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Abstract
We present an adaptive grid refinement algorithm to solve probabilistic optimization
problems with infinitely many random constraints. Using a bilevel approach, we iter-
atively aggregate inequalities that provide most information not in a geometric but
in a probabilistic sense. This conceptual idea, for which a convergence proof is pro-
vided, is then adapted to an implementable algorithm. The efficiency of our approach
when compared to naive methods based on uniform grid refinement is illustrated for a
numerical test example as well as for a water reservoir problemwith joint probabilistic
filling level constraints.
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2 H. Berthold et al.

1 Introduction

Probabilistic programming or optimization under probabilistic constraints (or chance
constraints) has become a standard model of stochastic optimization whenever
inequality constraints are affected by random parameters. The typical form of such
probabilistic program is

min { f (x) | P (gi (x, ξ) ≤ 0 i = 1, . . . ,m) ≥ p} , (1)

where x ∈ R
n denotes a decision variable, f : R

n → R is some cost function,
ξ : Ω → R

s refers to an s-dimensional random vector defined on a probability
space (Ω,A ,P), g : R

n× R
s → R

m is some constraint mapping representing a
finite system of random inequalities and p is some safety level. To provide a simple
illustration, x might be the supply vector for different goods to be produced and ξ

might represent the demand vector of these same goods. Most often, one is faced with
a here and now situation, which means that the decision has to be taken prior to the
observation of the random vector. For instance, the baker has to decide early in the
morning how many breads, cakes etc. to bake much in advance of noting the real
customer demand of these products. The natural constraint to be imposed by the baker
is demand satisfaction for all goods, i.e. the inequality system gi (x, ξ) :=ξi − xi ≤ 0
for i = 1, . . . ,m. However, as this inequality system is stochastic and the realization
of the random parameter is not known at the time the optimization problem has to be
solved in x , it does not make sense to use this system as a constraint in the optimization
problem. Therefore, the dependence of the problem on the concrete realizations of ξ

has to be removed. A simple remedy would consist in replacing the random vector by
its expectation and solve the problem

min { f (x) | gi (x,Eξ) ≤ 0 i = 1, . . . ,m} . (2)

The drawback of this approach is that the inequality will be satisfied only for the
average demand. A given decision on the productionmay then lead to frequent demand
violation and the baker will be faced with unhappy customers. Passing to another
extreme, the bakermight decide to satisfy the customers demand in any circumstances,
which amounts to solving a problem under worst case constraints

min { f (x) | gi (x, z) ≤ 0 i = 1, . . . ,m; ∀z ∈ supp ξ} , (3)

where ‘supp ξ ’ denotes the support of the random vector ξ . Then, the customer will
be happy all the time. However, the baker will have to provide such an enormous
amount of goods in order to satisfy all unforeseen demand, that it will cause possibly
enormous costs. Moreover, most of the time unused products have to be thrown away
afterwards. Observe that given a uncountable support this last problem—in contrast
to the previous ones—has an infinite number of constraints, hence one is dealing with
semi-infinite optimization here. As an introduction to that topic we refer to the survey
article (López and Still 2007) or the monograph (Stein 2003). Observe also that both
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On the algorithmic solution of optimization problems… 3

models above exploit only minimal information about the random distribution of ξ ,
namely its first moment in (2) and its support in (3).

A good compromise between these models consists in declaring a decision to be
feasible if the probability of satisfying the random inequality system gi (x, ξ) ≤ 0
is at least some specified level p ∈ [0, 1] typically close to but different from one
(note that the choice p = 1 would boil down to the worst case model (3)). This yields
the probabilistic constraint in (1). Such constraint allows one to find a good trade-off
between costs and safety by yielding quite robust and cheap solutions. Moreover, the
model exploits the full distributional information about x and provides a probabilis-
tic interpretation of the optimal decision found. Probabilistic or chance constraints
have been introduced around 60years ago by Charnes et al. (1958). Major theoretical
breakthrough has been achieved in the pioneering work of Prékopa, whose mono-
graph (Prékopa 1995) is still a standard reference in probabilistic programming. More
recent presentation can be found in Shapiro et al. (2014) and van Ackooij (2020).
Applications of probabilistic programming are abundant in engineering sciences,
notably power management, telecommunications and chemical engineering. In the
last 10–20years, much progress has been achieved in the algorithmic treatment of
these optimization problems (e.g., Adam et al. 2020; Bremer et al. 2015; Curtis et al.
2018; Dentcheva andMartinez 2013; Geletu et al. 2017; Hong et al. 2011; Luedtke and
Ahmed 2008; Pagnoncelli et al. 2009). At the same time, the traditional model (1) has
been continuously extended from a classical operations research setting towards infi-
nite dimensions (PDE constrained optimization) (Farshbaf-Shaker et al. 2018, 2019;
Geletu et al. 2017), dynamic models (multistage) (Andrieu et al. 2010; González
Grandón et al. 2019; Guigues and Henrion 2017; Liu et al. 2016; Martínez-Frutos and
Periago Esparza 2018) and infinite inequality systems (González Grandón et al. 2017;
Heitsch 2020; van Ackooij et al. 2016). This latter aspect will be in the focus of the
present paper.

There are two main sources for infinite random inequality systems. The first one is
uniformity in time or space. For instance, one application of this paper will be con-
cerned with the time continuous control of a water reservoir under random inflow. A
crucial constraint in this problem consist in keeping the level of the reservoir above a
critical value c with given probability throughout the considered time horizon [0, T ].
This leads us to the consideration of an optimization problem with probabilistic con-
straints of the type

P (gt (x, ξ) ≥ c ∀t ∈ [0, T ]) ≥ p, (4)

where gt (x, ξ) refers to the water level at time t depending on the water release (deci-
sion to be determined here and now) and on the random inflow (to be observed later,
e.g., precipitation). The only but crucial difference with (1) consists in passing from
the finite index i to the continuous index t . In another context, such as risk-averse PDE
constrained optimization, one might deal with uniform probabilistic state constraints,
where the index could refer now to a point in a given space domain (e.g., Farshbaf-
Shaker et al. 2018, p. 832). A second source of infinite random inequality systems is the
simultaneous presence of different kinds of uncertainty, namely uncertainty endowed
with stochastic information—which allows one to estimate distributions of the ran-
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4 H. Berthold et al.

dom parameter and to derive probabilities—and non-stochastic uncertainty which at
most gives an idea about the support of the random vectors. The first type is usually
dealt with in the context of probabilistic constraints as in (1), whereas the second one
falls into the class of robust optimization problems (see, e.g., Ben-Tal et al. (2009)).
For instance in problems of optimal gas transport, one is simultaneously faced with
stochastic uncertainty (given by uncertain gas loads for which large historical data
bases exist) and with robust uncertainty (given by unknown friction coefficients of
pipes which are under ground and can hardly be estimated) (González Grandón et al.
2017). The resulting probabilistic constraint then may take the form

P (g (x, ξ,Φ) ≤ 0 ∀Φ ∈ U ) ≥ p, (5)

where ξ is the random load and Φ is the uncertain friction coefficient which is
allowed to vary arbitrarily within some given uncertainty setU . This constellation of
a probabilistic constraint involving a robust one motivated the choice of the acronym
probust for such constraints in VanAckooij et al. (2020). Observe that mathematically,
though different in interpretation, (4) and (5) are the same.

We note that in a more general context the index sets in (4) and (5) could even
depend themselves on the decision and/or random vector, so that one would consider,
e.g.,U (x, ξ) orU (x). Such models—without the probabilistic aspect—would bring
one towards inequality systems considered in generalized semi-infinite programming
(see, e.g., Guerra Vázquez et al. 2008; Stein 2003). An application of probabilistic
constraints involving decision-dependent index sets is presented in the context of the
capacity maximization problem in gas networks (Heitsch 2020).

It has to be mentioned that, similarly to the case of finite inequality systems, one
has to distinguish between joint probabilistic constraints, where the probability is
taken uniformly over all random inequalities as in (1), and individual probabilistic
constraints, where each random inequality is turned into an individual probabilistic
constraint. In the context of (4), for instance, such individual model would read as

P (gt (x, ξ) ≥ c) ≥ p, ∀t ∈ [0, T ] . (6)

Examples for applications of continuously indexed individual constraints are First
Order Stochastic Dominance Constraints (Dentcheva and Ruszczyński 2010) and
Distributionally RobustChanceConstraints (Zymler et al. 2013). In thewater reservoir
context, (6) just ensures that the water level stays above c with given probability p at
each time t ∈ [0, T ] individually. Usually, one is interested, however, in keeping the
level above c with given probability p uniformly throughout the time horizon [0, T ]
which corresponds to (4) and is a much stronger requirement.

A first theoretical analysis of optimization problems subject to probust constraints
can be found in Farshbaf-Shaker et al. (2018) (continuity properties and existence and
stability of solutions) and in Van Ackooij et al. (2020) (differentiability and gradi-
ent formulae). As far as the numerical solution of such problems is concerned, early
attempts using worst case analysis allowed for an analytical reduction of the continu-
ously indexed constraint to a conventional one with a single (but now moving) index.
Such favorable situation is exceptional, however. For instance, in the capacity maxi-
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mization problem for gas networks considered in Heitsch (2020), it was assumed that
the network is a tree. As soon as cycles are involved, such analytical reduction is no
longer possible and numerical techniques have to be developed. The purpose of the
present work is to propose efficient algorithmic solution schemes for probust problems
which are based on adaptive grid refinement strategies and clearly outperform a brute
force uniform discretization of the index set. The basic idea of grid refinement is the
selection of new gridpoints (actually indices representing inequalities) according to
their importance with respect to the given probability distribution. This leads to an
alternating two-phase algorithm where the upper level iterates on the decision x with
the current grid fixed and the lower level iterates on finding a new grid point with the
current decision x fixed. The resulting grids are highly non-uniform in general and
provide a satisfactory approximation of the probabilistic constraint with much fewer
points than uniform grids.

The paper is organized as follows: In Sect. 2, the algorithmic details of our solution
approach are presented. We start with a brief review of the spheric-radial decomposi-
tion of Gaussian random vectors which is a successful tool for solving conventional
(finitely indexed) probabilistic programs as (1) for Gaussian (more generally: ellipti-
cally symmetric) distributions. We then propose and illustrate a conceptual two-level
(alternating) algorithm for adaptive grid refinement. This is followed by the descrip-
tion of an implementable algorithm whose superiority over uniform grid generation
methods is demonstrated for a numerical example. Section 3 provides a convergence
proof for the conceptual algorithm mentioned above. Finally in Sect. 4, our adaptive
algorithm will be applied to a simplified model of water reservoir control. Results will
be compared on the algorithmic level with a standard approach using uniform grids
and on the modeling level with a simplifying reduction to expected inflows according
to (2) or time-wise individual chance constraints according to (6).

