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Aubin property. We provide explicit point-based formulae for the moduli (best 
constants) of all three Lipschitz properties in all three perturbation settings.
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1. Introduction

This paper is concerned with the quantitative stability of linear inequality systems of the form

{a′tx ≤ bt, t ∈ T}, (1)

where x ∈ Rn is the vector of unknowns (understood as a column vector, with the prime denoting trans-
position), and a ≡ (at)t∈T ∈ (Rn)T and b ≡ (bt)t∈T ∈ RT are given coefficients with T being an arbitrary 
(without specific topological structure) index set. The functions t �→ at and t �→ bt are not supposed to have 
any particular property. When T is finite (infinite), (1) describes the feasible set of standard (semi-infinite) 
linear programming.
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The analysis of Lipschitz like properties (Hausdorff Lipschitz continuity, Aubin property, etc.) for fi-
nite and infinite systems (1) has a prominent and long history (e.g., [12,13,18–20,22]). In this context, 
particular attention has been paid to the characterization/computation of the best Lipschitz modulus, 
which is closely related to the so-called Hoffman constant. Very much as for simple continuity of multi-
functions - which may be weakened in the two directions: upper and lower semicontinuity - the (linearly 
quantified) Lipschitz continuity can be split into several weakened upper and lower Lipschitz semiconti-
nuity properties. In illustrative terms, upper semicontinuity ensures that a multifunction does not grow 
too fast in a neighborhood of some point of interest, whereas lower semicontinuity means that it does 
not suddenly collapse (in particular does not suddenly have empty values). Sometimes, some of these 
weakened properties (e.g. calmness and Lipschitz lower semicontinuity) are beneficially combined in order 
to derive important stability results under conditions that are still weaker than full Lipschitz continu-
ity.

The topic of this work is part of variational analysis and its relation to optimization theory; the reader is 
addressed to the monographs [8,15,21,23]. Our quantitative stability study will be mainly focussed on the 
analysis of the Lipschitz lower semicontinuity (Lipschitz-lsc, in brief) of (1) in three perturbation settings: 
the context of full perturbations, i.e., simultaneous perturbations of a and b, the one of right-hand side 
(RHS, in brief) perturbations, where only b is perturbed, and left-hand side (LHS, in brief) perturbations, 
where perturbations fall only on a. The Lipschitz-lsc has been studied by many authors in different contexts 
(see, for example, [9,15,17,25,26]). For instance, [9, Theorem 3.8] provides some sufficient assumptions for 
the Lipschitz-lsc of a class of implicit multifunctions. Theorem 4.1 in [25] provides a sufficient condition for 
the Lipschitz-lsc of the variational system associated with a parameterized generalized equation, and [26, 
Remark 4] gives an upper bound of the corresponding Lipschitz-lsc modulus. Analogous results in the field 
of parametric constrained optimization problems are given in [26, Theorem 2]; see also [25, Proposition 6.1]
and [26, Proposition 1 and Theorem 3] in relation to the argmin mapping.

As a consequence of a theorem by Klatte and Kummer (see Theorem 1 in Section 2), the Lipschitz-lsc of 
(1) with finite index set T is equivalent with the Aubin property (corresponding to full Lipschitz continuity) 
whenever both parameters a, b or just the RHS b are perturbed. The same equivalence does not hold true 
for only perturbations of LHS coefficients a (see Example 1 in Section 2). In order to maintain the previous 
equivalence under all three types of perturbation, we introduce a strengthened Lipschitz-lsc property, the 
so-called Lipschitz lower semicontinuity-star (Lipschitz-lsc∗, in brief), which on the one hand comes as 
a natural modification of the Aubin property and which on the other hand has already been implicitly 
used (combined with calmness) in the past in the context of stability of parametric optimization problems 
[14]. Additionally, this approach has led to study, at the same time, the ‘metric-regularity counterpart’ of 
Lipschitz-lsc property (see Section 6).

Our analysis is devoted to complete the characterization of the four properties (Aubin, Lipschitz-lsc, its 
metric-regularity counterpart and Lipschitz-lsc∗) of system (1) under all three (full, RHS, LHS) possible 
perturbations for a potentially infinite index set T as well as to the derivation of explicit point-based 
formulae for the associated moduli. The obtained results heavily rely on a previously obtained formula in [5]
for the Lipschitz modulus of (1) (full perturbations). This formula has been complemented in [3] for RHS 
perturbations only in the context of continuous systems (where T is a compact Hausdorff space and the 
coefficients of the system depend continuously on the index t ∈ T ). In this continuous context [7, Section 3]
analyzes the lower and upper semicontinuity of the feasible set mapping under LHS perturbations (see [10, 
Chapter 6] for RHS and full perturbations). We also note that the moduli for the calmness of (1) (which as 
an upper semicontinuity property is outside the scope of the present work) have been provided in [6] in the 
case when T is finite under RHS and full perturbations.
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2. Basic concepts, preliminary results and examples

2.1. Lipschitz properties of multifunctions

Intuitively, generalizing the well-known concept of a locally Lipschitzian function g : Y → X between 
metric spaces to a multifunction G : Y ⇒ X should result in an estimate of the type

d
(
G(y1),G(y2)

)
≤ κd

(
y1, y2) , (2)

for y1, y2 in a neighborhood of some fixed y ∈ Y , where the distance between subsets of X occurring on 
the left-hand side has been chosen appropriately. A natural choice would be the Hausdorff distance d := dH
between closed subsets of X. Writing out (2) for the Hausdorff distance between images of G in terms of 
the point-to-set distance in the given metric of X then would yield the equivalent condition

d
(
x,G(y2)

)
≤ κd

(
y1, y2) ∀x ∈ G(y1), (3)

for all y1, y2 in a neighborhood of y ∈ Y . This choice, however, is not very beneficial in variational analysis, 
where one is mostly dealing with unbounded sets (cones, systems of inequalities, etc.) which would yield 
the Hausdorff distance infinity and lead to an impossible estimate (2). On the other hand, one is usually 
interested—even for unbounded sets—just in the local behavior of multifunctions around a fixed point (y, x)
of its graph, gphG, i.e., x ∈ G(y). This suggests not to compare full images of G as in (2) but rather localized 
(around x̄) versions thereof. Then, (3) turns into the celebrated Aubin property which is precisely defined 
as follows (with Bε (y) referring to the closed ε-ball around some point y):

Definition 1. G as introduced above satisfies the Aubin property at a point (y, x) ∈ gphG if there exist 
ε, κ > 0 such that

d
(
x,G(y2)

)
≤ κd

(
y1, y2) ∀x ∈ G(y1) ∩ Bε (x) ∀y1, y2 ∈ Bε (y) . (4)

