On maximum functions with a dense
set of points of non-differentiability
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Introduction

There are various reasons for investigating differentiability properties of
maximum functions of the type g™4® (2) == max 9(z, 2), where K C R™ is
r

a a compact subset and g € ¢! (R™x R", R). For instance, by 9™ one can
understand an optimal value function of some n- parametric optimization
problem (with z as parameter). On the other hand there is a close rela-
tion to smoothness of boundaries of constraint sets in finite or semi-infinite
. optimization,. depending on whether the index set K is finite or not: if
the Mangasarian-Fromovitz constraint qualification is satisfied in its con-
ventional or extended (see [1]) version respectively, then these boundaries
may be locally described by the graphs of such maximum functions (see2]).
For a measure-theoretic study of nonsmoothness of maximum functions we
refer to [3]. \

" Since g™ s locally lipschitzian (see [4]) it has to be differentiable
on'a subset of R", the complement of which has Lebesgue-measure zero
by Rademacher’s theorem. In contrast to this one can easily construct lo-
cally lipschitzian functions being non-differentiable on a dense subset of R®
(see [5]). For the special case of maximum functions one has to distinguish
between finite and infinite sets K. In the first case it is immediately ver-
ified that there exists an open and dense subset of IR on which gmer
is differentiable, hence the set of non-differentiability cannot be dense. As
a consequence, the Mangasarian-Fromovitz constraint qualification implies
some nice structure of constraint sets since their boundary contain a (-
manifold as an open and dense subset (see [2]). If, however, K is infinite
then again counter-examples can be constructed to show that g™ may
be non-differentiable on a dense subset of IR". Accordingly, in semi-infinite
optimization constraint sets have - in'spite of some constraint qualification
-"a much more comiplicated structure. Concerning the generality of such
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counter-examples it turns out that, depending on the geometric structure
of K, they are even typical in a certain sense. More precisely, as the main
result we shall prove that there is a dense set of functions g (in a topol-
ogy to be specified below) for which the corresponding maximum functions
g™ have a dense 'set of non-differentiability; provided 'K is a compact dif-
ferentiable manifold (e.g. a'sphere or a torus). The following example makes
evident the impact of geometric structure of ‘K on this result: =~

Example 1 Let K = [0,1] and g : R? — R, g(z,2) := zz. Then there
s an open neighborhood U(1), suck that the mazimum of 9(-,2) over K
is allained al £ = 1 for all 2z € U. Consequently, for z € U one has
9™ (2) = z, hence g™ s differentiable on an open set and the set of
non-differentiability cannot be dense. One easily checks,:that this situatipn
is stable for small C- perturbartions of g. Therefore it is not possible by an
arliitrarily small C*- perturbation of g to generate a pathological mazimum
function with a dense set of non-differentiability. Note that in this ezample
- in contrast lo the result stated above - K is not a differentiable manifold
at the boundary point z = 1. o - ‘ ' ;

In this way a nicer structure of K implies ‘a larger set of pathological
maximum fitnictions. The very technical reason for this is that the gradient
of g(-, z) needs not vanish at the global maxima of this function unless K
is a differentiable manifold. - L R
Results

First some notation shall be introduced. Let 4, B, S be arbitrary sets-and
assume. S C A,b € B,h: A x B — R. Then denote by E(h,S,b) := {s €
S | h(s,b) > h(s',b) Vs’ € S} the (possibly empty) set of global maximizers
of h(-,5). For y € IRP and r > 0 let B(y;r) be the closed p- dimensicnal

euclidean ball of radius r around y. Finally, for a differentiable real valued
function -k define: . » ) -

hllgry = max |AG/)| and |VAllpeor = max (VA
Bllacy;r) pliax IA() | an ||  hliByir) | y,g;;gr\);ll 7Ryl
vhere [|Vh(y)|| := ,max [ 2L(y) | Finally the symbol ¢! refers as
) . =1,....p ¢ . . ) ) S .
sually to differentiable functions having continous partial d_erivatives.‘
Che followipg lemma is an essential t,echhical tool for proving t.hé desired
esult. It indicates how to generate a point of non-differentiability for g™



On max-functions with a dense set of points of non-differentiability 273

at a pre-defined position z* by arbitrarily small perturbartion of g. The
considered functions are assumed to be defined only locally which will be
necessary when proving the theorem below.