2 Algorithmic solution approaches

In this paper, we consider optimization problems with probust constraints:

min { f (x) | P (g (x, ξ, t) ≤ 0 ∀t ∈ T ) ≥ p, x ∈ X} . (7)

Here, f : Rn → R is some objective function depending on a decision vector x ∈ R
n ,

ξ is an s-dimensional random vector defined on some probability space (Ω,A ,P),
g : Rn × R

s × R
d → R is a random constraint function indexed by t ∈ T ⊆ R

d .
Finally, X ⊆ R

n is some abstract deterministic constraint set, given for instance by
box constraints. It is clear that, for a numerical solution of (7), the infinite inequality
system has to be turned into a finite one in the one or other way. Then, one is dealing
with a conventional probabilistic constraint as in (1), a problem which could be solved
with standard methods of nonlinear optimization such as SQP. The basic ingredient
for the numerical treatment of probust constraints will therefore consist in the efficient
computation of values and gradients of the probability function

ϕ̃ (x) := P (gi (x, ξ) ≤ 0 i = 1, . . . ,m) . (8)
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6 H. Berthold et al.

An appropriate tool to achieve this goal in the case that ξ has a Gaussian or, more
generally an elliptically symmetric distribution (e.g. Student) is the so-called spheric-
radial decomposition (e.g., Farshbaf-Shaker et al. 2019; GonzálezGrandón et al. 2017;
Heitsch 2020; Van Ackooij et al. 2020). As this is the working horse for all probability
computations in this paper, we start with a short introduction here and refer to more
detailed presentations in Van Ackooij and Henrion (2014, 2017).

2.1 Spheric-radial decomposition

In this section we show how values and gradients of the probability function ϕ̃ in (8)
can be approximated efficiently when ξ obeys an s-dimensional Gaussian distribution
according to ξ ∼ N (μ,Σ) with expectation μ and covariance matrix Σ . The prin-
ciple of spheric-radial decomposition of a Gaussian random vector expresses the fact
that, for any Borel measurable subset C ⊆ R

s one has the representation

P (ξ ∈ C) =
∫
Ss−1

νχ ({r ≥ 0 | μ + r Lw ∈ C}) dνη (w) ,

where Ss−1 is the unit sphere in R
s , νχ is the one-dimensional Chi-distribution with

d degrees of freedom, νη is the uniform distribution on Ss−1 and L is a root of Σ (i.e.,
Σ = LLT ). Applied to (8), this yields the expression

ϕ̃ (x) =
∫
Ss−1

νχ ({r ≥ 0 | gi (x, μ + r Lw) ≤ 0 (i = 1, . . . ,m)}) dνη (w) . (9)

For the ease of presentation, we shall assume that the constraint mappings gi in (8) are
convex in their second argument ξ . This will be the case, for instance, in the numer-
ical example considered in Sect. 2.5 and in the application we are going to discuss
in Sect. 4. For applications of the spheric-radial decomposition to probabilistic con-
straints without this convexity assumptions, we refer, for instance, to Heitsch (2020);
Van Ackooij and Pérez-Aros (2020).

As an immediate consequence of Van Ackooij and Henrion (2014, Prop 3.11), we
then have the following observation:

Proposition 1 Let x ∈ R
n be such that ϕ̃ (x) > 1

2 and that there exists some z ∈ R
s

with gi (x, z) < 0 for all i = 1, . . . ,m. Then, gi (x, μ) < 0 for all i = 1, . . . ,m.

Clearly, if the probability level p in problem (1) is larger than 1
2 , then ϕ̃ (x) > 1

2
will be satisfied at every feasible point of that problem. Recall that p > 1

2 is not a
restrictive assumption, because in general the probability levels will be chosen close to
one (e.g. 0.9). In particular, under this first assumption of the Proposition, there must
exist some z ∈ R

s with gi (x, z) ≤ 0 for all i = 1, . . . ,m (otherwise, ϕ̃ (x) = 0).
Now, the second assumption of the Proposition slightly strengthens this fact towards
a strict inequality. It will be satisfied in all properly modeled applications. The benefit
of Proposition 1 is the following:
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On the algorithmic solution of optimization problems… 7

Corollary 1 Under the assumptions of Proposition 1, the integrand in (9) can be explic-
itly represented for any fixed x ∈ R

n and w ∈ S
s−1 as

νχ ({r ≥0 | gi (x, μ+r Lw)≤0 (i = 1, . . . ,m)}) =
{
1 ifw ∈ I(x)
Fχ (ρ (x,w)) otherwise

.

Here, Fχ is the cumulative distribution function of the one-dimensional Chi-
distribution with d degrees of freedom,

I (x):=
{
w ∈ S

s−1 | gi (x, μ + r Lw) ≤ 0 ∀r ≥ 0 ∀i = 1, . . . ,m
}

and ρ (x, w) is the unique solution in r of the equation e (r) = 0, where

e (r) := max
i=1,...,m

gi (x, μ + r Lw) .

Proof Fix some arbitrary x ∈ R
n and w ∈ S

s−1. If w ∈ I (x), then, by definition of
I (x) and since the support of the Chi-distribution is the non-negative reals,

νχ ({r ≥ 0 | gi (x, μ + r Lw) ≤ 0 (i = 1, . . . ,m)}) = νχ (R+) = 1.

Otherwise, there exists some r ≥ 0 such that e(r) > 0. On the other hand, e(0) < 0
as a consequence of Proposition 1. Moreover, by the assumed convexity of g in its
second argument, e is a convex function too. Hence, there exists a unique solution
ρ (x, w) of the equation e (r) = 0 and one has that

νχ ({r ≥ 0 | gi (x, μ + r Lw) ≤ 0 (i = 1, . . . ,m)}) = νχ ({r ≥ 0 | e (r) ≤ 0})
= νχ ([0, ρ (x, w)]) = Fχ (ρ (x, w)) − Fχ (0) = Fχ (ρ (x, w)) .

	


The integral (9) can be numerically approximated by a finite sum

ϕ̃ (x) ≈ K−1
K∑
j=1

νχ

({
r ≥ 0 | gi

(
x, μ + r Lw( j)) ≤ 0 (i = 1, . . . ,m)

})
, (10)

where
{
w(1), . . . , w(K )

} ⊆ S
s−1 is a sample of the uniform distribution on S

s−1. A
simple way to get such a sample is based on the observation that the normalization
θ/ ‖θ‖ to unit length of a standard Gaussian distribution θ ∼ N (0, Is) is uniformly
distributed on S

s−1. Hence, one may sample N (0, Is) using Monte-Carlo or better
Quasi Monte-Carlo simulation in order to generate some scenarios

{
w̃(1), . . . , w̃(K )

}
and then pass to their normalized version w( j):=w̃( j)/

∥∥w̃( j)
∥∥, j = 1, . . . , K .
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8 H. Berthold et al.

Combining (10) with Corollary 1, we arrive at the following implementable approx-
imation of our probability function:

ϕ̃ (x) ≈ K−1
(
#
{
j | w( j) ∈ I (x)

} +
K∑

j /∈I (x)
Fχ

(
ρ
(
x, w( j)))). (11)

The crucial step in this approximation is the efficient solution of the equation e (r) = 0
for given x and w( j) in order to determine ρ

(
x, w( j)

)
. This is particularly easy if the

constraintmappings gi in (8) are linear in ξ (as in the application in Sect. 4) or quadratic
(as in Heitsch 2020; Farshbaf-Shaker et al. 2019) or polynomial of low order. As for
the one-dimensional cumulative distribution function Fχ , highly precise numerical
approximations are available.

In order to also derive an approximation of the gradient∇ϕ̃weare led to differentiate
the approximation (11) of ϕ̃ with respect to x :

∇ϕ̃ (x) ≈ K−1
K∑

j /∈I (x)
fχ

(
ρ
(
x, w( j))) ∂ρ

∂x

(
ρ
(
x, w( j))) . (12)

Here, fχ denotes the density of the given Chi-distribution (note that F ′
χ = fχ ). The

question of whether the gradient of the approximation is an approximation of the
gradient is of theoretical nature and shall not be discussed here. It can be answered
positively undermild conditions, see, e.g., VanAckooij andHenrion (2017).Moreover,
the function ρ may turn out to be non-differentiable at arguments

(
x, w( j)

)
for which

the maximum

max
i=1,...,m

gi
(
x, μ + ρ

(
x, w( j))Lw( j)

)

is attained by more than one index. Therefore, in a strict sense, one would have to
consider (Clarke-) subdifferentials rather than ordinary derivatives as in Van Ackooij
and Henrion (2017). Fortunately, classical differentiability of ρ is typically given for
almost all arguments. The derivative itself is easily computed by applying the Implicit
Function Theorem to the equation

gi∗
(
x, μ + r Lw( j)

)
= 0,

at r :=ρ
(
x, w( j)

)
, where i∗ is defined to be the (assumed) unique index with

gi∗
(
x, μ + ρ

(
x, w( j))Lw( j)

)
= max

i=1,...,m
gi

(
x, μ + ρ

(
x, w( j))Lw( j)

)
.
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One then obtains that

∂ρ

∂x

(
ρ
(
x, w( j))) = − ∇x gi∗〈∇ξ gi∗

(
x, μ+ρ

(
x, w( j)

)
Lw( j)

)
, Lw( j)

〉 (
x, μ+ρ

(
x, w( j))Lw( j)

)

Combining this with (12), yields a fully explicit approximation of the gradient of the
probability function:

∇ϕ̃ (x) ≈ K−1
K∑

j /∈I (x)
− fχ

(
ρ
(
x, w( j)

))∇x gi∗〈∇ξ gi∗
(
x, μ+ρ

(
x, w( j)

)
Lw( j)

)
, Lw( j)

〉 (
x, μ+ρ

(
x, w( j))Lw( j)

)

(13)

Observe that both the value in (11) and the gradient in (13) of ϕ can be simultaneously
updated at some given iterate of the decision x with each given sample w( j). In
particular, the possibly time-consuming determination of the value ρ

(
x, w( j)

)
has to

be executed only once for both quantities. The precision of both computations (11) and
(13) can be controlled by choosing an appropriate sample size K . In most applications
we found a sample of size 10.000 based on Quasi Monte-Carlo simulation of the
standard Gaussian distribution (see above) to be sufficient at least in the early phase
of iterations when solving an optimization problem numerically. Close to the solution
it may be beneficial to increase this sample size say to 50.000.

