recall that L4j5L4j5T = S4j5 by definition of L4j5 in Lemma 3.1(iii), where S4j5

calculates according to its definition in Lemma 3.1 but with the covariance matrix of � (which is It). Accordingly,

S4j5
= It − �aj�

−2aja
T
j 0

Recalling that �jj = �aj�
2, we arrive at

A4j5L4j5L4j5TA4j5T
=A4j5A4j5T

−�−1
jj A4j5aja

T
j A

4j5T 0

Because A4j5 results from A by deleting row j , it follows that the matrix A4j5L4j5L4j5TA4j5T results from the
matrix

AAT
−�−1

jj Aaja
T
j A

T
=è−�−1

jj �j�
T
j

by deleting row j and column j . This proves (22). Addressing now (21), we calculate first w4j5 from its definition
in Lemma 3.1 but with the mean vector and covariance matrix of � (which are 0 and It , respectively) and with
the argument zj −�j rather than zj (see remark before (18)). Accordingly,

w4j5
= �aj�

−24zj −�j5aj 0

It follows from the definition of �4j5 and A4j5 that �4j5 +A4j5w4j5 results from the vector

�+Aw4j5
=�+�−1

jj 4zj −�j5�j

by deleting component j . This proves (21). �
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4.3. Control of precision for gradients. Usually, the absolute error in calculating probabilities �4A� ≤ z5
can be controlled in the application of numerical methods. Let us assume that the discrepancy between theoretical
and computed values is bounded by some � > 0. Then, according to Theorem 3.3, the absolute error in the
computation of partial derivatives can be estimated by

∣

∣

∣

∣

¡

¡zj
�4A� ≤ z5−

(

¡

¡zj
�4A� ≤ z5

)comp∣
∣

∣

∣

= fj4zj5��4Â
4j5�4j5

≤ ẑ4j55− 4�4Â4j5�4j5
≤ ẑ4j555comp

�

≤ fj4zj5�1 (23)

where Â4j5 =A4j5L4j5 and ẑ4j5 = z4j5 −A4j5w4j5. Hence, the absolute error in the computation of partial derivatives
can be controlled by that of function values. This information, however, is of limited use because already the
nominal values of partial derivatives are typically small. Moreover, for numerical optimization (e.g., cutting
plane method), the direction of a gradient is more important than its norm. Therefore, one should be more
interested in controlling the precision of normed gradients. Using the maximum norm and applying first the
triangle inequality and then (23), one gets that

∥

∥

∥

∥

ï�4A� ≤ z5

�ï�4A� ≤ z5��

−
4ï�4A� ≤ z55comp

�4ï�4A� ≤ z55comp��

∥

∥

∥

∥

�

≤ 2
�ï�4A� ≤ z5− 4ï�4A� ≤ z55comp��

�4ï�4A� ≤ z55comp��

= 2
maxj �4¡/¡zj5�4A� ≤ z5− 44¡/¡zj5�4A� ≤ z55comp�

�4ï�4A� ≤ z55comp��

≤ 2�
maxj fj4zj5

�4ï�4A� ≤ z55comp��

0

Because all quantities on the right-hand side are available at any given z, it is possible in this way to estimate the
precision of the normed computed gradient from the chosen precision of the absolute error for function values
without knowing explicitly the theoretical gradient ï�4A� ≤ z5 at z.

4.4. Higher order derivatives. Another important feature of Theorem 3.3 is its inductive nature: if the
original inequality system Ax ≤ z happens to be nondegenerate, then so does the reduced inequality system
Ây ≤ ẑ occuring in the derivative formula of Theorem 3.3. This means that the reduced inequality system fulfills
the assumptions of the same theorem again, so its consecutive application allows one to calculate derivatives
of any order. In other words, at such arguments z (satisfying nondegeneracy), the given probability function is
of class C�. In particular, as a consequence of Theorem 4.1, singular Gaussian distribution functions are of
class C� at any points z satisfying the nondegeneracy condition of that theorem. Though an explicit formula for
second order derivatives could be given on the basis of Theorem 3.3, it seems to be more elegant to recursively
apply the result in a numerical context. We do not have any experience so far to judge whether or not the effort
to calculate second order derivatives would pay in the context of solving a chance constrained optimization
problem of the given type.