Lemma 1 Let U, and U, be open neighborhoods of z* € R™ and of
+* € R". Given a function h € C\(Ur x U;, R) with z* € E(h, Uz, z*) and
“given arbitrary ¢1, €2 > 0 such that B((z*,2*);€1) C Uz x Uy, there exists
a function h'€ CL(U, x U;, R) satisfying the following properties:

h(z,z) = h(z,2) ¥(z,2) € (Us x Uz)\ B((z*,2"); 1) (1)
32,22 €U, : E(h,Us, 2%) = {«, 2%}, - (2)
h(z!,2*) = h(z?,2*) > h(z*,2"), —g—g—(zl,z*) # gzil(xz,z*)

max {"h - ’—l"B((z‘,z‘);el) ’ “Vh - Vﬁ“B((z‘,z‘);el)} < €2 (3)

Proof: P , o o
For the purpose of abbreviation in this lemma B(r) shall denote the closed
ball of radius r around (z*,z*). First we define a parameter dependent
function h% € C*(U. x U,, R) by :
P o B T i ;

Reyz) = —(z1 —2))t +a(@r - o))’ - Y (mi -2+
G . ' ' i=2

(21 — 2})(z1 — 2}) + Vah(z", 2" )(z = 2*) + h(=", 2")
- The. 21~ part of this function is illustrated in figure 1. For 0 < 2v/& < &1

ets by the aSgt_lmptidn of the lemma:

i ' B(2va) C B(e)) C Uz x Us. 4)

1t.is easily verified that (for any @) hg has first order contact at (z*,2*)
- with h, ie. at this point functional values and partial derivatives (w.r.t
~z,and 2) coincide for both functions (recall that, by assumption, z* is a
 global maximizer.of h(:,2"), hence Veh(z*, z*) = 0). Accordingly one may
a8 ume o > 0. sufficiently small to meet the condition e

R (T2 W iw €
©max {8 ~ llaays) o IVR: - VAo } <3+ ©)

ﬁﬁ‘{: ermore the set of global maximizers of h}(,2") consists of the two
Joiiits z!/2? := (2} £ /a/2,2},...,25,) (note that due to (4) both points
ong to Uy), which yield the functional value

R, 2) = ha(e?, 27) = bzt ) + a4, (6)
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Figure 1: Illustratlon of the z;- part of the functlons h h%,h at the point

(z ,2°)-

Now, the function k, which is looked for in the lemma, is constructed as
follows: h := ¢ - h% + (1 — @) - h, where ¢ € C®(R™*", R) is.a func-
tion with the properties 0 < ¢ < 1, ¢ |g/m= 1, ¢ [Rmsn\Bya)E 0
and ||Vé(»)|| < 72- Vy € R™*", where|| - || refers to the maximum norm
(for details compare [6], p.42). The last property of ¢ results from the fact
that /a is the width of the annulus where ¢ varies ‘between 0 and 1. The)1
¢ may be constructed in such a way that the modulus of all its partial
derivatives is bounded by a number which is greater than but arbitrarily
close to 1/\/a. By definition h coincides with h outside B(2y/a@), hence
(1) is proved by (4). Inside B(y/@) h is identical with A% (compare figure
1), thus in this ball h(-, z*) -attains a maximum value which is identical to
(6). Outside B(y/@) h is a convex combination of h and hZ. In this region
all values of h(:,z*), h%(-,2*) are strictly smaller than the ‘maximum value
in (6). This is shown by recalling that ‘h(z*,z*) is a global upper bound of
h(,2z*) and that the points (z!,2*),(z? 2*) (where {z;,23} is the set of
global maximizers of h%(:;2*)) are located within the interior of B(\/_)

Consequently the first two relations of (2) are proved and the last one is
derived from . g

o

Oh, 4 o _ ORL 4 . Oh, . . ‘
6—2'1(1:,z) = azi‘(;c,z)_aZI(:c,z)+\/a/2#
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Oh . 'Ok, 5. . Oh .