2.2 Uniform discretization schemes

Having described the computation of values and gradients of the probability function
ϕ related to finitelymany random inequalities in (8), we have the necessary ingredients
to solve the optimization problem (1), where the probabilistic constraint is defined via
finitely many random inequalities. Turning now to the probust problem (7) involv-
ing infinitely many random inequalities, we will make recourse to the finite case by
choosing appropriate discretization schemes for the index set T . A simple approach
for solving (7) would consist in selecting a sufficiently large number of indices from
the index set T and then turning (7) into an optimization problem with conventional
probabilistic constraints as given in (1). One could either select indices randomly or
establish a uniform grid. In the case of a rectangle

T = [α, β] ⊆ R
p,

such uniform grid of order
(
N1, . . . , Np

)
would consist of the finite index set

T
N1,...,Np
U :=

{
z ∈ R

p | ∃ (
i1, . . . , i p

) : 0 ≤ i j ≤ N j ,

z j = α j + i j
N j

(
β j − α j

)
( j = 1, . . . , p)

}
.
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10 H. Berthold et al.

Then (7) reduces to the problem

min
{
f (x) | P

(
g (x, ξ, t) ≤ 0 ∀t ∈ T

N1,...,Np
U

)
≥ p, x ∈ X

}

with finitely many random inequalities which is of type (1) and, hence, can be solved
say with an SQP method for nonlinear optimization using the tools provided in
Sect. 2.1. If we do so without further refinement, in particular with a fixed sample
size K for the spheric-radial decomposition, then we refer to this approach as to
(FUG-FS), meaning fixed uniform grid—fixed sampling.

At this point one can already think about some refinements of this naive approach
still on the level of uniform grids. Accepting the idea that a highly precise and com-
putationally expansive approximation of problem (7) may be needed only when the
iterate x is close to a solution, we could content ourselves with much coarser uniform

grids T
N ′
1,...,N

′
p

U with N ′
j significantly smaller than N j in the beginning, but increasing

towards N j in the course of iterations. At the same time, in the beginning we could
choose a much smaller sample size K ′ < K for controlling the precision of the prob-
ability function ϕ and its gradient when applying the spheric-radial decomposition
and turning to a large K only in the terminal phase of the iterations. We will refer
to this as to (IUG-IS), meaning increasing uniform grid—increasing sampling. It is
intuitively clear that the indices t ∈ T in (7) describing the infinite inequality system
do not have the same importance in the probabilistic context as in the deterministic
one (without random vector). More precisely, their importance will crucially hinge on
the geometric position of the (x-depending) set of feasible scenarios

Z(x, T ):= {
z ∈ R

s | g (x, z, t) ≤ 0 ∀t ∈ T
}

with respect to the probability distribution of ξ . This position will make some indices
(inequalities) account for smaller, some for bigger probabilities. Therefore it should
not come as a surprise that a uniform grid will typically waste a lot of probability-
based information and that an appropriately adapted grid has the potential of clearly
outperforming it. In the following, we will formulate and illustrate first a conceptual
algorithm for adaptive grid refinement and then propose an implementable version
thereof.

2.3 A conceptual algorithmic framework for adaptive grid refinement

Denote the probability function associated with (7) by

ϕ (x) :=P (g (x, ξ, t) ≤ 0 ∀t ∈ T )
(
x ∈ R

n) ,

so that (7) can be rewritten as

min { f (x) | ϕ (x) ≥ p, x ∈ X} . (14)
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On the algorithmic solution of optimization problems… 11

Similarly, for any finite inner approximation I ⊆ T , denote

ϕ I (x) := P (g (x, ξ, t) ≤ 0 ∀t ∈ I )
(
x ∈ R

n)

yielding the approximate optimization problem

min
{
f (x) | ϕ I (x) ≥ p, x ∈ X

}
(15)

which is of type (1) with m:=#I and, hence, algorithmically accessible via nonlinear
optimization based on the information provided in Sect. 2.1. Clearly, since for any
fixed x ∈ R

n ,

{z | g (x, z, t) ≤ 0 ∀t ∈ T } ⊆ {z | g (x, z, t) ≤ 0 ∀t ∈ I } ,

it follows that

ϕ I (x) ≥ ϕ (x) ∀x ∈ R
n . (16)

In other words, the feasible set of (15) is an outer approximation of the original feasible
set in (7) and, hence, the optimal value of (15) is a lower bound on that of (7). Now, as
this observation holds true for any finite index set I , one could reasonably decide on
a choice I ∗ among all finite index sets sharing the same cardinality, which minimizes
the value of ϕ I because this one, ϕ I ∗

, will provide the best available upper estimate for
ϕ. Of course, one has to take into account that this choice of I ∗ is typically not possible
in a uniform sense (i.e., for all x ∈ R

n). But one could locally adapt this choice to
the sequence of iterates x generated in the solution process, thereby organizing the
choice in a manner that the obtained sequence of index sets I ∗ increases in size. In this
way an adaptive grid can be generated which sequentially collects the (locally) most
informative indices and potentially leads to much faster convergence of solutions than
uniform grids of comparative size—or put differently: to comparable convergence

Algorithm 1 Conceptual two-level algorithm for probust optimization problems

1. Choose an initial point x0 ∈ X . Set I0:=∅, k:=0 and fix some kmax > 0.
2. (lower level problem) Solve the following optimization problem with conventional probabilistic con-

straints in t :
min
t

{
P

(
g
(
xk , ξ, t̃

) ≤ 0 ∀t̃ ∈ Ik ∪ {t}
)

| t ∈ T
}

and denote by t∗k one of its solutions.

3. (upper level problem) Set Ik+1:=Ik ∪ {
t∗k

}
and solve (with xk as a starting point) the following

optimization problem with conventional probabilistic constraints in x :

min
x

{
f (x) | P

(
g (x, ξ, t) ≤ 0 ∀t ∈ Ik+1

) ≥ p, x ∈ X
}

and denote by xk+1 one of its solutions.
4. Set k:=k + 1. If k > kmax, then STOP, otherwise go to 2.
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12 H. Berthold et al.

Fig. 1 Illustration of the upper level optimization and of the lower level optimization (minimization of a
one-dimensional probability function)

of solutions as uniform grids of much larger size. This idea suggests a conceptual
two-level algorithm for solving the probust problem (7).

We emphasize that both, the upper and the lower level in Algorithm 1 can be solved
by means of nonlinear optimization methods using the information from Sect. 2.1.
The difference between both problems is that in step 2 the x-variable is fixed and
optimization is carried out over the t-variable and in step 3 the t-variable is fixed and
optimization takes place with respect to the x-variable.

We are going to illustrate this conceptual algorithm for the following simple exam-
ple, which, for the purpose of visualization is in dimension two both with respect to
decisions x and to the random vector ξ (i.e., n = s = 2):

min

{
x21 + x22

∣∣∣∣P
(

ξ1 sin t + ξ2 sin 2t ≤ x1
ξ1 cos t + ξ2 cos 2t ≤ 2x2

∀t ∈ [0, 2π ]

)
≥ 0.9

}

ξ ∼ N

(
(0, 0) ,

(
1 −0.5

−0.5 1

))
(17)

Formally, here one is dealing with is a system of two continuously indexed systems
but this easily recast in the form of (7) upon putting

g (x, ξ, t) :=max {ξ1 sin t + ξ2 sin 2t − x1, ξ1 cos t + ξ2 cos 2t − 2x2} .

Moreover, we choose X :=R
2. Figure 1a shows the set M of feasible decisions

x = (x1, x2) defined by the probabilistic constraint (17). Since its graphical represen-
tation cannot be achieved due to the underlying infinite number of random inequalities,
we have shown its presumably very tight approximation on the basis of a uniform grid
on [0, 2π ] consisting of 101 points. The optimal solution of problem (17) (which is
nothing but the norm-minimal feasible point) is denoted by x∗ in the figure. As a start-
ing point of our algorithm we choose x0:= (1, 1). Entering step 2 of the algorithm (the
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On the algorithmic solution of optimization problems… 13

Fig. 2 Illustration of the lower level optimization. Solution of the continuous inequality system and best
outer approximation

lower level problem), we have to minimize the one-dimensional probability function

ϕ0(t):=P

(
g

(
x0, ξ, t

)
≤ 0

)

which is plotted in Fig. 1b and achieves its minimum at t∗0 ≈ 2.24. Using this first
index created, we pass to step 3 (the upper level problem) and solve the optimization
problem

min
{
f (x) | P (

g
(
x, ξ, t∗0

) ≤ 0
) ≥ 0.9

}
.

The feasible set M1 of decisions x = (x1, x2) satisfying the probabilistic constraint
above is illustrated in Fig. 1a. It can be interpreted as the best approximation of the
true feasible set M based on a single index in [0, 2π ]. The upper level problem is
easily solved graphically, because, given the objective, we have to look for the norm-
minimal feasible point x (1) ∈ M1 which is determined by the unique circle centered
at the origin and touching the boundary of the feasible set (see Fig. 1a). With this
first iterate in the space of decisions we re-enter step 2 and solve the new lower level
problem which amounts to minimizing over [0, 2π ] the probability function

ϕ1(t):=P

(
g

(
x1, ξ, t∗0

)
≤ 0, g

(
x1, ξ, t

)
≤ 0

)
.

Here, the previously computed index t∗0 is kept and a new one t is added, so that it
minimizes the joint probability of two inequalities. From Fig. 1b, we identify the new
index as t∗1 ≈ 3.14. This creates the next upper level problem

min
{
f (x) | P (

g
(
x, ξ, t∗0

) ≤ 0, g
(
x, ξ, t∗1

) ≤ 0
) ≥ 0.9

}

whose feasible set M2 and optimal solution x (2) ∈ M2 (normminimal element of M2)
are illustrated in Fig. 1a. Proceeding this way one generates a sequence of lower and
upper level problems whose solutions are depicted in Fig. 1. It can be seen that the
sequence Mk of feasible is decreasing and approximates M fairly well already after
3 iterations. Similarly, the iterates xk of the upper level problem quickly converge to
the solution x∗ of the given probust problem.
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14 H. Berthold et al.