4.5. A numerical solution approach for optimization problems with chance constraint (3). Let us con-
sider the following optimization problem:

min8cT z ��4A� ≤ z5≥ p91 (24)

where z ∈ �m is a decision vector, c ∈ �m is a cost vector, A denotes a matrix of order 4m1 s5, p ∈ 60117 is
a probability level, and � is an s-dimensional Gaussian random vector distributed according to � ∼ N4�1è5
with è positive definite. The first important observation concerning the solution of (24) is that the feasible
set defined by the chance constraint happens to be convex. Indeed this is an immediate consequence of the
theory of log-concave measures by Prékopa [13]: the Gaussian distribution is log-concave and so is any linear
transformation of it. This implies the mapping z 7→ log�4A� ≤ z5 to be concave, which in turn shows that the
feasible set defined by the equivalent logarithmized chance constraint is convex. As a consequence, (24) may
be solved by classical methods of convex optimization, for instance by a cutting plane method. This latter
approach requires the following components: determination of a Slater point, evaluation of values and gradients
(for defining cuts) of the function z 7→�4A� ≤ z5, and a solution of a linear program defined by the polyhedral
outer approximation of the feasible set. Existence of a Slater point is guaranteed if p < 1 (which is typically
the case) and such a point can be easily determined by driving the components of z uniformly to infinity and
thus pushing the probability of �4A� ≤ z5 toward one. As already noted before, values of the given probability
function can be approximated by existing efficient codes (e.g., Deák [1], Genz and Bretz [5]), and thanks to
Theorem 3.3 (or Theorem 4.1, respectively), the same codes can be employed for computing gradients.



Henrion and Möller: A Gradient Formula for Linear Chance Constraints
Mathematics of Operations Research 37(3), pp. 475–488, © 2012 INFORMS 483

4.6. The case of rectangle probabilities. Many chance constrained optimization problems are of the two-
sided type, where the chance constraint is given by

�4x5 2=�4a4x5≤ � ≤ b4x55≥ p

with certain mappings a and b acting on the decision vector x (see, e.g., the hydro reservoir problem considered
in van Ackooji et al. [19]). With

�4z11 z25 2=�4� ≤ z11−� ≤ z25

one may represent the gradient of �4x5= �4b4x51−a4x55 as

ï�4x5= ïz1
�4b4x51−a4x55 �Db4x5−ïz2

�4b4x51−a4x55 �Da4x50

Because a and b are usually given analytically, the interesting part here is represented by the gradient of �.
Clearly, � is a special case of the function � in (4) with A= 4I1−I5T . Hence, one could apply Theorem 3.3 in
order to derive a gradient formula for Gaussian probabilities of rectangles boiling down to Gaussian probabilities
of rectangles again (in one dimension less and with new distribution parameters). Because of the simple structure
of rectangles there is no need, however, to rely on Theorem 3.3, because the mentioned formula can be derived
in a direct and elementary manner then (see van Ackooji et al. [19, Theorem 1]).

4.7. Truncated Gaussian distribution. The Gaussian distribution may not be the right characterization of
random vectors taking only positive values by their physical nature. One possible alternative then is to model the
random vector by means of a truncated Gaussian distribution. More precisely, let 6a1 b7⊂�s be a nondegenerate
generalized rectangle, i.e., a < b componentwise and components equal to ±� are allowed. Then, the random
vector � is said to have a truncated Gaussian distribution � ∼ 4�1è1a1b5 if its density is given by

f�4z5 2=

{

f�4z5/�4� ∈ 6a1 b75 if z ∈ 6a1 b7

0 else1

where � ∼N4�1è5 with positive definite è and with density f�. Then,

�4A� ≤ z5 = �4A� ≤ z1 � ∈ 6a1 b75=�4A� ≤ z1� ∈ 6a1 b75/�4� ∈ 6a1 b75

= 6�4� ∈ 6a1 b757−1
·�









A
I

−I



 � ≤





z
b

−a







 0

Now, this inequality system is basically of the form (4) because � has a regular Gaussian distribution. The
fact that part of the right-hand side of this inequality system is fixed (in contrast to (4)) does not matter if
partial derivatives with respect to z shall be computed because then all remaining components of z are fixed
anyway. Consequently, Theorem 3.3 can also be employed to derive gradients of chance constraints (3) in case
of truncated Gaussian random vectors by leading this issue back to the case of a standard Gaussian distribution.