This property has been originally introduced under the name pseudo-Lipschitz continuity by Aubin in 
[1] but later has been renamed after the author in [23]. The Aubin property plays an absolutely central 
role in variational analysis, be it for stability properties, for convergence of algorithms or as a constraint 
qualification, see, e.g., [8,15,23] and the references therein. It is closely tied with other fundamental concepts 
of variational analysis like metric (sub-) regularity, (isolated, robust) calmness, error bounds, (upper, lower) 
Lipschitz continuity etc. Observe that the Aubin property is both an upper and a lower Lipschitz property 
by allowing in (4) two parameters y1, y2 to vary independently around the fixed y. Hence, growth or collapse 
of the images of G near y can be controlled in a linear way. If one is interested just in upper or lower Lipschitz 
continuity of a multifunction, then one may fix one of the parameters y1 or y2 as y and allow only the other 
parameter to vary around y. For instance, fixing y2 := y in (4), one arrives at the calmness property which 
is an upper Lipschitz property and has attracted much attention, for instance, as a constraint qualification 
in MPECs substantially weaker than the Aubin property, see, e.g. [11]. In this paper, we will rather focus 
on lower Lipschitz properties. A natural way to define one of such properties would be to fix y1 := y and 
rename the variable y2 as y in (4):

Definition 2. G is said to be Lipschitz lower semicontinuous-star (Lipschitz-lsc∗, in brief) at (y, x) ∈ gphG
if there exist ε, κ > 0 such that

d (x,G(y)) ≤ κd (y, y) ∀x ∈ G(y) ∩ Bε (x) ∀y ∈ Bε (y) . (5)
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The asterisk on this property serves to distinguish it from the weaker concept (see below) of Lipschitz 
lower semicontinuity (Lipschitz-lsc, in brief), which has been introduced earlier (see, e.g., [15]). Indeed, the 
asterisk is an allusion to the pseudo-Lipschitz∗ property originally introduced in [14], which combines the 
calmness property mentioned above and the Lipschitz-lsc∗ property and has been successfully applied, for 
instance, to the stability of probabilistic programs in [24].

Finally, we can further fix not just y1 := y but even x := x in (4):

Definition 3. G is said to be Lipschitz lower semicontinuous at (y, x) ∈ gphG if there exist ε, κ > 0 such 
that

d (x̄,G(y)) ≤ κd (y, y) ∀y ∈ Bε (y) . (6)

The relevance of this last concept (also called inner calmness in [2, Definition 2.2]) is supported by the 
fact that it plays a crucial role in parametric optimization problems. For instance, it can be used to establish 
the so-called calmness from above of optimal value functions (e.g., [25, Prop. 3.2]). Moreover, it already 
implies the much stronger in general Aubin property for a rich class of such problems (see Theorem 1 below).

Observe that both the Lipschitz-lsc and the Lipschitz-lsc∗ properties—when satisfied at all (y, x) ∈
gphG—imply the classical lower semicontinuity of G (in the sense of Berge), but differ from the latter in 
that they provide a linear estimate on how fast the images G(y) locally evade from the fixed one G(y).

2.2. Relations and moduli for the Aubin, Lipschitz-lsc∗ and Lipschitz-lsc properties

As an immediate consequence of the definitions in (4), (5) and (6), one has the implications

Aubin property =⇒ Lipschitz-lsc∗ =⇒ Lipschitz-lsc, (7)

where moreover common constants ε, κ > 0 may be used in the respective definitions. All implications are 
strict in general as can be seen from elementary examples. However, for certain types of multifunctions such 
as smooth, fully parameterized inequality systems, all three concepts may coincide:

Theorem 1 ([16, Lemma 1]). For g ∈ C1 (Rn,Rp), let G : Rp ⇒ Rn be defined as G (y) := {x ∈ Rn|g (x) ≤ y}. 
Moreover, for some x ∈ Rn assume that g (x̄) ≤ 0. Then, G has the Aubin property at (0, x) if and only if 
G is Lipschitz lsc at (0, x) (hence, if and only if G is Lipschitz lsc∗ at (0, x)).

This result hinges essentially on the fact that the inequality system is fully perturbed (includes RHS 
perturbations). This can be seen from the following simple example of a single non-fully perturbed linear 
inequality:

Example 1. Let G(y) := {x ∈ R | y · x ≤ 0} for y ∈ R. Then,

G(y) =

⎧⎪⎨⎪⎩
R+ y < 0,
R y = 0,
R− y > 0,

is Lipschitz-lsc at (0, 0) but it is not Lipschitz-lsc∗ there. Due to (7), it also fails to have the Aubin property 
at (0, 0).

Motivated by this example, part of our work will be devoted to the relation of the three properties in the 
case of just LHS perturbations of linear inequality systems (coefficients). As a consequence, we will derive 
that in the finite case the Aubin property is still equivalent with the Lipschitz-lsc∗.
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From the qualitative comparison of the three properties, one may pass to a stronger quantitative com-
parison of their associated moduli which are defined as the smallest κ > 0 such that for some ε > 0 the 
respective inequality holds true:

lipG(y, x) / liplsc∗ G(y, x) / liplscG(y, x) := inf {κ > 0|∃ε > 0 : (4)/(5)/(6)} (8)

By definition, the Aubin property (Lipschitz-lsc∗, Lipschitz-lsc property) holds true if and only if

lipG(y, x) < ∞ (liplsc∗ G(y, x) < ∞, liplscG(y, x) < ∞) . (9)

Consequently, calculating the moduli—as we shall do in the following—will immediately imply results on 
satisfaction/non-satisfaction of the corresponding properties. Moreover, the implications (7) holding true 
with common constants ε, κ > 0 in the respective definitions yield the inequalities

lipG(y, x) ≥ liplsc∗ G(y, x) ≥ liplscG(y, x). (10)

However, for a class of multifunctions where all three properties are equivalent—as in Theorem 1—it is 
not automatically clear that inequalities (10) can be reverted, thus establishing equality of all moduli. For 
instance, if ε, κ > 0 are such that (6) is satisfied, then it is not guaranteed that the same κ > 0 would 
work in the estimate (4) (possibly with some ε̃ different from ε) even if one knew that (4) holds true for 
some ε̃, ̃κ > 0. Therefore, the equality of moduli—which we will basically establish for the class of linear 
inequality systems (1)—is a much stronger result than the equivalence of the properties themselves.