The meaning of the lower level problem is illustrated in Fig. 2 in the two-
dimensional space of realizations of the randomvector ξ = (ξ1, ξ2) (not to be confused
with the two-dimensional space of decisions x from Fig. 1a). The diagrams show the
evolution of the solution sets

Zk :=
{
ξ ∈ R

2 | g(x (k), ξ, t
) ≤ 0 ∀t ∈ T

}

of the continuously indexed inequality system with decision fixed as the kth iterate
x (k) of the decision vector generated in Algorithm 1 (set colored in black). Observe
that this set changes with x and its probability is smaller than the desired level p as
long as x (k) is not feasible for the probust constraint as in Fig. 1a (i.e., x (k) /∈ M). It
is only in the limit—as x (k) → x∗—that P

(
ξ ∈ Zk

) → p. The figure also indicates
in each step the finitely indexed approximations

Ẑ k :=
{
ξ ∈ R

2 | g(x (k), ξ, t
) ≤ 0 ∀t ∈ Ik

}
;

Z̃ k :=
{
ξ ∈ R

2 | g(x (k), ξ, t
) ≤ 0 ∀t ∈ Ik ∪ {

t∗k
}}

before entering the lower level problem (set colored in gray) and after adding the
inequalities (two at a time because we are dealing with two inequality systems in our
example) corresponding to the new index t∗k (cuts colored in black). In each step, the
new inequalities minimize the probability of the resulting finite inequality system. In
other words, the new inequalities cut off an area of maximum of probability. Note that
Zk ⊆ Z̃ k ⊆ Ẑ k and that in a probabilistic sense, Z̃ k is the best reduction of Ẑ k by
a single new index towards the continuously indexed set Zk . This probabilistic sense
reveals itself in Fig. 2 by the fact that the new cuts do not necessarily correspond what
we might expect as a good approximation of Zk in a geometric sense. In the course
of these first four iterations, a clear tendency to improve the geometric approximation
in the anti-diagonal direction at the cost of the diagonal direction. This effect can be
explained from the chosen distribution of the random vector, where we assumed a neg-
ative correlation between its components. Therefore, probability is stronger reduced
by cuts whose normals are anti-diagonal. In Sect. 3, we will present a convergence
proof for Algorithm 1.

2.4 Efficient implementable adaptive grid refinement

The solution algorithm presented in the previous section is of conceptual nature only,
as it relies on two full optimization problems in each of its iterations. In order to design
an implementable version of this algorithm, one has to make sure that only finitely
many substeps are taken in each iteration. This could be guaranteed, for instance, if
one replaces the exact solution of the upper and lower level problems in Algorithm 1
by ε-solutions for some sufficiently small ε. Indeed, the convergence result we prove
in Sect. 3 applies even to this generalized form of Algorithm 1 provided that the
tolerances of the two subproblems tend to zero.
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Still, a solution of both problems at high accuracy would bear the risk of unnesse-
cary numerical efforts and of wasting the potential advantages of aggregating indices
according to their probabilistic importance over a simple uniform grid construction.
Therefore, our approach with respect to the upper level problem will simply rely on
making just a few single steps (only one in example (17)) with a nonlinear optimiza-
tion solver (e.g., SQP or active-set method) and only in the very last iteration (after
the improvement of the objective becomes small in a predefined sense) making a com-
plete solve of the upper level problem. Moreover, we adopt the idea of working with
a comparatively small sample size in the spheric-radial decomposition in the initial
phase and using a large size only in this mentioned final solve, when highly precise
solutions for the overall problem are generated. This idea has already been employed
in the uniform grid approach (IUG-IS) introduced in Sect. 2.2.

An major challenge is to keep the computational effort for the lower level problem
small. If this is not achieved, any progress made on the upper level is counteracted by
the lower level making the determination of few informative indices such costly, that
even their small number does not pay the whole approach. We will therefore propose
two strategies to reduce the time spent for the lower level so that its contribution to the
overall computing time becomes negligible. The first measure consists in not solving
the lower level exactly but rather finding approximate solutionswhich are defined on an
appropriate enlargement of the current grid. The idea is particularly easily implemented
for one-dimensional index sets T such as time intervals: given any current finite grid
Ik ⊆ T when entering the lower level problem, we define another finite grid Î ⊆ T
by collecting all mid points between neighbors of the current grid. Hence, if

Ik = {t1, . . . , tN } (t1 < t2 < · · · < tN ) ,

then

Î :=
{
ti + ti+1

2

∣∣∣∣ i = 1, . . . , N − 1

}
.

Instead of solving the lower level continuous optimization problem

min
{
P

(
g
(
xk, ξ, t̃

) ≤ 0 ∀t̃ ∈ Ik ∪ {t}
)

| t ∈ T
}

(18)

as in step 2 of Algorithm 1, we find by finite enumeration the solution of

min
{
P

(
g
(
xk, ξ, t̃

) ≤ 0 ∀t̃ ∈ Ik ∪ {t}
)

| t ∈ Î
}

. (19)

The new index t∗k solving this finite substitute of the original lower level problem is
then joined to the current grid to define the new grid Ik+1:=Ik ∪ {

t∗k
}
used in the next

upper level problem as in step 3 of Algorithm 1.
The construction above requires that—unlike the empty set in Algorithm 1—the

initial grid should contain at least two elements. In particular, the two endpoints of
the interval should be contained in the initial grid because the new grids will always
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16 H. Berthold et al.

Fig. 3 Illustration of two consecutive grid refinement steps for a one-dimensional index set

be contained in the convex hull of the initial grid. When starting with two grid points,
then Î solely consists of their average and so no enumeration is necessary in (19), this
average is necessarily the newly created index. It is therefore reasonable to have both
end points of T and the midpoint in the starting grid. From then on, new grids may
freely develop which concentrate in certain more interesting regions of the index set
as shown in the numerical example of Sect. 2.5. The procedure is illustrated in the
left part of Fig. 3. Here, the black points represent the initial grid Ik , when entering
the lower level in iteration k and the gray points generate the grid Î of associated
midpoints. Among these, the one minimizing the probability function

ϕk (t) :=P

(
g
(
xk, ξ, t̃

) ≤ 0 ∀t̃ ∈ Ik ∪ {t}
)

(t ∈ T )

related with problem (18) is chosen (encircled). This corresponds to the finite enu-
meration of function values of ϕk in (19) (thin lines in Fig. 3). In the next iteration,
the new grid Ik+1 is enlarged by the previously determined best point and two new
mid points enter the new set Î of candidates. Continuing this way, the current grid (as
well as the midpoints may concentrate in regions where the (changing) probability
function is small.

An important aspect in the implementation of these idea is keeping upper and lower
level synchronous. It may turn out that the aggregation of just one new index in the
lower level as described so far is too slow when compared to the progress in the upper
level. Therefore, it is recommended to collect more than one new index at a time in the
lower level. The procedure is the same as before: one selects the best candidate from
Î , adds it to Ik , removes it from Î , generates the two new midpoints entering Î and
selects again the best candidate from Î now with a changed probability function. The
only difference is that now the change of the probability function is not due to a new
iterate xk+1 of the upper level (xk remains fixed) but due to a changed grid Ik , say Ĩk ,
in (19). After this step has been repeated a defined number of times within step 2 of
Algorithm1, the newgrid Ik+1 (entering step 3) is defined to be the last grid Ĩk obtained
in the described manner. The effect of multiple aggregation will become evident in the
numerical example of Sect. 2.5. The described heuristic way of updating grid indices
could fail to approximate the lower level problem unless the maximum distance of
successive grid points is small enough with respect to the Lipschitz constant of the
probability function minimized in the lower level. Therefore, rather than starting with
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On the algorithmic solution of optimization problems… 17

an empty grid, we advise to use a coarse uniform grid of, e.g., 10 points from the very
beginning.

Ageneralization of the presented ideas to higher dimensional index sets T could rely
on mid points of appropriate triangulations of T or on Quasi Monte-Carlo sequences.

The second measure to reduce the computational burden of the lower level problem
consists in saving information on the grid Ik in problem (19): a naive approach would
make # Î independent calls of the probability

P

(
g
(
xk, ξ, t̃

) ≤ 0 ∀t̃ ∈ Ik ∪ {t}
)

(20)

to find the minimum. Doing so, one would repeat each time the effort in the spheric-
radial decomposition related with indices from the given grid t̃ ∈ Ik (black points
in Fig. 3). It therefore appears to be promising to save this information and to make
the necessary updates in the spheric-radial decomposition only for the respectively
added candidate from Î (gray points in Fig. 3). To be more precise, we revisit the
spheric-radial decomposition in Sect. 2.1 and recall that—following (11)—at a given
iterate xk of decisions and a fixed index t ∈ Î , we have to compute for all sampled
directions w( j) ( j = 1, . . . , K ) the critical radius ρ

(
xk, w( j)

)
, which according to

Corollary 1 is defined as the unique solution in r of the equation

max
t̃∈Ik∪{t}

g
(
xk, μ + r Lw( j), t̃

) = 0.

Here, we have adapted the abstract notation of Sect. 2.1 (involving finitely many
functions gi ) to the concrete setting of (7) (involving a single function g but indexed
by finitely many values of t). It is easy to see that

ρ
(
xk, w

( j)) = min
t̃∈Ik∪{t}

{
rt̃ | g(xk, μ + rt̃ Lw( j)) = 0

}
.

For each sample w( j) and each fixed t ∈ Î , such function call consumes the time
α (#Ik + 1) + β, where α is the average time needed for solving an equation

g
(
xk, μ + rt̃ Lw( j)) = 0 (21)

in r and β is the average computation time for a call of the cumulative distribution
function Fχ (see (11)). Since this computation has to be repeated for each of the K̃
samples w( j) for which the sum in (11) has to be evaluated and each t ∈ Î , the overall
computation time would amount to

K̃ (#Ik − 1) (α (#Ik + 1) + β) , (22)

where we have used that # Î = #Ik − 1 (one average less than grid points). The ratio
between α and β may strongly differ according to the complexity of the function g.
If g is linear in its second argument (the random vector)—as it will be the case in our
numerical example and in the application to reservoir problems—then α will be quite
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small compared with β because finding the zero above is just the computation of a
quotient. If g happens to be quadratic in the second argument, then the zero is found
by solving a quadratic equation which is more time consuming etc.

Alternatively, we can make use of the following updating scheme

ρ
(
xk, w

( j)) = min
{
ρ̃
(
xk, w

( j)), rt
}

,

ρ̃
(
xk, w

( j)):=min
t̃∈Ik

{
rt̃ | g(xk, μ + rt̃ Lw( j)) = 0

}
,

where rt is the solution in r of the equation g
(
xk, μ + rt Lw( j)

) = 0. This decompo-
sition allows us to compute ρ̃

(
xk, w( j)

)
only once and to save this value along with

its contribution Fχ

(
ρ̃
(
xk, w( j)

))
to the overall probability according to (11) for each

sample w( j). This leads for each sample to a computation time of α#Ik + β. Then,
for an arbitrary new candidate t ∈ Î only one additional equation has to be solved to
compute rt , so that ρ

(
xk, w( j)

)
is obtained by simple comparison of the saved value

ρ̃
(
xk, w( j)

)
with rt . Hence, for each sample w( j) and each fixed t ∈ Î , the additional

time needed for computing ρ
(
xk, w( j)

)
equals α.