5—’(’«' )= Vef2 = 3—9‘(2’2,1 )= '5;1-(432,2 )

Concerning (3) it is obvnously sufficient (see (4)), to consider the correspond-
ing norm differences over B(2y/@). The definitions of h and ¢ imply:

1 h(z,2) - h(z, 2) |=| #(=, 2) || Koz, 2) — h(z,2) I< o —‘ ¥(z,2) € B(2Va)

which results from (5). It remains to estimate the difference of gradlents
within the same closed ball (omlttmg the argument (z, z) in all expressions
and using || -|| as maximum norm)

|ha —h|
Y~ ()

Here again (5) as well as the properties of ¢ (stated above) were exploited.
This last inequality holds for all (z,2) € B(2y/@), and one has to estimate
the second term of the right-hand side within this ball. To thls aim, define
h(:c z a) := h%(z,z) — h(z,2) with the properties h(z*,z* ,0) = 0 and
Vh(z*, z*,0) = 0. As a consequence, there is a function €(z, z, @), satisfying

~||VR = V| = l|¢ - (Vhy — Vh) + (ks = h) - V¢II< 5 T2 —=

lim z,z,a) = 0
(=,z,0)—(z*,2*,0) : ( )

and |h(z,z,a)| = c(:r,z,a)||(m—,z*,z—z‘,a)T||,

where again the maximum norm is used for convenience. Putting

o) = . z)eB(zJ') €(z, z, a) one gets for small enough o > 0'

(c,z)eB(2\/") | (z,2,a) |< e(a) 2/e. Furthermore, hm é(a) = 0 by the

corresponding property of ¢. Now, the remaining term of (7) may be esti-

mated by 4é(a) which becomes smaller than €2/2 for small enough o > 0.
n]

s .
LR S L

Suppose now, that the set K C.IRP is a compact m- dimensional Cl-
manifold. This means: Each point y € K posseses an open neighborhood
. ¥'C R? and a mapping f € C}(V, R™) such that U := f(K NV) is open
in- R™, the restriction f |gknv: KNV — U is bijective and the inverse
mapping f~! : U — IRP is of class The pair (K NV, f |knv) is called
& chart around y. Since K is compact, one can select a finite number of
charts (K N Vi, fi |kavi) (= 1, 1)
- i Given a fixed compact m-dlmensmnal C'- manifold K as well as some
~openset U; C IR", one obtains a m + n- dimensional C1- manifold K x U,
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(note that by ([K NV;] xU,,F; l[KnV.]xU.) with Fi(y,2) := (fi(y),2) a
finite system of charts for this manifold is defined). By C}(K x U,, IR) we
denote the set of all functions ¢ : K x U: — R, such that go F~
CL(F;((KNV;]xU,,)R) forall i = 1,...,1 (recall that the dotnains of
these functions are open subsets of R"'"'" by definition of F;). For instance,
one has g € CY(K x U,, R), if there exists § € C!(RP x U,,R) with
§ |kxv,= g. The space Cl(K X U,, IR) can be endowed with the so-called
weak topology ([6], p.34) as follows:

If g€ C‘(K x U,, R), (W;, F; |w,) is some chart of K x Usp, LCW; is
some compact subset and ¢ > 0, then a subbasic nelghborhood ‘of g will be
defined to consist of all § € CI(K x Uy, R) satisfying:

lgo Ft=go Ft|l <& V(g0 F?) =V (Fo F Y| < (8)