It is easy to see that the moduli defined in (8) can be equivalently transformed into the more handy 
expressions:

lipG(y, x) = lim sup(
y1,y2,x

)
→(y,ȳ,x)

y1 �=y2, x∈G(y1)

d
(
x,G(y2)

)
d (y1, y2) , (11)

liplsc∗ G(y, x) = lim sup
(y,x)→(y,x)
y �=y, x∈G(y)

d (x,G(y))
d (y, y) , (12)

liplsc G(y, x) = lim sup
y→y, y �=y

d (x̄,G(y))
d (y, y) . (13)

The following formula for the Lipschitz modulus, sometimes easier to handle, is well-known and relies on 
the fact that the Aubin property of a mapping is equivalent with the metric regularity of its inverse (see, 
e.g. [8,15]):

lipG(y, x) = lim sup
(y,x)→(y,x),y /∈G−1(x)

d (x,G(y))
d (y,G−1(x)) , (14)

Observe, that if (y, x) is an interior point of gphG, then lipG(y, x) = 0 by (11). On the other hand, if the 
limsup in (14) is taken over the empty set, hence formally yields the value zero too. The following example 
shows that the inequalities in (10) may be strict, even if the moduli are finite (i.e., if all three properties 
hold true):

Example 2. Let G : R ⇒R be given by G (y) := {0} ∪ [|y| , |y| + 1]. We want to calculate the moduli (8) at 
the point (ȳ, ̄x) := (0, 0) ∈ gphG. Observe first that 0 ∈ G(y) for all y, whence trivially liplscG(0, 0) = 0
by (13). Next, in order to calculate liplsc∗ G(0, 0) via (12), consider sequences (yk, xk) → (0, 0) such that 
yk �= 0 and xk ∈ G(0) = [0, 1]. It is easily verified that
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d(xk,G(yk))
d(yk, 0) = min{xk,max{|yk| − xk, 0}}

|yk|
≤ 1/2,

where equality is realized for the concrete sequence yk := k−1, xk := k−1/2. Hence, the lim sup in (12)
equals 1/2, showing that liplsc∗ G(0, 0) = 1/2. Finally, for the computation of lipG(0, 0), observe that for 
any y1, y2 ∈ R, and any x ∈ G

(
y1) we have that

d
(
x,G

(
y2)) =

⎧⎪⎨⎪⎩
min{x,

∣∣y2
∣∣− x} if x ≤

∣∣y2
∣∣

0 if
∣∣y2

∣∣ ≤ x ≤
∣∣y2

∣∣ + 1
x−

(∣∣y2
∣∣ + 1

)
if x >

∣∣y2
∣∣ + 1

.

In any case, taking into account that either x = 0 or 
∣∣y1

∣∣ ≤ x ≤
∣∣y1

∣∣ + 1, it follows that

d
(
x,G

(
y2)) ≤ ∣∣∣∣y1∣∣− ∣∣y2∣∣∣∣ ≤ ∣∣y1 − y2∣∣ ,

whence lipG(y, x) ≤ 1 by (11). On the other hand, for the particular sequence(
y1
k, y

2
k, xk

)
:= (k−1, 2k−1, k−1) → (0, 0, 0),

one has that y1
k �= y2

k and

d
(
xk,G

(
y2
k

))
= k−1 =

∣∣y1
k − y2

k

∣∣ ,
whence lipG(y, x) = 1.

2.3. Perturbation settings and preparatory results

To start with, we introduce some notation. Given X ⊂ Rp, we denote by convX and coneX the convex 
hull and the conical convex hull of X, respectively. It is assumed that coneX always contains the zero vector 
0p and, hence, cone ∅ = {0p}. Moreover, throughout this paper we use the conventions

0
0 := 0, 1

0 := ∞, and 1
∞ := 0. (15)

The interior, closure and boundary of X are denoted by intX, clX and bdX, respectively.
We define our parameter space as Θ := (Rn ×R)T . Associated with systems of the form (1) in the setting 

of full perturbations, we consider the feasible set mapping F : Θ ⇒ Rn given by

F(σ) := {x ∈ Rn | a′tx ≤ bt ∀t ∈ T} , σ ≡ (a, b) ∈ Θ. (16)

When we fix a = a and b = b separately, we deal with the contexts of RHS and LHS perturbations, 
respectively, and the corresponding partial feasible set mappings,

Fa : RT ⇒ Rn and Fb : (Rn)T ⇒ Rn,

are defined by

Fa(b) := F(a, b) and Fb(a) := F(a, b).

Along this work, the space of variables Rn is equipped with an arbitrary norm, ‖ · ‖, whose dual norm
is, as usual, denoted by ‖ · ‖∗ and defined as



M.J. Cánovas et al. / J. Math. Anal. Appl. 490 (2020) 124313 7
‖u‖∗ = max
‖x‖≤1

|u′x| .

By d∗ we represent the distance in Rn associated with ‖ · ‖∗. The parameter space Θ is endowed with the 
extended distance d : Θ × Θ → [0, ∞] given by

d(σ1, σ2) := sup
t∈T

∥∥∥∥(a1
t

b1t

)
−
(
a2
t

b2t

)∥∥∥∥ ,

where ‖ · ‖ is the norm in Rn+1 defined as∥∥∥∥(uv
)∥∥∥∥ := max {‖u‖∗, |v|} for all

(
u

v

)
∈ Rn+1, (17)

whose dual norm is given by ∥∥∥∥(uv
)∥∥∥∥

∗
= ‖u‖ + |v|, whenever

(
u

v

)
∈ Rn+1.

In the parameter spaces RT and (Rn)T , associated with partial perturbations, we use the natural extended 
distances (all denoted by d and distinguished by the arguments):

d(b1, b2) := sup
t∈T

∣∣b1t − b2t
∣∣ , b1, b2 ∈ RT ,

d(a1, a2) := sup
t∈T

∥∥a1
t − a2

t

∥∥
∗ , a1, a2 ∈ (Rn)T .

We recall the well-known Farkas Lemma which can be traced out from [10, Corollary 3.1.2] and constitutes 
a key tool in the paper.

Lemma 1 (Extended Farkas Lemma). The inequality a′x ≤ b is a consequence of a consistent system a′tx ≤
bt (t ∈ T ) if and only if (

a

b

)
∈ cl cone

{(
at
bt

)
, t ∈ T ;

(
0n
1

)}
.

In the following theorem we gather well-known results characterizing the Aubin property for F at (σ, x) ∈
gphF . We appeal to the well-known notion of a strong Slater constraint qualification (SSCQ, in brief) which 
is satisfied at σ if there exists x̂ ∈ Rn (called a strong Slater element, SS element in brief) and a positive 
scalar ε such that a′tx̂ ≤ bt − ε for all t ∈ T . The equivalences ‘(ii) ⇔ (iii) ⇔ (iv)’ can be found in [10, 
Theorem 6.1]. Obviously, ‘(i) ⇒ (ii)’ and, from [4, Corollary 5], we obtain the converse implication. For 
convenience, we have also added the trivial equivalence ‘(iv) ⇔ (v)’, where we appeal to the closed and 
convex set

Cx :=
{
u ∈ Rn

∣∣∣∣( u

u′x

)
∈ cl conv (σ)

}
, (18)

where conv(σ) stands for conv
{(

at

bt

)
, t ∈ T

}
whenever σ ≡ (a, b).