As for the computation of the final contribution of sample w( j) to the over-
all probability according to (11), one has to compute the Chi-distribution function
Fχ

(
ρ
(
xk, w( j)

))
only in case that ρ

(
xk, w( j)

)
< ρ̃

(
xk, w( j)

)
because otherwise

Fχ

(
ρ
(
xk, w( j)

)) = Fχ

(
ρ̃
(
xk, w( j)

))
with the latter value already saved before. There-

fore, if τ ∈ [0, 1] denotes the average ratio of samples w( j) for which ρ
(
xk, w( j)

)
<

ρ̃
(
xk, w( j)

)
, this final contribution consumes time τβ per sample w( j) and per index

t ∈ Î . Summarizing, the total computing time for all K̃ samples and all indices t ∈ Î
amounts to

K̃
(
α#Ik + β + # Î (α + τβ)

)
= K̃ (α (2#Ik − 1) + β (1 + τ (#Ik − 1))) . (23)

The efficiency of this updating idea can be measured by the ratio of the computing
times in (22) and (23):

(#Ik − 1) (α (#Ik + 1) + β)

α (2#Ik − 1) + β (1 + τ (#Ik − 1))
= α (#Ik)2 + β#Ik − α − β

(2α + τβ) #Ik + (1 − τ) β − α
.

Since the numerator here is quadratic in the grid size and the denominator only linear,
it follows that the efficiency tends to infinity with the grid size. This explains the
strikingly growing gain in the reduction of computing time of the lower level observed
with increasing grid size in the numerical example of Sect. 2.5.

Observe that, while α and β can be easily determined from numerical experiments,
the coefficient τ remains unknown. Intuitively, it may be assumed rather close to zero
in practice because a set of more or less random new inequalities will rarely dominate
a set of given ones in most directions. To provide a concrete comparison between the
naive and the refined method, consider a small grid size of 10 points in a setting where
α = β, i.e., the computing time for solving a single equation (21) in r and for calling
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the Chi-distribution function are equal. Then, in the worst (highly unlikely) case of
τ = 1, the efficiency amounts according to the calculus above to 3.7 while the ratio
improves towards 5.4 in the best case (τ = 0). For a grid size of 100 points, these
ratios improve towards 33.8 and 50.5, respectively.

Finally, we mention that, similar to the solution of the upper level problem, we
use a smaller sample size in the spheric-radial decomposition when solving the lower
level problem in the beginning and turn to a large sample size only in the final solution
step, when high precision is desired. This is the reason to call our approach (AG-IS),
meaning adaptive grid—increasing sampling.

2.5 A numerical example

As a numerical example for comparing the different solution approaches (FUG-FS),
(IUG-IS), (AG-IS) presented in Sections 2.2 and 2.4 and for illustrating the use of our
adaptive grid refinement strategy, we consider a small stochastic optimization problem
with probabilistic constraints having 2-dimensional decision vector and variable m-
dimensional Gaussian random vector distributed according to ξ ∼ N (0,Σ):

min x21 + x22 subject to

P

(
s∑

i=1

ξi sin(i t) ≤ x1;
s∑

i=1

ξi cos(i t) ≤ 2x2 ∀t ∈ [0, 2π ]
)

≥ 0.9. (24)

This probabilistic constraint considered here can be recast in the form of (7) by putting

g (x, ξ, t) :=max

{
s∑

i=1

ξi sin(i t) − x1,
s∑

i=1

ξi cos(i t) − 2x2

}
.

We start our numerical comparison with a two-dimensional Gaussian random vector
with mean (2, 2) and covariance matrix equal to the identity (independent components
with unit variance). Table 1 opposes the results of the two uniform grid approaches
(FUG-FS), (IUG-IS) to those of the adaptive grid procedure (AG-IS). The quantity
labeled ‘|grid|’ denotes in all cases the size of the final grid which was used in the last
step, when all methods performed a full high precision optimization with the Matlab
built-in SQP solver. Note that (FUG-FS) did nothing else but this final step with the
fixed (uniform) grid of indicated size, whereas (IUG-IS) and (AG-IS) started with
smaller, then increasing to the final size grids (uniform and adaptive, respectively) and
also with smaller sample sizes for the spheric-radial decomposition but for the last
step, where all three methods employed a common large sample size.

All three methods used a common reasonable starting point obtained from a plain
optimization using a coarse uniform 11-point grid. The quantity ‘opt’ refers to the
optimal value obtained for the objective function of the problem. This value is mono-
tonically increasing with the size of hierarchically ordered grids because the upper
approximation of the feasible set becomes better when the grid gets finer. Hence,
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Table 1 Comparing the numerical results (computing time in seconds) for solving the example problem
for dimension s = 2 andN (μ, Σ) with μ = (2, 2), Σ = I2 and probability level p = 0.9

Adaptive grid refinement Uniform grid refinement

|grid| opt tlow tup tAG−I S |grid| opt tFUG−FS tIUG−I S

19 35.29706 0.02 0.37 0.39 51 35.21418 1.65 1.80

27 35.30979 0.02 0.68 0.70 101 35.29094 2.28 1.80

35 35.31254 0.03 0.62 0.65 201 35.30899 3.38 4.21

43 35.31372 0.04 0.38 0.42 401 35.31361 4.93 7.09

51 35.31426 0.05 0.46 0.51 601 35.31447 9.27 11.41

91 35.31497 0.11 1.07 1.19 801 35.31478 16.03 9.30

131 35.31509 0.20 1.77 1.97 1001 35.31491 17.60 13.22

171 35.31511 0.31 2.37 2.68 1501 35.31505 27.76 19.67

211 35.31513 0.44 2.80 3.24 2001 35.31510 36.91 23.02

251 35.31514 0.60 3.32 3.92 2501 35.31512 46.15 28.82
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Fig. 4 Adaptive grid refinement by algorithm AG-IS observed for the example of Table 1

the optimal value associated with the true solution of the problem is the limit of this
increasing sequence.

When comparing the results, we may observe first that between the uniform grid
strategies (IUG-IS) seems to perform slightly better than (FUG-FS) at least for larger
grids. When comparing both of them with the adaptive grid strategy (AG-IS), one
has to compare grids leading to solutions of approximately equal precision (optimal
objective value). For instance, the objective value for a uniform grid of 400 points is
approximately reached with an adaptive grids of 42 points and with a CPU time of
0.42 s which is also less than one tenth of the uniform grid methods. A similar ratio
is observed for the highest precision obtained with a uniform grid consisting of 2.500
points.

The values ’tlow’ and ’tup’ decompose the total time of the adaptive grid method
(AG-IS) into time spent for the lower and upper level problem, respectively. It becomes
evident that the key for the small total time is keeping the effort for the lower level
much smaller than that for the upper level.

Figure 4 shows the development of the adaptive grids Ik in the course of iterations,
starting with a uniform grid of size 11 which was used to determine the starting
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point. It can be seen, how the grid points start concentrating first in the first quarter
of the time interval before also gathering in the third quarter. These are obviously
the regions which are most informative from a probabilistic perspective. Observe that
the finest grid represented here (131 points) carries—according to Table 1—as much
information as a uniform grid with approximately 2.000 points.

Table 2 provides a more detailed account of the improvement measures for the
lower level problem discussed in detail in Sect. 2.4. The data are provided for three
varying mean vectors but the same covariance matrix as in the example considered
before. The final grid size is fixed as 211. The ‘naive’ approach would disregard both
the lower/upper level synchronization and the update strategy (just direct independent
calls of probability values). This blows up the time spent for the lower level to an
unacceptable degree. Instead of keeping the lower level effort much beyond the upper
level one, just the opposite is observed. For instance, in the case of the mean vector
(2, 2) also considered in Table 1, the time spent for the lower level (206.87 s) even
exceeds by far the time which would have been expected for any of the uniform grid
methods in order to reach comparable precision. This underlines the need to well tune
the solution approach for the lower level. The following columns illustrate the effect of
synchronization by aggregating a different number k of new grid points at a time in the
lower level problemwhile applying the update strategy presented at the end of Sect. 2.4.
In any case, theCPU time spent for the lower level is extremely reducedwhich supports
the conclusion that updating is the measure of biggest impact to improve the efficiency
of the lower level. At the same time, some significant additional gain becomes evident
by appropriate synchronization. From the different examples, one may guess that a
simultaneous aggregation of approximately 10 new indices in each step of the lower
level leads to another reduction of the total time spent by around one half. Further
increase of k will then deteriorate this favorable synchronization.

Motivated by the results of Table 1, an extended numerical study showed that the
contrast in efficiency between the naive uniform grid approaches on the one hand and
our adaptive grid method on the other can be amplified to the extreme in principle. It
turned out that the twomain factors influencing this contrast are the geometric position
of the solution sets to the random inequalities (the sets Zk in Fig. 2) with respect to the
given distribution and the dimension of the random vector. In order to estimate these
factors separately, we started in fixed dimension s = 2 of the random vector to vary
its parameters μ and Σ and then, in a second step, increased the dimension to s = 10.
Similar to what we did in the discussion of Table 1, the efficiency of the adaptive
approach was computed as the ratio of CPU times spent in order to reach a fixed
threshold of the objective (recall that the objective values related with hierarchically
increasing grids form an increasing sequence). For the two uniform grid methods
(FUG-FS) and (IUG-IS), we selected the smaller of the two CPU times. The value
of the ratio was stabilized by averaging it over a set of different thresholds for the
objective. The results are displayed in Table 3.
Ignoring for a moment the column related to higher dimension s = 10 and just
comparing values for the case s = 2, we observe that the efficiency of the adaptive
approach strongly depends on the distribution parametersμ andΣ , it varies in a range
between 2 and 12. The following geometric explanation can be given with the help of
Fig. 2, where μ = (0, 0) and correlation −0.5 were considered (efficiency 3.4): The
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Table 3 Estimated efficiency of the adaptive grid refinement algorithm AG-IS compared to the best of
uniform grid refinement methods FUG-FS and IUG-IS, respectively

Covariance = 0 Covariance = 0.5 Covariance = −0.5

s = 2 s = 10 s = 2 s = 2

μ = (0, . . . , 0) 1.9 0.8 2.3 3.4

μ = (1, . . . , 1) 5.2 22.9 8.5 3.9

μ = (2, . . . , 2) 9.4 56.1 12.5 6.4

The results are obtained for the example problem with correlated normal distribution (covariance 0.5 and
−0.5), the uncorrelated standard normal distribution with shifts in dimension s = 2, as well as for the
shifted uncorrelated standard normal distribution in dimension s = 10

solution sets of the random inequalities (the sets Zk in Fig. 2) move with changing
decision vector xk , but they were chosen intentionally in our example in a way that
they stay centered around (0, 0) and only change their shape. Now, if one imagines,
that the mean vector of the given distribution is far from the center, then it is clear
that the face of the set Zk which is closer to μ gets much more importance with
respect to probability than the opposite face. That is why in the adaptive approach
an index selection is favored that leads to cuts near the closer face. Accordingly,
indices show a tendency to aggregate rather than to uniformly distribute (see Fig. 4).
In contrast, the uniform grid methods evenly spread their cuts, thus wasting a lot of
effort with indices not much contributing in a probabilistic sense. Not surprisingly,
this effect can be arbitrarily amplified by shifting the mean further away from the
center of the sets Zk . This is confirmed by the data in Table 3, where the efficiency
is largest in the last row. Another, minor, contrast is added by correlations between
the components of the random vector. A positive correlation amplifies the efficiency
because the distribution is stretched along the direction of the more and more shifted
mean, while a negative correlation weakens the efficiency. For other shift directions
of the mean, these circumstances would change of course. It is not surprising that
the weakest efficiency of the adaptive approach (1.9) occurs when μ = (0, 0) and
the components are uncorrelated. Then, no special preference for certain faces of the
sets Zk arise and the advantage over a uniform grid tends to disappear. Note that in
general applications the solution sets of the inequality system will move completely
independently of the given distribution so that a perfect central position is extremely
unlikely and a high efficiency of the adaptive grid may be expected.