4.8. Relation with existing general derivative formulae. At this point, one may ask how the gradient
formulae of Theorems 3.3 and 4.1 relate to the general derivative formulae mentioned in the introduction.
Specializing, for instance, Theorem 1 in Pflug and Weisshaupt [12] or Theorem 2.4 in Kibzun and Uryas’ev [8]
to the setting, which is of interest here, we have the following result:

Theorem 4.2. Let � be a random vector with continuous density g. Assume that, for a given z, the linear
system Ax ≤ z is nondegenerate (see Definition 3.1) and has a compact solution set. Then,

¡

¡zj
�4A� ≤ z5=

1
�aj�

∫

Ax≤z1aTj x=zj

g4x5doj4x51

where doj4x5 refers to the surface measure on the hyperplane defined by aT
j x = zj .
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Evidently, this formula is not explicit yet because it requires the computation of a surface integral depending
on the distribution of �. If � is Gaussian as in our case, it is likely that this computation can be carried out
in a way that it leads to a result as in Theorem 3.3. Note, however, that the formula is justified only under the
assumption that the polyhedron Ax ≤ z is compact, which is not the case in many applications. This assumption
is already violated if A= I , i.e., when �4A� ≤ z5 is the distribution function of �. Indeed the theorem is false,
in general, when dropping the compactness assumption because distribution functions need not be differentiable
even if the underlying density g is continuous (as required in the theorem) or even if g is continuous and bounded
along with all its marginal densities. The reason that we are able to prove the gradient formula in Theorem 3.3
without compactness is that we exploit the Gaussian character of the distribution: the compactness issue is
already part of the classical regular derivative formula in Theorem 1.1, which is the basis of our result. Note that
the main tool for deriving our gradient formula is the alternating representation of singular Gaussian distribution
functions in terms of regular ones in Theorem 3.1, which does not rely on any compactness assumption.

5. An Example from network capacity optimization under random demands. To illustrate a possible
application of the gradient formula obtained in Theorem 3.3, we consider a problem of network capacity opti-
mization under random demand as introduced in Prékopa [13, p. 452]. Assume we are given an electricity
network with a set of nodes and arcs and that at each node there exists a random demand of electricity follow-
ing a joint Gaussian distribution (according to §4.7, nonnegativity can be easily taken care of by truncation).
The demand of electricity may be covered by production facilities at the nodes as well as by transmission of
electricity along the arcs. As in Prékopa [13], we will assume that the power flow satisfies Kirchhoff’s first law
only, i.e., if it is handled as a linear transportation flow. We will also assume that the network topology is given
(of course, in general, this is just a subproblem of a general network design problem). In a planning phase, one
may be concerned with installing production and transmission capacities at minimum cost such that future ran-
dom demand patterns can be covered at a specified probability by directing a suitable flow through the network
satisfying the capacity constraints. The question, whether for a specific realization of the demand vector and for
given vectors of production and transmission capacities there exists such a feasible flow can be answered by the
Gale-Hoffman inequalities stating that for each subset of nodes the total net demand (sum of demands minus
production capacities in the nodes of this subset) should not be greater than the total transmission capacity of
arcs joining nodes of the considered subset with nodes of its complement. In formal terms, if �i and xi denote
the demand and production capacity at node i, and yj refers to the transmission capacity of arc j , then the
following linear inequality system is equivalent with the existence of a feasible flow:

∑

i∈S

4�i − xi5≤
∑

j∈A4S1 S̄5

yj ∀S1 (25)

where S runs through all subsets of nodes and A4S1 S̄5 is the set of arcs joining nodes from S with nodes from S̄.
We will write the system of linear inequalities in the more compact form of A� ≤Ax+By, where �, x, y refer
to the vectors composed of �i, xi, yj and the matrices A and B depend on the concrete network topology. The
optimization problem can now be formulated as

min8cT x+dT y ��4A� ≤Ax+By5≥ p90

Here, c and d are cost vectors for installing production and transmission capacities, respectively, and the chance
constraint expresses the fact that in a later operational phase the power demand can be met at probability
at least p. Of course, additional explicit constraints (e.g., simple bounds) on the decision variables x, y can be
also included. Rewriting the optimization problem in the equivalent form

min8cT x+dT y ��4A� ≤ z5≥ p1 z=Ax+By91 (26)

we see that the chance constraint is of type (3). According to (25), the number of inequalities equals 2s if s
equals the number of nodes in the network (because the set S in (25) runs through all subsets of 811 : : : 1 s9).
Hence, formally, the matrix A occuring in (26) is of order 42s1 s5, so that the transformed random vector A� has
a highly singular Gaussian distribution. Fortunately, it turns out that many inequalities in the huge system A� ≤ z
are redundant (which can be checked by linear programming, for instance). Sometimes, exploiting additional
information on possible bounds for the demand, one may be lucky to further reduce the inequality system until
the number of finally remaining inequalities is actually smaller than the number of nodes. Then, one is usually
back to the regular Gaussian case for which the classical gradient formula from Theorem 1.1 can be employed.
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(a) (b) (c)

Figure 1. Illustration of the solution for a probabilistic network capacity problem.
Note. For details see text.

Such an instance is described in Prékopa [13] (§14.4). However, there is no guarantee to arrive at such a
comfortable situation, in particular not if information on efficient bounds for demands is missing. Then, even
after deleting redundant inequalities, their number may still substantially exceed the number of nodes (i.e., the
dimension of the random vector). As a consequence, Theorem 1.1 is no longer applicable but one may exploit
Theorems 3.3 and 4.1 then and embed their results in the numerical solution scheme sketched in §4.5.

For the purpose of illustration we consider the network depicted in Figure 1(a) consisting of 13 nodes and
13 arcs. The demands at the nodes are assumed to be Gaussian with expected values proportional to the areas of
the gray shaded discs. The covariance matrix was set up as follows: the relative standard deviation (with respect
to mean values) at each node was chosen to be 20% and between different nodes a common correlation coefficient
of 0.3 was assumed. Constant cost coefficients cj were considered for the installation of production capacities
whereas cost coefficients dj for the installation of transmission capacities were assumed to be proportional to the
arc lengths. A probability level of p = 0099 was required for the chance constraint. Given the number of s = 13
nodes, one ends up at a number of 2s = 81192 Gale-Hoffman inequalities according to (25). After a redundancy
check, these could be reduced to 439 inequalities, still substantially exceeding the dimension s of the random
vector. According to our previous remarks, the chance constraint in (26) can be either understood as defined by
the probability of a rectangle with 439 faces with respect to a 13-dimensional regular Gaussian random vector
or as defined by the value of the distribution function of a 439-dimensional (highly singular) Gaussian random
vector. The solution of the problem is shown in Figure 1(a). Optimal transmission capacities yj are represented
by proportional thicknesses of the joining line segments. Optimal production capacities are represented as black
discs at the nodes with proportional areas such that the black disc remains in the background if the corresponding
capacity exceeds the expected demand (all but one node) and comes into the foreground otherwise (one node).
To check a posteriori the validity of the obtained solution, we simulated 100 different demand patterns according
to the Gaussian distribution specified above. One of these scenarios is illustrated as an example in Figure 1(b),
where expected values are gray shaded as in Figure 1(a) and the simulated demand vector is represented by
black discs with the same background-foreground rule as before. According to the calculated optimal solution,
we should expect that 99 out of 100 scenarios are feasible in the sense of the chance constraint (of course
this would only hold true on the average when repeating a simulation of 100 scenarios; in our concrete case,
all 100 scenarios turned out to be feasible). Note that feasibility here means that the demands at all nodes for
the given scenario can be satisfied by a flow through the network that respects the capacity limits obtained for
transmission and production. For the concrete scenario of Figure 1(b) a possible (directed) flow is illustrated in
Figure 1(c). The concrete directed transmission is represented by gray arrows of corresponding thickness (all of
which fit into the thickness of the capacity line). The needed operational production is represented by gray discs
(all of which fit into the black capacity discs).