Theorem 2. Let (σ, x) ∈ gphF . The following statements are equivalent:
(i) F satisfies the Aubin property at (σ, x);
(ii) F (σ) �= ∅ for all σ in some neighborhood of σ;
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(iii) SSCQ is satisfied at σ;
(iv) 0n+1 /∈ cl conv (σ);
(v) 0n /∈ Cx.

The following theorem constitutes a key starting point in the remaining sections. Observe that, in the 
particular case when T is finite, a standard argument yields that Cx = conv {at, t ∈ Tσ(x)}, where Tσ(x) is 
the set of active indices of σ at x ∈ F(σ), i.e.,

Tσ(x) := {t ∈ T | a′tx = bt}.

Theorem 3 ([5, Theorem 1]). Assume that {at, t ∈ T} is bounded and let (σ, x) ∈ gphF . One has that

lipF(σ, x) = ‖x‖ + 1
d∗ (0n, Cx)

.

Consequently, when T is finite, this reduces to

‖x‖ + 1
d∗ (0n, conv {at, t ∈ Tσ(x)}) .

To finish this subsection, we include two lemmas which are technical results needed later on in our 
derivation, where [α]+ := max {0, α}:

Lemma 2 ([5, Lemma 1]). Let σ ∈ domF and z ∈ Rn. Then, we have:

d (z,F(σ)) = sup
(uv)∈conv (σ)

[u′z − v]+
‖u‖∗

.

Lemma 3. Let σ ≡ (a, b) ∈ (Rn ×R)T and z ∈ Rn. Then, we have that:

(i) d 
(
σ,F−1(z)

)
= supt∈T [a′tz − bt]+

‖z‖ + 1 ;

(ii) d 
(
b,F−1

a (z)
)

= supt∈T [a′tz − bt]+;

(iii) d 
(
a,F−1

b
(z)

)
= supt∈T [a′tz − bt]+

‖z‖ .

Proof. (i) has been established in [4, Lemma 10].
(ii) follows a standard argument, which we summarize here for completeness: given any b ∈ RT and 

z ∈ Rn, define b̃ ∈ RT by

b̃t := bt + [a′tz − bt]+, t ∈ T ;

obviously, d 
(
b, b̃

)
= supt∈T [a′tz − bt]+ and b̃ ∈ F−1

a (z). Moreover, one easily sees that there is no other 

b̂ ∈ F−1
a (z) such that d 

(
b, b̂

)
< d 

(
b, b̃

)
.

To verify (iii), first, in the particular case z = 0n, we have

F−1
b

(0n) =
{

(Rn)T , if bt ≥ 0, ∀t ∈ T

∅, otherwise.
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So, d 
(
a,F−1

b
(0n)

)
= 0, if bt ≥ 0, t ∈ T , and d 

(
a,F−1

b
(0n)

)
= ∞ otherwise. In this way, applying our 

conventions (15), (iii) trivially holds true. Assume now that z �= 0n. Take any a ∈ (Rn)T and z ∈ Rn. Let 
u ∈ Rn such that ‖u‖∗ = 1 and u′z = ‖z‖. Define ã ∈ (Rn)T by

ãt = at −
[a′tz − bt]+

‖z‖ u, t ∈ T.

Obviously, ã ∈ F−1
b

(z) since

ã′tz − bt = a′tz − [a′tz − bt]+ − bt ≤ 0, t ∈ T.

Hence,

d
(
a,F−1

b
(z)

)
≤ d (a, ã) = supt∈T [a′tz − bt]+

‖z‖ .

Now, arguing by contradiction, assume the existence of â ∈ F−1
b

(z) such d (a, â) < d (a, ã). Then, there 
exists t0 ∈ T such that

‖at0 − ât0‖∗ < ‖at0 − ãt0‖∗ =
[a′t0z − bt0 ]+

‖z‖ . (19)

From (19), we deduce that [a′t0z − bt0 ]+ > 0, and so at0 does not belong to the half space H := {u ∈ Rn |
z′u ≤ bt0}. Now, the well-known Ascoli formula for the distance from a point to a hyperplane, yields the 
following contradiction with (19):

[a′t0z − bt0 ]+
‖z‖ = d∗ (at0 , H) ≤ ‖at0 − ât0‖∗ . �

3. Lower Lipschitz moduli under full perturbations

This section is concerned with the Lipschitz-lsc and Lipschitz-lsc* moduli of the feasible set mapping F
in the framework of perturbations of all coefficients. To compute the desired moduli we refer in a first step 
to the feasible set mapping associated with just a single inequality, L : Rn+1 ⇒ Rn, defined as

L
(
a

b

)
:= {x ∈ Rn| a′x ≤ b} .

The following lemma provides the Lipschitz-lsc modulus of L, which indeed coincides with the Lipschitz 
modulus.

Lemma 4. Let u �= 0n. Then, for any x one has that

liplscL
((

u

u′x

)
, x

)
= ‖x‖ + 1

‖u‖∗
= lipL

((
u

u′x

)
, x

)
.

Proof. The second equality in the statement above follows from Theorem 3. So, it remains to prove the first 
one.
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Appealing to (13), and applying the Ascoli formula, we have that

liplscL
((

u

u′x

)
, x

)
= lim sup

(ab)→( u
u′x),(ab)�=( u

u′x)

d
(
x,L

(
a
b

))∥∥(a
b

)
−
(

u
u′x

)∥∥
= lim sup

(ab)→( u
u′x),(ab)�=( u

u′x)

1
‖a‖∗

[a′x− b]+∥∥(a
b

)
−

(
u

u′x

)∥∥
= max

⎧⎨⎩0, lim sup
(ab)→( u

u′x),(ab)�=( u
u′x),a′x≥b

1
‖a‖∗

a′x− b∥∥(a
b

)
−
(

u
u′x

)∥∥
⎫⎬⎭ .

In the third equality, we have split the limsup according to the two cases a′x < b and a′x ≥ b. On the other 
hand, we have that

lim sup
(ab)→( u

u′x),(ab)�=( u
u′x)

1
‖a‖∗

a′x− b∥∥(a
b

)
−
(

u
u′x

)∥∥ = lim sup
(ab)→( u

u′x),(ab)�=( u
u′x),a′x≥b

1
‖a‖∗

a′x− b∥∥(a
b

)
−

(
u

u′x

)∥∥ ≥ 0.