Turning to the effect of dimension s of the random vector, we confined ourselves to
the case of independent components. For the exceptional central case, the efficiency
is even slightly below one (probably related to some overhead effect). As soon as the
mean deviates from its central position, a clear increase in efficiency due to higher
dimension becomes visible reaching a value as high as 56.1. This underlines the
promising benefit of using the proposed grid adaptation in real life applications.

The algorithmic approach proposed by us has evidently two major limitations con-
cerning the index set T so far: First, the dimension of T is currently restricted to one
and, second, T is assumed to be fixed while it could move as T (x) with the decision
in general (analogously to generalized semi-infinite programming). Both issues are
subject of future work.
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3 Convergence proof for the conceptional algorithm

In this section we provide a convergence proof for the conceptual algorithm presented
in Sect. 2.3. Actually, we are going to show convergence in a broader setting by
allowing ε-optimal solutions of both the lower and upper level problem inAlgorithm 1.
In this way, convergence can be guaranteed even if the two subproblems are not solved
exactly in each step. In the followingwe assume that T ⊆ R

d is compact. Furthermore,
it will be useful to introduce the grid-dependent sets

Z (x, M) := {
z ∈ R

s | g (x, z, t) ≤ 0 ∀t ∈ M
} (

x ∈ R
n, M ⊆ T

)

as well as the associated grid-dependent probability functions:

ϕ (x, M) :=P (ξ ∈ Z (x, M)) = P (g (x, ξ, t) ≤ 0 ∀t ∈ M)
(
x ∈ R

n, M ⊆ T
)
.

Our optimization problem (7) can then be written as

min { f (x) | ϕ (x, T ) ≥ p, x ∈ X} . (25)

We impose the following basic assumptions on (25):

f and g are continuous; X is closed; ξ has a density. (26)

For all x ∈ X and compact K ⊆ T , the set

{z ∈ R
s | max

t∈K g(x, z, t) = 0} has Lebesgue measure zero. (27)

Lemma 1 The following properties hold true for all x ∈ R
n, M ⊆ T :

Z (x, M1) ⊇ Z (x, M2) ∀M1, M2 ⊆ T : M1 ⊆ M2 (28)
Z (x, M) = Z (x, clM) (29)

ϕ(x, M ∪ {tk}) = ϕ(x, M) ∀k ∈ N ⇒ ϕ(x, M ∪ (∪k∈N{tk})) = ϕ(x, M) ∀{tk}k∈N ⊆ T (30)
lim
k→∞ ϕ (x, {t1, . . . , tk}) = ϕ (x, ∪k∈N {tk}) ∀ {tk}k∈N ⊆ T (31)

lim
k→∞ ϕ (xk , M) = ϕ (x̄, M) ∀ {xk}k∈N ⊆ R

n : xk → x̄ ∈ R
n (32)

Proof (28) is evident. (29) follows from the continuity of g. To prove (30), let x ∈ R
n

and M ⊆ T be given arbitrarily. Define

Zk :=Z(x, M) \ Z(x, M ∪ {tk}) ∀k ∈ N.

By (28) we have Z(x, M ∪ {tk}) ⊆ Z(x, M) which implies that Z(x, M) is a disjoint
union of Z(x, M ∪ {tk}) and Zk for all k. Due to the assumption ϕ(x, M ∪ {tk}) =
ϕ(x, M)weobtain thatP(ξ ∈ Zk) = 0 for all k ∈ N. Thus, we haveP(ξ ∈ ∪k∈NZk) =
0. Moreover, it holds Z(x, M ∪ {tk}) = Z(x, M) \ Zk for any k ∈ N such that

Z(x, M ∪ (∪k∈N{tk})) = ∩k∈NZ(x, M ∪ {tk}) = ∩k∈N(Z(x, M) \ Zk)
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= Z(x, M) \ ∪k∈NZk .

Hence, P(ξ ∈ Z(x, M ∪ (∪k∈N{tk}))) = P(ξ ∈ Z(x, M)) which proves (30). To see
(31), fix an arbitrary x ∈ R

n and observe that by Z (x, {t1, . . . , tk}) being a decreasing
sequence of sets (see (28)) and by probability measures being continuous from above,
the assertion follows from the identity

lim
k→∞P (ξ ∈ Z (x, {t1, . . . , tk})) = P (ξ ∈ ∩k∈NZ (x, {t1, . . . , tk}))

= P (ξ ∈ ∩k∈NZ (x, {tk})) = P (ξ ∈ Z (x, ∪k∈N {tk})) .

Finally, (26) and (27) allow us to invoke (Farshbaf-Shaker et al. 2018, Prop. 1–3), in
order to derive the continuity in x of the function ϕ (x, K ) for each given compact set
K ⊆ T . In particular,

lim
k→∞ ϕ (xk, clM) = ϕ (x̄, clM) ∀M ⊆ T ∀ {xk}k∈N ⊆ R

n : xk → x̄ ∈ R
n .

Since ϕ (x, M) = ϕ (x, clM) for all x ∈ R
n as a consequence of (29), we have proven

(32). 	

We recall that Algorithm 1 presented in Sect. 2.3 for the solution of (25) constructs a

sequence of points xk ∈ X and a sequence of indices tk ∈ T according to the following
alternating scheme:

xk ∈ argmin
x∈X { f (x) | ϕ (x, {t1, . . . , tk}) ≥ p}

tk+1 ∈ argmin
t∈T ϕ (xk, {t1, . . . , tk, t}) .

Here we have changed for later notational convenience the order of upper and lower
level problems when compared with Algorithm 1. This does not change, of course, the
sequence of iterates. As mentioned above, our aim is to guarantee convergence even
in the case that these problems are solved approximately only. Therefore, we shall
assume that xk ∈ X and tk ∈ T are found as solutions of the following approximate
problems

xk ∈ δk- argmin
x∈X { f (x) | ϕ (x, {t1, . . . , tk}) ≥ p} (Uk)

tk+1 ∈ τk- argmin
t∈T ϕ (xk, {t1, . . . , tk, t}) , (Lk)

where {δk}, {τk} are sequences of positive numbers. More precisely, this means that

xk ∈ X , ϕ (xk, {t1, . . . , tk}) ≥ p,

f (xk) ≤ f (x) + δk ∀x ∈ X : ϕ (x, {t1, . . . , tk}) ≥ p

and

tk+1 ∈ T , ϕ (xk, {t1, . . . , tk, tk+1}) ≤ ϕ (xk, {t1, . . . , tk, t}) + τk ∀t ∈ T .
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Theorem 1 Let δk ↓ 0, τk ↓ 0 be two sequences. Let {xk, tk} be a sequence of solutions
generated by the alternating sequence of problems (Uk), (Lk). Then, every cluster
point of {xk} is a solution of (25).

Proof Let x̄ be a cluster point of {xk} so that xkl → x̄ for some subsequence (note
that we cannot keep w.l.o.g. the original sequence because in the definition of problem
(Uk) we have to keep all indices t generated from the original sequence, not just those
representing the subsequence). Since xkl ∈ X as a solution of

(
Ukl

)
and X is closed,

we infer that x̄ ∈ X . The main claim in this proof is the inequality

ϕ (x̄, T ) ≥ p. (33)

We postpone the proof of (33) to the end of this proof. Taking (33) for granted, x̄ is
feasible in (25). If x̄ wasn’t a solution of (25), then there would exist some x∗ ∈ X
such that ϕ (x∗, T ) ≥ p and f (x∗) < f (x̄). By continuity of f , we may choose
some l ∈ N such that f

(
xkl

) − δkl > f (x∗) with the sequence δk introduced in the
statement of this theorem. As a consequence of (28), one has that

ϕ
(
x∗,

{
t1, . . . , tkl

}) ≥ ϕ
(
x∗, T

) ≥ p,

whence x∗ is feasible in
(
Ukl

)
. Therefore, f

(
xkl

) ≤ f (x∗) + δkl which is a contra-
diction.

For the remainder of the proof we are going to verify (33). In a first step, we prove
the relation

ϕ (x̄,G) ≥ p for G:= ∪k∈N {tk} . (34)

To do so, fix an arbitrary m ∈ N. Since xkl is feasible in
(
Ukl

)
, we get that

ϕ
(
xkl ,

{
t1, . . . , tkm

}) ≥ ϕ
(
xkl ,

{
t1, . . . , tkl

}) ≥ p ∀l ≥ m.

From (32) we derive that

ϕ
(
x̄,

{
t1, . . . , tkm

}) = lim
l→∞ ϕ

(
xkl ,

{
t1, . . . , tkm

}) ≥ p.

As m was arbitrarily fixed, this last relation holds true for all m ∈ N. Now, (31) yields
(34):

ϕ (x̄,G) = lim
k→∞ ϕ (x̄, {t1, . . . , tk}) = lim

m→∞ ϕ
(
x̄,

{
t1, . . . , tkm

}) ≥ p.

In a second step we verify the statement

∀t ∈ T : ϕ (x̄,G) = ϕ (x̄,G ∪ {t}) . (35)
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Assume that (35) fails to hold. Because Z (x̄,G ∪ {t}) ⊆ Z (x̄,G) by (28) it is suffi-
cient to lead the assumption

∃t∗ ∈ T : ϕ (x̄,G) > ϕ
(
x̄,G ∪ {

t∗
})

to a contradiction. Put ε:=ϕ (x̄,G)−ϕ (x̄,G ∪ {t∗}) > 0. Applying (31) upon joining
the fixed element t∗ to the sequence of indices considered there, we infer that

ϕ
(
x̄,G ∪ {

t∗
}) = lim

k→∞ ϕ
(
x̄, {t1, . . . , tk} ∪ {

t∗
}) = lim

l→∞ ϕ
(
x̄,

{
t1, . . . , tkl

} ∪ {
t∗

})
.