The set of all such subbasic neighborhoods (by variation of g, (W;, F; |w,), L
and ¢) defines a subbasis of the weak" topology The resulting topological
space shall be denoted by (K X U,, lR) ThlS Space is metnzable by some

complete metric §.
Fmally observe that for all g€ CI(K x U,, R) 1t holds:

V.0(0,5) = Vuloo ) (Riw, ) Vi 2) € [K 1] x U, Vi )

To see this, recall that g |[xnv;xv, = (9o F o F) I[KnV.]xU,» hence for
(v,2) e[KNV;] x U, one gets 5o :

Vi9(y,2) = Vs (90 F7' o F) (y,2) = Vz[y o F1] (F (v, 2))

since V,F; = (0(m R ) by definition of the F;.

‘Now; to each g€ CY{K x U;, R) the correspondmg maximum function
9" 1 U; — R is assigned by ¢™%(2) ;= ma.x g(y, z) We mtroduce the

following set-of ’pathological’ functions:

G :={g € CL(KxU,, R) | 3D C U,, D dense, g™ non-differentiable on D}

Concerning the generality of ‘G ‘we can formulate the following result: " "~

Theorem 1 g ccl (K X U,,R) isa d?nsc subset

Proof: ‘ R
We start by deﬁnmg a dense subset of Uz To thls alm let for k € IN

T = {telRIt*:i:u P (z~ RS ) SR

:
)é
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28 = [TEx ... xTH]| (U and 2% := | 2%
: N\ k=0
Obviously, each Z* is finite and Z%° C U, is a dense subset. In order to
proove the theorem one has to show that, given an arbitrary number ‘y >0
and an arbitrary function g € CL(K x U,,R), there is a function ¢* € G
with §(g,9*) <7, where 5 refers to the complete metric of CL (K x Us, R).
The desired function g* wlll be constructed as the limit of a sequence of
functions {gx} which meet the following conditions:

g ECL(KXU,,R) 0

0 (9, 2) = gr-1(9,2), Vagk (¥, 2) = Vage_1(v,2) V(y,2) € Kx 2571 (11)

Vzezt 3y eK: E(K2)={y} (12
‘ . ) ¥l ‘B i d
3 0 0) # "’"(y 2)

g <y 227G (13)

Assuming, for the moment, that (10-13) hold true, one observes that the
{gx} form a Cauchy sequence (by (13)) with continously differentiable limit
function g* € C1 (K x U;, R). Furthermore, putting formally g_; := g, one
has 6(g,9") < v, as desired. In order to verify ¢g* € G one first remarks
that Vz€ Z*°3ko € NVy € K: - : :

0 (12) = gro®,2) and Vag*(3,2) = Vagro(,2)  (19)

To see this, recall that 2 € Z*° implies z € Z¥° for some ko G W Smce
ghCZEVE > ko, (11) ylelds for all (y,2) € K x Zke: :

-

yk..(y,Z)—yk.m(y,z)— < and Vgi(y,2) = szko+1(y,z)

hen (14) follows from the convergence gk — ¢* in the (,'l topology.
~ ¥rom the first relations in (12) and (14) one denves Vze 2®° Jko € IN :
§(g K,z)= E(gko,K z) = {3}, yz}, where y!,3? depend on z. Now the
qegpnd relations in (12) and (14) 1mply

(1 )# (y 1 2)-

These partial derivatives, however, determine the left- and right-sided deriva-
tibes; respectively, of the maximum function g*™** at 2z restricted to the

hE SR
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z1- axis. Consequently g*™%® is not differentiable at all points 2 € Z>,
hence ¢* € G- and the theorem is proved. N ‘