Here, the ≥ part of the equality is evident by omitting the constraint a′x ≥ b in the limsup and the ≤ part 
follows from the fact that the corresponding limsup subject to the opposite constraint a′x < b is always 
nonpositive. Hence, upon subtracting an artificial zero, we may proceed as

liplscL
((

u

u′x

)
, x

)
= lim sup

(ab)→( u
u′x),(ab)�=( u

u′x)

1
‖a‖∗

((
a
b

)
−

(
u

u′x

))′ ( x
−1

)∥∥(a
b

)
−

(
u

u′x

)∥∥ = 1
‖u‖∗

∥∥∥∥( x

−1

)∥∥∥∥
∗
,

where the last equality comes from the fact that the expression

(
a
b

)
−
(

u
u′x

)∥∥(a
b

)
−
(

u
u′x

)∥∥ ,
may be any vector of the unit sphere of Rn+1. Finally, recall that for our choice of norms 

∥∥∥( x
−1

)∥∥∥
∗

=
‖x‖ + 1. �

We are now in a position to formulate our first result on the equality of all three considered Lipschitz 
moduli (11, 12, 13) of the feasible set mapping (16) in case that the coefficients {at, t ∈ T} are bounded 
(and in particular if T is finite).

Theorem 4. Assume that {at, t ∈ T} is bounded and let (σ, x) ∈ gphF . Then,

liplscF(σ, x) = liplsc∗ F(σ, x) = lipF(σ, x) = ‖x‖ + 1
d∗ (0n, Cx)

, (20)

where all quantities reduce to

‖x‖ + 1
d∗ (0n, conv {at, t ∈ Tσ(x)}) ,

if T even happens to be a finite set.
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Proof. By virtue of Theorem 3 and (10) it will be sufficient to lead the following relation to a contradiction:

liplscF(σ, x) < ‖x‖ + 1
d∗ (0n, Cx) . (21)

First, observe that if 0n ∈ Cx, then F fails to be Lipschitz-lsc at (σ, x) by Theorem 2. Consequently, 
liplscF(σ, x) = ∞ yielding a contradiction with (21). So, from now on, we assume 0n /∈ Cx, and then 
d∗ (0n, Cx) = ‖u‖∗ for some 0n �= u ∈ Cx. If (21) were true, then there existed some α > 0 such that

liplscF(σ, x) < α <
‖x‖ + 1

d∗ (0n, Cx) = ‖x‖ + 1
‖u‖∗

= liplscL
((

u

u′x

)
, x

)
, (22)

where the last equality follows from Lemma 4. Hence, there is a sequence (ur, vr) →r (u, u′x) such that for 
all r one has that (ur, vr) �= (u, u′x) and

d

(
x,L

(
ur

vr

))
> αd

((
ur

vr

)
,

(
u

u′x

))
.

Define a sequence σr ≡ (ar, br) componentwise by

art := at + ur − u; brt := bt + vr − u′x ∀t ∈ T.

Clearly σr →r σ̄ ≡
(
ā, b̄

)
. Since u ∈ Cx, we can write

(
u

u′x

)
= lim

k

∑
t∈T

λk
t

(
at
bt

)
,

for certain λk ≡
(
λk
t

)
t∈T

∈ R(T )
+ (i.e., for each k ∈ N, λk

t = 0 except for finitely many t ∈ T ) such that ∑
t∈T λk

t = 1 for each k. Then,

lim
k

∑
t∈T

λk
t

(
art
brt

)
=

(
ur

vr

)
∀r ∈ N.

This entails that

(
ur

vr

)
∈ cl cone

{(
art
brt

)
, t ∈ T ;

(
0n
1

)}
.

Moreover, 0n /∈ Cx implies via Theorem 2 that F (σ) �= ∅ for σ in some neighborhood of σ̄. Hence, the 
system 

{
x ∈ Rn | (art )

′
x ≤ brt , t ∈ T

}
is consistent for all r large enough. Now, Lemma 1 provides that 

F(σr) ⊆ L
(
ur

vr

)
, whence

d (x,F(σr)) ≥ d

(
x,L

(
ur

vr

))
> αd

((
ur

vr

)
,

(
u

u′x

))
= αd (σr, σ̄) ,

for r large enough. We arrive at the contradiction liplscF(σ, x) ≥ α with (22). This finally disproves (21). �
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4. Lower Lipschitz moduli under RHS perturbations

In this section, we redo the previous analysis but for the partial mapping Fa where just the RHS b of 
system (1) is varied. Again, the first step of this section consists in the computation of the Lipschitz-lsc 
moduli for a (partially) perturbed single inequality, namely the mapping La : R ⇒ Rn defined by

La(b) := {x ∈ Rn| a′x ≤ b} .

One immediately derives the following relation for any u �= 0n and x, one has that

liplscLu (u′x, x) = lim sup
b→u′x,b�=u′x

d (x,Lu(b))
|u′x− b| = 1

‖u‖∗
lim sup

b→u′x,b�=u′x

[u′x− b]+
|u′x− b| = 1

‖u‖∗
. (23)

This allows us to obtain the analogous result of Theorem 4, this time for the partial mapping Fa and with 
a modified formula for the moduli:

Theorem 5. Assume that {at, t ∈ T} is bounded and let x ∈ F (σ). Then,

liplscFa(b, x) = liplsc∗ Fa(b, x) = lipFa(b, x) = 1
d∗ (0n, Cx) ,

where all quantities reduce to

1
d∗ (0n, conv {at, t ∈ Tσ(x)}) ,

if T even happens to be a finite set.

Proof. First observe that Lemma 3 (i) (applied to the special element σ := (a, b)) and (ii) yield the following 
relation for all x and b:

d
(
b,F−1

a (x)
)

= (‖x‖ + 1) d
(
(a, b),F−1(x)

)
.

Now, by virtue of (14),

lipFa(b, x) = lim sup
(x,b)→

(
x,b

)
,b/∈F−1

a (x)

d (x,Fa(b))
d
(
b,F−1

a (x)
)

= lim sup
(x,b)→

(
x,b

)
,b/∈F−1

a (x)

d (x,F(a, b))
(‖x‖ + 1) d ((a, b),F−1(x))

≤ 1
‖x‖ + 1 lim sup

(x,σ)→(x,σ̄),σ/∈F−1(x)

d (x,F(σ))
d (σ,F−1(x))

= 1
‖x‖ + 1lipF(σ, x) = 1

d∗ (0n, Cx)
,

where the last equality follows from Theorem 4. With the same argument as in the proof of Theorem 4, it 
will be sufficient to lead the relation

liplscFa(b, x) < 1
, (24)
d∗ (0n, Cx)
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to a contradiction. If 0n ∈ Cx, we have b /∈ intdomFa (see Theorem 2), which implies liplscFa(b, x) = ∞, 
which contradicts (24). So, from now on, we assume 0n /∈ Cx, and again let 0n �= u ∈ Cx such that 
d∗ (0n, Cx) = ‖u‖∗. By (24), there exists α > 0 such that (see (23))

liplscFa(b, x) < α <
1

d∗ (0n, Cx) = 1
‖u‖∗

= liplscLu(u′x, x). (25)

Hence, there exists a sequence {vr} converging to u′x such that

d (x,Lu(vr)) > α |vr − u′x| , r = 1, 2, ... (26)