Accordingly, we find an index α ∈ N, such that

∣∣ϕ (
x̄,

{
t1, . . . , tkα

} ∪ {
t∗

}) − ϕ
(
x̄,G ∪ {

t∗
})∣∣ <

ε

4
.

By virtue of (32), there exists some β ∈ N, such that

∣∣ϕ (
xkl ,

{
t1, . . . , tkα

} ∪ {
t∗

}) − ϕ
(
x̄,

{
t1, . . . , tkα

} ∪ {
t∗

})∣∣ <
ε

4
∀l ≥ β.

Hence,

ϕ
(
xkl ,

{
t1, . . . , tkα

} ∪ {
t∗

})
< ϕ

(
x̄,G ∪ {

t∗
}) + ε

2
∀l ≥ β.

Now, the monotonicity of ϕ based on (28) yields that

ϕ
(
xkl ,

{
t1, . . . , tkl

} ∪ {
t∗

})
< ϕ

(
x̄,G ∪ {

t∗
}) + ε

2
∀l ≥ max {α, β} .

Since tkl+1 is a solution of the lower level problem
(
Lkl

)
introduced above, we arrive

at

ϕ
(
xkl ,

{
t1, . . . , tkl , tkl+1

}) ≤ ϕ
(
xkl ,

{
t1, . . . , tkl , t

∗}) + τkl .

As τk ↓ 0, there exists some ρ ∈ N such that τk ≤ ε
4 for all k ≥ ρ. Therefore,

ϕ
(
xkl ,G

) ≤ ϕ
(
xkl ,

{
t1, . . . , tkl+1

})
< ϕ

(
x̄,G ∪ {

t∗
}) + 3

4
ε ∀l ≥ max {α, β, ρ} .

Owing to (32), there exists some γ ∈ N with
∣∣ϕ (

xkl ,G
) − ϕ (x̄,G)

∣∣ < ε
4 for all

l ≥ γ . With l∗:=max {α, β, γ, ρ} we arrive at the desired contradiction

ϕ (x̄,G) < ϕ
(
xkl∗ ,G

) + ε

4
< ϕ

(
x̄,G ∪ {

t∗
}) + ε = ϕ (x̄,G) .

Therefore, (35) holds true. In the final step of the proof, we show the statement

ϕ (x̄, T ) = ϕ (x̄,G) (36)
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which proves the desired relation (33) due to (34). Because T is a compact subset of
the separable space Rd , there exists T̃ ⊆ T that is countable and dense in T , i.e.

∃{t̃k}k∈N ⊆ T : T̃ = ∪k∈N{t̃k} and cl T̃ = T .

Due to (35) it holds ϕ(x̄,G ∪ {t̃k}) = ϕ (x̄,G) for all k ∈ N. By virtue of (30), (28)
and (29) we get the relation

ϕ(x̄,G) = ϕ(x̄,G ∪ T̃ ) ≤ ϕ(x̄, T̃ ) = ϕ(x̄, cl T̃ ) = ϕ(x̄, T ).

On the other hand, ϕ(x̄,G) ≥ ϕ(x̄, T ) by (28) which proves (36) and the proof is
complete. 	

Remark 1 If in (26) the function g is in addition convex in the second variable z, then
the condition (27) can be replaced by the simpler uniform Slater condition

∀x ∈ X ∃z ∈ R
s ∀t ∈ T : g(x, z, t) < 0

which implies condition (27).

Corollary 2 If the uniform Slater condition is satisfied in the water reservoir problem
(41) presented in Sect. 4 below, then every cluster point of the sequence of iterates
{xk} generated by the conceptual algorithm from Sect. 2.3 is a solution.

Corollary 3 If X is compact, and (25) admits a unique solution (there must be at least
one), then the sequence of iterates {xk} converges to this solution.
Proof Denote by x∗ ∈ X the unique solution of (25). If {xk} did not’t converge to
x , then there would exist an open neighborhood U of x∗ and a subsequence

{
xkl

}
with xkl /∈ U for all l ∈ N. By compactness of X , one has xklm →m x̄ for a further
subsequence. ByTheorem1, it follows that x̄ is a solution of (25),whence x̄ = x∗ ∈ U .
This yields the contradiction xklm ∈ U for m large enough. 	

Remark 2 The set X in the water reservoir problem (41) presented in the next section
is compact. With some additional effort, it can be shown that the (nonempty) solution
set of (41) is unique. Hence, the sequence of iterates {xk} generated by the conceptual
algorithm from Sect. 2.3 converges to this unique solution.

4 An application to probabilisticwater reservoir control under
time-continuous inflow

The importance of probabilistic programming in the context of water reservoir man-
agement has been recognized a long time ago [see, e.g. the basic monograph (Loucks
et al. 1981) or (Chattopadhyay 1988; Edirisinghe et al. 2000; Loiaciga 1988; Prékopa
and Szántai 1978, 1979; Van Ackooij et al. 2014)]. Many papers originally considered
models with individual probabilistic constraints

P (gi (x, ξ) ≤ 0) ≥ p (i = 1, . . . ,m)
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which in a suitable structure with separated randomness allow for simple quantile-
based reformulations via linear programming. Here, in contrast with (1), each random
inequality is turned into a probabilistic constraint individually. On the level of continu-
ously indexed random inequality systems, this difference corresponds to that between
(4) and (6). The shortcoming of the individual against the joint probabilistic con-
straint has already been discussed in the introduction. Suffice it here to refer to a
water management application, where random filling levels of the reservoir stayed in
a given critical range with probability 90% individually at each time of a finite interval,
whereas they stayed in the critical range throughout the whole time interval (the actu-
ally desirable property) only with probability 32% (Van Ackooij et al. 2010, p. 548).
Therefore, we consider in the following a strongly simplified water reservoir prob-
lem with joint probabilistic constraints. The new challenging aspect will arise from
dealing with a continuously indexed infinite random inequality system in the context
of a probust constraint of type (4). More precisely, we will assume a reservoir with
time-continuous random inflow. This will lead, for any release policy (the control to
be optimized) to a time-continuous random filling level in the reservoir. Keeping this
level within certain limits at high probability will lead us exactly to (4). As for the con-
trolled release, we shall suppose that it is piecewise constant, which partly corresponds
to common practice. It would not be harmful to pass to a time-continuous control here
as well [leading to probabilistic constraints with infinite-dimensional decisions as in
Farshbaf-Shaker et al. (2019)].

4.1 Water reservoir model under time-continuous inflow

In the following model, a single water reservoir with lower level constraint and
designed for hydro power generation over a time interval [0, T ] is considered. The
model is strongly simplified, in order to keep the presentation concise and to focus on
the aspect of probust constraints and their algorithmic solution as proposed in Sect. 2.
Accordingly, we will neither insist on a careful statistical analysis of the stochastic
inflow process nor on incorporating all technological or physical details from real life
reservoirs. Rather, one might think about an abstract reservoir with stochastic inflow
and controlled release subject to critical levels to be respected (beyond water reser-
voirs, this could be batteries charged by solar power in minigrids or a bank account in
finance).

The stochastic process of water inflow to the reservoir is denoted by ξ̃ . The time-
dependent release of water x̃ is controlled and should maximize a given price function.
Fixing the initial reservoir level as l0, the level as a function of time evolves according
to

l(x̃, ξ̃ , t):=l0 +
∫ t

0
ξ̃ (τ )dτ −

∫ t

0
x̃(τ )dτ (t ∈ [0, T ]). (37)

Throughout the time horizon, a minimum level l ≤ l0 has to be respected. Since,
the current water level is stochastic, one may not expect a sure satisfaction of the
minimum level, no matter what release function is chosen. Therefore, it makes sense,
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to formulate a joint probabilistic level constraint as

P(l(x̃, ξ̃ , t) ≥ l ∀t ∈ [0, T ]) ≥ p (38)

with some risk level p ∈ (0, 1). We assume that the reservoir serves the generation
of hydro power. The profit of water release will depend on a price signal c̃ that may
change over time as a function of demand.

Adding an upper bound x̄ for the water release corresponding to the operational
limits of turbines, we end up at the following first version of an optimization problem:

max
x̃∈L2([0,T ])

∫ T

0
c̃(t)x̃(t)dt subject to (38). (39)

Here, we suppose that the decision x on water release is taken in a completely static
way, i.e. neglecting the increasing information on the realization of the stochastic
inflow process. We may imagine the situation of a day ahead market on which the
offered hourly energy supply (i.e., the water release) is fixed one day in advance, thus
completely ignoring the inflows of the next day.

In the following, we pass to a finite-dimensional version of this problem. First, we
discretize the time interval as

[0, T ]:=
n⋃

i=1

[ti−1, ti )

and define the water release to have constant velocity on each subinterval [ti−1, ti ):

x̃(t):=
n∑

i=1

xi1[ti−1,ti )(t) (1 = indicator function).

Accordingly, the profit to be maximized reduces to the finite-dimensional expression

∫ T

0
c̃(t)x̃(t)dt =

n∑
i=1

xi

∫ ti

ti−1

c̃(t)dt = 〈c, x〉 ,

where c = (c1, . . . , cn) and

ci :=
∫ ti

ti−1

c̃(t)dt (i = 1, . . . , n) .

Second, the random process is reduced to a finite sum of randomly weighted fixed
deterministic processes α j ( j = 1, . . . , s) and β:

ξ̃ (t):=
s∑

j=1

ξ jα j (t) + β(t) ∀t ∈ [0, T ] . (40)
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It is assumed that the random vector ξ = (ξ1, . . . , ξs) obeys a centered multivariate
Gaussian distribution, i.e., ξ ∼ N (0,Σ) for some covariance matrix Σ .

Note that, while the release is piecewise constant, the inflow in (40) is still contin-
uous in time. Therefore the reservoir level in (37) is also continuous in time and can
be written as:

l(x̃, ξ̃ , t) = l(x, ξ, t) = l0 + 〈A(t), ξ 〉 + B(t)

−
i(t)∑
i=1

xi (ti − ti−1) − xi(t)+1(t − ti(t)) ∀t ∈ [0, T ],

where

A j (t):=
∫ t

0
α j (τ )dτ, B(t):=

∫ t

0
β(τ)dτ, i(t):=max{i | t > ti } ∀t ∈ [0, T ].