Appendix. The following technical proposition is needed in the proof of Theorem 3.3. First, for each
j ∈ 811 : : : 1m9, we associate with the inequality system (13) the family of active indices I4j5 in the same spirit
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as I4A1 z5 was associated with the originally given inequality system Ax ≤ z via (5). Taking into account the
quantities defined in the statement of Theorem 3.3, this yields

I4j5
= 8I ⊆ 811 : : : 1m9\8j9 � ∃y ∈�s−12 aT

i L
4j5y = zi − aT

i w
4j5 4i ∈ I5

aT
i L

4j5y < zi − aT
i w

4j5 4i ∈ 811 : : : 1m9\4I ∪ 8j95590 (27)

Proposition A.1. Let z be such that the system Ax ≤ z is nondegenerate. Then, for any j ∈ 811 : : : 1m9 the
following identity holds true:

8I\8j9 � I ∈I4A1 z51 j ∈ I9=I4j50

Proof. Let j be arbitrarily fixed. To prove the inclusion “⊆,” let I ∈I4A1 z5 with j ∈ I be arbitrary. We have
to show that I\8j9 ∈I4j5. By definition of I4A1 z5, there exists some x̄ such that

aT
i x̄ = zi 4i ∈ I51 aT

i x̄ < zi 4i ∈ 811 : : : 1m9\I50 (28)

Referring to Theorem 3.2 and to Lemma 3.1, è4I1 j5=AI\8j9S4j54AI\8j95T is seen to be positive definite, hence,
it follows from S4j5 = L4j5L4j5T that AI\8j9L4j5 is a matrix of order 4#I − 11 s − 15 whose rows are linearly
independent. Recall that #I ≤ s as a consequence of the assumed nondegeneracy of the system Ax ≤ z. Therefore,
there exists a matrix B of order 4s − #I1 s − 15 such that the completion

(

AI\8j9L4j5

B

)

is of order 4s − 11 s − 15 and invertible. Moreover, since rank L4j5 = s − 1 by assertion (iii) of Lemma 3.1,
L4j5TL4j5 is of order 4s − 11 s − 15 and invertible too. Therefore, the matrix CL4j5 with

C 2=

(

AI\8j9

B4L4j5TL4j55−1L4j5T

)

is invertible. Now, with w4j5 from Lemma 3.1, define

ȳ 2= 4CL4j55−1C4x̄−w4j550 (29)

Fix an arbitrary k ∈ 811 : : : 1m9 and put

u 2= 44CL4j55−15TL4j5T ak0

Then, L4j5TCT u= L4j5T ak and it follows from assertions (iii) and (iv) of Lemma 3.1 that

CT u− ak = �aj

for some � ∈�. Therefore, (29) entails that

aT
kL

4j5ȳ = uTC4x̄−w4j55= 4ak +�aj5
T 4x̄−w4j550

Now, since j ∈ I , the first relation of (28) shows that aT
j x̄ = zj . Exploiting also assertion (v) of Lemma 3.1, we

may continue as
aT
kL

4j5ȳ = aT
k 4x̄−w4j550

Since k ∈ 811 : : : 1m9 was arbitrary, (28) yields that

aT
kL

4j5ȳ = zk − aT
kw

4j5 4k ∈ I51 aT
kL

4j5ȳ < zk − aT
kw

4j5 4k ∈ 811 : : : 1m9\I50

Now, the asserted relation I\8j9 ∈I4j5 follows from (27) upon recalling that j ∈ I .
Conversely, let Î ∈I4j5 be arbitrarily given. By definition, Î ⊆ 811 : : : 1m9\8j9 and there exists some y ∈�s−1

such that

aT
i L

4j5y = zi − aT
i w

4j5 4i ∈ Î 51 aT
i L

4j5y < zi − aT
i w

4j5 4i ∈ 811 : : : 1m9\4Î ∪ 8j9550
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Putting x̄ 2= L4j5y+w4j5, this yields that

aT
i x̄ = zi 4i ∈ Î 51 aT

i x̄ < zi 4i ∈ 811 : : : 1m9\4Î ∪ 8j9550 (30)