The rest of the proof follows a similar argument to the one of Theorem 4, by considering the restricted 
sequence {(a, br)}r∈N with the same definition brt := bt + vr − u′x. As in the proof of Theorem 4, 0n /∈ Cx

implies that F (σ) �= ∅ for σ locally around σ̄. Hence, the (reduced) system {x ∈ Rn | a′tx ≤ brt , t ∈ T} is 
consistent for all r large enough and Lemma 1 provides that F (a, br) ⊆ Lu(vr). Consequently,

d (x,F(a, br)) ≥ d (x,Lu(vr)) and d
(
br, b

)
= |vr − u′x| ,

for r sufficiently large. So, appealing to (26) we derive

d (x,F((a, br))) ≥ α |vr − u′x| ,

for r large enough, which represents a contradiction with the first inequality of (25). �
5. Lower Lipschitz moduli under LHS perturbations

The main objective of this section is to compute the Lipschitz, Lipschitz-lsc, and Lipschitz-lsc* moduli 
of Fb at (a, x) ∈ gphFb. To start with, we emphasize that the fact of considering only LHS perturbations 
entails notable differences with respect to the previous frameworks, where the three moduli coincide. We 
recall Example 1, representing a single linear inequality with LHS perturbations only. As we have seen 
before, the associated feasible set mapping is Lipschitz-lsc (actually with modulus zero), while it fails to be 
Lipschitz-lsc∗ and much less to have the Aubin property (hence, both moduli equal infinity). The following 
example shows that the three moduli can coincide and be finite in spite of the failure of SSCQ which is 
in clear contrast with the corresponding results for full or RHS perturbations (see previous results and 
Theorem 2).

Example 3. Let b̄ := 03 and consider the mapping Fb̄(a) for a close to ā with

ā1 := (−1, 1)′, ā2 := (1, 1)′, ā3 := (0,−1)′,

and x̄ := 02 ∈ Fb̄(ā). One easily checks that SSCQ fails at σ̄ := (ā, ̄b). On the other hand, Fb̄(a) = {02} for 
a close to ā. As a consequence,

liplscFb̄(a, x̄) = liplsc∗ Fb̄(a, x̄) = lipFb̄(a, x̄) = 0.

In the previous example (as well as in Example 1), the fact that x = 0n was essential. Indeed, Theorem 6
below shows that for x �= 0n we still have equality among the three moduli and the finiteness of them is 
characterized by SSCQ. As a preparatory step and consistent with our previous analysis, we consider first 
a single inequality, Lb : Rn ⇒ Rn, defined as
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Lb(a) :=
{
x ∈ Rn| a′x ≤ b

}
.

Then, for any u �= 0n and x ∈ Rn, we infer from the Ascoli formula that

liplscLu′x (u, x) = lim sup
a→u,a �=u

d (x,Lu′x(a))
d (a, u) = lim sup

a→u,a �=u

1
‖a‖∗

[(a− u)′ x]+
‖a− u‖∗

= ‖x‖
‖u‖∗

. (27)

Theorem 6. Assume that {at, t ∈ T} is bounded and let 0n �= x ∈ F (σ). Then,

liplscFb(a, x) = liplsc∗Fb(a, x) = lipFb(a, x) = ‖x‖
d∗ (0n, Cx) ,

where all quantities reduce to

‖x‖
d∗ (0n, conv {at, t ∈ Tσ(x)}) ,

if T even happens to be a finite set.

Proof. We adapt the beginning of the proof of Theorem 5, where we just replace the mapping Fa (considered 
around the point (b, x)) by the mapping Fb̄ (considered around the point (ā, x)). This time, exploiting the 
relations (i) and (iii) of Lemma 3, we arrive by an analogous reasoning at the relation

lipFb(a, x) ≤ ‖x‖
d∗ (0n, Cx)

.

With the same argument as in the proof of Theorem 4, it will be sufficient to lead the relation

liplscFb(a, x) < ‖x‖
d∗ (0n, Cx) , (28)

to a contradiction. As in the proofs before, assume first that 0n ∈ Cx. Then, 0n+1 ∈ clconv (σ) by (18) and 
we can write

0n+1 = lim
r

∑
t∈T

λr
t

(
at
bt

)
,

for some {λr}r∈N ⊂ R(T )
+ with 

∑
t∈T λr

t = 1 for all r ∈ N. Choose w ∈ Rn with ‖w‖∗ = 1 and w′x = ‖x‖. 
For any ε > 0 consider aε ∈ (Rn)T given by

aεt := at + εw for all t ∈ T .

Therefore,

lim
r

∑
t∈T

λr
t

(
aεt
bt

)
=

(
εw

0

)
.

For each ε > 0 we either have that Fb (aε) = ∅ or (consistent case) that Lemma 1 allows us to derive the 
inequality εw′x ≤ 0 from the inequality system aε′t x ≤ b̄rt (t ∈ T ). In any case we get the inclusion

Fb (aε) ⊆ {x ∈ Rn | εw′x ≤ 0} ,
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for all ε > 0. Now, according to the Ascoli formula,

d (x,Fb (aε)) ≥ εw′x

ε ‖w‖∗
= ‖x‖ = ‖x‖

ε
d (a, aε) .

Letting ε ↓ 0 and recalling that x �= 0n, we see that liplscFb(a, x) = ∞ contradicting (28).
If, in contrast, 0n /∈ Cx, then choose 0n �= u ∈ Cx such that d∗ (0n, Cx) = ‖u‖∗. According to (28) and 

(27), we may also find some α > 0 such that

liplscFb(a, x) < α <
‖x‖
‖u‖∗

= liplscLu′x (u, x) . (29)

Consider a sequence {ur} converging to u such that

d (x,Lu′x (ur)) > α‖ur − u‖∗, r = 1, 2, ...

Then, repeating the arguments in the end of the proof of Theorem 5, but applied to the sequence 
(
ar, b

)
, 

where art := at + ur − u, we derive the inclusion Fb (ar) ⊆ Lu′x (ur) for r sufficiently large and finally the 
contradiction

d (x,Fb (ar)) ≥ d (x,Lu′x (ur)) > α‖ur − u‖∗ = αd (ar, a) ,

with the first inequality of (29). �
The case of x̄ = 0n ∈ F (σ) is more delicate according to whether SSCQ is satisfied or not and if not, 

then whether 0n is the unique element of F (σ) or not.

Theorem 7. Assume that {at, t ∈ T} is bounded and 0n ∈ F (σ). Then,
(i) liplscFb(a, 0n) = 0,
(ii) If SSCQ is satisfied at σ, then liplsc∗Fb(a, 0n) = lipFb(a, 0n) = 0.
(iii) If SSCQ is violated at σ, then

a) If F(σ) �= {0n}, then liplsc∗Fb(a, 0n) = lipFb(a, 0n) = ∞
b) If F(σ) = {0n}, then liplsc∗Fb(a, 0n) = 0
c) If F(σ) = {0n} and T is finite, then lipFb(a, 0n) = 0.