Finally, we add some simple deterministic constraints in the following set:

X :={x ∈ R
n | 0 ≤ xi ≤ x̄, (i = 1, . . . , n),

n∑
i=1

xi ≤ B(T )}.

The first part of constraints just relates to an upper bound for the water release corre-
sponding to the maximum operating limit of the given system of turbines. The second
part—a so-called ‘cycling constraint’—makes sure that the total water release is not
bigger than the expected cumulative inflow of water which equals B(T ). In this way,
optimization in the given time interval [0, T ] is not carried out at the expense of a
future time horizon.

Summarizing, under our assumptions the optimization problem (39) reduces to:

max
x∈Rn

〈c, x〉 subject to P (g(x, ξ, t) ≤ 0 ∀t ∈ [0, T ]) ≥ p and x ∈ X , (41)

where for all x ∈ R
n and all t ∈ [0, T ],

g(x, ξ, t):=l − l0 − 〈A(t), ξ 〉 − B(t) +
i(t)∑
i=1

xi (ti − ti−1) + xi(t)+1(t − ti(t)). (42)

Clearly, (41) is a special instance of the optimization problem (7) with probust con-
straints and can be solved algorithmically with the approaches discussed in Sect. 2.
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4.2 Water reservoir instance

In the following, we are going to apply the adaptive algorithm defined in Sect. 2 in
order to solve an instance of the water reservoir problem presented above. We will use
the following problem data:

n:=T :=24; s:=10; p:=0.9; x̄ = 0.8; l:=2; l0:=4

A j (t):= sin( jπ t/12) ( j = 1, . . . , 5); A j (t):= cos(( j − 5)π t/12) ( j = 6, . . . , 10); B(t):=0.4t

Σ :=D2; D:=diag (0.6, 0.1, 0.02, 0.005, 0.0017, 0.6, 0.1, 0.02, 0.005, 0.0017)

c:=(11.38, 11.04, 10.49, 9.77, 8.92, 7.98, 7.02, 6.08, 5.23, 5.23, 10.97,

7.64, 3.50, 3.62, 3.96, 4.51, 5.23, 6.08, 7.02, 7.98, 8.92, 9.77, 2.33, 3.75)

Note that adding cosine terms in the functions A j makes the initial water level stochas-
tic too (with expected value l0) which we feel to be more realistic if the decision on
water release has to be taken well ahead of the given time interval, e.g., on a day-ahead
market.

We want to take the opportunity to also oppose the model with joint chance con-
straints to those simplifyingmodels relying on expected values (2) or individual chance
constraints (6), respectively. Both of these models will reduce to ordinary linear semi-
infinite programs (see, e.g., Goberna and López (2000) andGoberna and López (2017)
for an introduction and overview), but fail to have the desired robustness property. We
therefore start by making these additional models more precise.

Contrary to (41), the expected-value model replaces the joint chance constraint by
just the continuously indexed inequality inside the probability but with the random
vector substituted by its expectation. Since this expectation is zero because ξ has a
centered Gaussian distribution, the resulting optimization problem takes the form

max
x∈Rn

〈c, x〉 subject to x ∈ X and b(x, t) ≤ 0 ∀t ∈ [0, T ], (43)

where for all x ∈ R
n and all t ∈ [0, T ],

b(x, t):=l − l0 − B(t) +
i(t)∑
i=1

xi (ti − ti−1) + xi(t)+1(t − ti(t)).

Observe, that b is affine linear in x , so that (43) represents an ordinary linear semi-
infinite program.

As for the model with individual chance constraints, it requires that the stochastic
level constraint be satisfied with given probability p for each time t individually:

P(g(x, ξ, t) ≤ 0) ≥ p ∀t ∈ [0, T ] (44)
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With the aid of the function b introduced above, we can reformulate this constraint
for a fixed t ∈ [0, T ] as:

P(g(x, ξ, t) ≤ 0) = P(〈−A(t), ξ〉 + b(x, t) ≤ 0) = P

(
〈−A(t), ξ〉√
A(t)TΣ A(t)

≤ −b(x, t)√
A(t)TΣ A(t)

)
.

Owing to ξ ∼ N (0,Σ), the transformation law for Gaussian distributions yields that

〈−A(t), ξ 〉√
A(t)TΣ A(t)

∼ N (0, 1).

Therefore, the chance constraint P(g(x, ξ, t) ≤ 0) ≥ p can be written as

Φ

(
−b(x, t)√
A(t)TΣ A(t)

)
≥ p,

where Φ is the distribution function of N (0, 1). Upon inverting this function, one
arrives at the following fully explicit redescription of the individual chance constraint:

a(x, t):=b(x, t) + Φ−1(p)
√
A(t)TΣ A(t) ≤ 0.

Eventually, the optimization problemwith individual chance constraints gets the form

max
x∈Rn

〈c, x〉 subject to x ∈ X and a(x, t) ≤ 0 ∀t ∈ [0, T ], (45)

which is an ordinary linear semi-infinite program exactly like the expected-value prob-
lem (43). Note that ourmodel (41) with (infinitelymany) joint probabilistic constraints
falls outside this class of linear semi-infinite programs because taking the probability of
a joint system of random inequalities inevitably introduces nonlinearities even to orig-
inally linear constraints. This leads to the substantially larger numerical effort based
on the algorithm presented here. On the other hand, we shall see, that the robustness
at low costs of the obtained solutions pay this effort.

Figure 5 illustrates the three optimal solutions for release profiles under joint chance
constraint, expected-value constraint and individual chance constraint. It can be seen
that all three profiles try to follow the price signal (weights of objective) in order tomax-
imize the profit. Of course, they cannot do so perfectly in order to meet the respective
constraints imposed. The profits realized for these solutions are 89.13 (expected-value
constraint), 86.59 (individual chance constraints) and 85.04 (joint chance constraint).
This decay is clear from the fact that the corresponding constraints are increasingly
restrictive. Note, however, that the loss in profit for the model with joint chance con-
straint is not very large. Indeed the release profiles look comparatively similar. On the
other hand, the impact on the probability of satisfying uniformly over time the lower
level constraint is remarkable. These probabilities calculate as 90% for joint chance
constraint (corresponding to the imposed level), 72% for individual chance constraints
(when imposing an individual probability of 90% for each time step separately) and
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Fig. 5 Upper left: Plot of optimal release policies for the models of joint (red) and individual (blue) chance
constraints (bothwith p = 0.9) aswell as for expected-value (black) constraints (upper left). The appropriate
scaled price signal (without reference to the ‘Release’ axis) is represented by a thin line. Simulation of 20
filling level scenarios under joint chance constraint (upper right), expected-value constraint (bottom left)
and individual chance constraint (bottom right). Violating scenarios are colored in red, the critical lower
level l = 2 corresponds to the dashed line (Color figure online)

only 29.7% for expected value constraints. These findings are supported by the three
additional diagrams in Fig. 5. Here, a posterior check of solutions was carried out by
simulating 20 inflow profiles according to the chosen distribution and applying the
respective release policy. The diagrams then show the resulting 20 level profiles for
the reservoir. For the solution under joint chance constraint, there is just one violating
scenario (two would be expected on average for repeated simulations according to the
probability of 90%). The solution under individual chance constraints does what it is
expected to do: at each time separately, there are only few violating profiles (two on
average according to the chosen individual probability of 90%). On the other hand,
seven profiles are violating in the sense of a uniform condition, i.e., violate the level
at some time. The situation is even worse for expected-value constraints, with thirteen
violating scenarios. Note that in all cases the average final level coincides with the
average initial level due to the cycling constraint.

Figure 6 displays the numerical results for the three grid discretization approaches
presented in Sect. 2 in the water reservoir problem with joint chance constraints. The
left picture shows the dependence of the optimal value on the grid size for the uniform
and adaptive grid control. It turns out that a grid size of above 50 is sufficient for
a high accurate solution of the reservoir problem when applying the adaptive grid
control. The right picture of Fig. 6 plots the CPU times vs. optimal value. Note that
any optimal value must be larger than the true optimal value of the problem because
the discretization of the continuous inequality system leads to larger feasible sets in
the maximization problem. Therefore, the smaller the computed value is (the more it
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Fig. 6 Plot of optimal value versus grid size (left) and plot of CPU times versus optimal value for the three
grid discretization approaches in the water reservoir problem with joint chance constraints

is to the right), the more precise is the solution. Since the curves from the original data
exhibited some noisy behavior due to random effects in the iteration processes, they
were smoothened afterwards by a moving average. A clear dominance of the adaptive
grid approach even growing when approaching the solution becomes evident. Among
the two uniform discretization schemes, the one with increasing grid and sample
performs slightly better than the one with a naive fixed uniform grid.

Conclusions

In the present paper we introduce an adaptive discretization framework to solve pro-
bust optimization problems and show that this approach converges under quite mild
assumptions. Furthermore, we demonstrate that an implementable version of this
methodology is efficient and outperforms uniform discretization approaches. This
is verified for numerical examples as well as in the application of water reservoir
management under time-continuous random inflow.

Acknowledgements The authors gratefully acknowledge the valuable comments and suggestions by an
anonymous reviewerwhich led to an improved version of Theorem1. The second author thanks theDeutsche
Forschungsgemeinschaft for their support within project B04 in the Sonderforschungsbereich/Transregio
TRR 154. In addition, the third author acknowledges support by the FMJH Program Gaspard Monge in
optimization and operations research including support to this program by EDF.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/


36 H. Berthold et al.

References

Adam L, Branda M, Heitsch H, Henrion R (2020) Solving joint chance constrained problems using regu-
larization and Bender’s decomposition. Ann Oper Res 292:683–709

Andrieu L, Henrion R, RömischW (2010) Amodel for dynamic chance constraints in hydro power reservoir
management. Eur J Oper Res 207:579–589

Bank B, Guddat J, Klatte D, Kummer B, Tammer K (1982) Non-linear parametric optimization. Akademie
Verlag, Berlin

Ben-Tal A, El Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton
Bremer I, Henrion R, Möller A (2015) Probabilistic constraints via SQP solver: application to a renewable

energy management problem. Comput Manag Sci 12:435–459
CalafioreGC,CampiMC (2006) The scenario approach to robust control design. IEEETransAutomControl

51:742–753
Charnes A, Cooper WW, Symonds GH (1958) Cost horizons and certainty equivalents: an approach to

stochastic programming of heating oil. Manag Sci 4:235–263
Chattopadhyay S (1988) A realistic linear decision rule for reservoir management. Water Resour Manag

2:21–34
Curtis F, Wächter A, Zavala V (2018) A sequential algorithm for solving nonlinear optimization problems

with chance constraints. SIAM J Optim 28:930–958
Dentcheva D, Martinez G (2013) Regularization methods for optimization problems with probabilistic

constraints. Math Program 138:223–251
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