Furthermore, from assertions (iv) and (v) of Lemma 3.1, it follows that

aT
j x̄ = aT

j 4L
4j5y+w4j55= zj 0 (31)

By definition (5) of I4A1 z5, (30) and (31) provide that I 2= Î ∪ 8j9 ∈ I4A1 z5. Since j y Î , it follows that
Î = I\8j9. Consequently, Î belongs to the set

8I\8j9 � I ∈I4A1 z51 j ∈ I9

as was to be shown. �
Lemma A.1. Let z ∈ �m be such that the system Ax ≤ z is nondegenerate. Then for every I ∈ I4A1 z5 and

every J ⊆ I one has that J ∈I4A1 z5.

Proof. Let I ∈I4A1 z5 and J ⊆ I be arbitrary. By definition, there is some x ∈�s such that

aT
i x = zi 4i ∈ I51 aT

i x < zi 4i ∈ 811 : : : 1m9\I50

By the nondegeneracy assumption, rank8ai9i∈I = #I . Therefore, there exists a solution h̄ to the linear equations

aT
i h= 0 4i ∈ J 51 aT

i h= −1 4i ∈ I\J 50

Then, for x̄ 2= x+ th̄ with t > 0 small enough, one has that

aT
i x̄ = zi 4i ∈ J 51 aT

i x̄ < zi 4i ∈ 811 : : : 1m9\J 50

This entails J ∈I4A1 z5. �
Corollary A.1. Under the assumptions of Lemma A.1, if Ax ≤ z has a solution at all, then � ∈ I4A1 z5

and ak 6= 0 for all k with k ∈ I for some I ∈I4A1 z5.

Proof. Let x̄ be a solution of Ax ≤ z and put

I 2= 8i ∈ 811 : : : 1m9 � aT
i x̄ = zi90

Then, I ∈ I4A1 z5, whence � ∈ I4A1 z5 by Lemma A.1. Now, let k ∈ I for some I ∈ I4A1 z5. Then, the same
argument shows that 8k9 ∈ I4A1 z5, whence rank 8ak9 = 1 by the nondegeneracy assumption. In other words,
ak 6= 0. �
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[14] Prékopa A (2003) Probabilistic programming. Ruszczyński A, Shapiro A, eds. Stochastic Programming. Handbooks in Operations

Research and Management Science, Vol. 10 (Elsevier, Amsterdam) 267–351.
[15] Shapiro A, Dentcheva D, Ruszczyfiski A (2009) Lectures on Stochastic Programming: Modeling and Theory. MPS-SIAM Series

on Optimization. (Cambridge University Press, Cambridge, UK).
[16] Szántai T (1986) Evaluation of a special multivariate gamma distribution function. Math. Programming Stud. 27:1–16.
[17] Szántai T (2001) Improved bounds and simulation procedures on the value of the multivariate normal probability distribution function.

Ann. Oper. Res. 100(1-4):85–101.
[18] Uryas’ev S (1994) Derivatives of probability functions and integrals over sets given by inequalities. J. Computational Appl. Math.

56(1-2):197–223.
[19] van Ackooji W, Henrion R, Möller A, Zorgati R (2010) On probabilistic constraints induced by rectangular sets and multivariate

normal distributions. Math. Methods Oper. Res. 71(3):535–549.


	Introduction.
	Linear chance constraints with Gaussian distribution.
	Main result.
	Discussion of the result.
	Reduction of gradients to function values.
	A gradient formula for singular Gaussian distribution functions.
	Control of precision for gradients.
	Higher order derivatives.
	A numerical solution approach for optimization problems with chance constraint (3).
	The case of rectangle probabilities.
	Truncated Gaussian distribution.
	Relation with existing general derivative formulae.

	An Example from network capacity optimization under random demands.