Now, the sequence {g;} fulfilling (10-13) will be defined inductively
starting with the construction of an initial function go (k = 0). To give
sense to (11) we put formally g_; := g and Z~! := 0. Since K is compact,
there exists a point y* € E(g, K, 0). Let KNV xU,, F; lixknvixu,) be
a chart around (y*,0) and denote (z*,0) := F;(y*,0) as well as U, x U, :=
F; ([KNV;] x U,) (recall that F; equals the identity over the z- part). Next
choose €, > 0 to meet B((z*,0);¢1) C Uz x U,. Given any e; > 0 one
can apply Lemma 1 to the function h :=g¢ F;! € C\(U; x U,, R). Then
existence of h € C1(U, x U,, R) satisfying conditions (1-3) is provided. We
define B (R )) y
: . e . E Y,z Yy € Kn [
90(v:2) '"'{ 9(y, 2) yEK\V

Exploiting the facts that by (1) go and g coincide outside the compact
subset F; ' (B ((z*,0);e1)) € [KNVi] x U, of a chart and that by as-
sumption g € CL(K x U,,IR) one easily verifies the C!- property of all
composite functions gg o Fj"l, proving (10). By definition of Z~! (11) is
‘trivially fulfilled. From Lemma 1 and(15) it follows that

(19)

E(go, KNV;,0) = {y' ¥}, where &,0) = F'(«,0).  (16)
Exploiting (2) and (15) one arrives at o , o
90(y',0) = h(z7,0) > h(z",0) = g(y*,0) > 9(y,0) = go(y,0) Vye K\ V;

Together with (16) this leads to E(go, K,0) = {y!, y?}, which is the first
relation of (12) (recall that Z° = {0,}). The second relation of (12) is
obtained from (2) and (9). Finally (3) and (15) allow, by using arbitrarily
small €3 > 0, to keep go arbitrarily close to g in the CL- topology (i.e. on
all compact subsets of all charts), hence (13) may be fulfilled. ,
Now suppose, that some function g satisfying (10-13) has already been
constructed for some k € IV. Then we are going to find gp4; having
the corresponding properties. Many arguments run similar to the start of
induction. Assume Z¥+1\ 2% = f;(): . 2(™} for some m. For each
j there exists (due to compactness of K) an yU) ¢ E(g*, K, 29). Let
_([K NViyl x Uz, Fijy I[K“V(j)]xU,) be charts around (yU), 2(9)). Give v
and 2U) similar meanings as U, and z* above. Choose €1 > 0 to meet
B((x(?'),z(j));el) C U¥) x U;. Given any ¢; > 0 apply lemma 1 to
h(j) ;= gr o F(;)l yielding hU) with the corresponding properties. Addi-
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tionally take €; > 0 small enough to provide disjoint n- dimensional balls

B(2%; 1) N B(zb‘;.el)‘= 0 Vz‘r',zl'(" € 2kl o 4 ;b. | 17
Then the following deﬂnitil)ﬁ makes‘sense: |

hD) (Fiy(y,2)) if (y,2) € [K N V3] x B(z1);¢y)
9:(y, 2) else

gea(y, 2) = {

Now, similar to (15), (10) follows for gi4; from the corresponding property
of gr by the induction assumption. From (17) and the construction of k+1
one derives that for all z € Z* there exists an open neighborhood U (2)
such that gir4+1(y,2) = gx(y,2) V(y,2) € K x U(z). This implies (11) for
k+ 1. As a consequence of this fact one obtains, exploiting the induction
assumption (12):Vz € Z* 3yl 2 € K :

d d
E(ge41, K, 2) = {y', 9}, Ty 1) # ZIhL (2 oy
62’1 6z1

But the same relation holds also true for all z € Z*+! \ Z¥, by the above
given construction of gpy, (again using Lemma 1 similar to the start of
induction). Consequently (12) is proved. Finally (13) may be satisfied by
reducing ¢; > 0 similar to the start of induction. Since gk+1 and g; differ
on a finite number of disjoint balls on which this difference may be kept
arbitrarily small (see Lemma 1, (3)) one arrives at this last relation to be
verified. This completes the proof. O
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