Proof. (i) The fact that 0n ∈ Fb (a) implies that bt ≥ 0 for all t ∈ T , hence

0n ∈ Fb (a) ∀a ∈ (Rn)T . (30)

The assertion follows from (13).
(ii) From (14),

lipFb(a, x) = lim sup
x→0n,a→a,a/∈F−1

b
(x)

d (x,Fb(a))
d
(
a,F−1

b
(x)

) .
Observe, that the relation a /∈ F−1

b
(x) implies x �= 0 by (30). Exploiting once more the relations (i) and 

(iii) of Lemma 3 and (14), we may continue as
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lipFb(a, 0n) = lim sup
x→0n,a→a,a/∈F−1

b
(x)

‖x‖ d
(
x,F(a, b)

)
(1 + ‖x‖) d

(
(a, b),F−1(x)

)
≤ lim sup

x→0n,σ→σ,σ/∈F−1(x)

‖x‖ d (x,F(σ))
(1 + ‖x‖) d (σ,F−1(x))

= lim sup
x→0n

‖x‖
1 + ‖x‖ · lipF(σ, 0n) = 0,

where we used the fact that lipF(σ, 0n) < ∞ under SSCQ (see equivalences (i) and (iii) in Theorem 2 as 
well as (9)). The assertion follows from (10).

(iii) Assume that SSCQ is violated at σ, whence 0n+1 ∈ cl conv (σ) by Theorem 2. Turning to subcase 
(a), choose any x̂ ∈ Fb (a) \{0n} and any ε > 0. Define

âεt := at + ε2w for all t ∈ T ,

where ‖w‖∗ = 1 and w′x̂ = ‖x̂‖. Then, analogously to case ‘0n ∈ Cx’ in Theorem 6 we conclude that

Fb (âε) ⊆
{
x ∈ Rn : ε2w′x ≤ 0

}
,

for all ε > 0 and by Ascoli formula

d (εx̂,Fb (âε)) ≥ ε3w′x̂

ε2 = ε ‖x̂‖ = ‖x̂‖
ε

d (a, âε) .

Note that, as ε ↓ 0, εx̂ becomes arbitrarily close to x = 0n and âε → a, so that we have shown that 
liplsc∗Fb(a, 0n) = ∞ which also implies by (10) that lipFb(a, 0n) = ∞. In subcase (b), the additional 
assumption F(σ) = {0n} shows via (30) that

d(x,Fb (a)) ≤ ‖x‖ = 0 ∀x ∈ Fb(a) = F(σ) = {0n} .

Now, liplsc∗Fb(a, 0n) = 0 follows from (12). Finally, in subcase (c), we additionally assume that T is finite 
and show that

0n ∈ intconv {at|t ∈ Tσ(0n)} . (31)

Indeed, otherwise the separation theorem would yield the existence of some u �= 0n such that u′z ≤ 0 for 
all z ∈ conv {at, t ∈ Tσ(0n)}. Define ũ := τu �= 0n where

τ := min
t∈T

{
b̄t

‖u‖ ‖āt‖∗

∣∣∣∣ b̄t > 0, ‖āt‖∗ �= 0
}

> 0.

(recall that T is finite). Then, taking into account that bt ≥ 0 for all t ∈ T (see proof of case (i)), we arrive 
at

ũ′āt ≤
{

0 = b̄t if t ∈ Tσ(0n)
(
bt = 0

)
,

τ ‖u‖ ‖āt‖∗ ≤ b̄t if t ∈ T\Tσ(0n)
(
bt > 0

)
,

whence the contradiction ũ ∈ Fb(a)\{0n} with F(σ) = {0n}. Now, (31) implies (see, e.g., [10, Exercise 
6.12]), that for a close enough to a

0n ∈ intconv {at|t ∈ Tσ(0n)} . (32)
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Assume that there exists some 0n �= u ∈ Fb(a) for some a sufficiently close to a as to satisfy (32). Then, 
0 �= εu ∈ conv {at|t ∈ Tσ(0n)} for some ε > 0. Hence, there exist multipliers λt ≥ 0 for t ∈ Tσ(0n) such that

εu =
∑

t∈Tσ(0n)

λtat,

whence the contradiction

0 < εu′u =
∑

t∈Tσ(0n)

λta
′
tu ≤

∑
t∈Tσ(0n)

λtb̄t = 0,

where the last equality follows from the fact that b̄t = 0 for t ∈ Tσ(0n). Consequently, by (30),

Fb(a) = {0n}, for a close enough to a,

yielding lipFb(a, 0n) = 0. �
A comparison of all cases in Theorems 6 and 7 shows the following equivalence for the partial mapping Fb, 

which—unlike the mappings Fa and F—cannot be extended to the Lipschitz-lsc property (see Example 1):

Corollary 1. If T is finite, then Fb has the Aubin property at (a, x) ∈ gphFb if and only if it is Lipschitz-lsc∗
at the same point. Moreover, the corresponding moduli coincide.

However, Theorems 6 and 7 also show that full equivalence continues to hold under SSCQ and the 
boundedness of LHS coefficients:

Corollary 2. If SSCQ is satisfied at σ and {at, t ∈ T} is bounded, then Fb has the Aubin property at (a, x) ∈
gphFb if and only if it is Lipschitz-lsc∗, which happens if and only if it is Lipschitz-lsc at the same point. 
Moreover, the corresponding moduli coincide.

The computation of lipFb(a, 0n) in the case when F(σ) = {0n}, SSCQ fails, and T is infinite remains as 
an open problem. Indeed, the following example shows that lipFb(a, 0n) can be either finite or infinite in 
this particular case.

Example 4. For any given p > 1 let us consider the following nominal linear inequality system, in R (endowed 
with the norm of the absolute value),

{tx ≤ |t|p , t ∈ [−1, 1]}

(in other words, at = t and bt = |t|p for all t ∈ [−1, 1]), whose unique feasible solution is x = 0. For any
0 < ε ≤ 1 − 1/p let us consider the perturbed system

{(t− ε)x ≤ |t|p , t ∈ [−1, 1]} ,

whose feasible set is the interval 
[
0, pp (p− 1)1−p

εp−1
]
. Indeed, it can be checked that, for each a ∈ RR we 

have

‖a− a‖ ≤ ε ⇒ Fb (a) ⊂
[
−pp (p− 1)1−p

εp−1, pp (p− 1)1−p
εp−1

]
.

Accordingly,
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lipFb (a, x) =

⎧⎪⎨⎪⎩
∞ if 1 < p < 2,
4 if p = 2,
0 if p > 2.

6. The metric-regularity counterpart of the Lipschitz-lsc modulus

In this section, we add an observation concerning the so-called ‘metric-regularity counterpart’ of Lipschitz-
lsc in the context of multifunctions considered in this paper. By this, we mean the expression

lim sup
y→ȳ,y /∈G−1(x̄)

d (x̄,G(y))
d (y,G−1(x̄)) , (33)

for a general multifunction G : Y ⇒ X around some point (ȳ, x̄) of its graph. Apart from fixing x̄ in 
this expression, it looks similar to the modulus of metric regularity (14) of G−1 at (x̄, ȳ) which equals the 
Lipschitz modulus of G at (ȳ, x̄). Since x̄ is also fixed in the formula for the Lipschitz-lsc modulus (13), the 
natural question arises if (33) is equivalent with (13). The following relations are obvious from (13) and 
(14):

liplscG(y, x) ≤ lim sup
y→ȳ,y /∈G−1(x̄)

d (x̄,G(y))
d (y,G−1(x̄)) ≤ lipG(y, x). (34)

In general, both inequalities can be strict. Example 1 shows this for the second inequality. Since therein 
y ∈ G−1(0) for any y ∈ R, the superior limit of non-negative numbers in (33) is taken over the empty set, 
hence formally equal to zero:

0 = lim sup
y→0,y /∈G−1(0)

d (0,G(y))
d (y,G−1(0)) < lipG(0, 0) = ∞,

while the Lipschitz modulus equals infinity because the Aubin property fails to hold for G at (0, 0). The 
next example shows that the first inequality in (34) can be strict too:

Example 5. Consider the (single-valued) mapping G(y) := {f(y)}, where f : R −→ R is given by:

f(y) :=
{

y sin 1
y if y �= 0

0 if y = 0 .

Here, we have that

lim sup
y→0

d (0,G(y))
d (y,G−1(0)) = ∞, (35)

while

liplscG (0, 0) = liplsc∗ G (0, 0) = 1. (36)

In order to prove (35), we observe that

G−1(0) = {0} ∪
{

1
kπ

| k ∈ Z \ {0}
}

.

For k ∈ N, consider the sequence {yk} defined as:
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yk := 1
2

(
1

2kπ + 1
(2k + 1)π

)
= 4k + 1

4k(2k + 1)π .

Then,

d
(
yk,G−1(0)

)
= 1

2

(
1

2kπ − 1
(2k + 1)π

)
= 1

4k(2k + 1)π .

Hence,

d (0,G(yk))
d (yk,G−1(0)) =

4k+1
4k(2k+1)π sin 4k(2k+1)π

4k+1
1

4k(2k+1)π
= (4k + 1) sin 2kπ

4k + 1 ,

which tends to infinite when k → ∞. Therefore,

lim sup
y→0

d (0,G(y))
d (y,G−1(0)) = ∞.

The identity (36) follows from the fact that for continuous functions Lipschitz-lsc and Lipschitz-lsc∗ are 
equivalent properties and their moduli at (0, f (0)) coincide with the following expression:

lim sup
y→0

d (f(0), f(y))
d (0, y) = lim sup

y→0

∣∣∣y sin 1
y

∣∣∣
|y| = 1.

In the context of our linear constraint mappings (16), however, the metric-regularity counterpart of 
Lipschitz-lsc turns out to be identical with the moduli of Lipschitz-lsc and Lipschitz-lsc∗ (where in the case 
of the partial mapping Fb one has to impose an additional assumption):

Proposition 1. In (16), assume that {āt | t ∈ T} is bounded and consider any (σ, x) ∈ gph F . Then,

liplscF (σ, x) = liplsc∗ F (σ, x) = lim sup
σ→σ̄,σ/∈F−1(x̄)

d (x̄,F(σ))
d (σ,F−1(x̄)) ;

liplscFā

(
b, x

)
= liplsc∗ Fā

(
b, x

)
= lim sup

b→b̄,b/∈F−1
ā (x̄)

d (x̄,Fā (b))
d
(
σ,F−1

ā (x̄)
) .

Moreover, if x �= 0n, then

liplscFb̄ (a, x) = liplsc∗ Fb̄ (a, x) = lim sup
a→ā,a/∈F−1

b̄
(x̄)

d (x̄,Fb̄ (a))
d
(
σ,F−1

b̄
(x̄)

) .
Proof. The proof follows immediately from the relations (10) and (34) upon taking into account Theorems 4, 
5 and 6. �
7. Conclusions

By combining the results of the preceding sections we can construct the following table of conclusions. 
Recall that we are working under the assumption that {at, t ∈ T} is bounded. Recall also that Cx was 
defined in (18).
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Full perturbations RHS perturbations LHS perturbations

liplscF(σ, x) = liplscFa(b, x) + liplscFb(a, x)
‖ ‖ ‖

‖x‖ + 1
d∗ (0n, Cx)

= 1
d∗ (0n, Cx) + ‖x‖

d∗ (0n, Cx)

‖ ‖ ‖(∗)

liplsc∗F(σ, x) = liplsc∗Fa(b, x) + liplsc∗Fb(a, x)

‖ ‖ ‖(∗∗)

lipF(σ, x) = lipFa(b, x) + lipFb(a, x)

Observe that, in contrast to Theorem 1, Corollaries 1 and 2 not only state equivalences of properties but 
in addition the equality of the associated moduli which can be calculated by means of explicit formulae. 
With respect to the previous table, let us point out the following:

• Looking at the different rows of equalities, we conclude that for any of the three moduli, liplscF(σ, x), 
liplsc∗F(σ, x), and lipF(σ, x), its value can always be decomposed as the sum of the corresponding 
moduli under RHS and LHS perturbations.

• The first two columns of equalities have been established in Theorems 4 and 5, devoted to the frameworks 
of full and RHS perturbations, respectively.

• Theorems 6 and 7 gather the results about the third column of equalities, devoted to LHS perturbations. 
(∗): this equality is held with the only exception when x = 0n, F(σ) �= {0n} and SSCQ fails (in which 
case, liplscFb(a, x) = 0, while liplsc∗Fb(a, x) = ∞). (∗∗): this equality holds with the only exception 
when F(σ) = {0n} (hence x = 0n), SSCQ fails, and T is infinite; in this case liplsc∗Fb(a, x) = 0, while 
lipFb(a, x) is undetermined.

Remark 1. The case Fb (a) = {0n} in the parametric setting of LHS perturbations may be viewed as a 
particular case of F̃ (a) = {x}, where the nominal data 

(
a, b

)
∈ (Rn)T × RT and x ∈ Rn are fixed and 

F̃ : Rn⇒Rn is given by

F̃ (a) :=
{
x ∈ Rn : a′tx ≤ bt + (at − at)′ x for all t ∈ T

}
;

i.e., both sides of the linear inequality system are perturbed in such a way that the feasibility of x is 
preserved. In view of Example 4, the study of the Lipschitz behavior of mapping F̃ at (a, x) perhaps 
requires a certain second-order analysis which is out of the scope of this paper; it could constitute a subject 
for further research.
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